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<heading level 1> Summary  

This article presents an algorithm to aid practitioners in determining the most 

appropriate method to estimate CO2 emissions from an electricity load. Applications include 

sustainability assessments of products, processes, energy efficiency improvements, changes 

in generation infrastructure, and changes in electricity demand. Currently, there is no 

consensus on appropriate methods for calculating greenhouse gas emissions resulting from 

specific electricity loads. Previous research revealed significant differences in emissions 

when different methods were used, a situation that could result in divergent sustainability or 

policy recommendations. In this article, we illustrate the distribution of emissions estimates 

based on method characteristics such as region size, temporal resolution, average or marginal 

approaches, and time scales. Informed by these findings, a decision support algorithm is 

presented that uses a load‘s key features and an analyst‘s research question to provide 

recommendations on appropriate method types. We defined four different cases to 
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demonstrate the utility of the algorithm and to illustrate the variability of methods used in 

previous studies. Prior research often employed simplifying assumptions, which in some 

cases can result in electricity being allocated to the incorrect generating resources and 

improper calculation of emissions. This algorithm could reduce inappropriate allocation, 

variability in assumptions, and increase appropriateness of electricity emissions estimates.  
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<heading level 1> Introduction 

Accounting for CO2 emissions from electricity production is an essential aspect of 

many environmental impact studies and use of proper methods is essential when assessing 

avoided emissions from energy efficiency improvements, renewable generation, and changes 

in electricity demand. A number of methods exist to estimate greenhouse gas emissions 

associated with electricity consumption. This work focuses on those that account for 

combustion emissions, rather than emissions from upstream processes. There are methods 

developed in academia, industry, and government that are variously proprietary, open source, 

or developed for use within an organization (e.g., the Environmental Protection Agency‘s 

(EPA) Integrated Planning Model (IPM)). Approaches vary widely; they incorporate different 

variables, make different assumptions and range in sophistication from simple look-up tables 

to sophisticated recursive optimizations. Such differences are a product of the complexity of 

the electricity grid, which makes quantifying emissions from specific electricity loads 
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challenging, and tracing electricity back to one generator often impossible (Yang 2013a; 

Weber et al. 2010). The grid‘s continuously changing mix of generation assets, which causes 

variation in emissions with time, adds to this complexity (Soimakallio, Kiviluoma, and 

Saikku 2011; Yang 2013b).  

Due to the grid‘s complexity, selecting an appropriate method to estimate emissions 

requires careful consideration of available methods‘ assumptions and characteristics. It is 

essential to align the method used with the specific load and research question (Ryan, 

Johnson, and Keoleian 2016). The goal of the algorithm described in this paper is to foster 

this alignment by providing guidance to practitioners (e.g., researchers, policy analysts, life 

cycle assessment (LCA) analysts and consultants) in selecting a method that will 

appropriately allocate electricity CO2 emissions to a load of interest based on the load‘s key 

features and the practitioner‘s research question. Although this algorithm focuses on CO2 

emissions, practitioners could use a similar approach for other greenhouse gas emissions. Due 

to the large number of available methods, selection can be a daunting task. The algorithm 

provides assistance by determining what simplifying assumptions about the physical grid 

operation, which requires significant knowledge, time and data to model properly, will and 

will not significantly change a load‘s emissions estimates. It then provides guidance on what 

types of methods make appropriate simplifying assumptions. Different methods can result in 

different emissions factors when examining an identical change in demand for a given 

location (Weber et al. 2010; Ryan, Johnson, and Keoleian 2016) making it extremely 

important for practitioners to ―exercise caution and sensitivity‖ when modeling electricity 

supply scenarios (Amor et al. 2014). This article describes the algorithm‘s logic and structure, 

and presents the algorithm‘s recommended method types for particular loads alongside those 

used in previous literature.  
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There is currently no consensus on the appropriate methods for estimating emissions 

from grid electricity for specific loads (Yang 2013a; Weber et al. 2010). Contention also 

exists over the ‗best‘ method to estimate emissions, even from well-studied loads, like 

electric vehicles (EV) (Graff Zivin, Kotchen, and Mansur 2014; Soimakallio, Kiviluoma, and 

Saikku 2011). Several examples of method variation are highlighted in the discussion and 

results section, where our algorithm is applied to four loads. Loads utilizing electricity from 

microgrids or off-grid applications are outside the scope of the algorithm, and are generally 

much simpler to model with tools such as HOMER (HOMER Energy 2016). 

 

<heading level 1> Methods 

The relationships between load features (e.g., diurnal variability) and a method‘s 

characteristics are based on recommendations from our previous review (Ryan, Johnson, and 

Keoleian 2016). In this paper, we show the effects of a method characteristics‘ (e.g., region 

size, temporal resolution, average or marginal approach, and the study duration) on emissions 

factor variation. The algorithm we present in this section determines the key features of an 

electricity load and an analyst‘s corresponding research question through a series of inquiries. 

Key features relate to time, location, and load type (consequential or attributional). These 

features are closely linked and all affect the way emissions for the load should be calculated.  

Figure 1 is a conceptual representation of the connections between load features (top 

row) and method characteristics (middle row). The supporting information available on the 

Journal‘s website includes flow diagrams illustrating all of the connections between load 

features and method characteristics needed to operate the algorithm (figures S1-S6), as well 

as reference tables to assist in answering the algorithm‘s questions or to look up results for 

the relative importance of trading. The Determining Method Characteristics section explains 
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in more detail the methods for determining the load features and how features are connected 

to recommended method characteristics.  

 

Figure 1. Conceptual illustration of how each load feature (top row) impacts specific 

method characteristics (middle row) recommended when estimating emissions. Load 

features relate to time (light blue), location (medium blue) and load type (consequential 

or attributional) (dark blue). 

 

<heading level 2> Determining Method Characteristics 

In this section we explore the range of impacts on emissions factors stemming from 

decisions on the method characteristics. Using recent historical data, we illustrate the relative 

impacts of region size, inter-regional trading, temporal variation, the type of emissions factor 

and multi-year changes. This analysis provides new insights into the range and relative 

impacts of model choice and simplification. 

<heading level 3> Region Size 

Previous work found significant variation in results when using different geographic 

regional boundaries to estimate CO2 emissions from the same load, highlighting the 

importance of selecting an appropriate regional boundary (Ryan, Johnson, and Keoleian 

2016). Figure 2 illustrates the difference in emissions factor between each power control area 

(PCA) and its surrounding North American Electric Reliability Corporation (NERC) region. 

Many vary by less than 25% and some regions (e.g., TRE) are more homogenous than others 

(e.g., WECC), but the average absolute value percent difference is 47%. Despite these strong 
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differences, existing literature does not provide consistent guidance on appropriate region 

sizes or geographic boundaries (Weber et al. 2010), beyond the repeated theme that 

politically defined entities (e.g., states) are not appropriate regions to use in electricity studies 

(J. D. Kim and Rahimi 2014a; Tamayao et al. 2015). 

 

 

Figure 2. Frequency distribution of the percent difference between each Power Control 

Area‘s (PCA) emissions factor (lbs CO2/kWh) and its surrounding North American Electric 

Reliability Corporation (NERC) region‘s emissions factor, color coded by NERC region. 

Emissions factors are based on eGRID 2012 data (U.S. Environmental Protection Agency 

2012; EPA 2014). 

 
 

In determining suitable regional boundaries, the algorithm considers whether a load is 

regionally dispersed or occurs in a specific location(s). Regional, in this context, means a 

load is roughly evenly distributed across a geographic area (i.e., consists of a large number of 

roughly homogeneous and evenly distributed locations within a given regional boundary). 

The region sizes used in this algorithm range from PCAs at the small end of the scale, to the 

entire United States at the large end. The size and location of the region selected can affect 

the losses due to transmission. If the method selected does not include transmission losses, 

they may need to be added based on the region size selected. Values for select region sizes 

are available through eGRID and the U.S. Energy Information Administration (EIA) (EPA 

2014; U.S. Energy Information Administration 2016a). 
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In the algorithm, the location(s) of electricity loads are categorized as ‗known 

locations‘ (e.g., factories) if they are specific and known, the number of loads is manageable 

for the analyst, and the locations are not homogeneous and evenly distributed within a region. 

In this case, the location(s), ZIP code(s), and data from EPA‘s Power Profiler eGRID 

Subregion and GHG emissions finder tool together determine the loads‘ eGRID subregion 

(EPA 2012). If the locations‘ PCAs are known, those PCAs are recommended as boundaries 

for loads with ‗known locations.‘ If the PCAs are unknown, eGRID subregions are 

recommended. We employed eGRID subregion boundaries due to their frequent use, because 

their boundaries are based on grid topology and not political geography, and for their ability 

to be delineated based on ZIP code. Grid operating decisions are made at the PCA level, 

making PCAs an appropriate basis for analyzing the electricity system. However, electricity 

trading can become vastly more important at this scale. We discuss this further in the 

Incorporation of Electricity Trading section. In general, if the location of production is 

known and data are available, our recommended best practice is that a smaller region be used 

when estimating emissions from electricity consumption. Electricity on the grid will follow 

the path of least resistance, which will be the shortest distance since resistance increases with 

line length (Chen 2005), so it is logical that the generators in the PCA/BA (i.e., the smallest 

electrical region) would be the most probable to serve the load. 

<heading level 3> Incorporation of Electricity Trading 

A variety of methods have been developed to estimate regional imports and exports of 

electricity in an attempt to better estimate average electricity greenhouse gas emissions. 

Marriott and Matthews (2005) modeled interstate trading to improve their emissions 

estimates for particular industries, and found that incorporating trading brought state average 

emissions factors closer to the U.S. average. Colett et al. (2015) included trading in their 

nested average emissions modeling applied to aluminum production. They examined trading 
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between each location‘s PCA and the surrounding NERC region (Colett, Kelly, and Keoleian 

2015). Ji et al. used an input-output model to determine the indirect electricity trading in 

interconnected grid networks (e.g., North Europe, Eurasia and China) and to better estimate 

greenhouse gas (GHG) emissions (Ji et al. 2016).  

The method used in our analysis to determine the importance of trading, as in the 

other studies discussed, employs annual average trading values. These methods are only 

appropriate for attributional loads without temporal variation. The necessity of including 

traded electricity when estimating emissions depends on multiple factors. The factors used in 

the algorithm are emissions factor type, region type, percentage of total electricity 

consumption that was imported, and percentage difference in emission factor between the 

importing region and the surrounding region. How the algorithm uses these factors to 

estimate the importance of including trading is discussed below.  

Factors not included (e.g., locational marginal price, load size, available regional 

capacity) are important when assessing marginal emissions but are not as necessary for 

average emissions. Estimating marginal emissions requires determining the effects of a 

change in demand on electricity trading. This is both regionally and temporally specific and 

requires significantly more data.  

Changes in demand (i.e., a consequential load calling for an estimation of marginal 

emissions) could cause an increase or decrease in electricity trading depending on the 

region‘s capacity, existing load, and the marginal price of the region‘s electricity, as well as 

of those it is interconnected with. A region that currently experiences no imports could begin 

importing electricity if the addition of an electricity load increased demand beyond regional 

supply or influenced marginal electricity price enough to make it economical to begin 

trading. In this case, the emissions from the traded electricity should be allocated to the load 

along with emissions from any change in generation caused within the region. The regional 
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importance of trading (RIT) method, discussed above, does not incorporate these details and 

is not appropriate for estimating the importance of including marginal trading. Only 

prospective dispatch methods are appropriate to estimate emissions in this situation (Ryan, 

Johnson, and Keoleian 2016).  

Factors that should be considered when estimating marginal emissions affect trading 

on an hourly basis. Figure S8 of the supporting information on the Web illustrates hourly 

changes in demand and hourly variation in imports and exports from Florida for six months 

of 2015. The data show a trend across the day where greater imports occur during hours of 

higher demand and that the differences between hours within a day and among days are non-

trivial. We only provide general recommendations on trading and marginal emissions, as we 

do not have the data to complete a quantitative analysis (similar to the calculation of regional 

importance of trading (RIT) values in the proceeding paragraphs) on an hourly basis or for 

consequential loads. In these situations, we advise practitioners to examine the hourly trading 

values in their region of interest before proceeding. The ―U.S. Electric System Operating 

Data‖ from EIA is a useful reference in this area (U.S. Energy Information Administration 

2017). 

The algorithm recommends the inclusion of electricity trading when estimating 

marginal emissions for region types other than the largest: NERC, AVERT, EPA, 

interconnection, and the entire U.S. The inclusion of trading is also generally not a necessary 

method characteristic for average emissions in the aforementioned region types. Based on 

2013 data, each NERC region‘s summer and winter imports were less than 3% of their annual 

net load (North American Electric Reliability Corporation 2015). In 2014, imports from 

Canada made up only 1.6% of U.S. electricity retail sales (U.S. Energy Information 

Administration 2015) and U.S. electricity trade with Mexico in 2013 was less than 0.01% of 

total U.S. electricity consumption (U.S. Energy Information Administration 2013).  
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If the region under consideration is a state, then it is important to incorporate 

electricity trading. Exceptions are Texas (since the vast majority is within the Electric 

Reliability Council of Texas (ERCOT) interconnection) and the Hawaiian and Alaskan grids. 

In most cases, state borders have no relationship to power system operational boundaries, 

electricity frequently flows across state borders. 

If the region under analysis is a PCA and the emissions factor type is average, the 

necessity of including trading is determined by the percent difference between the PCA‘s 

emission factors and its corresponding eGRID subregion emissions factor and by the percent 

of electricity consumed in the PCA that is imported. Each NERC region is made up of one or 

more eGRID subregions, and each subregion is made up of one or more PCAs. The emission 

factors for each PCA and subregion used in this determination are total CO2 emissions from 

EPA‘s eGRID database (EPA 2014). Data for imports into Balancing Authorities (BA) are 

from FERC form 714 (FERC 2010). The BAs are matched to PCA regions by their Energy 

Information Agency (EIA) code. Not all regions match and both emissions data and trading 

data were not available for every PCA/BA set. We define the relative importance of trading, 

          for the PCAs as: 

           (
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where             is the import into each PCA/BA,             is the export out of each 

PCA,   is each PCA/BA within the subregion,   is the number of PCA/BAs in the subregion 

for which              is being calculated, and        is the average emission factor for the 

NERC region, from EPA‘s eGRID database (EPA 2014). Other data sources and regional 

boundaries could be used in this analysis (e.g., EPA regions), but we selected eGRID 

boundaries due to their frequent use, the public accessibility of their data and because their 

boundaries are based on grid topology and not political geography. Figure 3a-3c shows the 

             values and the impacts of the percent difference in emissions factor and percent 

imports. In some regions (e.g., Florida), there is a large percentage of imported electricity but 

the percent difference between the emissions factor of the subregion and of the NERC region 

is zero making the              value zero. The opposite is seen in New York, for example. 

Figure 3d shows the spread of               and        values. An analyst should examine 

where their region falls in this distribution to determine if it is important to include electricity 

trading when their region is a PCA or a subregion.  
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Figure 3. Spatial distribution by subregion of: (a) annual net imports as a percentage of the 

total demand (Imp_Pct); (b) percent difference between subregion emissions factors and 

NERC emissions factor (EF_PctDif); (c) relative importance of trading (RIT); (d) frequency 

distribution of relative importance of trading (RIT) values for each Power Control Authority 

(PCA) and subregion. 
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RIT does not represent the actual change in emission factors when trading is included, 

but is intended to indicate the relative importance of including electricity trading in an 

analysis when using average emissions factors. There are limitations to this approach, namely 

that the time of trading is not included and average emissions factor are used. These 

exclusions limit the application of RIT values to determining methods for estimating annual 
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average emissions factors for attributional loads in the near term. Emissions factors and the 

amount of trading will vary from year to year, so RIT should not be used in analyses with 

future time frames. Tables S4 and S5 of the SI present the values of RIT for each subregion 

and PCA/BA. Table 1 lists general recommendations based on region type. 

 

Table 1. Importance of electricity trading based on analysis region and emissions factor 

type. 

Region 
Average  

Emissions Factor 

Marginal 

Emissions Factor 

Entire U.S., 

interconnection, 

NERC, EPA, 

AVERT 

unlikely to have 

significant 

impacts 

unlikely to have 

significant 

impacts 

eGRID 

Subregion 

based on RIT 

value 

important to 

consider 

State 

important to 

consider except 

for Alaska, 

Hawaii and Texas 

important to 

consider except 

for Alaska, 

Hawaii and Texas 

PCA/BA 
based on RIT 

value 

important to 

consider 

 

<heading level 3> Emissions Variation with Time 

The importance of accounting for CO2 emissions variation over time is highly 

dependent on temporal variation in load, temporal variation in regional generation mix, and 

emission factor type. Ignoring temporal variation can reduce the relevance of a study if a load 

varies substantially with time (Amor et al. 2014). It can make a significant difference in 

emissions if a load occurs during on-peak or off-peak hours (Mathiesen, Münster, and 

Fruergaard 2009). Typically, a region‘s electricity generation mix varies by year, season, and 

time of day (Soimakallio, Kiviluoma, and Saikku 2011), but this variation is not consistent 

across different regions. 

Figure 4a shows hourly average CO2 emission factors for ERCOT and the New York 

Independent System Operator (NYISO) for the first week of April 2015, illustrating the 
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difference in diurnal variation between the two regions (SNL 2016). Figure 4b and 4c 

illustrate the monthly difference in diurnal CO2 emission factor for ERCOT and NYISO 

(using the first day of each month). In ERCOT, there is a stronger diurnal variation in a 

number of months, but the trend is not seasonal. In general, emissions in NYISO do not have 

as much diurnal variation as in ERCOT, but there is significant monthly variation. 

Additionally, there is significant difference between the annual average emissions factor in 

each region and the hourly values, showing again the importance of including temporal 

variation for temporally varying loads. 

 

Figure 4. Differences in diurnal and seasonal impacts on average emissions factors 

between NYISO and ERCOT: (a) average hourly CO2 emissions factors for NYISO and 

ERCOT spanning the first week in April 2015 (SNL 2016); (b) hourly average emissions 

factors for the first weekday of each month in 2015 compared to the annual average in 

ERCOT and (c) in NYISO (SNL 2016). 

 

 

To determine the importance of including temporal variation, the algorithm considers 

the time granularity and duration of the analysis, seasonal and daily variation in load, and 

emission factor type. Time granularity can vary from a particular hour to multiple years. 

Typically, the simpler methods cannot account for seasonal or daily load variation because 

they report emissions on a yearly basis, but emissions reporting intervals vary over a wide 

range. Figures S1-S3 in the SI provide more detail on how temporal load features will affect 
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the algorithm‘s recommendations. In some cases, the need to include emissions variation in 

an analysis is also dependent on how much the regional generation mix changes throughout 

the year or day, as shown in figure 4.  

When using a marginal emissions factor, not only are the load profile (i.e., variation in 

electricity load versus time of day) and regional generation mix variation important in 

determining the need for emissions variation with time, but so is the importance of including 

trading. When using a marginal emissions factor in an analysis where the algorithm 

recommends the inclusion of trading, hourly temporal variation should be incorporated 

whether or not the load has strong diurnal or seasonal shapes. If trading occurs as a result of 

the load, the trading could have strong temporal variation, seen in figure S8 of the supporting 

information on the Web, even if the load is relatively constant in magnitude.  

<heading level 3> Type of Emissions Factor 

Emissions can be categorized as either marginal or average. Emissions from all 

generators operating at a given time constitute average emissions, while marginal emissions 

are produced by generators that adjust their output in response to a change. Marginal 

generators, as with average, can be a mix of types using a variety of fuels. The distinction 

between marginal and average emission factors is important due to the significant differences 

in emissions estimates that can result. Twelve of the 26 eGRID subregions have a 25% or 

larger difference between their ‗eGRID subregion annual CO2 non-baseload output emission 

rate (lb/MWh)‘ (i.e., marginal) and their ‗eGRID subregion annual CO2 total output emission 

rate (lb/MWh)‘ (i.e., average) (EPA 2014). These differences are likely to have a significant 

effect on a study‘s recommendations. Note that eGRID‘s ‗non-baseload‘ emissions factor is 

not a true marginal emission factor as it includes all combustion units with a capacity factor 

of less than 0.8, but it is often used as an estimate of the marginal emission factor. The ‗non-

baseload‘ rate is provided by EPA primarily to estimate emissions for energy efficiency and 
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clean energy projects (EPA 2014). Additionally, our analysis of ERCOT‘s hourly average 

and marginal emissions, shown in figure 5, showcase the significant differences seen in each 

individual hour between average and marginal emissions, as well as, the differences overall. 

While the annual average difference between the emissions factor types was only 8%, the 

hourly difference between the average and marginal emission factors was 19% and for a 

given hour differ by up to 1.2 lbs CO2/kWh. The data used to calculate the average and 

marginal emissions were from different sources but were from the same year and had the 

same regional boundary. 

Figure 5. Frequency distribution of emissions factors: (a) hourly marginal and average 

CO2 emissions factors (lbs. CO2/KWh) for ERCOT in 2015; (b) percent difference 

between marginal and average emissions factors in each hour. Marginal values were 

calculated from AVERT’s Texas region and average emissions were calculated from 

SNL gross generation and CO2 emissions data for ERCOT. 
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Information required to estimate which specific generators are marginal, such as price 

bids, are typically not publicly available (Amor et al. 2014). Even when necessary data are 

available (possibly from RTOs or ISOs), identifying the marginal generators is difficult and 

greatly increases analysis time (Mathiesen, Münster, and Fruergaard 2009).   

In order to determine whether a marginal or average factor should be used, the 

algorithm considers whether a load is new, existing, existing but changing, or simply a 

change in generation mix. Methods should use an average emissions factor if a load is 

existing because it is part of the current demand. If the load is specified as a ‗change‘ or 

‗new‘, and is not a small commercial or residential load, the algorithm recommends the load 

be treated as marginal because it is not part of the existing demand and will cause a change in 

the generation mix. If the load is a small commercial or residential load, the algorithm 

recommends the use of an average emissions factor. ―Small loads‖ are defined as a change 

smaller than typical demand variation, which is balanced through ancillary services, so 

marginal generators will not necessarily be dispatched to meet the change. It is important to 

note that this question refers to the aggregation of all loads a user is interested in analyzing 

within a region. If the aggregation is larger than the regulation load, then the new load or 

change in load should be treated as marginal. In PJM, regulation services, which make up for 

the mismatch in demand and supply, constitutes 0.7% of the total load, based on 2016 PJM 

hourly load (PJM 2016) and ancillary services market data (PJM 2016). This percentage will 

likely vary by region. The logic for this section is presented in figure S1 of the supporting 

information on the Web. 

<heading level 3> Changes in Infrastructure, Fuel Price, or Energy Related Policy  

Electricity demand, technology portfolio (i.e., infrastructure), resource availability, 

and imports determine the electricity generation mix. Fuel price, regulations, and the 
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economic climate can drive changes in these characteristics, which can significantly affect 

average and marginal emission factors, thus making it important to consider them when 

analyzing emissions as part of sustainability assessments with future time frames. Predictions 

for changes in fuel prices and regulations can affect not only predicted generator operation 

but also planned capacity additions, retirements and implementation of emissions control 

measures. Even if significant changes in existing infrastructure are not expected, a method 

that can account for changes in fuel price demand or regulations needs to be used to 

accurately address possible changes in generation mix when analyzing future electricity 

emissions impacts. 

Using annual average CO2 emissions factors for each year from 1973 to 2015 

(calculated from EIA data), we show in figure 6 the relative change in emissions factors over 

the following ten years. From 1973 to 1999 this value steadily increased and from 1999 to 

2015 it began to decrease. On average, the emissions factor changed 6% in three years and 

9% after five years.  
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Figure 6. Percent change in annual average emissions factor (lbs CO2/kWh) across 10 

years: (a) with base years from 1973-2005; (b) average magnitude of the percent change 

in the annual average emissions factors (lbs CO2/kWh) across ten years, for base years 

from 1973-2005 and 1999-2005. The data are calculated from EIA CO2 emissions from 

energy consumption in the electric power sector (U.S. Energy Information 

Administration 2016b) and net electricity generation from the power sector (U.S. 

Energy Information Administration 2016c). Vertical dashed lines separate future load 

time periods used to recommend whether possible methods should incorporate fuel, 

price, policy, or infrastructure changes. 

 

 

Informed by the results shown in figure 6, we classify future loads into three time 

spans: less than three years, from three to five years, and more than five years. These 

delineations are used to provide recommendations on method type. Figure S4 of the 

supporting information on the Web illustrates this logic.  

<heading level 2> Excel Tool 

The algorithm is coded into an Excel tool (available at 

http://css.umich.edu/page/selecting-electricity-emissions-models-seem) that includes 

additional capabilities such as specific method recommendations and the ability to weight the 

importance of method characteristics. The algorithm Excel tool was tested by practitioners 

including 12 individuals with expertise in the field, fellow researchers, faculty, and industry 

http://css.umich.edu/page/selecting-electricity-emissions-models-seem
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partners. Each practitioner was provided three scenarios from a set of seven. Refinements to 

the tool were made based on practitioner feedback, much of which related to question 

phrasing. There is some subjectivity inherent in the algorithm, in that not all practitioners‘ 

results were identical for the same load. This subjectivity allows the algorithm to better match 

method characteristics to the chosen load and research question being considered, while 

enabling exploration of the impact of different responses on the algorithm‘s 

recommendations.  

<heading level 1> Illustrative case discussion 

Illustrative recommendations based on the algorithm‘s results are presented for four 

hypothetical electricity loads: a household air conditioner, an electric vehicle (EV) fleet, a 

grid connected solar photovoltaic (PV) installation, and aluminum smelters. Emissions from 

these types of electricity loads, most predominantly the EV fleet and aluminum smelters, 

have been assessed in multiple studies (discussed below). The EV and aluminum smelter 

cases are presented here, and the air conditioner and PV cases are located in the SI. We 

present the methods used in these studies alongside the algorithm‘s recommendations to 

illustrate the variation in assumptions made among studies and by the algorithm. While we 

propose the algorithm‘s recommendations as current best practices, this should not be taken 

as an implication that there is one ‗best‘ method to use for all electricity loads and research 

questions. Our intention is not to highlight shortcomings in the methods used in previous 

studies, but to emphasize the variability and inconsistency among them and the need for the 

kind of guidance our algorithm provides. Key results that vary across the methods are 

presented in italics throughout the case study sections. The case study loads were selected 

not only because they have been previously studied in detail, but also because they highlight 

how the algorithm‘s recommendations are affected by differences in key load features, i.e., 

variable vs. constant load, demand reduction vs. addition, regional vs. location-specific, and 
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historical vs. future. In most cases, there are differences among the literature methods and 

between the literature methods and the algorithm‘s recommended method characteristics, 

which are collected in table 2.  

 

Table 2. Algorithm recommendations on method characteristics for estimating 

electricity emissions resulting from the electricity consumption of a household air 

conditioner an EV fleet, a grid connected solar PV installation, and aluminum smelters. 

 Method 

Characteristic 
Household Air 

Conditioner 
EV Fleet Solar PV Aluminum Smelters 

Emissions 

factor Type: 

Average Emissions 

Factor 

Marginal Emissions 

Factor 

Marginal Emissions 

Factor 

Average Emissions 

Factor 

Temporal 

Variation: 

An hourly time interval 

should be considered to 

capture daily variation. 

The method needs to 

incorporate hourly 

variation. 

The method needs to 

incorporate hourly 

variation. 

The method does not 

need to incorporate 

variation with time. 

Time 

Granularity: 
Monthly Hourly Hourly Yearly 

Time Scale: 

Time scale does not 

need to be considered 

because you are 

interested in a historical 

load. 

Method may need to 

account for future 

infrastructure, fuel price or 

energy policy changes. 

Select methods in the 

Economic Dispatch or 

Unit Commitment 

categories may be 

appropriate. 

Method may need to 

account for future 

infrastructure or fuel 

price changes. Select 

methods in the 

Economic Dispatch or 

Unit Commitment 

categories may be 

appropriate. 

Time scale does not 

need to be considered 

because you are 

interested in a historical 

load. 

Region Size: PCA State 
Power Control Area 

(PCA) 

PCA, but location/s are 

still specific 

Region: ISO New England CA AZNM 

Big Rivers Electric 

Corporation, South 

Carolina Public Services 

Authority 

Inclusion of 

Trading: 

Effect of trading on 

emissions factor is 

estimated to be 0.1% 

The method should 

incorporate electricity 

trading. 

The method should 

incorporate electricity 

trading. 

In consecutive order 

based on location the 

effect of trading on 

emissions factor is 

estimated to be: 2%, 

16% 

Top Ranked 

Method 

Types: 

Empirical Data & 

Relationship Methods: 

Simple Emissions 

Factors, Statistical 

Relationship Model & 

Power System 

Power System 

Optimization Methods: 

Economic Dispatch, Unit 

Commitment 

Power System 

Optimization Methods: 

Economic Dispatch, 

Unit Commitment 

Empirical Data & 

Relationship Methods: 

Simple Emissions 

Factors or Emissions 

Factor Methods with 
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Optimization: 

Economic Dispatch 

Trading/Imports 

 

<heading level 2> Fleet of Electric Vehicles 

A researcher is interested in estimating the change in hourly CO2 emissions resulting 

from the electricity consumed by a new fleet of electric taxis deployed in major cities across 

California over the next five years. The algorithm‘s recommendations are presented in table 

2. Heterogeneous daily charging patterns drive the algorithm‘s recommendation to 

incorporate hourly variation and because the fleet is new (i.e., an added load) the algorithm 

recommends the use of marginal emissions factors. The researcher‘s assumptions include a 

constant fleet size and likely changes in electricity infrastructure, fuel prices, or energy 

policy. As a result, the algorithm recommends that the selected method may need to account 

for these changes over the time period of the analysis. These characteristics drove the 

recommendation for an economic dispatch and unit commitment model. 

There is a large amount of literature on estimating emissions from EV electricity 

consumption. Ryan et al. (2016) compared the emissions factors for EV charging using a 

variety of methods. In this section we will mention just a few of the many studies that model 

fleets of EVs. In these studies, the emissions factor type, time scale, and temporal variation 

used varied among studies. Other characteristics also varied but differences in study scale and 

location drove those differences. 

When comparing well-to-wheels CO2 emissions from EVs to internal combustion 

engine vehicles in the U.S., U.K., and France, Holdway et al. (2010) applied country-level 

average emissions factors and fuel-specific emission factors. Despite Holdway et al.‘s (2010) 

major simplifying assumptions, they were able to illustrate the importance of grid 
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decarbonization in EVs effectively reducing emissions in the transportation sector. Instead of 

directly modeling the electricity grid for their comparison of vehicle drivetrains, Meinrenken 

and Lackner (2015) used a wide range of carbon intensities (50-1,200 g CO2e/kWh) by 

employing a variety of average grid mixes, from all wind-solar to all coal, similar to Holdway 

et al.‘s approach. Meinrenken and Lackner (2015) were able to determine under what grid 

conditions each drivetrain type would reduce overall emissions. These two studies do not 

align with the algorithm‘s recommendations for current best practices, but they are asking 

different research questions than the one posed in our case. They are presenting comparative 

scenarios whereas the case study focuses on modeling a specific electricity grid. 

Jansen et al. (2010) included temporal variation when analyzing EV penetration 

scenarios in the western U.S. grid by developing a dispatch model using historical data to 

correlate system load with resource capacity factors. Blumsack et al. (2008) also incorporated 

hourly variation when assessing environmental impacts of replacing 73% of the light-duty 

vehicle fleet with PHEVs. Blumsack et al. (2008) used marginal emissions factors that were 

developed with an economic dispatch method for three Independent System Operators 

(ISOs). These methods align closely with our algorithm‘s recommendations, in that temporal 

variation was taken into account and marginal emissions factors were used (Jansen, Brown, 

and Samuelsen 2010; Blumsack, Samaras, and Hines 2008). Because of their use of historical 

data, however, these studies are only applicable in the near term, prior to any significant 

changes in infrastructure or fuel price. 

Kim and Rahimi (2014) studied long-term emissions impacts of an EV fleet for 2020 

and 2030 in Los Angeles. Their study aligns with all of the recommendations laid out by the 

algorithm (J. D. Kim and Rahimi 2014b). They used an economic dispatch method that 

incorporated temporal variation and marginal emissions factors, and they accounted for 

infrastructure changes and renewable energy portfolio standard changes (ibid.).  
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Although Kim and Rahimi‘s (2014) study aligned well with our algorithm‘s 

recommendations, the other studies relied on simplifying assumptions that do not align with 

the algorithm‘s recommended current best practices for emissions estimation. Due to their 

assumptions, they are not able to describe EV emissions based on future grid topology. 

However, these studies were able to answer their research questions successfully and their 

assumptions do not invalidate their results as they pertain to these research questions in any 

way. The results of studies with large differences in baseline assumptions cannot be 

effectively compared, however, and policy makers and consumers might be uncertain how to 

respond should they encounter divergent results.  

<heading level 2> Material production: Aluminum 

An analyst is interested in CO2 emissions attributed to the production of a kilogram of 

aluminum ingot at two aluminum smelters, the Hawesville Smelter in Hawesville, KY and 

the Alumax Smelter in Mount Holly, SC. In order to determine these emissions, it is 

necessary to calculate the CO2 emissions per kilowatt-hour of electricity consumed at the 

facilities. The algorithm‘s recommendations are presented in table 2. The smelters are 

assumed to run at constant load throughout the year, resulting in the recommendation that the 

method does not need to include emissions variation with time.  

The algorithm‘s recommendation to use yearly average emissions factors aligns well 

with past studies completed on emissions from aluminum production. Colett et al. (2015), 

McMillan & Keoleian (2009), and an Aluminum Association study (2013) all used annual 

average electricity mixes. Although these studies use the same type of emissions factor, they 

vary in their inclusion of trading and regional granularity. In the Big Rivers Electric 

Corporation PCA region hypothetical smelter case (Hawesville), trading is estimated to have 

an RIT of 2%, implying trading is of little importance. In the South Carolina Public Services 
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Authority PCA, trading is estimated to have an RIT of 16%, implying non-trivial effects of 

trading. These results show that the importance of trading is very location-specific. Of the 

studies mentioned, Colett et al. (2015) is the only one that includes trading, and they also 

used the recommended PCA region size when estimating the emissions from producing 

aluminum ingot. It is not surprising that the inclusion of trading varies across studies, 

considering the varying region sizes used and the location-specific nature of the importance 

of trading. However, inconsistency in this assumption limits an objective comparison of 

results. 

The Aluminum Association (2013) used a very specific regional boundary, based on 

power contracts and on-site generation, for determining emissions from electricity consumed 

in the smelting and ingot casting processes. For secondary metal production, either a U.S. or 

Canadian average electricity mix was used due to lack of facility-specific data (ibid.). 

McMillan and Keoleian (2009) looked at aluminum production on an even broader scale 

when completing a life-cycle assessment of primary aluminum ingot, concentrating on six 

world regions and using each region‘s average electricity fuel mix and fuel carbon intensity 

to estimate emissions from electricity consumed. Although these regional boundaries are 

much larger than recommended by our algorithm, their method allowed them to estimate the 

potential implications regional differences and global trade of aluminum ingot could have on 

emissions (McMillan and Keoleian 2009). However, using different regional boundaries can 

significantly impact a study‘s results, as seen in Ryan et al. (2016), making a comparison 

with their results inappropriate.  

The use of our algorithm not only aids practitioners in selecting an appropriate 

method but also in determining what past study results are most relevant to their analysis and, 

over time, will hopefully increase consistency in the assumptions made in future studies. 
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<heading level 1> Summary and Conclusion 

Emissions allocation for electricity consumption is a complex task. A variety of 

assumptions can be made to simplify this task but some of those assumptions can also 

drastically change the results of an analysis and even lead to divergent conclusions on the 

sustainability of a process, product, or policy. Our goal is for the algorithm is to provide 

guidance on the key assumptions that can be made without producing dramatically different 

results than a user would obtain by modeling all of the temporal and physical details of the 

power system. 

When we compared the algorithm‘s recommendations to those used in the literature, 

we saw significant differences among methods used and between the literature methods and 

those we would recommend. Reasons for these differences include variation in research 

question, study timeline, study region, data availability, time constraints, and general 

difficulty in modeling the electricity grid. The structure and context of a study‘s research 

question has some of the greatest influence on the method used to estimate CO2 emissions, as 

illustrated in the case studies. For example, by using constant emission factors in comparing 

drivetrains, in contrast to the algorithm‘s recommendation of a factor that varies with time, 

Meinrenken and Lackner (2015) were able to assess under what grid mixes different 

drivetrains would be optimal without incorporating current conditions.  However, if the 

question were which drivetrain is currently optimal, temporal variation in emissions would 

need to be incorporated into the analysis.  

Differing research questions, study timeline, and region validate many of the 

differences in study assumptions, while others varied from each other and our best practice 

recommendations without justification. In these cases, lack of consistency limits 

comparability and could cause results to vary significantly. The choice of emissions factors is 

important for determining the effectiveness of policies that drive changes in electricity 
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consumption (Ji et al. 2015). If studies are to be used to inform policy or consumer decisions, 

consistency and transparency in assumptions is important.  

In many cases, a method that encompasses all of the algorithm‘s recommendations 

and does not require a significant amount of time or data to employ may not exist. Therefore, 

it is important to determine the method characteristics that are essential. These characteristics 

are often based on the research question but there are some general guidelines. If a region has 

strong diurnal changes in electricity mix and a load has strong diurnal changes in magnitude, 

it is essential to model emissions variation with temporal granularity matching that of 

variation in electricity mix. If a future load‘s emissions are being estimated and changes are 

anticipated in grid infrastructure, fuel price, or policy, the chosen method must incorporate 

these effects. The delineation between marginal and average emissions is also crucial, though 

there is still debate over which is appropriate for certain types of loads. Consideration and 

justification are required when employing either approach, and the decision between them 

should not be made only on the basis of a method‘s ease of use. 

Policy studies often use more complex methods to estimate emissions resulting from 

electricity generation, but expecting an analyst assessing a product‘s life-cycle emissions to 

model the electricity system in great detail could be unrealistic (Amor et al. 2014). Factors 

that make an analyst‘s task more challenging include temporal variation, electricity trading, 

and marginal emissions, which are all particularly difficult and data intensive to model. Our 

algorithm is particularly useful in assisting analysts in navigating these complexities and 

informing them of method assumptions that will not compromise their study. 

The algorithm presented here has a number of limitations, both general and specific. 

In general, the algorithm as described here does not provide a list of methods that can be 

employed for a given load. This information is included in the algorithm‘s Excel tool version 

(available at http://css.umich.edu/page/selecting-electricity-emissions-models-seem), and a 

http://css.umich.edu/page/selecting-electricity-emissions-models-seem
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list of methods and types can be found in Ryan et al. (2016). More specifically, the algorithm 

does not provide regionally explicit guidance on the need to incorporate variation with time. 

Depending on the type of load variation, the algorithm stipulates that the need is dependent 

on the region‘s generation mix variation throughout the year, a statistic that would need to be 

investigated further by a practitioner before proceeding. Regional emissions variation with 

time is an area for further study. In certain cases, the algorithm is unable to provide definitive 

recommendations on the inclusion of electricity trading, temporal emissions variation, or the 

use of future projections. The algorithm also does not have sufficient data to provide 

recommendations on importance of trading for marginal emissions or for average emissions 

in all PCA regions, as discussed in the methods section. These limitations require the user to 

conduct further investigation for certain loads. In cases where one method does not fit all of 

the algorithm‘s recommendations, it is best to use multiple methods to develop an 

understanding of uncertainty in the emissions estimates. We are not able to quantify 

uncertainty for our recommendations due to the study specific nature of results, but each 

method will have its own level of uncertainty, which is important to understand. 

Despite difficulties in modeling and a lack of data, it is important for practitioners to 

understand how they should estimate CO2 emissions from electricity consumption. This 

algorithm provides a framework for practitioners to more carefully examine method 

assumptions that can be influential in realistically estimating electricity emissions from 

specific loads. It also aims to be a step toward building consensus on appropriate methods to 

estimate emissions for particular load types and to influence practitioners to examine more 

closely how they estimate emissions from electricity consumption in their work. This would 

allow for more transparency and greater comparability of study results. 
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Additional supporting information may be found in the online version of this article:  

Supporting Information S1: This supporting information contains instructions on implementing 

the decision support algorithm presented in this article, two illustrative cases, and nine tables and 

eight figures. 

 


