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<heading : Summary
Th presents an algorithm to aid practitioners in determining the most

appropria@d to estimate CO, emissions from an electricity load. Applications include

sments of products, processes, energy efficiency improvements, changes

in generatjggg@Tastructure, and changes in electricity demand. Currently, there is no
consensus on appropriate methods for calculating greenhouse gas emissions resulting from
specific elm loads. Previous research revealed significant differences in emissions
when diffg @ thods were used, a situation that could result in divergent sustainability or
policy reco ations. In this article, we illustrate the distribution of emissions estimates
based haracteristics such as region size, temporal resolution, average or marginal
approaMme scales. Informed by these findings, a decision support algorithm is
presented that uss a load’s key features and an analyst’s research question to provide

recomme on appropriate method types. We defined four different cases to
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demonstrate the utility of the algorithm and to illustrate the variability of methods used in
previous studies. Prior research often employed simplifying assumptions, which in some
cases can resiltin electricity being allocated to the incorrect generating resources and
improper of emissions. This algorithm could reduce inappropriate allocation,

Var1ab111tysn assumptions, and increase appropriateness of electricity emissions estimates.
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<head Introduction

Ac g for CO, emissions from electricity production is an essential aspect of

many environmental impact studies and use of proper methods is essential when assessing

avoided em from energy efficiency improvements, renewable generation, and changes

developMemia, industry, and government that are variously proprietary, open source,
or developed forSse within an organization (e.g., the Environmental Protection Agency’s
(EPA) Int lanning Model (IPM)). Approaches vary widely; they incorporate different
variables, ifferent assumptions and range in sophistication from simple look-up tables
to sophisticated recursive optimizations. Such differences are a product of the complexity of

the electricity grid, which makes quantifying emissions from specific electricity loads
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challenging, and tracing electricity back to one generator often impossible (Yang 2013a;

Weber et al. 2010). The grid’s continuously changing mix of generation assets, which causes

variation in_gmissions with time, adds to this complexity (Soimakallio, Kiviluoma, and
Saikku 20&01%).

Dl! to the grid’s complexity, selecting an appropriate method to estimate emissions
requires cagefulegonsideration of available methods’ assumptions and characteristics. It is
essential to the method used with the specific load and research question (Ryan,

Johnson, waan 2016). The goal of the algorithm described in this paper is to foster

this alignmen roviding guidance to practitioners (e.g., researchers, policy analysts, life
cycle asses LCA) analysts and consultants) in selecting a method that will
appropria ate electricity CO; emissions to a load of interest based on the load’s key

features aactitioner’s research question. Although this algorithm focuses on CO,
emissi itioners could use a similar approach for other greenhouse gas emissions. Due
to the large r of available methods, selection can be a daunting task. The algorithm
provides assistance by determining what simplifying assumptions about the physical grid
operation,shich requires significant knowledge, time and data to model properly, will and
will not si tly change a load’s emissions estimates. It then provides guidance on what

types of me make appropriate simplifying assumptions. Different methods can result in

h

different eMissions factors when examining an identical change in demand for a given

locatio

L

al. 2010; Ryan, Johnson, and Keoleian 2016) making it extremely

important for pra@titioners to “exercise caution and sensitivity” when modeling electricity

G

supply scen ‘Amor et al. 2014). This article describes the algorithm’s logic and structure,

A

and prese algorithm’s recommended method types for particular loads alongside those

used in previous literature.
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There is currently no consensus on the appropriate methods for estimating emissions
from grid electricity for specific loads (Yang 2013a; Weber et al. 2010). Contention also

<

exists over est’ method to estimate emissions, even from well-studied loads, like
electric v (Graff Zivin, Kotchen, and Mansur 2014; Soimakallio, Kiviluoma, and
Saikku 2041). Several examples of method variation are highlighted in the discussion and
results sechre our algorithm is applied to four loads. Loads utilizing electricity from
microgrids

-grid applications are outside the scope of the algorithm, and are generally

much sim ognodel with tools such as HOMER (HOMER Energy 2016).

<heading£vel 1> Methods

T nships between load features (e.g., diurnal variability) and a method’s
characteristics dfc based on recommendations from our previous review (Ryan, Johnson, and
Keoleian 2 mbi this paper, we show the effects of a method characteristics’ (e.g., region
size, te lution, average or marginal approach, and the study duration) on emissions
factor Varg' ion. The algorithm we present in this section determines the key features of an
electricity d an analyst’s corresponding research question through a series of inquiries.
Key featu ¢ to time, location, and load type (consequential or attributional). These
features as closely linked and all affect the way emissions for the load should be calculated.

W a conceptual representation of the connections between load features (top
row) and methodycharacteristics (middle row). The supporting information available on the
Journal’s websitegncludes flow diagrams illustrating all of the connections between load
feature thod characteristics needed to operate the algorithm (figures S1-S6), as well
as reference tables to assist in answering the algorithm’s questions or to look up results for

the relative importance of trading. The Determining Method Characteristics section explains
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in more detail the methods for determining the load features and how features are connected

to recommended method characteristics.

Figure 1. Ql illustration of how each load feature (top row) impacts specific

method,characteristics (middle row) recommended when estimating emissions. Load
features E ate to time (light blue), location (medium blue) and load type (consequential

or attrib dark blue).
a
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<headingm Determining Method Characteristics

ion we explore the range of impacts on emissions factors stemming from

decisions ethod characteristics. Using recent historical data, we illustrate the relative
impacts of region size, inter-regional trading, temporal variation, the type of emissions factor

and multiMnges. This analysis provides new insights into the range and relative

ork found significant variation in results when using different geographic
regionaWarles to estimate CO, emissions from the same load, highlighting the
importanc@cting an appropriate regional boundary (Ryan, Johnson, and Keoleian
2016). Fi ustrates the difference in emissions factor between each power control area
(PCA) an ounding North American Electric Reliability Corporation (NERC) region.
Many vary by less than 25% and some regions (e.g., TRE) are more homogenous than others

(e.g., WECC), but the average absolute value percent difference is 47%. Despite these strong
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differences, existing literature does not provide consistent guidance on appropriate region

sizes or geographic boundaries (Weber et al. 2010), beyond the repeated theme that

politically d entities (e.g., states) are not appropriate regions to use in electricity studies
(J.D.Ki i 2014a; Tamayao et al. 2015).
—

{

Area’s (P@A) emissions factor (Ibs CO,/kWh) and its surrounding North American Electric
Reliability Corporation (NERC) region’s emissions factor, color coded by NERC region.
Emissiongiffagforsiare based on eGRID 2012 data (U.S. Environmental Protection Agency
2012; EPA"201

Figure 2.@y distribution of the percent difference between each Power Control
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In de 1ning suitable regional boundaries, the algorithm considers whether a load is
regionall d or occurs in a specific location(s). Regional, in this context, means a
load is ﬂenly distributed across a geographic area (i.e., consists of a large number of
roughly hamogengous and evenly distributed locations within a given regional boundary).
The regio sed in this algorithm range from PCAs at the small end of the scale, to the

-

entire Unitc s at the large end. The size and location of the region selected can affect

o transmission. If the method selected does not include transmission losses,
they may need to be added based on the region size selected. Values for select region sizes
are available through eGRID and the U.S. Energy Information Administration (EIA) (EPA

2014; U.S. Energy Information Administration 2016a).
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In the algorithm, the location(s) of electricity loads are categorized as ‘known

locations’ (e.g., factories) if they are specific and known, the number of loads is manageable

ol

for the ana nd the locations are not homogeneous and evenly distributed within a region.

In this cas jon(s), ZIP code(s), and data from EPA’s Power Profiler eGRID

[ ]
Subregiongand GHG emissions finder tool together determine the loads’ eGRID subregion

£

(EPA 20129n If tlae locations’ PCAs are known, those PCAs are recommended as boundaries

G

for loads w own locations.” If the PCAs are unknown, eGRID subregions are

recomme employed eGRID subregion boundaries due to their frequent use, because

S

their boundaries @re based on grid topology and not political geography, and for their ability

U

to be deline sed on ZIP code. Grid operating decisions are made at the PCA level,

N

making P ppropriate basis for analyzing the electricity system. However, electricity

trading cafil b w e vastly more important at this scale. We discuss this further in the

d

Incorp i lectricity Trading section. In general, if the location of production is
known and d e available, our recommended best practice is that a smaller region be used
when estimating emissions from electricity consumption. Electricity on the grid will follow
the path o!east resistance, which will be the shortest distance since resistance increases with
line lengt 005), so it is logical that the generators in the PCA/BA (i.e., the smallest

electrical re would be the most probable to serve the load.

<headi£ Incorporation of Electricity Trading
A

f methods have been developed to estimate regional imports and exports of
electricity empt to better estimate average electricity greenhouse gas emissions.
Marrio atthews (2005) modeled interstate trading to improve their emissions
estimates for partfcular industries, and found that incorporating trading brought state average
emissions factors closer to the U.S. average. Colett et al. (2015) included trading in their

nested average emissions modeling applied to aluminum production. They examined trading
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between each location’s PCA and the surrounding NERC region (Colett, Kelly, and Keoleian

2015). Ji et al. used an input-output model to determine the indirect electricity trading in

e

interconnec id networks (e.g., North Europe, Eurasia and China) and to better estimate
greenhou ) emissions (Ji et al. 2016).

N . . . , _ _
The method used in our analysis to determine the importance of trading, as in the

other studigs disgussed, employs annual average trading values. These methods are only
appropriate tributional loads without temporal variation. The necessity of including
traded elethen estimating emissions depends on multiple factors. The factors used in

the algorithm ar&yemissions factor type, region type, percentage of total electricity

U

consumptio was imported, and percentage difference in emission factor between the
importing gegigiasand the surrounding region. How the algorithm uses these factors to
estimate the 1 ‘E ance of including trading is discussed below.

included (e.g., locational marginal price, load size, available regional
capacity) are rtant when assessing marginal emissions but are not as necessary for
average emissions. Estimating marginal emissions requires determining the effects of a

change in@emand on electricity trading. This is both regionally and temporally specific and

[

requires si tly more data.

Cha in demand (i.e., a consequential load calling for an estimation of marginal

h

emissions Reould cause an increase or decrease in electricity trading depending on the

{

region’ Y existing load, and the marginal price of the region’s electricity, as well as

of those it is intef@onnected with. A region that currently experiences no imports could begin

G

importing el ty if the addition of an electricity load increased demand beyond regional

supply or ced marginal electricity price enough to make it economical to begin

A

trading. In this case, the emissions from the traded electricity should be allocated to the load

along with emissions from any change in generation caused within the region. The regional
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importance of trading (RIT) method, discussed above, does not incorporate these details and

is not appropriate for estimating the importance of including marginal trading. Only

{

prospective tch methods are appropriate to estimate emissions in this situation (Ryan,

Johnson, ian 2016).

[
Faggors that should be considered when estimating marginal emissions affect trading

on an houtlg basis. Figure S8 of the supporting information on the Web illustrates hourly

G

changes in d and hourly variation in imports and exports from Florida for six months

of 2015. at@show a trend across the day where greater imports occur during hours of

S

higher deman that the differences between hours within a day and among days are non-

U

trivial. We ovide general recommendations on trading and marginal emissions, as we

do not ha

1;

ta to complete a quantitative analysis (similar to the calculation of regional

importancg o ing (RIT) values in the proceeding paragraphs) on an hourly basis or for

a

conseq s. In these situations, we advise practitioners to examine the hourly trading

values in thej on of interest before proceeding. The “U.S. Electric System Operating

Data” from EIA 1s a useful reference in this area (U.S. Energy Information Administration
2017).

T ithm recommends the inclusion of electricity trading when estimating
marginal e ns for region types other than the largest: NERC, AVERT, EPA,
interconneetion, and the entire U.S. The inclusion of trading is also generally not a necessary
methodwstic for average emissions in the aforementioned region types. Based on
2013 data,@iRC region’s summer and winter imports were less than 3% of their annual
net load (No erican Electric Reliability Corporation 2015). In 2014, imports from
Canadamzly 1.6% of U.S. electricity retail sales (U.S. Energy Information
Administration 2015) and U.S. electricity trade with Mexico in 2013 was less than 0.01% of

total U.S. electricity consumption (U.S. Energy Information Administration 2013).
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If the region under consideration is a state, then it is important to incorporate
electricity trading. Exceptions are Texas (since the vast majority is within the Electric
Reliability cil of Texas (ERCOT) interconnection) and the Hawaiian and Alaskan grids.
In most ¢ rders have no relationship to power system operational boundaries,

. H —
electrlcnygequently flows across state borders.

If mn under analysis is a PCA and the emissions factor type is average, the

necessity o ding trading is determined by the percent difference between the PCA’s

emission d its corresponding eGRID subregion emissions factor and by the percent

of electricity comgumed in the PCA that is imported. Each NERC region is made up of one or

us

more eG ﬁglons, and each subregion is made up of one or more PCAs. The emission

factors foy A and subregion used in this determination are total CO, emissions from

EPA’s eGmabase (EPA 2014). Data for imports into Balancing Authorities (BA) are
from F 14 (FERC 2010). The BAs are matched to PCA regions by their Energy
Information y (EIA) code. Not all regions match and both emissions data and trading

data were not available for every PCA/BA set. We define the relative importance of trading,

RITPCA/BASr the PCAs as:

_ EFpca—EFgsypregion net_actualgy 1
RITpca/pa = , (1)
0.5(EFpca+EFsubregion)/ \net_energy_loadpy

where ;l B4, 18 the BA’s ‘net actual’ imports (imports minus exports) and

net enerff oadB 4 1s its load. EFpc4 1s the average emissions factor of the PCA and

EFsubregi emissions factor of the subregion. The RITsypregion Values for eGRID

subregﬁr actual_rec; = actual_del;):

EFsubregion—EFnerc ZN actual_rec;— ZN actual_del;
YN net_energy_load; ’

2

RIT, =
subregion 0 S(EFsubregwn+EFnerc)
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where actual_rec; is the import into each PCA/BA, actual_del; is the export out of each

PCA, i is each PCA/BA within the subregion, N is the number of PCA/BAs in the subregion

for which egion 18 being calculated, and EF,, is the average emission factor for the
NERC regi A’s eGRID database (EPA 2014). Other data sources and regional
N

boundarie§fcould be used in this analysis (e.g., EPA regions), but we selected eGRID
boundariegf@uetheir frequent use, the public accessibility of their data and because their
boundarieQmsed on grid topology and not political geography. Figure 3a-3c shows the
RITgypreg! s and the impacts of the percent difference in emissions factor and percent
imports. I@gions (e.g., Florida), there is a large percentage of imported electricity but
the percen;nce between the emissions factor of the subregion and of the NERC region

is zero mal RITgy,pregion value zero. The opposite is seen in New York, for example.

Figure 3d e spread of RITg,pregion and RIT pc4 values. An analyst should examine

d

where falls in this distribution to determine if it is important to include electricity

trading eir region 1s a PCA or a subregion.

M

Author
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Figure Wistribution by subregion of: (a) annual net imports as a percentage of the
m d

total de p_Pct); (b) percent difference between subregion emissions factors and
NERC e @ actor (EF_PctDif); (c) relative importance of trading (RIT); (d) frequency
distributio e importance of trading (RIT) values for each Power Control Authority

(PCA) andssmbmegion.
a
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RIT
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RIT does SQt represent the actual change in emission factors when trading is included,
but is inte indicate the relative importance of including electricity trading in an
analysis w ing average emissions factors. There are limitations to this approach, namely
that the time of trading is not included and average emissions factor are used. These

exclusions limit the application of RIT values to determining methods for estimating annual
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average emissions factors for attributional loads in the near term. Emissions factors and the

amount of trading will vary from year to year, so RIT should not be used in analyses with

R

future time

and PCA/

-

es. Tables S4 and S5 of the SI present the values of RIT for each subregion

lists general recommendations based on region type.

Table 1. @nce of electricity trading based on analysis region and emissions factor

type.
Resion Average Marginal
g Emissions Factor Emissions Factor
.Entlre 055 . ikely to have unlikely to have
MUt fcoRicehe sighificant significant
ILOLAC, Loy jmapacts in% acts
AVERT P
eGRID d on RIT important to
Subregion value consider
iﬂortant to important to
ider except consider except
BHEi laska, for Alaska,
aii and Texas  Hawaii and Texas
PCA/BA based on RIT important to

(3

consider

<heading level 3> Emissions Variation with Time

Th& importance of accounting for CO, emissions variation over time is highly

]

dependen

0O

emission fac

varies

1

[

emissio

oral variation in load, temporal variation in regional generation mix, and
ype. Ignoring temporal variation can reduce the relevance of a study if a load
with time (Amor et al. 2014). It can make a significant difference in

occurs during on-peak or off-peak hours (Mathiesen, Miinster, and

Fruergaard 2009 iTypically, aregion’s electricity generation mix varies by year, season, and

time of day

across di egions.

kallio, Kiviluoma, and Saikku 2011), but this variation is not consistent

Figure 4a shows hourly average CO; emission factors for ERCOT and the New York

Independent System Operator (NYISO) for the first week of April 2015, illustrating the
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difference in diurnal variation between the two regions (SNL 2016). Figure 4b and 4c
illustrate the monthly difference in diurnal CO, emission factor for ERCOT and NYISO
(using the ! ay of each month). In ERCOT, there is a stronger diurnal variation in a
number o t the trend is not seasonal. In general, emissions in NYISO do not have
as much dsrnal variation as in ERCOT, but there is significant monthly variation.

Additionallgs, thiege is significant difference between the annual average emissions factor in

each region e hourly values, showing again the importance of including temporal

variation wrally varying loads.

between and ERCOT: (a) average hourly CO; emissions factors for NYISO and
ERCOT the first week in April 2015 (SNL 2016); (b) hourly average emissions
factors for st weekday of each month in 2015 compared to the annual average in
ERCOT Mn NYISO (SNL 2016).

Figure 4.&ces in diurnal and seasonal impacts on average emissions factors
ISO

(a) (b) (c)
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—

E—

T ne the importance of including temporal variation, the algorithm considers
the time ;a;g y and duration of the analysis, seasonal and daily variation in load, and
emissiz{pe. Time granularity can vary from a particular hour to multiple years.
Typically, the simpler methods cannot account for seasonal or daily load variation because

they report emissions on a yearly basis, but emissions reporting intervals vary over a wide

range. Figures S1-S3 in the SI provide more detail on how temporal load features will affect
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the algorithm’s recommendations. In some cases, the need to include emissions variation in
an analysis is also dependent on how much the regional generation mix changes throughout
the year or s shown in figure 4.

W marginal emissions factor, not only are the load profile (i.e., variation in
electrlcltygad versus time of day) and regional generation mix variation important in

determinhwed for emissions variation with time, but so is the importance of including

trading. W ing a marginal emissions factor in an analysis where the algorithm
recomme ednclusion of trading, hourly temporal variation should be incorporated
whether or no load has strong diurnal or seasonal shapes. If trading occurs as a result of
the load, th. ing could have strong temporal variation, seen in figure S8 of the supporting
informati Web, even if the load is relatively constant in magnitude.

<heading m Type of Emissions Factor

can be categorized as either marginal or average. Emissions from all
generators o g at a given time constitute average emissions, while marginal emissions
are produced by generators that adjust their output in response to a change. Marginal
generator!as with average, can be a mix of types using a variety of fuels. The distinction
between and average emission factors is important due to the significant differences
in emission mates that can result. Twelve of the 26 eGRID subregions have a 25% or
larger difﬁgnce between their ‘eGRID subregion annual CO; non-baseload output emission
rate (lb)He., marginal) and their ‘eGRID subregion annual CO; total output emission
rate (Ib/MWh)’ (;., average) (EPA 2014). These differences are likely to have a significant
effectonas recommendations. Note that eGRID’s ‘non-baseload’ emissions factor is
not a true inal emission factor as it includes all combustion units with a capacity factor
of less than 0.8, but it is often used as an estimate of the marginal emission factor. The ‘non-

baseload’ rate is provided by EPA primarily to estimate emissions for energy efficiency and
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clean energy projects (EPA 2014). Additionally, our analysis of ERCOT’s hourly average
and marginal emissions, shown in figure 5, showcase the significant differences seen in each
individual etween average and marginal emissions, as well as, the differences overall.
While the age difference between the emissions factor types was only 8%, the

N ) .
hourly difference between the average and marginal emission factors was 19% and for a
given hourgdiffégby up to 1.2 Ibs CO,/kWh. The data used to calculate the average and

marginal e ns were from different sources but were from the same year and had the

same regiWndary.

Figure 5. Frequency distribution of emissions factors: (a) hourly marginal and average
CO; emisgi tors (Ibs. CO/KWh) for ERCOT in 2015; (b) percent difference
between marginal and average emissions factors in each hour. Marginal values were
calculatediirom AVERT’s Texas region and average emissions were calculated from
SNL gros tion and CO, emissions data for ERCOT.
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Information required to estimate which specific generators are marginal, such as price
bids, are typically not publicly available (Amor et al. 2014). Even when necessary data are

available :iﬁ ly from RTOs or ISOs), identifying the marginal generators is difficult and

greatly in ysis time (Mathiesen, Miinster, and Fruergaard 2009).

 EE—
In m determine whether a marginal or average factor should be used, the

algorlthm onsid@s whether a load is new, existing, existing but changing, or simply a
change in n mix. Methods should use an average emissions factor if a load is
existing bm is part of the current demand. If the load is specified as a ‘change’ or
‘new’, and is not@ small commercial or residential load, the algorithm recommends the load
be treated inal because it is not part of the existing demand and will cause a change in
the generatlon mix. If the load is a small commercial or residential load, the algorithm

recommeme of an average emissions factor. “Small loads” are defined as a change

smaller than typic: typical demand variation, which is balanced through ancillary services, so

i

marginal generators will not necessarily be dispatched to meet the change. It is important to

note that this question refers to the aggregation of all loads a user is interested in analyzing

within a region. If the aggregation is larger than the regulation load, then the new load or

V o
change in load should be treated as marginal. In PJM, regulation services, which make up for
the mismatch in demand and supply, constitutes 0.7% of the total load, based on 2016 PJM
hourly load (PJM 2016) and ancillary services market data (PJM 2016). This percentage will

likely vary by region. The logic for this section is presented in figure S1 of the supporting

informati Web.

<headi 3> Changes in Infrastructure, Fuel Price, or Energy Related Policy
Electricity demand, technology portfolio (i.e., infrastructure), resource availability,

and imports determine the electricity generation mix. Fuel price, regulations, and the
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economic climate can drive changes in these characteristics, which can significantly affect
average and marginal emission factors, thus making it important to consider them when

analyzing eﬁ' jons as part of sustainability assessments with future time frames. Predictions

for chang ices and regulations can affect not only predicted generator operation
but also planned capacity additions, retirements and implementation of emissions control
measures. Q’signiﬁcant changes in existing infrastructure are not expected, a method

that can ac or changes in fuel price demand or regulations needs to be used to

S

accuratel es§ possible changes in generation mix when analyzing future electricity

emissions impact.

U

Usi al average CO; emissions factors for each year from 1973 to 2015
(calculateﬁ‘IA data), we show in figure 6 the relative change in emissions factors over
the followiihg % ears. From 1973 to 1999 this value steadily increased and from 1999 to
2015 it crease. On average, the emissions factor changed 6% in three years and

9% after five

Author M
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Figure 6. Percent change in annual average emissions factor (Ibs CO,/kWh) across 10
years: (a) with base years from 1973-2005; (b) average magnitude of the percent change
in the annual average emissions factors (Ibs CO,/kWh) across ten years, for base years
from 1 nd 1999-2005. The data are calculated from EIA CO; emissions from
energy conswnption in the electric power sector (U.S. Energy Information
Adminisb) and net electricity generation from the power sector (U.S.
Energy I @dtion Administration 2016¢). Vertical dashed lines separate future load
time perigds used to recommend whether possible methods should incorporate fuel,

price, pols’ y, or infrastructure changes.
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Inhy the results shown in figure 6, we classify future loads into three time

spans: lesee years, from three to five years, and more than five years. These

delineatio ed to provide recommendations on method type. Figure S4 of the

suppo tion on the Web illustrates this logic.

<headinglevel 2> Excel Tool
ThEhm is coded into an Excel tool (available at

.edu/page/selecting-electricity-emissions-models-seem) that includes

additional ca ities such as specific method recommendations and the ability to weight the
importance of method characteristics. The algorithm Excel tool was tested by practitioners

including 12 individuals with expertise in the field, fellow researchers, faculty, and industry
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partners. Each practitioner was provided three scenarios from a set of seven. Refinements to
the tool were made based on practitioner feedback, much of which related to question
phrasing. is some subjectivity inherent in the algorithm, in that not all practitioners’

results we

pt

for the same load. This subjectivity allows the algorithm to better match

- | . . . .
method characteristics to the chosen load and research question being considered, while

[l

enabling eyploragion of the impact of different responses on the algorithm’s

recommen

SG

<heading level T> Illustrative case discussion

U

11 iy recommendations based on the algorithm’s results are presented for four

hypothetig@l clectricity loads: a household air conditioner, an electric vehicle (EV) fleet, a

N

grid connect ar photovoltaic (PV) installation, and aluminum smelters. Emissions from

a

these type ricity loads, most predominantly the EV fleet and aluminum smelters,
have b essed in multiple studies (discussed below). The EV and aluminum smelter

cases a, sented here, and the air conditioner and PV cases are located in the SI. We

M

present the methods used in these studies alongside the algorithm’s recommendations to

I

illustrate t ion in assumptions made among studies and by the algorithm. While we

propose t hm’s recommendations as current best practices, this should not be taken
as an implj hat there is one ‘best’ method to use for all electricity loads and research

questio ntion is not to highlight shortcomings in the methods used in previous

th

studies, b hasize the variability and inconsistency among them and the need for the

U

kind of ur algorithm provides. Key results that vary across the methods are

presen lics throughout the case study sections. The case study loads were selected

A

not only becaus¢ they have been previously studied in detail, but also because they highlight
how the algorithm’s recommendations are affected by differences in key load features, i.e.,

variable vs. constant load, demand reduction vs. addition, regional vs. location-specific, and
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historical vs. future. In most cases, there are differences among the literature methods and

between the literature methods and the algorithm’s recommended method characteristics,

which are ¢ ted in table 2.

[ ]
Table 2.
electricit

gorithm recommendations on method characteristics for estimating
issions resulting from the electricity consumption of a household air

conditionran V fleet, a grid connected solar PV installation, and aluminum smelters.

Method

Household Air

Characteristic .
Conditioner

EV Fleet

Solar PV

Aluminum Smelters

Emissions ge Emissions
factor Type: Factor

Marginal Emissions
Factor

Marginal Emissions
Factor

Average Emissions
Factor

ly time interval

The method needs to

The method needs to

The method does not

Temporal . . . .
Va ,Z . should be considered to incorporate hourly incorporate hourly need to incorporate
riation: . . .. .. . L.
daily variation. variation. variation. variation with time.
Time
onthl Hourl Hourl Yearl
Granularity: Y Y Y Y
— Method may need to Method may need to

}cale does not

ed to be considered

Time Scale: NEBE8use you are
interested in a historical

account for future
infrastructure, fuel price or
energy policy changes.
Select methods in the
Economic Dispatch or

account for future
infrastructure or fuel
price changes. Select
methods in the
Economic Dispatch or

Time scale does not
need to be considered
because you are
interested in a historical

load. Unit Commitment Unit Commitment load.
categories may be categories may be
appropriate. appropriate.
Power Control Area PCA, but location/s are
Region Size: PCA Stat . .
e ate (PCA) still specific
Big Rivers Electric
Regi ew England CA AZNM Corporation, South
egion: W . . .
& & Carolina Public Services
H Authority
In consecutive order
. based on location the
. of trading on The method should The method should .
Inclusion of . . . . . .. effect of trading on
. emissions factor is incorporate electricity incorporate electricity . .
Trading: . . emissions factor is
ated to be 0.1% trading. trading.

estimated to be: 2%,

16%
Empirical Data & .
. . E 1 Data &
Top Ranked  Relationship Methods: 'Pc?we'r System _P ower System mpurcal Lata
Method Simple Emissions Optimization Methods: Optimization Methods: Relationship Methods:
. Economic Dispatch, Unit Economic Dispatch, Simple Emissions
Types: Factors, Statistical

Relationship Model &
Power System

Commitment

Unit Commitment

Factors or Emissions
Factor Methods with
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Optimization: Trading/Imports
Economic Dispatch

)

- Q.

I
<heading¥evel 2> Fleet of Electric Vehicles

A @er is interested in estimating the change in hourly CO, emissions resulting
from the electaeity consumed by a new fleet of electric taxis deployed in major cities across
Califomiame/ next five years. The algorithm’s recommendations are presented in table
2. Heterogeneou;]aily charging patterns drive the algorithm’s recommendation to
incorpora variation and because the fleet is new (i.e., an added load) the algorithm
recommengeuse of marginal emissions factors. The researcher’s assumptions include a
constant @and likely changes in electricity infrastructure, fuel prices, or energy
policy. , the algorithm recommends that the selected method may need to account

for thes es over the time period of the analysis. These characteristics drove the

recommendation for an economic dispatch and unit commitment model.

L

Therggds a large amount of literature on estimating emissions from EV electricity
consumpt et al. (2016) compared the emissions factors for EV charging using a
variety ﬂm. In this section we will mention just a few of the many studies that model
fleets of as. In vese studies, the emissions factor type, time scale, and temporal variation
used Varieﬁ studies. Other characteristics also varied but differences in study scale and

location drove thgse differences.

.@

engine vehicles in the U.S., U.K., and France, Holdway et al. (2010) applied country-level

omparing well-to-wheels CO; emissions from EVs to internal combustion

average emissions factors and fuel-specific emission factors. Despite Holdway et al.’s (2010)

major simplifying assumptions, they were able to illustrate the importance of grid
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decarbonization in EVs effectively reducing emissions in the transportation sector. Instead of

directly modeling the electricity grid for their comparison of vehicle drivetrains, Meinrenken

{

and Lackne 15) used a wide range of carbon intensities (50-1,200 g CO,e/kWh) by

employin f average grid mixes, from all wind-solar to all coal, similar to Holdway

]
et al.’s approach. Meinrenken and Lackner (2015) were able to determine under what grid

conditionsgachagdrivetrain type would reduce overall emissions. These two studies do not

G

align with orithm’s recommendations for current best practices, but they are asking

different chiiquestions than the one posed in our case. They are presenting comparative

S

scenarios whereag the case study focuses on modeling a specific electricity grid.

Ul

Jang 1. (2010) included temporal variation when analyzing EV penetration

scenarios

i

stern U.S. grid by developing a dispatch model using historical data to

correlate gyst ad with resource capacity factors. Blumsack et al. (2008) also incorporated

d

hourly hen assessing environmental impacts of replacing 73% of the light-duty

vehicle fleet HEVs. Blumsack et al. (2008) used marginal emissions factors that were

M;

developed with an economic dispatch method for three Independent System Operators

(ISOs). Thgse methods align closely with our algorithm’s recommendations, in that temporal

g

variation n into account and marginal emissions factors were used (Jansen, Brown,

O

and Samue 010; Blumsack, Samaras, and Hines 2008). Because of their use of historical

data, howdker, these studies are only applicable in the near term, prior to any significant

q

L

change cture or fuel price.

KirEahimi (2014) studied long-term emissions impacts of an EV fleet for 2020
and 2030 in ngeles. Their study aligns with all of the recommendations laid out by the
algorithm im and Rahimi 2014b). They used an economic dispatch method that

incorporated temporal variation and marginal emissions factors, and they accounted for

infrastructure changes and renewable energy portfolio standard changes (ibid.).
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Although Kim and Rahimi’s (2014) study aligned well with our algorithm’s
recommendations, the other studies relied on simplifying assumptions that do not align with
the algorit! s recommended current best practices for emissions estimation. Due to their
assumptioQ not able to describe EV emissions based on future grid topology.

H . : .
However,gese studies were able to answer their research questions successfully and their
assumptioQt invalidate their results as they pertain to these research questions in any
way. The r

of studies with large differences in baseline assumptions cannot be

effectivelWed, however, and policy makers and consumers might be uncertain how to

respond shouE Sy encounter divergent results.

<headingflevel 2> Material production: Aluminum

An analyst is interested in CO, emissions attributed to the production of a kilogram of

aluminum two aluminum smelters, the Hawesville Smelter in Hawesville, KY and
the Al melter in Mount Holly, SC. In order to determine these emissions, it is
necess calculate the CO, emissions per kilowatt-hour of electricity consumed at the

facilities. The algorithm’s recommendations are presented in table 2. The smelters are

assumed thonstant load throughout the year, resulting in the recommendation that the

method ded to include emissions variation with time.

T! algorithm’s recommendation to use yearly average emissions factors aligns well

with paWompleted on emissions from aluminum production. Colett et al. (2015),

McMillan cdleian (2009), and an Aluminum Association study (2013) all used annual
average electricily mixes. Although these studies use the same type of emissions factor, they
vary in{lusion of trading and regional granularity. In the Big Rivers Electric
Corporation PCA region hypothetical smelter case (Hawesville), trading is estimated to have

an RIT of 2%, implying trading is of little importance. In the South Carolina Public Services
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Authority PCA, trading is estimated to have an RIT of 16%, implying non-trivial effects of

trading. These results show that the importance of trading is very location-specific. Of the

studies h, Colett et al. (2015) is the only one that includes trading, and they also
used the r d PCA region size when estimating the emissions from producing
aluminumgingot. It is not surprising that the inclusion of trading varies across studies,
considerinering region sizes used and the location-specific nature of the importance
of trading. er, inconsistency in this assumption limits an objective comparison of

results.

The Alumiinum Association (2013) used a very specific regional boundary, based on

usS

power contr. d on-site generation, for determining emissions from electricity consumed
in the smojfi ingot casting processes. For secondary metal production, either a U.S. or
Canadian @ve % electricity mix was used due to lack of facility-specific data (ibid.).
McMil leian (2009) looked at aluminum production on an even broader scale
when complets life-cycle assessment of primary aluminum ingot, concentrating on six
world regions and using each region’s average electricity fuel mix and fuel carbon intensity

to estimat@emissions from electricity consumed. Although these regional boundaries are

[

much larg ecommended by our algorithm, their method allowed them to estimate the
potential im tions regional differences and global trade of aluminum ingot could have on
emissions WM cMillan and Keoleian 2009). However, using different regional boundaries can
signiﬁcwct a study’s results, as seen in Ryan et al. (2016), making a comparison
with their results i’nappropriate.

The our algorithm not only aids practitioners in selecting an appropriate
method in determining what past study results are most relevant to their analysis and,

over time, will hopefully increase consistency in the assumptions made in future studies.
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<heading level 1> Summary and Conclusion
Emissions allocation for electricity consumption is a complex task. A variety of
assumption be made to simplify this task but some of those assumptions can also
drasticallya results of an analysis and even lead to divergent conclusions on the
sustalnablgy of a process, product, or policy. Our goal is for the algorithm is to provide
guidance wy assumptions that can be made without producing dramatically different
an

results th r would obtain by modeling all of the temporal and physical details of the

S

power sys

When w&gompared the algorithm’s recommendations to those used in the literature,

we saw signi differences among methods used and between the literature methods and
those we commend. Reasons for these differences include variation in research
question, meline, study region, data availability, time constraints, and general
difficultyzd ing the electricity grid. The structure and context of a study’s research
question has of the greatest influence on the method used to estimate CO, emissions, as

illustrated 1n the case studies. For example, by using constant emission factors in comparing

drivetrain§{in contrast to the algorithm’s recommendation of a factor that varies with time,

g

Meinrenk ackner (2015) were able to assess under what grid mixes different

drivetrains be optimal without incorporating current conditions. However, if the

h

question were which drivetrain is currently optimal, temporal variation in emissions would

{

need to rated into the analysis.

Differing fesearch questions, study timeline, and region validate many of the

U

differences 1 y assumptions, while others varied from each other and our best practice

recomme without justification. In these cases, lack of consistency limits

A

comparability and could cause results to vary significantly. The choice of emissions factors is

important for determining the effectiveness of policies that drive changes in electricity
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consumption (Ji et al. 2015). If studies are to be used to inform policy or consumer decisions,

consistency and transparency in assumptions is important.

In ses, a method that encompasses all of the algorithm’s recommendations
and does significant amount of time or data to employ may not exist. Therefore,
N

it is imporant to determine the method characteristics that are essential. These characteristics
are often hffSed Of the research question but there are some general guidelines. If a region has
strong diu nges in electricity mix and a load has strong diurnal changes in magnitude,
it is essentf@lowlodel emissions variation with temporal granularity matching that of
variation in electScity mix. If a future load’s emissions are being estimated and changes are

anticipategnfrastructure, fuel price, or policy, the chosen method must incorporate

these effe

there is st over which is appropriate for certain types of loads. Consideration and
justific uired when employing either approach, and the decision between them
should n e only on the basis of a method’s ease of use.

Policy studies often use more complex methods to estimate emissions resulting from

elineation between marginal and average emissions is also crucial, though

electricityhon, but expecting an analyst assessing a product’s life-cycle emissions to

model thety system in great detail could be unrealistic (Amor et al. 2014). Factors

that make st’s task more challenging include temporal variation, electricity trading,

and ma sions, which are all particularly difficult and data intensive to model. Our

algorithm 3ularly useful in assisting analysts in navigating these complexities and

informing method assumptions that will not compromise their study.

@ orithm presented here has a number of limitations, both general and specific.
In general, the algorithm as described here does not provide a list of methods that can be
employed for a given load. This information is included in the algorithm’s Excel tool version

(available at http://css.umich.edu/page/selecting-electricity-emissions-models-seem), and a
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list of methods and types can be found in Ryan et al. (2016). More specifically, the algorithm
does not provide regionally explicit guidance on the need to incorporate variation with time.
Depending e type of load variation, the algorithm stipulates that the need is dependent
on the reg tion mix variation throughout the year, a statistic that would need to be
1nvest1gat§ further by a practitioner before proceeding. Regional emissions variation with
time is an qur‘[her study. In certain cases, the algorithm is unable to provide definitive

recommen on the inclusion of electricity trading, temporal emissions variation, or the

S

use of fut ojections. The algorithm also does not have sufficient data to provide

recommendation§on importance of trading for marginal emissions or for average emissions

U

in all PCA reggions, as discussed in the methods section. These limitations require the user to

N

conduct iy estigation for certain loads. In cases where one method does not fit all of

the algoritimi ommendations, it is best to use multiple methods to develop an

d

unders ncertainty in the emissions estimates. We are not able to quantify

uncertainty fi recommendations due to the study specific nature of results, but each

M

method will have its own level of uncertainty, which is important to understand.

1

DeSpitgedid Ticulties in modeling and a lack of data, it is important for practitioners to

understan. @ ey should estimate CO, emissions from electricity consumption. This

algorithm a framework for practitioners to more carefully examine method

assum

n

an be influential in realistically estimating electricity emissions from

t

specific s. It also aims to be a step toward building consensus on appropriate methods to

estimate e

3

1o for particular load types and to influence practitioners to examine more

closely h estimate emissions from electricity consumption in their work. This would

A

allow for mo sparency and greater comparability of study results.
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