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Summary

This article presents an algorithm to aid practitioners in determining the most appropri-
ate method to estimate carbon dioxide emissions from an electricity load. Applications
include sustainability assessments of products, processes, energy efficiency improvements,
changes in generation infrastructure, and changes in electricity demand. Currently, there is
no consensus on appropriate methods for calculating greenhouse gas emissions resulting
from specific electricity loads. Previous research revealed significant differences in emissions
when different methods were used, a situation that could result in divergent sustainability
or policy recommendations. In this article, we illustrate the distribution of emissions esti-
mates based on method characteristics such as region size, temporal resolution, average
or marginal approaches, and time scales. Informed by these findings, a decision support
algorithm is presented that uses a load’s key features and an analyst’s research question to
provide recommendations on appropriate method types. We defined four different cases
to demonstrate the utility of the algorithm and to illustrate the variability of methods used
in previous studies. Prior research often employed simplifying assumptions, which, in some
cases, can result in electricity being allocated to the incorrect generating resources and
improper calculation of emissions. This algorithm could reduce inappropriate allocation,
variability in assumptions, and increase appropriateness of electricity emissions estimates.
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Introduction

Accounting for carbon dioxide (CO2) emissions from elec-
tricity production is an essential aspect of many environmental
impact studies and use of proper methods is essential when as-
sessing avoided emissions from energy efficiency improvements,
renewable generation, and changes in electricity demand. A
number of methods exist to estimate greenhouse gas emissions
associated with electricity consumption. This work focuses on
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those that account for combustion emissions, rather than emis-
sions from upstream processes. There are methods developed in
academia, industry, and government that are variously propri-
etary, open source, or developed for use within an organization
(e.g., the U.S. Environmental Protection Agency’s [US EPA]
Integrated Planning Model). Approaches vary widely; they in-
corporate different variables, make different assumptions, and
range in sophistication from simple look-up tables to sophis-
ticated recursive optimizations. Such differences are a product
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Figure 1 Conceptual illustration of how each load feature (top row) impacts specific method characteristics (middle row) recommended
when estimating emissions. Load features relate to time (light blue), location (medium blue), and load type (consequential or attributional)
(dark blue).

of the complexity of the electricity grid, which makes quanti-
fying emissions from specific electricity loads challenging, and
tracing electricity back to one generator often impossible (Yang
2013a; Weber et al. 2010). The grid’s continuously changing
mix of generation assets, which causes variation in emissions
with time, adds to this complexity (Soimakallio et al. 2011;
Yang 2013b).

Due to the grid’s complexity, selecting an appropriate
method to estimate emissions requires careful consideration of
available methods’ assumptions and characteristics. It is essen-
tial to align the method used with the specific load and research
question (Ryan et al. 2016). The goal of the algorithm described
in this paper is to foster this alignment by providing guidance
to practitioners (e.g., researchers, policy analysts, life cycle as-
sessment analysts, and consultants) in selecting a method that
will appropriately allocate electricity CO2 emissions to a load of
interest based on the load’s key features and the practitioner’s
research question. Although this algorithm focuses on CO2

emissions, practitioners could use a similar approach for other
greenhouse gas (GHG) emissions. Due to the large number of
available methods, selection can be a daunting task. The al-
gorithm provides assistance by determining what simplifying
assumptions about the physical grid operation, which requires
significant knowledge, time, and data to model properly, will
and will not significantly change a load’s emissions estimates. It
then provides guidance on what types of methods make appro-
priate simplifying assumptions. Different methods can result in
different emissions factors when examining an identical change
in demand for a given location (Weber et al. 2010; Ryan et al.
2016), making it extremely important for practitioners to “ex-
ercise caution and sensitivity” when modeling electricity supply
scenarios (Amor et al. 2014). This article describes the algo-
rithm’s logic and structure, and presents the algorithm’s recom-
mended method types for particular loads alongside those used
in previous literature.

There is currently no consensus on the appropriate meth-
ods for estimating emissions from grid electricity for specific
loads (Yang 2013a; Weber et al. 2010). Contention also ex-
ists over the ‘best’ method to estimate emissions, even from
well-studied loads, like electric vehicles (EVs) (Graff Zivin
et al. 2014; Soimakallio et al. 2011). Several examples of
method variation are highlighted in the discussion and results

section, where our algorithm is applied to four loads. Loads
utilizing electricity from microgrids or off-grid applications are
outside the scope of the algorithm, and are generally much sim-
pler to model with tools such as HOMER (HOMER Energy
2016).

Methods

The relationships between load features (e.g., diurnal vari-
ability) and a method’s characteristics are based on recommen-
dations from our previous review (Ryan et al. 2016). In this
paper, we show the effects of a method characteristics’ (e.g.,
region size, temporal resolution, average or marginal approach,
and the study duration) on emissions factor variation. The algo-
rithm we present in this section determines the key features of
an electricity load and an analyst’s corresponding research ques-
tion through a series of inquiries. Key features relate to time,
location, and load type (consequential or attributional). These
features are closely linked and all affect the way emissions for
the load should be calculated.

Figure 1 is a conceptual representation of the connections
between load features (top row) and method characteristics
(middle row). The Supporting Information available on the
Journal’s website includes flow diagrams illustrating all of the
connections between load features and method characteristics
needed to operate the algorithm (figures S1 to S6 in the sup-
porting information), as well as reference tables to assist in
answering the algorithm’s questions or to look up results for
the relative importance of trading. The Determining Method
Characteristics section explains in more detail the methods for
determining the load features and how features are connected
to recommended method characteristics.

Determining Method Characteristics

In this section, we explore the range of impacts on emissions
factors stemming from decisions on the method characteristics.
Using recent historical data, we illustrate the relative impacts
of region size, inter-regional trading, temporal variation, the
type of emissions factor, and multiyear changes. This analysis
provides new insights into the range and relative impacts of
model choice and simplification.
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Figure 2 Frequency distribution of the percent difference between each Power Control Area’s (PCA) emissions factor (lbs CO2/kWh)
and its surrounding North American Electric Reliability Corporation (NERC) region’s emissions factor, color coded by NERC region.
Emissions factors are based on eGRID 2012 data (US EPA 2012a, 2014). eGRID = Emissions & Generation Resource Integrated Database;
lbs CO2/kWh = pounds of carbon dioxide per kilowatt-hour.

Region Size
Previous work found significant variation in results when

using different geographic regional boundaries to estimate CO2

emissions from the same load, highlighting the importance of
selecting an appropriate regional boundary (Ryan et al. 2016).
Figure 2 illustrates the difference in emissions factor between
each power control area (PCA) and its surrounding North
American Electric Reliability Corporation (NERC) region.
Many vary by less than 25% and some regions (e.g., Texas Relia-
bility Entity) are more homogenous than others (e.g., Western
Electricity Coordinating Council), but the average absolute
value percent difference is 47%. Despite these strong differ-
ences, existing literature does not provide consistent guidance
on appropriate region sizes or geographical boundaries (Weber
et al. 2010), beyond the repeated theme that politically defined
entities (e.g., states) are not appropriate regions to use in elec-
tricity studies (Kim and Rahimi 2014; Tamayao et al. 2015).

In determining suitable regional boundaries, the algorithm
considers whether a load is regionally dispersed or occurs in
a specific location(s). Regional, in this context, means that a
load is roughly evenly distributed across a geographical area
(i.e., consists of a large number of roughly homogeneous and
evenly distributed locations within a given regional boundary).
The region sizes used in this algorithm range from PCAs at
the small end of the scale to the entire United States at the
large end. The size and location of the region selected can
affect the losses due to transmission. If the method selected
does not include transmission losses, they may need to be added
based on the region size selected. Values for select region sizes
are available through the Emissions & Generation Resource
Integrated Database (eGRID) and the U.S. Energy Information
Administration (US EIA) (US EPA 2014; US EIA 2016a).

In the algorithm, the location(s) of electricity loads are cate-
gorized as “known locations” (e.g., factories) if they are specific

and known, the number of loads is manageable for the analyst,
and the locations are not homogeneous and evenly distributed
within a region. In this case, the location(s), ZIP code(s), and
data from the US EPA’s Power Profiler eGRID Subregion and
GHG emissions finder tool together determine the loads’ eGRID
subregion (US EPA 2012b). If the locations’ PCAs are known,
those PCAs are recommended as boundaries for loads with
known locations. If the PCAs are unknown, eGRID subregions
are recommended. We employed eGRID subregion boundaries
due to their frequent use, because their boundaries are based on
grid topology and not political geography, and for their ability
to be delineated based on ZIP code. Grid operating decisions
are made at the PCA level, making PCAs an appropriate basis
for analyzing the electricity system. However, electricity trad-
ing can become vastly more important at this scale. We discuss
this further in the Incorporation of Electricity Trading section.
In general, if the location of production is known and data
are available, our recommended best practice is that a smaller
region be used when estimating emissions from electricity con-
sumption. Electricity on the grid will follow the path of least
resistance, which will be the shortest distance since resistance
increases with line length (Chen 2005), so it is logical that
the generators in the PCA/Balancing Authorities (BA) (i.e.,
the smallest electrical region) would be the most probable to
serve the load.

Incorporation of Electricity Trading
A variety of methods have been developed to estimate

regional imports and exports of electricity in an attempt to
better estimate average electricity GHG emissions. Marriott
and Matthews (2005) modeled interstate trading to improve
their emissions estimates for particular industries, and found
that incorporating trading brought state average emissions fac-
tors closer to the U.S. average. Colett and colleagues (2015)
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included trading in their nested average emissions modeling
applied to aluminum production. They examined trading be-
tween each location’s PCA and the surrounding NERC region
(Colett et al. 2015). Ji and colleagues used an input-output
model to determine the indirect electricity trading in intercon-
nected grid networks (e.g., North Europe, Eurasia, and China)
and to better estimate GHG emissions (Ji et al. 2016).

The method used in our analysis to determine the impor-
tance of trading, as in the other studies discussed, employs
annual average trading values. These methods are only ap-
propriate for attributional loads without temporal variation.
The necessity of including traded electricity when estimating
emissions depends on multiple factors. The factors used in the
algorithm are emissions factor type, region type, percentage of
total electricity consumption that was imported, and percent-
age difference in emission factor between the importing region
and the surrounding region. How the algorithm uses these fac-
tors to estimate the importance of including trading is discussed
below.

Factors not included (e.g., locational marginal price, load
size, and available regional capacity) are important when as-
sessing marginal emissions but are not as necessary for average
emissions. Estimating marginal emissions requires determining
the effects of a change in demand on electricity trading. This
is both regionally and temporally specific and requires signifi-
cantly more data.

Changes in demand (i.e., a consequential load calling for an
estimation of marginal emissions) could cause an increase or de-
crease in electricity trading depending on the region’s capacity,
existing load, and the marginal price of the region’s electric-
ity, as well as of those it is interconnected with. A region that
currently experiences no imports could begin importing elec-
tricity if the addition of an electricity load increased demand
beyond regional supply or influenced marginal electricity price
enough to make it economical to begin trading. In this case, the
emissions from the traded electricity should be allocated to the
load along with emissions from any change in generation caused
within the region. The regional importance of trading (RIT)
method, discussed in equations 1 and 2, does not incorporate
these details and is not appropriate for estimating the impor-
tance of including marginal trading. Only prospective dispatch
methods are appropriate to estimate emissions in this situation
(Ryan et al. 2016).

Factors that should be considered when estimating marginal
emissions affect trading on an hourly basis. Figure S8 of the
supporting information on the Web illustrates hourly changes
in demand and hourly variation in imports and exports from
Florida for 6 months of 2015. The data show a trend across the
day where greater imports occur during hours of higher demand
and that the differences between hours within a day and among
days are nontrivial. We only provide general recommendations
on trading and marginal emissions, as we do not have the data
to complete a quantitative analysis (similar to the calculation
of RIT values in the proceeding paragraphs) on an hourly basis
or for consequential loads. In these situations, we advise prac-
titioners to examine the hourly trading values in their region

of interest before proceeding. The “U.S. Electric System Oper-
ating Data” from the US EIA is a useful reference in this area
(US EIA 2017).

The algorithm recommends the inclusion of electricity trad-
ing when estimating marginal emissions for region types other
than the largest: NERC, AVoided Emissions and geneRation
Tool (AVERT), US EPA, interconnection, and the entire
United States. The inclusion of trading is also generally not
a necessary method characteristic for average emissions in the
aforementioned region types. Based on 2013 data, each NERC
region’s summer and winter imports were less than 3% of their
annual net load (NERC 2015). In 2014, imports from Canada
made up only 1.6% of U.S. electricity retail sales (US EIA
2015), and U.S. electricity trade with Mexico in 2013 was
less than 0.01% of total U.S. electricity consumption (US EIA
2013).

If the region under consideration is a state, then it is im-
portant to incorporate electricity trading. Exceptions are Texas
(since the vast majority is within the Electric Reliability Coun-
cil of Texas [ERCOT] interconnection) and the Hawaiian and
Alaskan grids. In most cases, state borders have no relationship
to power system operational boundaries; electricity frequently
flows across state borders.

If the region under analysis is a PCA and the emissions
factor type is average, the necessity of including trading is de-
termined by the percent difference between the PCA’s emission
factors and its corresponding eGRID subregion emissions factor
and by the percent of electricity consumed in the PCA that
is imported. Each NERC region is made up of one or more
eGRID subregions, and each subregion is made up of one or
more PCAs. The emission factors for each PCA and subregion
used in this determination are total CO2 emissions from the US
EPA’s eGRID database (US EPA 2014). Data for imports into
BAs are from Federal Energy Regulatory Commission (FERC)
form 714 (FERC 2010). The BAs are matched to PCA regions
by their US EIA code. Not all regions match and both emissions
data and trading data were not available for every PCA/BA set.
We define the relative importance of trading, RITPCA/BA for the
PCAs as (equation 1):

RITPCA/BA =
(

EFPCA − EFSubregion

0.5(EFPCA + EFSubregion)

)

×
(

net actualBA

net energy loadBA

)
. (1)

where net actualBA, is the BA’s “net actual” imports (imports
minus exports) and net energy loadBA is its load. EFPCA is the
average emissions factor of the PCA and EFSubregion is the emis-
sions factor of the subregion. The RITsubregion values for eGRID
subregions are (for actual reci ≥ actual deli) (equation 2):

RITsubregion =
(

EFsubregion − EFnerc

0.5(EFsubregion + EFnerc)

)

×
(∑N

i actual reci −
∑N

i actual deli∑N
i net energy loadi

)
, (2)
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Imp_PctDif
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10.1% - 15.0%
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0.0% - 0.1%
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3.1% - 5.0%

a)

b)

c)

d)

Figure 3 Spatial distribution by subregion of: (a) annual net
imports as a percentage of the total demand (Imp_Pct); (b) percent
difference between subregion emissions factors and NERC
emissions factor (EF_PctDif); (c) relative importance of trading
(RIT); (d) frequency distribution of relative importance of trading
(RIT) values for each Power Control Authority (PCA) and
subregion. NERC = North American Electric Reliability
Corporation.

where actual reci is the import into each PCA/BA, actual deli
is the export out of each PCA, i is each PCA/BA within the
subregion, N is the number of PCA/BAs in the subregion for
which RITsubregion is being calculated, and EFnerc is the aver-
age emission factor for the NERC region, from the US EPA’s
eGRID database (US EPA 2014). Other data sources and re-
gional boundaries could be used in this analysis (e.g., US EPA
regions), but we selected eGRID boundaries due to their fre-
quent use, the public accessibility of their data, and because

Table 1 Importance of electricity trading based on analysis region
and emissions factor type

Region
Average emissions

factor
Marginal emissions

factor

Entire U.S.,
interconnection,
NERC, EPA,
AVERT

Unlikely to have
significant impacts

Unlikely to have
significant impacts

eGRID subregion Based on RIT value Important to
consider

State Important to
consider except for
Alaska, Hawaii, and
Texas

Important to
consider except for
Alaska, Hawaii, and
Texas

PCA/BA Based on RIT value Important to
consider

Note: NERC = North American Electric Reliability Corporation; EPA =
U.S. Environmental Protection Agency; AVERT = AVoided Emissions
and geneRation Tool; eGRID = Emissions & Generation Resource Inte-
grated Database; PCA = power control area; BA = Balancing Authorities;
RIT = relative importance of trading.

their boundaries are based on grid topology and not political
geography. Figure 3a to 3c shows the RITsubregion values and the
impacts of the percent difference in emissions factor and per-
cent imports. In some regions (e.g., Florida), there is a large
percentage of imported electricity, but the percent difference
between the emissions factor of the subregion and of the NERC
region is zero, making the RITsubregion value zero. The opposite
is seen in New York, for example. Figure 3d shows the spread
of RITsubregion and RITPCA values. An analyst should examine
where their region falls in this distribution to determine if it is
important to include electricity trading when their region is a
PCA or a subregion.

RIT does not represent the actual change in emission factors
when trading is included, but is intended to indicate the rela-
tive importance of including electricity trading in an analysis
when using average emissions factors. There are limitations to
this approach, namely that the time of trading is not included
and average emissions factor are used. These exclusions limit
the application of RIT values to determining methods for esti-
mating annual average emissions factors for attributional loads
in the near term. Emissions factors and the amount of trading
will vary from year to year, so RIT should not be used in analy-
ses with future time frames. Tables S4 and S5 of the supporting
information on the Web present the values of RIT for each sub-
region and PCA/BA. Table 1 lists general recommendations
based on region type.

Emissions Variation with Time
The importance of accounting for CO2 emissions varia-

tion over time is highly dependent on temporal variation in
load, temporal variation in regional generation mix, and emis-
sion factor type. Ignoring temporal variation can reduce the
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b)a) c)

Figure 4 Differences in diurnal and seasonal impacts on average emissions factors between NYISO and ERCOT: (a) average hourly CO2

emissions factors for NYISO and ERCOT spanning the first week in April 2015 (SNL 2016); (b) hourly average emissions factors for the
first weekday of each month in 2015 compared to the annual average in ERCOT and (c) in NYISO (SNL 2016). CO2 = carbon dioxide;
ERCOT = Electric Reliability Council of Texas; lbs CO2/kWh = pounds of carbon dioxide per kilowatt-hour; NYISO = New York
Independent System Operator.

relevance of a study if a load varies substantially with time
(Amor et al. 2014). It can make a significant difference in
emissions if a load occurs during on-peak or off-peak hours
(Mathiesen et al. 2009). Typically, a region’s electricity gener-
ation mix varies by year, season, and time of day (Soimakallio
et al. 2011), but this variation is not consistent across different
regions.

Figure 4a shows hourly average CO2 emission factors for
ERCOT and the New York Independent System Operator
(NYISO) for the first week of April 2015, illustrating that the
difference in diurnal variation between the two regions (SNL
2016). Figure 4b and 4c illustrates the monthly difference in di-
urnal CO2 emission factor for ERCOT and NYISO (using the
first day of each month). In ERCOT, there is a stronger diurnal
variation in a number of months, but the trend is not seasonal.
In general, emissions in NYISO do not have as much diurnal
variation as in ERCOT, but there is significant monthly vari-
ation. Additionally, there is significant difference between the
annual average emissions factor in each region and the hourly
values, showing again the importance of including temporal
variation for temporally varying loads.

To determine the importance of including temporal varia-
tion, the algorithm considers the time granularity and duration
of the analysis, seasonal and daily variation in load, and emis-
sion factor type. Time granularity can vary from a particular
hour to multiple years. Typically, the simpler methods cannot
account for seasonal or daily load variation because they report
emissions on a yearly basis, but emissions reporting intervals
vary over a wide range. Figures S1 to S3 in the supporting infor-
mation on the Web provide more detail on how temporal load
features will affect the algorithm’s recommendations. In some
cases, the need to include emissions variation in an analysis
is also dependent on how much the regional generation mix
changes throughout the year or day, as shown in figure 4.

When using a marginal emissions factor, not only are the
load profile (i.e., variation in electricity load versus time of day)
and regional generation mix variation important in determin-
ing the need for emissions variation with time, but so is the
importance of including trading. When using a marginal emis-
sions factor in an analysis where the algorithm recommends
the inclusion of trading, hourly temporal variation should be
incorporated whether or not the load has strong diurnal or sea-
sonal shapes. If trading occurs as a result of the load, the trading
could have strong temporal variation, seen in figure S8 of the
supporting information on the Web, even if the load is relatively
constant in magnitude.

Type of Emissions Factor
Emissions can be categorized as either marginal or aver-

age. Emissions from all generators operating at a given time
constitute average emissions, while marginal emissions are pro-
duced by generators that adjust their output in response to a
change. Marginal generators, as with average, can be a mix of
types using a variety of fuels. The distinction between marginal
and average emission factors is important due to the signifi-
cant differences in emissions estimates that can result. Twelve
of the 26 eGRID subregions have a 25% or larger difference
between their eGRID subregion annual CO2 nonbaseload out-
put emission rate (pounds per megawatt-hour lbs/MWh) (i.e.,
marginal) and their eGRID subregion annual CO2 total output
emission rate (lbs/MWh) (i.e., average) (US EPA 2014). These
differences are likely to have a significant effect on a study’s
recommendations. Note that eGRID’s nonbaseload emissions
factor is not a true marginal emission factor as it includes all
combustion units with a capacity factor of less than 0.8, but
it is often used as an estimate of the marginal emission fac-
tor. The nonbaseload rate is provided by the US EPA pri-
marily to estimate emissions for energy efficiency and clean
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Emissions Factors (lb

a)

b)

Figure 5 Frequency distribution of emissions factors: (a) hourly
marginal and average CO2 emissions factors (lbs. CO2/kWh) for
ERCOT in 2015; (b) percent difference between marginal and
average emissions factors in each hour. Marginal values were
calculated from AVERT’s Texas region, and average emissions were
calculated from SNL gross generation and CO2 emissions data for
ERCOT. AVERT = AVoided Emissions and geneRation Tool; ERCOT
= Electric Reliability Council of Texas; lbs CO2/kWh = pounds of
carbon dioxide per kilowatt-hour.

energy projects (US EPA 2014). Additionally, our analysis of
ERCOT’s hourly average and marginal emissions, shown in
figure 5, showcase the significant differences seen in each in-
dividual hour between average and marginal emissions, as well
as the differences overall. While the annual average difference
between the emissions factor types was only 8%, the hourly
difference between the average and marginal emission factors
was 19% and for a given hour differ by up to 1.2 pounds of
CO2 per kilowatt-hour (lbs CO2/kWh). The data used to cal-
culate the average and marginal emissions were from different
sources, but were from the same year and had the same regional
boundary.

Information required to estimate which specific generators
are marginal, such as price bids, are typically not publicly
available (Amor et al. 2014). Even when necessary data are
available (possibly from regional transmission organizations or
independent system operators [ISOs]), identifying the marginal
generators is difficult and greatly increases analysis time
(Mathiesen et al. 2009).

In order to determine whether a marginal or average factor
should be used, the algorithm considers whether a load is new,
existing, existing but changing, or simply a change in gener-
ation mix. Methods should use an average emissions factor if
a load is existing because it is part of the current demand. If
the load is specified as a change or new, and is not a small
commercial or residential load, the algorithm recommends the
load be treated as marginal because it is not part of the ex-
isting demand and will cause a change in the generation mix.
If the load is a small commercial or residential load, the algo-
rithm recommends the use of an average emissions factor. Small
loads are defined as a change smaller than typical demand vari-
ation, which is balanced through ancillary services, so marginal
generators will not necessarily be dispatched to meet the
change. It is important to note that this question refers to
the aggregation of all loads a user is interested in analyzing
within a region. If the aggregation is larger than the regu-
lation load, then the new load or change in load should be
treated as marginal. In PJM, regulation services, which make
up for the mismatch in demand and supply, constitutes 0.7% of
the total load, based on 2016 PJM hourly load (PJM 2016a)
and ancillary services market data (PJM 2016b). This per-
centage will likely vary by region. The logic for this section
is presented in figure S1 of the supporting information on
the Web.

Changes in Infrastructure, Fuel Price, or Energy-Related
Policy
Electricity demand, technology portfolio (i.e., infrastruc-

ture), resource availability, and imports determine the elec-
tricity generation mix. Fuel price, regulations, and the eco-
nomic climate can drive changes in these characteristics, which
can significantly affect average and marginal emission fac-
tors, thus making it important to consider them when ana-
lyzing emissions as part of sustainability assessments with fu-
ture time frames. Predictions for changes in fuel prices and
regulations can affect not only predicted generator opera-
tion, but also planned capacity additions, retirements, and
implementation of emissions control measures. Even if sig-
nificant changes in existing infrastructure are not expected,
a method that can account for changes in fuel price demand
or regulations needs to be used to accurately address possible
changes in generation mix when analyzing future electricity
emissions impacts.

Using annual average CO2 emissions factors for each year
from 1973 to 2015 (calculated from US EIA data), we show
in figure 6 the relative change in emissions factors over the
following 10 years. From 1973 to 1999, this value steadily in-
creased, and from 1999 to 2015, it began to decrease. On aver-
age, the emissions factor changed 6% in 3 years and 9% after
5 years.

Informed by the results shown in figure 6, we classify future
loads into three time spans: less than 3 years, from 3 to 5 years,
and more than 5 years. These delineations are used to provide
recommendations on method type. Figure S4 of the supporting
information on the Web illustrates this logic.
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a)

b)

Figure 6 Percent change in annual average emissions factor (lbs CO2/kWh) across 10 years: (a) with base years from 1973 to 2005;
(b) average magnitude of the percent change in the annual average emissions factors (lbs CO2/kWh) across 10 years, for base years from
1973 to 2005 and 1999 to 2005. The data are calculated from US EIA CO2 emissions from energy consumption in the electric power
sector (US EIA 2016b) and net electricity generation from the power sector (US EIA 2016c). Vertical dashed lines separate future load time
periods used to recommend whether possible methods should incorporate fuel, price, policy, or infrastructure changes. lbs CO2/kWh =
pounds of carbon dioxide per kilowatt-hour.

Excel Tool

The algorithm is coded into an Excel tool (available at http://
css.umich.edu/page/selecting-electricity-emissions-models-
seem) that includes additional capabilities such as specific
method recommendations and the ability to weight the impor-
tance of method characteristics. The algorithm Excel tool was
tested by practitioners including 12 individuals with expertise
in the field, fellow researchers, faculty, and industry partners.
Each practitioner was provided three scenarios from a set of
seven. Refinements to the tool were made based on practitioner
feedback, much of which related to question phrasing. There
is some subjectivity inherent in the algorithm, in that not all
practitioners’ results were identical for the same load. This
subjectivity allows the algorithm to better match method
characteristics to the chosen load and research question
being considered, while enabling exploration of the impact of
different responses on the algorithm’s recommendations.

Illustrative Case Discussion

Illustrative recommendations based on the algorithm’s re-
sults are presented for four hypothetical electricity loads: a
household air conditioner; an EV fleet; a grid-connected solar

photovoltaic (PV) installation; and aluminum smelters. Emis-
sions from these types of electricity loads, most predominantly
the EV fleet and aluminum smelters, have been assessed in mul-
tiple studies (discussed below). The EV and aluminum smelter
cases are presented here, and the air-conditioner and PV cases
are located in the Supporting Information on the Web. We
present the methods used in these studies alongside the algo-
rithm’s recommendations to illustrate the variation in assump-
tions made among studies and by the algorithm. While we
propose the algorithm’s recommendations as current best prac-
tices, this should not be taken as an implication that there is
one “best” method to use for all electricity loads and research
questions. Our intention is not to highlight shortcomings in the
methods used in previous studies, but to emphasize the variabil-
ity and inconsistency among them and the need for the kind
of guidance our algorithm provides. Key results that vary across
the methods are presented in italics throughout the case study sec-
tions. The case study loads were selected not only because they
have been previously studied in detail, but also because they
highlight how the algorithm’s recommendations are affected
by differences in key load features, that is, variable vs. con-
stant load, demand reduction vs. addition, regional vs. location-
specific, and historical vs. future. In most cases, there are differ-
ences among the literature methods and between the literature
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Table 2 Algorithm recommendations on method characteristics for estimating electricity emissions resulting from the electricity consump-
tion of a household air conditioner an EV fleet, a grid connected solar PV installation, and aluminum smelters

Electricity Loads

Characteristic Household Air Conditioner EV Fleet Solar PV Aluminum Smelters

Emissions factor type: Average emissions factor Marginal emissions factor Marginal emissions factor Average emissions factor

Temporal variation: An hourly time interval
should be considered to
capture daily variation.

The method needs to
incorporate hourly
variation.

The method needs to
incorporate hourly
variation.

The method does not
need to incorporate
variation with time.

Time granularity: Monthly Hourly Hourly Yearly

Time scale: Time scale does not need
to be considered because
you are interested in a
historical load.

Method may need to
account for future
infrastructure, fuel price,
or energy policy changes.
Select methods in the
Economic Dispatch or
Unit Commitment
categories may be
appropriate.

Method may need to
account for future
infrastructure, fuel price,
or energy policy changes.
Select methods in the
Economic Dispatch or
Unit Commitment
categories may be
appropriate.

Time scale does not need
to be considered because
you are interested in a
historical load.

Region size: PCA State PCA PCA, but location/s are
still specific.

Region: ISO New England CA Nevada Power Company Big Rivers Electric
Corporation, South
Carolina Public Services
Authority

Inclusion of trading: The relative importance
of trading is estimated to
be 0.1%.

The method should
incorporate electricity
trading.

The method should
incorporate electricity
trading.

In consecutive order based
on location, the relative
importance of trading is
estimated to be: 2%, 16%.

Top ranked method
types:

Empirical Data &
Relationship Methods:
Simple Emissions Factors,
Statistical Relationship
Model & Power System
Optimization: Economic
Dispatch

Power System
Optimization Methods:
Economic Dispatch, Unit
Commitment

Power System
Optimization Methods:
Economic Dispatch,
Unit Commitment

Empirical Data &
Relationship Methods:
Simple Emissions Factors
or Emissions Factor
Methods with
Trading/Imports

Note: EV = electric vehicles; PV = photovoltaics; PCA = power control area; CA = California.

methods and the algorithm’s recommended method character-
istics, which are collected in table 2.

Fleet of Electric Vehicles

A researcher is interested in estimating the change in hourly
CO2 emissions resulting from the electricity consumed by
a new fleet of electric taxis deployed in major cities across
California over the next 5 years. The algorithm’s recommen-
dations are presented in table 2. Heterogeneous daily charging
patterns drive the algorithm’s recommendation to incorporate
hourly variation, and because the fleet is new (i.e., an added
load), the algorithm recommends the use of marginal emissions
factors. The researcher’s assumptions include a constant fleet

size and likely changes in electricity infrastructure, fuel prices,
or energy policy. As a result, the algorithm recommends that the
selected method may need to account for these changes over the
time period of the analysis. These characteristics drove the rec-
ommendation for an economic dispatch and unit commitment
model.

There is a large amount of literature on estimating emissions
from EV electricity consumption. Ryan and colleagues (2016)
compared the emissions factors for EV charging using a variety
of methods. In this section, we will mention just a few of the
many studies that model fleets of EVs. In these studies, the emis-
sions factor type, time scale, and temporal variation used varied
among studies. Other characteristics also varied, but differences
in study scale and location drove those differences.
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When comparing well-to-wheels CO2 emissions from EVs to
internal combustion engine vehicles in the United Staes, UK,
and France, Holdway and colleagues (2010) applied country-
level average emissions factors and fuel-specific emission factors.
Despite Holdway and colleagues’ (2010) major simplifying as-
sumptions, they were able to illustrate the importance of grid
decarbonization in EVs effectively reducing emissions in the
transportation sector. Instead of directly modeling the electric-
ity grid for their comparison of vehicle drivetrains, Meinrenken
and Lackner (2015) used a wide range of carbon intensities
(50 to 1,200 grams of CO2 equivalent per kWh) by employing
a variety of average grid mixes, from all wind-solar to all coal,
similar to Holdway and colleagues’ approach. Meinrenken and
Lackner (2015) were able to determine under what grid con-
ditions each drivetrain type would reduce overall emissions.
These two studies do not align with the algorithm’s recommen-
dations for current best practices, but they are asking different
research questions than the one posed in our case. They are pre-
senting comparative scenarios whereas the case study focuses on
modeling a specific electricity grid.

Jansen and colleagues (2010) included temporal variation
when analyzing EV penetration scenarios in the western
U.S. grid by developing a dispatch model using historical
data to correlate system load with resource capacity factors.
Blumsack and colleagues (2008) also incorporated hourly vari-
ation when assessing environmental impacts of replacing 73%
of the light-duty vehicle fleet with plug-in hybrid electric vehi-
cles. Blumsack and colleagues (2008) used marginal emissions
factors that were developed with an economic dispatch method
for three ISOs. These methods align closely with our algorithm’s
recommendations, in that temporal variation was taken into
account and marginal emissions factors were used (Jansen et al.
2010; Blumsack et al. 2008). Because of their use of historical
data, however, these studies are only applicable in the near
term, prior to any significant changes in infrastructure or fuel
price.

Kim and Rahimi (2014) studied long-term emissions im-
pacts of an EV fleet for 2020 and 2030 in Los Angeles. Their
study aligns with all of the recommendations laid out by the
algorithm (Kim and Rahimi 2014). They used an economic dis-
patch method that incorporated temporal variation and marginal
emissions factors, and they accounted for infrastructure changes
and renewable energy portfolio standard changes (ibid.).

Although Kim and Rahimi’s (2014) study aligned well with
our algorithm’s recommendations, the other studies relied on
simplifying assumptions that do not align with the algorithm’s
recommended current best practices for emissions estimation.
Due to their assumptions, they are not able to describe EV emis-
sions based on future grid topology. However, these studies were
able to answer their research questions successfully and their
assumptions do not invalidate their results as they pertain to
these research questions in any way. The results of studies with
large differences in baseline assumptions cannot be effectively
compared, however, and policy makers and consumers might
be uncertain how to respond should they encounter divergent
results.

Material Production: Aluminum

An analyst is interested in CO2 emissions attributed to the
production of a kilogram of aluminum ingot at two aluminum
smelters, the Hawesville Smelter in Hawesville, Kentucky,
and the Alumax Smelter in Mount Holly, South Carolina.
In order to determine these emissions, it is necessary to cal-
culate the CO2 emissions per kWh of electricity consumed
at the facilities. The algorithm’s recommendations are pre-
sented in table 2. The smelters are assumed to run at constant
load throughout the year, resulting in the recommendation
that the method does not need to include emissions variation with
time.

The algorithm’s recommendation to use yearly average emis-
sions factors aligns well with past studies completed on emis-
sions from aluminum production. Colett and colleagues (2015),
McMillan and Keoleian (2009), and an Aluminum Associ-
ation study (2013) all used annual average electricity mixes.
Although these studies use the same type of emissions factor,
they vary in their inclusion of trading and regional granularity.
In the Big Rivers Electric Corporation PCA region hypothet-
ical smelter case (Hawesville), trading is estimated to have an
RIT of 2%, implying that trading is of little importance. In
the South Carolina Public Services Authority PCA, trading is
estimated to have an RIT of 16%, implying nontrivial effects
of trading. These results show that the importance of trading
is very location-specific. Of the studies mentioned, Colett and
colleagues (2015) is the only one that includes trading, and
they also used the recommended PCA region size when es-
timating the emissions from producing aluminum ingot. It is
not surprising that the inclusion of trading varies across stud-
ies, considering the varying region sizes used and the location-
specific nature of the importance of trading. However, incon-
sistency in this assumption limits an objective comparison of
results.

The Aluminum Association (2013) used a very specific re-
gional boundary, based on power contracts and on-site gen-
eration, for determining emissions from electricity consumed
in the smelting and ingot casting processes. For secondary
metal production, either a U.S. or Canadian average electric-
ity mix was used due to lack of facility-specific data (ibid.).
McMillan and Keoleian (2009) looked at aluminum produc-
tion on an even broader scale when completing a life cycle
assessment of primary aluminum ingot, concentrating on six
world regions and using each region’s average electricity fuel
mix and fuel carbon intensity to estimate emissions from elec-
tricity consumed. Although these regional boundaries are much
larger than recommended by our algorithm, their method al-
lowed them to estimate the potential implications regional dif-
ferences and global trade of aluminum ingot could have on emis-
sions (McMillan and Keoleian 2009). However, using different
regional boundaries can significantly impact a study’s results, as
seen in Ryan and colleagues (2016), making a comparison with
their results inappropriate.

The use of our algorithm not only aids practitioners in select-
ing an appropriate method, but also in determining what past
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study results are most relevant to their analysis and, over time,
will hopefully increase consistency in the assumptions made in
future studies.

Summary and Conclusion

Emissions allocation for electricity consumption is a complex
task. A variety of assumptions can be made to simplify this task,
but some of those assumptions can also drastically change the
results of an analysis and even lead to divergent conclusions on
the sustainability of a process, product, or policy. Our goal is for
the algorithm is to provide guidance on the key assumptions that
can be made without producing dramatically different results
than a user would obtain by modeling all of the temporal and
physical details of the power system.

When we compared the algorithm’s recommendations to
those used in the literature, we saw significant differences among
methods used and between the literature methods and those we
would recommend. Reasons for these differences include vari-
ation in research question, study timeline, study region, data
availability, time constraints, and general difficulty in model-
ing the electricity grid. The structure and context of a study’s
research question has some of the greatest influence on the
method used to estimate CO2 emissions, as illustrated in the
case studies. For example, by using constant emission factors
in comparing drivetrains, in contrast to the algorithm’s recom-
mendation of a factor that varies with time, Meinrenken and
Lackner (2015) were able to assess under what grid mixes differ-
ent drivetrains would be optimal without incorporating current
conditions. However, if the question were which drivetrain is
currently optimal, temporal variation in emissions would need
to be incorporated into the analysis.

Differing research questions, study timeline, and region val-
idate many of the differences in study assumptions, while others
varied from one another and our best practice recommendations
without justification. In these cases, lack of consistency limits
comparability and could cause results to vary significantly. The
choice of emissions factors is important for determining the
effectiveness of policies that drive changes in electricity con-
sumption (Ji et al. 2016). If studies are to be used to inform
policy or consumer decisions, consistency and transparency in
assumptions is important.

In many cases, a method that encompasses all of the al-
gorithm’s recommendations and does not require a significant
amount of time or data to employ may not exist. Therefore, it
is important to determine the method characteristics that are
essential. These characteristics are often based on the research
question, but there are some general guidelines. If a region has
strong diurnal changes in electricity mix and a load has strong
diurnal changes in magnitude, it is essential to model emissions
variation with temporal granularity matching that of variation
in electricity mix. If a future load’s emissions are being esti-
mated and changes are anticipated in grid infrastructure, fuel
price, or policy, the chosen method must incorporate these
effects. The delineation between marginal and average emis-
sions is also crucial, though there is still debate over which is

appropriate for certain types of loads. Consideration and justi-
fication are required when employing either approach, and the
decision between them should not be made only on the basis of
a method’s ease of use.

Policy studies often use more complex methods to estimate
emissions resulting from electricity generation, but expecting
an analyst assessing a product’s life cycle emissions to model
the electricity system in great detail could be unrealistic (Amor
et al. 2014). Factors that make an analyst’s task more challeng-
ing include temporal variation, electricity trading, and marginal
emissions, which are all particularly difficult and data inten-
sive to model. Our algorithm is particularly useful in assist-
ing analysts in navigating these complexities and informing
them of method assumptions that will not compromise their
study.

The algorithm presented here has a number of limitations,
both general and specific. In general, the algorithm as described
here does not provide a list of methods that can be employed
for a given load. This information is included in the algo-
rithm’s Excel tool version (available at http://css.umich.edu/
page/selecting-electricity-emissions-models-seem), and a list of
methods and types can be found in Ryan and colleagues (2016).
More specifically, the algorithm does not provide regionally
explicit guidance on the need to incorporate variation with
time. Depending on the type of load variation, the algorithm
stipulates that the need is dependent on the region’s genera-
tion mix variation throughout the year, a statistic that would
need to be investigated further by a practitioner before pro-
ceeding. Regional emissions variation with time is an area for
further study. In certain cases, the algorithm is unable to pro-
vide definitive recommendations on the inclusion of electricity
trading, temporal emissions variation, or the use of future pro-
jections. The algorithm also does not have sufficient data to pro-
vide recommendations on importance of trading for marginal
emissions or for average emissions in all PCA regions, as dis-
cussed in the methods section. These limitations require the
user to conduct further investigation for certain loads. In cases
where one method does not fit all of the algorithm’s recom-
mendations, it is best to use multiple methods to develop an
understanding of uncertainty in the emissions estimates. We
are not able to quantify uncertainty for our recommendations
due to the study specific nature of results, but each method
will have its own level of uncertainty, which is important to
understand.

Despite difficulties in modeling and a lack of data, it is impor-
tant for practitioners to understand how they should estimate
CO2 emissions from electricity consumption. This algorithm
provides a framework for practitioners to more carefully exam-
ine method assumptions that can be influential in realistically
estimating electricity emissions from specific loads. It also aims
to be a step toward building consensus on appropriate methods
to estimate emissions for particular load types and to influence
practitioners to examine more closely how they estimate emis-
sions from electricity consumption in their work. This would
allow for more transparency and greater comparability of study
results.
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