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Abstract 

MicroRNAs (miRNA) are implicated in numerous physiologic and pathologic 

processes, such as the development of resistance to chemotherapy. Determining 

the role of miRNAs in these processes is often accomplished through measuring 

miRNA abundance by PCR, sequencing, or microarrays. We have developed a 

system for the large-scale monitoring of dynamic miRNA activity, and have 

applied this system to identify the contribution miRNA activity to the development 

of trastuzumab resistance in a cell model of HER2+ breast cancer.  miRNA 

activity measurements identified significantly different activity levels between 

BT474 cells (HER2+ breast cancer) and BT474R cells (HER2+ breast cancer 

cells selected for resistance to trastuzumab). We created a library of 32 miRNA 

reporter constructs, which were delivered by lentiviral transduction into cells, and 

miRNA activity was quantified by bioluminescence imaging. Upon treatment with 
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the bioimmune therapy, trastuzumab, the activity of 11 miRNAs were significantly 

altered in parental BT474 cells, and 20 miRNAs had significantly altered activity 

in the therapy-resistant BT474R cell line. A combination of statistical, network 

and classification analysis was applied to the dynamic data, which identified miR-

21 as a controlling factor in trastuzumab response. Our data suggested 

downregulation of miR-21 activity was associated with resistance, which was 

confirmed in an additional HER2+ breast cancer cell line, SKBR3. Collectively, 

the dynamic miRNA activity measurements and analysis provided a system to 

identify new potential therapeutic targets in treatment resistant cancers.  

Keywords: miRNA, trastuzumab, drug resistance, breast cancer 

Introduction 

Targeted therapy for the treatment of breast cancer has significantly improved 

the expected outcomes for patients with specific disease subtypes. For example, 

the humanized HER2 antibody, trastuzumab, developed as a therapy for the 

treatment of HER2+ breast cancers, has led to tremendous progress in the 

treatment of the 20% of breast cancer patients with amplified HER2 (Cobleigh et 

al., 1999; Romond et al., 2005; Slamon et al., 2001). Yet despite these 

advances, limitations remain, namely the development of resistance to targeted 

therapy (Nahta, Yu, Hung, Hortobagyi, & Esteva, 2006). Many mechanisms for 

resistance to trastuzumab have been suggested, including PTEN activation 

(Nagata et al., 2004), cyclin E overexpression (Scaltriti et al., 2011), and 

PI3K3CA pathway activation (Berns et al., 2007), among others (Gong et al., 
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2011; Gottesman, 2002; Valabrega, Montemurro, & Aglietta, 2007). While 

progress has been made regarding new therapeutic strategies for trastuzumab-

resistant breast cancer, the precise mechanisms and systems responsible for 

treatment failure are active and critical areas of investigation. 

One increasingly studied mechanism for resistance is altered expression of 

microRNA in the resistant cells. microRNA (miRNA) is a class of small non-

coding RNA that act as inhibitors of translation. miRNAs recognize 

complementary sequences in the 3’ untranslated region (3’ UTR) and recruit 

Argonaut to the mRNA, causing degradation. miRNA acts as a regulator for gene 

expression and can buffer against changes in endogenous promoter activity 

(Filipowicz, Bhattacharyya, & Sonenberg, 2008; Jonas & Izaurralde, 2015; 

Nilsen, 2007).  miRNA can act as an oncogene due to its regulatory role, and 

have been associated with metastasis (Ma, Teruya-Feldstein, & Weinberg, 2007; 

Tavazoie et al., 2008; Yan et al., 2008) and epithelial-mesenchymal transition 

(Burk et al., 2008; Chang et al., 2011; Wellner et al., 2009). miRNA abundance is 

often altered in cancer and has therefore been suggested as a prognostic 

indicator (Lu et al., 2005; Volinia et al., 2006).  miRNAs 21, 125, 145 and 155 

were recently identified as significantly dysregulated in breast cancer and 

correlated with clinical outcome (Iorio et al., 2005).  Additionally, several studies 

have linked dysregulation of the abundance of miRNAs such as miR-21 (Gong et 

al., 2011), miR-125 (Luo et al., 2017), miR-210 (Jung et al., 2012), or miR-375 

(Ye et al., 2014) to differential sensitivity to trastuzumab therapy in HER2+ 
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cancer, indicating an essential role for miRNA activity in mediating the response 

to targeted therapy. 

Currently, miRNAs associated with treatment resistance have been almost 

exclusively identified by their abundance relative to healthy tissues. However, 

tracking the abundance of miRNA may overlook critical mechanistic data 

regarding the effects of the differential activity of these molecules. To this end, 

methods to track abundance of miRNA do not always correlate with miRNA 

activity (Mullokandov et al., 2012), indicating that abundance based methods 

may not accurately delineate the impact of a particular miRNA on the physiology 

of the cancer cell. Furthermore, monitoring the dynamics of the miRNA may 

identify crucial mechanistic information or time points that is associated with 

miRNA function. New methods to dynamically track miRNA activity in treatment-

resistant cancers could provide crucial insights currently lacking in the field of 

miRNA-mediated drug resistance. 

In this report, we developed a system to monitor miRNA regulatory dynamics 

in trastuzumab-resistant HER2+ breast cancer, in order to identify potential 

therapeutic targets and mechanisms that mediate resistance. The system for 

monitoring miRNA activity was based on adapting a technology termed TRACER 

(TRanscriptional ACtivity CEll aRray), which had been used to track the dynamic 

activity of transcription factors (Bernabé et al., 2016; Decker et al., 2017). 

TRACER utilizes a parallel reporter assay to probe the dynamics of transcription 

factor activity during treatment. These reporters consist of a luciferase gene 

whose expression is driven by a transcriptional response element. Luciferase 
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measurements on living cells provide a dynamic measure of activity within the 

cells during treatment, which can be applied to a wide variety of culture systems 

or reporter constructs. We have previously used TRACER to identify 

transcriptional targets in PARP inhibitor resistant BRCA mutated breast cancer 

(Decker et al., 2017), as well as to determine transcriptional regulators of ErbB2-

mediated (HER2-mediated) oncogenesis in breast cancer (Weiss et al., 2014). 

Herein, we developed a library of miRNA reporter constructs, which consists of 

constructs encoding for the luciferase gene with a miRNA recognition sequence 

in the 5’ region. Active miRNA can bind to the luciferase mRNA at the recognition 

site and lead to degradation of the luciferase mRNA, decreasing luminescence 

and providing a dynamic measurement of changes in miRNA activity. We 

characterized the miRNA activity in cells treated with trastuzumab to examine 

and identify the differential activity associated with resistance. A previously 

developed computational pipeline was employed to determine key miRNA from 

the dynamic multivariate data, which were then validated experimentally. 

Materials and Methods 

Cells and reagents 

BT474 and SKBR3 cells were sourced from the American Type Cell Culture 

repository. BT474 cells were maintained in Dulbecco’s Modified Eagle Medium 

supplemented with 10% fetal bovine serum. SKBR3 cells were maintained in 

McCoy’s 5A media supplemented with 10% fetal bovine serum. Media was 

replaced every three days and cells were passaged after they became 80% 
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confluent. A trastuzumab resistant cell line (BT474R) was established by 

continuous culture of the parental BT474 line in 10 ug/mL trastuzumab for 

greater than 6 months, as previously described (Scaltriti et al., 2011). 

miRNA inhibitor assay 

Cell viability was analyzed by MTS assay (Sigma). Cells (1500-3000) were 

plated in each well of a 96-well tissue culture plate with 100 μL of medium. The 

next day, cells were transfected with either miR-21 Power Inhibitor (Exiqon) or 

random Power Inhibitor control inhibitor using JetPrime (Polyplus). After 24 hours 

the media was replaced with 100 μL of fresh media containing 10 μg/mL 

trastuzumab or vehicle control, as indicated, and the cells were grown for 3 days. 

Stock trastuzumab was prepared in deionized water and stock miRNA inhibitor 

was prepared in TE buffer. At the end of the treatment period, 10 μL of MTS 

solution was added to each well, the cells were incubated at 37°C for 1 hour, and 

absorbance was read at 490 nm. Data are presented as a percentage of the 

control cells cultivated under the same conditions or the absorbance of the wells. 

Two-way ANOVA and Tukey’s test for multiple comparisons was used to 

statistically evaluate differences between groups. 

Lentivirus 

Lentivirus was produced by co-transfecting HEK-293T cells with previously 

described lentiviral packaging vectors (pMDL-GagPol, pRSV-Rev, pIVS-VSV-G) 

(Dull et al., 1998) and lentiviral vectors using JetPrime (Polyplus). After 48 hours, 

supernatants were collected and cell debris was spun down and removed. 
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Viruses were concentrated using PEG-it (Systems Biosciences) and re-

suspended in phosphate buffered saline (PBS).  Viral titer was measured using a 

qPCR Lentivirus Titration Kit (ABM). 

miRNA activity arrays 

MicroRNA activity reporters consist of a single miRNA binding site cloned into 

the 3’ untranslated region of a phosphoglycerate kinase (PGK) promoter driven 

firefly luciferase. Firefly luciferase was chosen as the reporter because of the 

linear relationship between luminescence and enzyme abundance over several 

orders of magnitude. Activity of the miRNA binding at the recognition site of a 

target mRNA leads to degradation and an overall reduction of signal from that 

reporter. miRNA sequences were sourced from miRbase (Kozomara & Griffiths-

Jones, 2013), with the exact complementary sequence to the miRNA used for the 

reporter.  Reporter sequences were cloned between the NheI and XhoI 

recognition sites in the pmirGlo vector from Promega. This reporter was excised 

from the original backbone using BglII and XhoI and cloned between the BamHI 

and XhoI sites of the pCS-CG third generation lentiviral vector (Miyoshi, Blömer, 

Takahashi, Gage, & Verma, 1998). 

Dynamic miRNA activity was measured for two cell lines. BT474 cells 

overexpress HER2 and are sensitive to trastuzumab. A resistant derivative of 

these cells (BT474R) was used as a model for acquired resistance to 

trastuzumab. Activity was measured for 32 different miRNAs during 48 hours of 

treatment with 10 μg/mL trastuzumab. Measurements acquired at several time 
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points (0, 2, 4, 6, 8, 24, 48 hours) allowed both initial differences between cell 

types as well as differences in response to trastuzumab treatment to be 

elucidated from the data.   

All cell types were transduced with 10 MOI of each miRNA activity-reporting 

lentivirus. Transduced cells were then seeded on a 96-well plate with at least 3 

technical replicates of each condition.  All reporters were repeated with at least 

n=3 for biological replicates. Two days after cell seeding, luciferase activity was 

measured using an IVIS Spectrum (Caliper Life Sciences, Hopkinton, MA). The 

2-day period is sufficient time for ensuring lentiviral gene expression. After 

changing media, cells were treated with 10 µg/mL of trastuzumab, and the 

luciferase activity was measured for 48 hours. A blank reporter with no miRNA 

binding site was used as a control. Thus, all other miRNA activity was normalized 

with respect to blank activity and represented by miRNA/blank ratio. miRNA 

reporters start at a high luminescence and are dimmer as the miRNA is more 

active and therefore degrading the luciferase mRNA. As such, less light emission 

correlates to higher miRNA activity. 

Statistical analysis 

Activity levels for different miRNAs were normalized to a blank reporter with 

the corresponding treatment. We performed background subtraction and loss 

normalization to correct for systematic noise. All normalized miRNA activity levels 

were log2 transformed. Results of experiments are presented as the mean ± 

standard error unless otherwise indicated. Differences in means were evaluated 
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by fitting an empirical hierarchical Bayesian linear model using the limma R 

package(Smyth, 2005). P-values were adjusted using the false discovery rate 

correction(Benjamini & Hochberg, 1995). A p-value less than 0.05 was 

considered to be statistically significant.  

Classification analysis 

Principle components analysis (PCA) and partial least squared discriminant 

analysis (PLS-DA) were performed to identify multivariate combinations of factors 

and their time course that would separate the different conditions. Both analyses 

were preformed using the mixOmics package in R (Rohart, Gautier, Singh, & Le 

Cao, 2017). Each individual 96-well plate included only a subset (10-16 of 32) of 

the measured miRNAs. Since both PCA and PLS-DA require the full complement 

of measured factors, we used randomly sampled individual biological replicates 

to generate 1000 simulated experiments containing one biological replicate of 

every miRNA for PCA and PLS-DA. Data were normalized to blank reporter 

control and untreated control within an experiment prior to sampling, leaving 

three equivalent groups: treated BT474 (HCP_BT474), treated BT474R 

(HCP_BT474R), and untreated BT474/BT474R (NT). Individual experiments 

were variance scaled to standardize all data prior to multivariate analysis.  

Network Analysis  

Network analysis of miRNA activity measurements was carried out using a 

modified version of NTRACER, which has been described previously (Bernabé et 

al., 2016). As with the classification analysis, biological replicate data was 
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sampled to create 50 sets of complete measures for each run of the network 

analysis.  A total of 500 runs was performed. Normalized activity measurements 

were variance scaled and an initial network topology inferred through several 

different techniques: linear methods (PLSR (Mevik & Wehrens, 2007), similarity 

index (Siletz et al., 2013), linear ordinary differential equations based on 

TIGRESS (Haury, Mordelet, Vera-Licona, & Vert, 2012), and nonlinear methods 

(ARACNE (Margolin et al., 2006), CLR(Faith et al., 2007), MRNET(Meyer, 

Kontos, Lafitte, & Bontempi, 2007)). Features were selected from the top 10% of 

edges for each inference method at each set of time points based on the relevant 

score for each inference technique. Possible connections between miRNAs were 

assigned a score of one if they were in the top 10% at least once in the set of 

timepoints. The results of each inference method summed between runs, and the 

final 10% of summed edges for the entire experiment were calculated after the 

conclusion of 500 runs of the inference code.   Network edges were further pared 

by including only edges that were inferred through multiple inference methods to 

ensure high-quality connections in the final model.  Networks were visualized and 

analyzed for eigenvector centrality using the R package iGraph (Csardi & 

Nepusz, 2006).  

Selection of relevant miRNA 

 We adapted a previously published method for identifying transcription 

factors that mediate drug resistance to this study of miRNA activity (Decker et al., 

2017).  Three different analysis methods were used to score miRNAs, with a total 

of four components leading to the score.  These methods were selected to 
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account for univariate differences between treatments, multivariate scoring and 

networked connections between factors. Statistical analysis using limma was 

used to compare treated BT474R cells to 1) untreated BT474R cells and 2) 

treated parental BT474 cells.  Reporters were scored either a one (significant) or 

a zero (not significant) based on this analysis.  Second, the network analysis 

from NTRACER was used to score the reporters based on their centrality to the 

network. Eigenvector centrality awarded scores between 0 and 1 based on how 

central the reporter was to the network. Finally, variable importance in projection 

(VIP) scores from the PLS-DA were used to measure the importance of each 

reporter within the multivariate context of these experiments. The maximum VIP 

score for each individual timepoint was used and scaled so 1 was the maximum 

value. The top scoring factor using these criteria was selected for further 

analysis. 

Results 

Large scale dynamic miRNA activity measurement 

We initially investigated miRNA activity dynamics in two related cell lines that 

overexpress HER2 yet have different responses to trastuzumab: BT474 

(parental) and BT474R (resistant). A total of 32 miRNAs were selected based on 

their previous association with drug sensitivity in cancer. These two cell lines had 

significantly different miRNA activity patterns at baseline, with a trend towards a 

higher number of active miRNAs in the treatment sensitive cells. Two miRNAs 

were initially “active” in BT474R cells (miR-92 and miR-200a), which was 
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observed as less luminescence compared with a blank control (p<0.05), while 19 

miRNAs were “active” in the parental BT474 cell line (Figure 1A, B). The most 

active of these miRNAs, in the BT474 cell line, were miR-21, miR-23b and miR-

32. Among the miRNAs that were significantly active in the BT474 cells, two were 

significantly different from BT474R activities at baseline, miR-20 and miR-32.  

 We next monitored dynamic miRNA activity in response to trastuzumab 

treatment in both cell lines. Significant alterations in miRNA activity were 

observed in both cell lines over 48 hours of treatment (Figure 2). A total of 11/32 

(34%) miRNAs were significantly altered in BT474 cells (p<0.05), with miR-100, 

miR-145 and miR-221 having the most substantial changes (p<0.01). With 

respect to the resistant cell line (BT474R), a total of 20/32 (63%) miRNAs had 

significantly altered activity in response to trastuzumab. A total of 15 of these 

miRNAs were altered beyond the p<0.01 threshold, with miR-21, miR-335, miR-

200a, miR-32, miR-373 and miR-210 showing the most significant alterations 

(p<1e-7). Hierarchical clustering of miRNA dynamics between the two cell lines 

demonstrated six broad clusters of miRNAs with similar activity between the two 

cell types. The two most unique clusters contained one factor (miR-21) and two 

factors (miR-7 and miR-18a). 

Connections between miRNAs based on their activity were subsequently 

inferred through implementation of a compilation of network inference tools 

(Bernabé et al., 2016). Two networks were inferred, one for trastuzumab 

response in cells that respond to the drug (BT474) (Figure 3A) and one for cells 

that were resistant to the drug (BT474R) (Figure 3B). These networks utilized 
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the aggregate connections inferred between miRNAs for each time point to 

produce connections and central hub nodes for each network. Hub nodes were 

identified as those whose eigenvector centrality score was in the top 10% of all 

nodes. Hub nodes were interpreted as important to the response to trastuzumab, 

and not necessarily as direct targets of trastuzumab treatment. Both networks 

had similar hub nodes at miR-20 and miR-21.  Responsive cells had additional 

hubs at miR-92 and miR-183, while sensitive cells had hubs at miR-9 and miR-

99b. These miRNAs represented hubs based on their influence at one or more 

times in the network, as inferred by one or more of the methods used to create 

the consensus network. 

Identification of controlling miRNA 

We utilized both unsupervised (PCA) as well as supervised (PLS-DA) 

classification methods to determine a combination of variables that separated 

BT474, BT474R and pooled normalized untreated controls. PCA was used to 

confirm the accuracy of separating the cells into three distinct types (Figure 4A). 

Two principle components were calculated, with PC1 explaining 20% of the 

sample variance and PC2 explaining 11% of the variance. Three broad groups of 

samples were found, which agreed with the three measurements that were used 

for the analysis (normalized untreated, treated BT474, treated BT474R). All 

conditions were normalized to the experimental control, and as such, both types 

of cells had similar values for the control and can be considered as one group for 

this analysis. A correlation circle of the top 10 variables (Figure 4B) had three 

clusters of factors and time points. miR-7, miR-18a and miR-135b formed one 
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cluster, while miRs 200a and 373 formed another along PC1. miRs 145, 146, 

183, and 195 formed a cluster on PC2, with miR-23b forming solitary point as 

well. These variables were all time point specific, which can be seen in the 

variable name (Figure 4b).  

PLS-DA was used to identify a multivariate signature for the time-course 

changes in miRNA activity in the sensitive and resistant cell lines and also to 

identify how these cells lines differed from untreated control cells (Figure 5). We 

have previously demonstrated that this method provided superior classification 

for dynamic transcription factor activity data (Decker et al., 2017), and as such 

employed this method to identify the linear combinations of miRNAs that best 

delineated treated and untreated sensitive and resistant cells. The time-course 

PLS-DA classified the cells into three groups (untreated aggregate, treated 

BT474, treated BT474R) with 98.9% accuracy from 10-fold cross validation using 

two components with 10 selected variables for each loading vector. Different 

factors were found to be highly loaded in LV1 (X axis) compared with LV2 (Y 

axis) (Figure 5B, C). LV1 delineated resistant from sensitive and untreated cells. 

miR-21 after 48 hours was the highest loaded factor in LV1, with BT474 cells 

treated with trastuzumab having the highest level of activity. LV2 also delineated 

treated and untreated BT474 cells, with miR-150 after four hours as the highest 

loaded factor. VIP scores for the selected factors were also calculated (Figure 

5D). These scores correspond to the relative estimated importance of each 

variable in the PLS-DA model.  For the PLS-DA model associated with these 
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experiments, the VIP scores were similar for both LV1 and LV2, with the highest 

score assigned to miR-21.  

We subsequently tested the ability of our miRNA activity measurements to 

select relevant factors associated with trastuzumab resistance, using a method 

that combined statistical, classification and network analyses (Decker et al., 

2017).  We scored our miRNAs based on their statistical significance between 

trastuzumab-resistant cells and untreated controls and treated responsive cells, 

centrality in the network analysis and importance in the PLS-DA model.  This 

scoring system had a maximum possible value of 4, with the highest score factor 

selected for analysis; using these criteria, miR-21 was identified as the leading 

factor associated with trastuzumab resistance (Figure 6A). Initial activity 

measurements indicated increased miR-21 activity in BT474 cells relative to 

BT474R cells, with both lines having a decrease in activity in response to 

therapy. Based on the results with this model system, we hypothesized that miR-

21 is a regulator of trastuzumab sensitivity, and specifically that inhibiting miR-21 

activity will decrease the sensitivity to trastuzumab. This hypothesis was tested 

by transfection of a miR-21 inhibitor into SKBR3 cells, which served as a distinct 

model of HER2+ breast cancer, unrelated to the study cells from which the 

hypothesis was derived.  Transfection with a miR-21 inhibitor resulted in a 17% 

decrease in proliferation of SKBR3 cells relative to a random inhibitor control 

(Figure 6B). Both cells transfected with a miR-21 inhibitor, as well as those cells 

transfected with a random control, were sensitive to trastuzumab, however the 

effect of the drug differed significantly between treatment groups (Figure 6C). 
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The relative effect of adding trastuzumab to the system was significantly 

decreased in the presence of the miR-21 inhibitor compared to cells transfected 

with a random control inhibitor (17% decrease for miR-21 inhibitor condition 

compared with 40% in the control, p<0.001). Collectively, treatment with 

trastuzumab resulted in decreased proliferation; however, inhibition of miR-21 

reduced the impact of trastuzumab and thus contributed to the sensitivity to 

trastuzumab. 

Discussion 

 miRNA has been the focus of intense study as both a biomarker and a 

therapeutic target (Pereira, Rodrigues, Borralho, & Rodrigues, 2013). In this 

report, we have used a new method, a miRNA activity array, to identify drug 

resistance mechanisms associated with HER2+ breast cancer. We generated a 

library of miRNA reporters with 3’ UTRs that are exact matches to endogenous 

miRNAs from miRbase (Kozomara & Griffiths-Jones, 2013), which provides 

reporting for activity with maximum sensitivity and specificity.  Our miRNA activity 

array expands upon our previous work developing a transcription factor activity 

array (Bellis et al., 2011; Bernabé et al., 2016; Decker et al., 2017) to measure 

the dynamic regulome in living cells. Both arrays utilize activity measurements of 

regulatory factors to provide a unique perspective on the regulome of the cell that 

can be missed through other techniques. qPCR and sequencing methods, the 

most commonly used methods to elucidate essential miRNAs in biological 

processes, are both expensive and often do not correlate well to the activity level 

of the miRNA (Mullokandov et al., 2012). Systems to report activity, therefore, 
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have the potential to more effectively identify miRNAs that may serve as effective 

therapeutic targets. Our dynamic activity platform offered both a means to 

simultaneously quantify the activity of many relevant miRNAs, and implement the 

time-course of the dynamic activity to identify key factors controlling treatment 

response.  

Our studies identified downregulation of miR-21 activity as associated with 

the intracellular response to trastuzumab and development of resistance. The 

identification of decreased miR-21 activity as contributing to trastuzumab 

resistant HER2+ breast cancer was performed using an updated analysis pipeline 

previously developed to recognize transcriptional targets of resistance to PARP 

inhibitors. This method combined statistical, classification and network analyses 

to identify factors that are consistently important in both the resistant phenotype, 

as well as the response to treatment in responsive and unresponsive cells. Time-

course data provided a superior platform for both classification (Antonucci, De 

Rosa, Giusti, & Cuzzolin, 2015; Park, Koo, Kim, Sohn, & Lee, 2008; Robinson, 

Glonek, Koch, Thomas, & Davies, 2015) and network analysis, (Bar-Joseph, 

Gitter, & Simon, 2012; Bernabé et al., 2016) when compared with static data, 

which allowed the multiple techniques to converge on a single factor, miR-21.  

Importantly, each method of analysis offered complementary information that 

was not available from a single technique. Statistical analysis provided a list of 

differential activities induced by the resistant phenotype, as well as treatment 

with trastuzumab. These measurements lack the multivariate context in which the 

different phenotypes can be distinguished. Network analysis provided a means to 
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identify controlling hubs within the network and, when placed in the context of 

multivariate classification, to identify which factors that were essential in 

controlling treatment response. This report has updated the analysis pipeline to 

include a numerical score for each factor, thus reducing bias that may be 

introduced in interpreting the results and providing a solid foundation for further 

experimentation. This particular study found miR-21 had the highest score.  The 

next highest scoring factors, miR-99b and miR-92, have both been implicated in 

cancer aggressiveness and prognosis (Nilsson et al., 2012, Si et al., 2013; Wei et 

al., 2013, Kang et al., 2012). Specifically, miR-92a has been suggested as a 

partner to miR-21 as a biomarker for primary breast cancer (Si et al., 2013), 

supporting that this scoring method can identify relationships between factors 

associated with breast cancer, yet additional studies would be required to identify 

the precise mechanisms by which these factors may promote resistance to 

trastuzumab. 

The relevance of miR-21 to HER2-targeted therapy was identified by its 

unique dynamics, centrality in the network, and ability to delineate sensitive and 

resistant cells in the multivariate analysis. The identification of miR-21 as a 

controlling factor for therapeutic response and resistance is supported by the 

literature for a number of different drugs and cancer types. miR-21 activity has 

been implicated in the onset of drug resistance, and was reported to mediate 

resistance to treatments including cisplatin (Yang et al., 2013), gefitinib (Shen et 

al., 2014) and sorafenib (He et al., 2015). Specific to breast cancer, miR-21 

abundance has been suggested as a biomarker for therapeutic response, (Müller 
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et al., 2014; Si et al., 2013) and may confer resistance to trastuzumab (De 

Mattos-Arruda et al., 2015; Gong et al., 2011). We observed an initial decrease in 

miR-21 activity in both study cell types upon treatment with trastuzumab, 

followed by divergent activity patterns: sensitive cells showed increased miR-21 

activity while resistant cells maintained relatively low levels of activity (Figure 2). 

These results may be explained by the role of miR-21 in cell cycle regulation. 

Trastuzumab is considered to be cytostatic rather than cytotoxic to cells in vitro 

(Scaltriti et al., 2011; Vu & Claret, 2012), and as this therapy is antiproliferative 

(and is also why proliferation based assays, such as the MTS used in this study, 

are appropriate). miR-21 activity inhibition should increase expression of miR-21 

target genes, such as the tumor suppressor PTEN, which would lead to a 

decrease in proliferation. We did indeed observe decreased proliferation in miR-

21 inhibitor treated SKBR3 cells, a second trastuzumab responsive cell line, 

compared with vehicle treated cells, consistent with the proposed hypothesis. 

Furthermore, inhibiting miR-21 activity decreased the relative response to 

trastuzumab, which would be expected if trastuzumab acts in part through 

inhibition of miR-21 activity.  

The regulome of the cell ultimately determines the cell fate, and disruption of 

the calibrated regulatory mechanisms of the cell can ultimately lead to oncogenic 

transformation. We advanced our previously described TRACER technology to 

encompass dynamic monitoring of miRNA activity and used this array to 

investigate the dynamics of miRNA activity in HER2+ breast cancer to identify 

potential miRNA-mediated mechanisms for resistance. Both supervised and 
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unsupervised classification could identify treated and untreated cells from both 

the resistant and responsive phenotypes, consistent with our previous 

observations using this method (Decker et al., 2017). Downregulation of miR-21 

activity was identified through the multivariate analysis as a potential driving 

factor for the resistant phenotype in HER2+ breast cancer cells. This hypothesis 

was confirmed by inhibiting the activity of miR-21, results that extended to an 

independent model of HER2+ breast cancer. This tool for large-scale analysis of 

miRNA activity could be applied to numerous systems in order to identify the 

function of miRNA in cell fate determination, and these miRNAs may serve as 

either biomarkers or therapeutic targets. 
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Figures 

Figure 1: Static, initial miRNA activity measurements in A) trastuzumab sensitive (BT474) 

and B) resistant (BT474R) cells. Data is presented as log normalized difference between 

miRNA reporter and a blank control.  Negative numbers indicated increased miRNA activity. 

Error bars represent standard error. 

 



 

This article is protected by copyright. All rights reserved. 

A
ut

ho
r 

M
an

us
cr

ip
t 

Figure 2: Dynamic miRNA activity in both BT474 (sensitive) and BT474R (resistant) cell 

lines during treatment with trastuzumab. Data is presented as log2 normalized difference 

between miRNA reporter and a blank control. Brackets indicate groups identified through 

hierarchical clustering. 
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Figure 3: Network analysis for A) BT474 and B) BT474R cells over 48 hours treatment 

with trastuzumab.  Yellow nodes are hubs identified by eigenvector centrality. 

 

Figure 4: A) Principle components analysis of time course miRNA activity data.  Data 

from separate partial experiments was randomly sampled to create 1000 complete 

“experiments” for use analysis. B) Correlation circle plot of selected activity measurements for 

the PCA model. 
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Figure 5: 1) PLS-DA plot separating bootstrapped samples from untreated, treated BT474 

and BT474R cells.  B) VIP scores across for model.  Similar scores were measured in both LVs. 

C) Loadings in LV 1.  D) Loadings in LV2.  Colors indicate cell line/treatment with highest 

activity level. Ellipses in A) represent 95% confidence intervals 
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Figure 6: A) Relative importance scores from statistical, network and classification identify 

miR-21 as important in trastuzumab resistance. B, C) Proliferation assay for vehicle and 

trastuzumab treated SKBR3 cells.   B) Effect of miR-21 on baseline proliferation of SKBR3 

cells. C) Effect of trastuzumab on proliferation in vehicle and inhibitor treated cells. ** = 

p<0.01,  *** = p<0.001  
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