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Abstract

Background:.Rhinovirus (RV) causes the common cold asihma exacerbatisnThe RV
genome.is\a.Z.3 kb singgtrand positivesense RNAODbjective: Using minor group RV1A as a
backbone, we=sought to design and generate a recombinant RV1A accommodating fluorescent
marker expression, thereby allowing trackirfgvmal infection. Method: RecombinaniRV1A
infectious cDNA clone harboring thecoding sequencef green fuorescent protein (GFP)
Renillafluciferaseor iLOV (for light, axygen or voltage sensingWwere engineered and
constructed i '
were—used—for—infection—in—vitro—and—n—viviRV-infected cells were determined by flow
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cytometry, immunohistochemistry and immunofluorescence microsédgsults. RV1A-GFP
showeda cytopathic effect in HelLa cells biailed toexpress GFRr Renilla luciferasedue to
partiatdeleton. The smaller fluorescent protedonstruct, RV1ALOV, wasstably expressed in
infected cellsRV1A-iLOV expression was used to examine thiviral effect of bafilomycinin
Hela cellsinitro—tnr—vivo-studies—showedhat, Comparedio parental virus, RV1IALOV
infection of, BALB/c miceyielded a similar viral load and level of cytokine mRNA expression.
However,imaging of fixed lung tissue failed to reveal a fluorescent signal, likely duketo
oxidation and“bleaching of iLOYound flavin mononucleotide. We therefore employed an anti
iLOV antibody for immunohistochemical and immunofluorescence imaging. The isignhal
was identified=inairway epithelial celland CD45+CD11b+ lung macrophage&Sonclusions:
These results suggdsiat RV1A-iLOV is a useful molecular tool for studyif)/ pathogenesis.
The construction strategy for RVIRAOV could be applied to othéRV serotypes.However,
detection ofILOV-expressing RMn fixed tissuerequiredthe use of an antLOV antibody,
limiting the_value of this constructKey words: Picornavirus rhinovirus; reverse genetics
fluorescenttagiLOV
I ntroduction

Rhinovirus (RV) is the most frequent viral infectious agent ofdispiratory tract in
humans.andis the predominant caofséne common cold. More importantly, RV has emerged
as the most frequent pathogen associated with asthma exacerbaitdasts) children and
adults®*,

RV is'placel in thePicornaviridae family, genusEnterovirus, with three species based
on phylogenetic sequence critetid Clinical specimens collected from in the 1960s and 1970s
yielded approximately 100 differerspecies A and Btrains whichweresubsequently serotgg
8 More recently, a diverse group of previously unrecognized human virasespecies C
were found.to.be common causes of respiratory illhiebs understand RV pathogenesis, human
andanimalmodels have been developétiiman studies have employed experimental infection
with RV-A16%° Mouse studies have used R\B wild-type mice** or RV-A16 in mice that
are transgenic.for human intercellular adhesion moletiteThese models have been
particularly useful in studyinRV-induced exacerbatigrof allergic airways diseasto detect
RV in the tissues, investigators have employed the monoclonal antibody R£6-7This
antibody, originally developed by Wai-Ming Lee at the University of Wisconsin, binds to the

This article is protected by copyright. All rights reserved



59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

IRV-2018-031.R1 3

VP2 capsid protein of the closely related RV-A16 and RVs#&ains®, but not to RV-A2RV-

B14, orRV-A49 *°. Because the preseneEmore than 100 different RV serotypes makes
infeasible tadevelop a croseeactiveantibodyfor RV, we sought to develop a recombinant virus
with a fluorescent markehat could be used for tracking of RV infectimrvivo.

Similar,to othempicornaviruses, RV igosahedral, non-enveloped particle which is
composed.of 60 copies each of four capsid proteins, VP1, VP2, VP3, and the small myristoylated
VP4 % ¥ Thereapsid encasepositive sense singistranded RNA (ssRNAjenomeof
approximatély*7,200 nucleotidés Following virus entry and genomelease into thhost cell
cytoplasm, thd&kV ssRNA is translated into a single polyprotthat undergoes proteolytic

cleavage by viral proteases PPand 3¢ 8 1% %

with the exception ahe autocatalytic
cleavage ofprecursor VPO into VP2 and VP4 in the presence of viral RNA during the assembly
process™.

RV infectious cDNA clons havebeen constructednd use@s a molecular toab study
RV viral protein functiommndmutationphenotype associatipas wellas avaccine vectofor
foreign generexpressidh >2%°, In the current studywe engineered a recombinant RV1A
(RV1A-iLOV)with insertion ofthe coding sequender iLOV (for light, axygen or wltage
sensing)asmallsizefluorescenmarker?°. RV1A-iLOV is viable andts expressed iLOV
proteinis.trackablebothin vitro andin vivo, suggestinghatRV1A-iLOV may be a useful tool in
the study of RV pathogenesis. However, detection of ilpFressing R\in fixed tissue
required the use of an anti-iLOV antibody, limiting the value of this construct.
Materials and"M ethods

Cellsaand Reagents. H1-Hela and THPL cells were purchased from ATCC (Manassas,
VA). Plasmids pEGFR1 (Clontech, Mountain View, CApRL (Renilla luciferase; Promega,
Madison,WI) and pUC18iOV (GenScript, Piscataway, NJ) were used to amplify the DNA
fragments.ofjreen fluorescent proteiGEP), Renilla luciferase (RLand iLOV, respectively.
(Forthe detailedLOV nucleotide sequence, s8applementalable S1) Antibody toRV
VP2/VPO was obtained from QED Biosciences (San Diego, CA). BRR-Ab was purchased
from Thermao Eisher Scientific (Waltham, MA). A synthesized peptide fragofaLOV
(CLGRNARFLQGPETD) was generated and used to generatd_@ntiantibody (GenScript).
Bafilomycin was purchased from Merck Millipore (Burlington, Massachusetts).

Design and construction of recombinant RV1A-iLOV cDNA clone. The RV infectious
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cDNA clone encoding replicatiooempetent RV1A, pMJ3-RV1A, was kindly provided by W.
T. Jackson, University of Marylarfdand served as a backbone for either GRR-, or iLOV-
expressing viruses. GFRL and iLOV open reading frame®©RFs) were designed to be flanked
by the edited nucleotide sequences encoding the vifdl @davage site with silent mutations
introduced_as.described previouslyFigure 1A TableS2). Respective GFRRL, and iLOV
inserts were PCR amplified from existing clones using the primers listed in Table S1. The PCR
products, which' containefpa | restriction enzyme cleavage sites on the 5’ and 3’ ends were
digested withApa I, ligated to pMIRV1A and transformed i&. coli (DH5a, Thermo Fisher
Scientific). The resultant clones were sequenced to confirm the correct orientation of the inserts.
Gener ation of recombinant RV. Infectious cDNA clones encoding RV1A, RVIAFP,
RV1A-RL,and'RV1AiLOV were linearized bylu | restriction enzyme digestion. To produce
replication competent virus, full-length viral RNA transcripts were géeeénasing the
MEGAscript T7 Transcription Kit (Thermo Fisher Scientific) and transfected intblélla cells
using Lipofectamine MessengerMAX (Thermo Fisher Scientific). After 48 h, cells underwent
three freezehaw cycles and were subjected to centrifugation at 12,000 rpm for supernatant
collection. Thewirugontaining supernatant stocks were designated as passage 0 (Pi@Lal1
cells weressubsequently used to passage the virus for subs@guira virus stability andn
vivo studiesRV1A-GFP and RV1ARL underwent plaque purification for insert analy&y.
was concentrated and partially purified from infected HeLa cell lysategrhfiltriation using a
100 kDa Cupff filter, as described". Viral quantity was determined by plaque asSayr
quanitativesonestep reatime polymerase chain reaction for positive-strand viral RNA using
RV-specfhicprimers and probes (forward primer: 5’-GTGAAGAGCCSCRTGTGCT3’; reverse
primer: 55GCTSCAGGGTTAAGGTTAGCE3’; probe: 5'FAM-
TGAGTCCTCCGGCCCCTGAATGTAMRA-3)2°. The limit of detection fothis viral copy
number analysis is betweerl0 copies. Resence of th&FP, RL andLOV insertswas
determined usin&V-specific flankingprimers(forward primer: 5°
CATTCTGITGTCATCACAACACA:3’; reverse primers’-
CACCTATAGIGTTTGTGCGGTSI). iLOV insertquantitywasmeasuredyy quantitative real-
time PCR using specific primers encoding for iLOV (forward primer: 5’
GATTCCTGCAAGGACCAGAGZT’; reverse primers’-CCGCTCTTGGTGTAGTTGATI)).
iLOV immunofluorescence of cultured cells. H1-HeLa cells were infectedith RV1A-
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iILOV at a multiplicity of infection (MOI) of 0.1 for 24 h. Infected cells werertlseibjected to
fluorescent microscopy. In selected experiments, RUI2Y -infected cells were fixed and
stained with Alexa Fluor 55&®0njugated mouse arRV VP2/VR (clone R16#; QED
Bioscience). Images were visualized using an Olympus 1X71linverted phase/epifluorescence
microscope.and digital CCD camera.

Animalsand RV infection. Animal usage followed guidelines set forth in the Principles of
Laboratory"Animal Carérom the National Society for Medical Research. Six-dalyor 8-10
weekold BALEB/c mice (Jackson Laboratories, Bar Harbor, ME) were treated intranasally with
15 or 50 pl of l?)plaque forming units of virus and harvested 24 h later.

Histel ogy, immunohistochemistry and immunofluor escence microscopy. For histology,
mouse lungs were perfused through the pulmonary artery with PBS containing 5 mM EDTA and
fixed with 4% paraformaldehyde overnight. For immunohistochemistry, lung sectioas wer
stained with rabbit antiLOV, then incubated with biotinylated secondary glags; ABC
reagent (Vector Laboratories, Burlingame, CA), diaminobenzidine (DABp&#jdrich) and
Gill's hematoxylin (Fisher Scientific, Kalamazoo, MI). For fluorescence microscopy, slides were
incubated withvAlexa Fluor 488enjugated iLOV Alexa Fluor 555—conjugated mouse aRY-
VP2/VPOrand Cy5—anti-mouse CD68 (Biolegend, San Diego, CA). Nuclei were stained with
4' 6-diamidino-2phenylindole (DAPI). Images were acquired with a Zeips Pome confocal
microscope (Microscopy and Image Analysis Core, University of Michigan).

Quantitative real-time PCR of lung cytokines. Lung RNA wasextractedwvith TRIzol
Reagen{ThermoFisherScientific) combinedwith on-column digestion of genomizNA
(QIAGEN, Valencia,CA). cDNA wassynthesizedrom 1 pug of RNA andsubjectedo
quantitativereattime PCRusingspecificmRNA primersencodingor IL-1p, IFN-B, IFN-y,
CXCL1,CXCL2,CXCL10,CCL2,CCL5,andIL-10(TableS2. For each sample, the level of
gene expression was normalized to its @& PDH mRNA.

Flow.cytometric analysis. HeLacellswereinfectedwith sham,RV1A or RV1A-iLOV at
anMOI of O«afor 24 hours. Cells were subjected to flow cytometry and analyzed on an LSR
Fortessa (BD.Biosciences, San Jose, CAJ.in vivo experiments, lungiom sham-RV1A-,
andRV1A-iLOV -treaed BALB/c micewereperfusedvith PBScontainingeDTA, mincedand
digestedn collagenaséV. Cellswerefiltered andwashedwith RBC lysis buffer, anddeadcells
were stained with PaOrange Live/Dead fixable dead staining dye (Invitrogé&n)identify
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152  iLOV-positivecells, cellswerestainedfor surfacemarkerswith ant-CD45 (BioLegend) and

153  anti-CD11b(Biolegend)Cellswerethenfixed, permeabilizecand incubateaith the Cy3-

154  taggedantiLOV prior to flow cytometry. Data were collecteddanalyzed using FACSDiva
155  (BD Biosciences) and FlowJo software (TreeStar, Ashland, OR).

156 Data.analysis. Dataarerepresentedsmeant SE. Statisticalsignificancevasassessed
157  usinganunpaired testor oneway ANOVA, asappropriate. Grougifferencesverepinpointed
158 by a Tukeymultiple-comparisortest.

159  Results

160 Incompatibility of RV1A genome with GFP insert. GFPwith flanking 2A° cleavage sites
161  wasdesignedite be inserted between the RV genomic sequences encoding the ¥R1 and
162  proteins(Fig. 1A). To stabilize the genome, silent mutations were introduced into the coding
163  sequencesf both the flanking 2&°cleavage sitesee Supplemental Table 1), as described
164  previously””. To generate viral stockgenomic RNAtranscripts made frotine RV1A-GFP

165 infectious elone were transfected into-HéLa cells folloved by threeonsecutive passages
166  (P1-P3).Aecytopathic effect (CPE) was observed in HelLa cells infected RGER(Fig. 1B).

167 However, we'were unable to detect GFP expression by Western blot (Fig. 1C) or

168  immunofluerescence (Fig. 1DWVe also constructed recombinant FA/éxpressing Rnilla

169 luciferase«(RL)proteinto determine if thaize of the GFPinsert exceedethe limited packaging
170  capacity of RV.To examinghe presence dftact GFPandRL ORFsfrom RV1A-GFPand

171  RV1A-RL, RT-PCRwas performed for plaquedrified RV1A-GFPand RV1ARL usingRV-

172 specific flanking primerprimers. Resultshowedhat theGFPand RL sequensenere deleted
173 (Fig. 1E).Sequence analysis of inserts confirmed these results (data not shown).

174 Generation and characterization of RV1A-iLOV. We reasoned th#lhe approximately 753
175 ntGFPand 1005 nRL ORFs (including engineered flankirsgquencesxceeedthe limited

176  packadng capacity of RV?*. We thereforechose amlternative smaller fluorescent protein

177  iLOV (~366.nt):RV1A-iLOV was generatetbllowing the design and generation procedure of
178 RV1A-GEPRP:CPEand growth kinetics dRV1A-iLOV were determined in HelLa cells

179  comparisonwith the parental virus, the RV1A-iLOV displagetightly reducecdytopathic

180 effectand growthrate(Fig. 2A and 2B. By immunofluorescence, iLOV signal (green) appeared
181  in RV1A-iLOV infected cells only, further confirming the expression of iLOV (Fig 2@¢stern

182  blot analysis using rabbit sera recognizing the iLOV protein showed expression of & pfoduc
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183  thepredicted moleculawveight in RV1A{LOV infected cells Fig 2D), while wviral capsid

184  proteins VPO and VP2 were detected in both RV1A and ROV infected cells.

185 Genetic stability of RV1A-iLOV in cell culture. Next we examined the genetic stability of
186 RV1A-ILQV in Hela cells iLOV expression was observed in RV1£OV P1- and P5nfected
187 Hela cells by.live cell imaging and flow cytometry (Fig 3A-3) VP2/0-positive cells were
188 iLOV-positive./Analysis of the P1 and P5 RV1A-iLOV stocks by RTRreveakd that

189  exogenousiLOV DNA was stably retained within the RV genome over five passagesi®)1
190 (Fig. 3B). Sequence analysis of the iLOV insert confirmed these results and revealed no
191  mutations (data not shown).

192 Assessment of anti-viral effects using RV1A-iLOV in vitro. We explored the application of
193  RV1A-ilOV+to antiviral drug screenind@afilomycin has previously been shown to inhiBiv/

194  infection®’. We infected HeLa cells with RVIALOV at an MOI of 0.1 for 24 hours in the

195 presence dflifferentconcentrationsf bafilomycin iLOV expressiorwas examinedsing flow
196  cytometry (Fig. 4A). Consistent with previous wdPkbafilomycin completely inhibited iLOV
197  expressioprat-a concentration of QM (Fig. 4A and 4B) and significantly reduced the viral
198 titers ofbothRV1A and RV1AILOV (Fig. 4C). These results demonstrate the potential utility
199  of the iLOV,construct to measaRV protein expressiom vitro.

200 | nduetion of cytokinesin RV1A-iLOV infected mice. We previously showed RV1B, a

201 minor group virus, triggers inflammation and cytokine expression in thivée therefore tested
202  whether the iLOV insert influences RV replication and-Rbuced inflammatory responsis
203  vivo. Eightweekold mice were infected with RV1A and RV1A-iLOV for up to four days, and
204  lungs weresharvested at different time points aftiction and processed for positive-strand
205  viral RNAL Measurement of RV copy numibserd viral titersshowed no statistical difference in
206 viral load between RV1A:OV andthe parental RV1A at each of the indicated time points (Fig.
207  5A).

208 Studies.in coxsackievirus have shown that large insertions at the analogod$oatesn
209  P-1D proteasé 2A junction may delete reatfily? iLOV stability in vivo was therefore

210 examined by RTPCRat each of the indicated time points (Fig)5Bhe intact iLOV fragment
211 (~600 bp band) along with a size-reduced band (~300bp) appeared iniROYAnfected

212 mice. Sequence analysis of the sieduced band revealed the deletion of the coding sequence
213 for intact iLOV plusthree nucleotides from 2R (seesequence in Table $Retention of the
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214  iLOV insert was approximately 90% at the indicated time points (Fig. 5B and 5C).

215 We next examined cytokine mRNA expression in RV1A-iLOV infected mice. Lungs
216  were harvested one daftea infection. Similar to the parental RV1A virus, RVAL0V

217  increased lung mRNA levels dfib, 1fnbl, Ifng, Cxcl1, Cxcl10, Cxcl2 andCcl2 (Fig. 5D).

218  However,lfng.andCxcl10 mRNA expression were decreasedRV1A-iLOV compared to

219  RVI1A, perhaps becausé the slightly reduced growth rate. No inductiorCef5 or 1110 were

220 observedoreither RV1A or RV1AIIOV.

221 Detection of iLOV in lungs of infected mice. HeLa cells were plated on coverslips,

222 infected with RV1A-iLOV and fixed in 4% paraformaldehydefldorescent signal was

223  visualizedgbutithe signal was rapidly quenched, likely due to the oxidation and bleaching of
224 iLOV-bound flavin mononucleotide. Similarly, imaging of fixed lung tissue from RMI3Y -

225 infected mice failed to reveal a fluorescent sigWée therefore employed an anti-iLOV antibody
226 for immunoghistochemical staining and immunofluorescence imag#egnfected mice with

227 RVI1A-iLOV. and harvested lungs one day post-infection. We have previously shown that,
228  besides airway/epithelial celRV colocalizswith CD68+ macrophages

229  Immunohistoehemical stainingith antriLOV showed signal in both the epithelium and

230 macrophagef-ig. 6A). Immunofluorescencsimilarly indicatedlocalization in the airway

231  epitheliumas well agolocalization oiLOV (green)with VP2/0(red) anda macrophage

232 marker, CD68 (blue, Fig. 6B).

233 We have previously shown that RV infection induces lung infiltration with CD11b-
234 positive, M2polarized exudative macrophag@sFor the analysis of intracellular iLOV, aliquots
235  of lung minee-were fixed, permeabilized and incubated with thet@y$e antiiLOV prior to

236  flow cytometry.Flow cytometric analysis showed similar increases in the percentage for CD45+
237 CD11b+ cells in both RV1A- and RV1A-QOV -infected mice (Fig. 6C), confirming the

238  colocalization.of lung macrophages and RV. However, a kigas detected i€D45+M11b+
239  cells only in RV1AILOV infected mice Taken together, these results suggest RMX3V as a
240  potential toelto study RWaduced responses in immature mice.

241  Discussion

242 In the present study, we sought to design and generate a recombinant RV1A

243  accommodating fluorescent marker expression, thereby allowing tracking ohf@etionin

244 vivo. Using reverse genetics, we engineered and constructed recombinant RV1A infectious
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cDNA clones harboring the coding sequences of GFPpRILOV. GFPand RLwerenot
expressed in cultured celiisie to deletion during replication, consistent the limited packaging
capability of other picornaviruses. On the other hame staller fluoresee protein construct,
iLOV, was stably expressed in RViIROV -infected celldbothin vitro andin vivo. Evaluation

of ILOV expression was uséd assess the antiviral effeatbafilomycin in RV1AiLOV

infected cellsnwitro. Further,in vivo studies showed that, compared to parental virus, RV1A-
iLOV yieldeda'similar viral load and level of cytokine mRNA expression in theslohg
infected mice:"These results suggest RMILAV may be a useful molecular tool for studying
the life cycle and pabgenesis of RV.

Constructiorof recombinant virussexpressing fluorescentarkes, especially GFP, has
been applied through reverse geneticRNA virusesincluding influenza virud*, Zika virus*>,
West Nile virus®, respiratory syncytial viru¥, murine coronaviru® and porcine reproductive
and respiratory syndrome virtis Howeverjnserion of largefluorescent proteicoding
sequenceginto the genome of the picornaviruses, a grougorail RNA viruses whose genome
sizes rangesfrom 7.2-8.5 kb, has been problematic. Insertion of the GFP ORF into poliovirus
severely impaired viral replication and was deleted in the courssllafultureserial passag¥.

In additiony.@ attempt to construct a recombinant foot-and-mouth disease virus (FMDV)
expressing*GFP or Renilla luciferase protein failéely due to the limited packaging capability
1 Subsequent construction of viruses containing increasingly larger inserts sugges#aD

nt as the maximum size beinserted intdcMDV genome Consistent with thiSRV1A has been
used to express 393 nt-long fragment of HIV gag geffeShorter antigenic tags have also been
inserted inta:the nonstructural proteirigooliovirus *%

Compared t&FP, fuorescent proteins based fbavin-binding LOV (light, oxygen, or
voltage sensing) domaoffer advantages owing to their smaller sf3&4 nt) pH and thermal
stability **.iLOV. was created from the LOV2 domain of thieototropin 2 plant blue light
receptor ofArabidopsis thaliana %°. Unlike GFRbased fluorescent proteins which are inherently
fluorescentkOV domains specifically function as photosensory modules and typically bind
flavin mononucleotide as an wdtrioletblue light-absorbing chromophore. AccordinglyQV
has been usesk a reporter gerie recombinant FMDV* and reovirug®. However in the latter
studies, iLOVexpression was only examingdculturedmammalian cedl, notin vivo

experimentsWe nav show that iLOV is expressed in RVIROV -infected cellsn vivo.
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Thoughsomedeletion occurs during vivo infection, over 90% of the recombinant RV1A-

iLOV retainstheiLOV sequenceHowever, while iLOVwas readily detectable in cultured HelLa
cells, the iLOV fluorescenceavasrapidly lost infixed cells and lung tissue, likely due to the
oxidation and bleaching of iLOV-bound flavin mononucleotide. We therefore required the use of
antiHLOV antibodyto detet RV1A-ILOV.

Similar to viral proteins, iLOV protein is released from the RV polyprotein through viral
proteinasanediated aut@leavage during viral protein production, an early step of viral
replication. Detection of iLOV in mouse tissue is therefore highly suggestiveabfeplication,
particularly intheairway epitheliumHowever, it remains unclear whether iLOV signal in
macrophagessrepresents replication or engulfment of the virus by phagocyi@siseplication
in cultured'macrophages is limitéy though it hasecently been shown that airway epithelial
cellspromote rhinovirus replication in monocytic céffs

Because there amore than 100 different RV serotypes (in species A and B alibi),
infeasible to develop a cressactive antibody for RV. Until now, only one antibody has been
available forgthis purpose, the monoclonal antibody R16-7. This antibody binds to the VP2
capsid protein«of the closely related 16 and RVA1 strains® but not to RVA2, RV-B14, or
RV-A49 . We deeloped a recombinant virus with a fluorescent marker that could be used for
tracking.of*RV infectiorin vivo. We designed the iLOV sequence to be flanked with{°2A
cleavage sites and then inserted between the RV genomic sequences encoding the VP1 and 2A
proteins. 2R mediates autaleavage between VP1 and 2A protéthé’. Since slf-catalytic
cleavage isra“eharacterisa€t picornavirus replication, this design should allow extension of our
technique tesall human RV&iven the fact that iLOV sequence was stably maintained within
RV1A genome during consecutive passagas plausible that other RVs serotypes would
accommodate and maintain stability of iLOV sequence. Though the PXcleavage sites of
numerous.RV.serotypes are heterogenébutesigning the flanked 2R cleavage sequence to
be serotypespecific would guarantee the release of iL@®ésides/P1-2A cleavage site, the
junction sitesbetween 5'UTR and the N-terminus of VP4 has been used to insert GFP in the
genome of'eoxsackie A16 vird% however, the insertion impaired viral replicatidiaken
togetherthese data suggest thié construction strategy for RVHROV could be applied to
otherRV serotypes for studying the life cycle of RV in cultured cells, screening for antiviral
drugs andor pathogenesis of RV.
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Figure Legends

FIG 1. GFRP.ORF insertion into the rhinovirus genomeis deleted. A. Schematic presentation
of the insertion’GFP into RV genome. RV proteins are presented in boX€xl@avages at
points indicated by yellow solid triangles separatessRMctural from nosstructural proteins
and releases"GFP proteins. Solid blue arrows indicdté @€avage site8. Plaque morphology
of HelLa cells infected with parental witgpe RV1A or RV1AGFP.C. Western blot analysis of
whole-cell lysates from HelLa cells infected with RV1A or RVG¥P. Samples were probed for
the presenee @FP andhe RV structural proteins VPO and VP2. GFP input was made from
whole cell lysate of pPEGFR1 transfected HelLa cellB. Detection of RV1AGFP infected cells
by live-cell imagingandimmunofluorescence stainingelLa cells were infected at #OI of

0.1 with elther sham, parent8V1A or RV1A-GFP for 16 hours. HelLa cells were transfected
with pEGERNisfor 16 hours (bar, 50 um). RV VP2/0 protein was detected using AF555-
conjugatedranti¥P2/0 Ab (red); iLOV (green) was directly detected by blue lageriei were
stained by"DAPI (shown in black; bar, 50 um). E. RT-PCR analysis of R\MGFPand RVRL
genomes«RGFPand RV RL genomic RNA were isolated from-Heka-cells-infected-#ith
plaguepurified virus stocks. RV1AsFPand RV1ARL infectious cDNA clonewere used as

template for amplification of complete GleP RL sequence.

FIG 2. Construction of the infectious recombinant rhinovirus-iLOV. A. Plague morphology
of HeLa cells infected with parental witgipe RV1A or RV1AILOV. ILOV (green) expression
was directly detected by blue laser for RV plagied/iral copy number andters in R\
infectedHeLacells.Cellswere infected with R¥YA or RV1A-iLOV at an MOl of 0.1. At
specified times; cells were harvested for analydial copy number was analyzed by
guantitativespolymerase chain reaction. Viral titer was determined byspGIE 3, mean +
SD). C. Fluerescence imagingr RV-iLOV. Hela cells were infected with parental wilgpe
RV1A or RV1A-LOV for 24 hours at aMOI of 0.1. RV VP2/0 protein was detected using
AF555-conjugated anti-VP2/0 Abe@d); ILOV (green) was directly detected bluelaser;nuclei
werestained by DAPI (shown in blagkar, 50 um). D. Western blot assay to detect the
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expression of iLOV

FIG 3. Stability of RV1A-iLOV. A. Live-cell imaging and immunofluorescence stainafig
RV1A-iLQV infected HelLa cells. HeLa cells were infected with P1 and P5 of ROV for
24 hours at.an, MOI of 0.1 RV VP2/0 protein was detected using AE&Digated arti/P2/0
Ab (red); ILOV.(green) was directly detected by blue lasecjei were stmed by DAPI (shown
in blacki'bar,’50'um). B. The rumber of iLOV positive cell®ut of 50 VP2/0 positiveells was
counted. All'VP2/0-positive cells were iLOYpositive. C and D. iLOV detection in HeLa cells
by flow cytometry.Cells were transfected wihXJ4LiLOV or infected with RV1A or RV1A-
iLOV, haryvested 24 houlaterand analyzed as a percentage of single cells (n = 3, mean *
SEM).E. RT-PCR analysis of RV1IALOV genomes. Parental RV1A or RVIAOV genomic
RNA was isolated from HeLa cells infected with P1 or P5 virus stddisRV1A-iLOV
infectious cDNA clone was used as template for amplification of complete iLOV sequence.

FIG 4. Assessment of anti-viral role of bafilomycin using RV1A-iLOV. HelLa cells were
infected with sham or RV1ALOV for 24 hours. Selected cells were treated with 0.01uM, 0.1
uM, or 0.2.uM of bafilomycin. iLOV positive cells were analyzed as a percentage of single cells

(n = 3, mean = SEM)iral titers were calculated as TC{p

FIG 5. Viral load and cytokine expression of RV1A-iLOV in vivo infection. Eightweekold
BALB/c mice'were inoculated with sham, RV1A or RVAIAOV. A Whole lungwas harvested
atthe indicated time points and used for measuring viral copy numbeitemB RT-PCR
analysis of RV1ALOV genomes. Parental RV1A or RVIAOV genomic RNA was isolated
from infected mice at indicated time points. The RMLO®YV infectious cDNA clone was used
as template for.amplification of complete iLOV sequei@i.OV/RV copy ratio in RV1A
iLOV infected mice. Total lung RNA (1 pg) from RV1A-ILOV infected mice harvested at the
indicated time points was used for measuring iLOV and RV genome copy nubh&hle
lung mMRNAexpression was measured one day post-infection. (N=4, mean+SHbterdif
from RV1A, oneway ANOVA.)

FIG 6. Presence of iLOV signal in the airway epithelium and lung macr ophages of RV 1A-
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iLOV infected mice.

A. Twenty-four hours after infection, lungs were fixed in formaldehyde overnight, embedded in
paraffin, sectioned at 5 um, and incubated with a 1:1000 dilution of anti-iLOV or isotypel contro
IgG (bar, 50 um). B. Lung sections were costained wik-488-conjugated antl-OV (green)
AF-555-conjugated antVP2/0(red)and Cy5-conjugated CD68 (far red optical spectrum, shown
in blue).C..Lung CD45+, CD11b+, iLOV+ cells from Rinfected BALB/c mice were identified
one day'post-infection and analyzedaapercentage of CD45+ cells (n = 4 from one
experiment)."Data are presented as mean + SEM (*different from sham, P < 0:Q&yone
ANOVA))
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