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Key Points.

◦ The delay times of Lpp to the arrival of Lpp indicators is a function of

MLT

◦ The MLT dependence of plasmapause formation is in agreement with the

mechanism of interchange instability

◦ At high geomagnetic activity the Lpp bulge is formed in the postdusk.

At low geomagnetic activity the bulge is located close to midnight

Abstract. Using the database of CRRES in situ observations of the plasma-4

pause crossings, we develop linear and more complex plasmapause models5

parametrized by (a) solar wind parameters V (solar wind velocity), BV (where6

B is the magnitude of the interplanetary magnetic field IMF), and dΦmp/dt7

(which combines different physical mechanisms which run magnetospheric8

activity), and (b) geomagnetic indices Dst, Ap and AE. The complex mod-9

els are built by including a first harmonic in MLT. Our method based on the10

cross correlation analyses provides not only the plasmapause shape for dif-11

ferent levels of geomagnetic activity, but additionally yields the information12

of the delays in the MLT response of the plasmapause. All models based on13

both solar wind parameters and geomagnetic indices indicate the maximal14

plasmapause extension in the postdusk side at high geomagnetic activity. The15

decrease in the convection electric field places the bulge toward midnight.16

These results are compared and discussed in regards to past works. Our study17

shows that the time delays in the plasmapause response are function of MLT18

and suggests that the plasmapause is formed by the mechanism of interchange19

instability motion. We observed that any change quickly propagates across20
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dawn to noon, and then at lower rate toward midnight. The results further21

indicate that the instability may propagate much faster during solar max-22

imum than around solar minimum.23

This study contributes to the determination of the MLT dependence of the24

plasmapause and to constrain physical mechanism by which the plasmapause25

is formed.26
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1. Introduction

The plasmasphere is an area in the inner magnetosphere which contains trapped, low-27

energy, and dense plasma. The plasmapause is the outer boundary of the plasmasphere28

whose dynamics are determined by a combination of the two electric fields: corotation29

and convection electric fields [e.g., Nishida, 1966; Lemaire and Gringauz , 1998].30

Since plasmapause influences the ring current dynamic [e.g., Kozyra et al., 1995], radi-31

ation belts [e.g., Horne and Thorne, 1998; Lorentzen et al., 2001; Darrouzet et al., 2013],32

formation and propagation of electromagnetic waves [e.g., Takahashi and Anderson, 1992]33

it is important to know its time dependent location.34

The plasmapause positions (LPP ) have been estimated both theoretically and empir-35

ically. The LPP dynamics are studied theoretically by considering (i) the last closed36

equipotential of the convection electric field [Brice, 1967; Lemaire and Pierrard , 2008],37

(ii) the peeling of the plasmasphere [Lemaire and Gringauz , 1998; Pierrard and Lemaire,38

2004; Lemaire and Pierrard , 2008]. This second process implicates a MLT dependence39

of the plasmapause position that can be verified empirically. Empirically LPP has been40

evaluated by studying: ground based whistler data; in situ satellite observations of plasma41

density (e.g., ISEE, CRRES), electron plasma frequency (CLUSTER), and thermal veloc-42

ity (THEMIS); field aligned current observations (CHAMP), as a function of geomagnetic43

indices [e.g., O’Brien and Moldwin, 2003; Liu et al., 2015; Verbanac et al., 2015, and ref-44

erence therein] and solar wind parameters [Larsen et al., 2007; Cho et al., 2015; Verbanac45

et al., 2015]. All these studies have shown that the plasmapause shrinks when geomagnetic46

activity increases achieving the largest extension in the dusk side.47
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Most of the previous empirical studies used the maximum (or minimum) in the geomag-48

netic indices or in the solar wind (thereafter SW) parameters during hours to days prior49

to the plasmapause crossing. For instance, Carpenter and Anderson [1992] established50

linear relationship between LPP and the maximum of geomagnetic Kp index observed in51

the previous 24 hours relative to the plasmapause crossing. Moldwin et al. [2002] linked52

the LPP with the maximum Kp index found in the previous 12 hours separately for night,53

dawn, day and dusk sectors. O’Brien and Moldwin [2003] obtained linear relationships54

between LPP and maximum Kp index taken from 36 to 2 hours relative to the plasma-55

pause crossing, maximum AE index and minimum Dst index taken in the previous 3656

hours and 24 hours, respectively. They also fitted a function to the observed LPP values57

that depends both on geomagnetic indices and MLT. Following this work, Liu and Liu58

[2014] obtained plasmapause model based on THEMIS measurements. Similarly, Heilig59

and Lühr [2013] expressed LPP based on field-aligned currents as a function of Kp, Kp260

and MLT. Cho et al. [2015] presented the models averaged in MLTs, based on THEMIS61

plasmapause crossings and extrema (minimum or maximum) of some solar wind variables62

(e.g., velocity V , z-component of the IMF vector Bz, Akasofu’s epsilon parameter, y com-63

ponent of the solar wind electric field E, IMF clock angle θ) and geomagnetic indices64

Kp, Dst and AE, all taken within the selected time windows. Liu et al. [2015] obtained65

multi-index plasmapause model also using THEMIS measurements and geomagnetic in-66

dices: mean AE, mean Kp, mean AL, maximum AU and maximum SYMH taken within67

the determined time window for each input parameter and for each MLT sector.68

Larsen et al. [2007] provide the delay in the response of plasmapause averaged in MLT69

to the arrival of Bz, θ and polar cap potential drop φ. Verbanac et al. [2015] obtained70
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LPP fits for three different MLT sectors (night, day, evening) based on solar wind coupling71

functions (Bz, BV and dΦmp/dt defined in section 2) and geomagnetic indices (Ap, Dst72

and AE). They showed that different regions of the plasmapause react with different73

delay times to the arrival of the investigated LPP indicators which are function of MLT.74

In the present study, we apply the approach presented in Verbanac et al. [2015] (hereafter75

Paper I) to the CRESS based LPP database developed by Moldwin et al. [2002] (hereafter76

Paper II) that contains about three time more data than analysed in Paper I and during77

a more geomagnetically active period.78

Worth noting is that the MLT dependence of the time lags in the response of plasma-79

pause obtained with our method is very valuable information which can help in constrain-80

ing the physical mechanism by which the plasmapause is formed.81

The mains aims are:82

(i) to investigate the MLT dependence in the relationship between CRRES-based plasma-83

pause, solar wind and geomagnetic activity;84

(ii) to compare the obtained plasmapause shapes with those derived from different mod-85

els;86

(iii) to investigate the response of the plasmapause to LPP indicators during different87

phases of the solar activity cycle;88

(iv) try to constrain physical mechanism by which the plasmapause is formed.89

We build simple empirical LPP models using solar wind parameters V , BV , dΦmp/dt90

and geomagnetic indices Ap, Dst, AE as indicators of the LPP for different MLT sector91

divisions and investigate the dependence of the obtained delay times on MLTs. We further92

develop more complex models by including a first harmonic in MLT. The results are93
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compared with those obtained by other studies in order to discuss the plasmapause shape94

from different models. Further comparison of the obtained time delays with those based on95

Cluster plasmapause as presented in Paper I is performed to investigate the plasmapause96

responses during different phases of solar activity cycle.97

The paper is organized as follows. Data and method of analyses are presented in section98

2. section 3 contains the results of the obtained best linear fits and of the continuous MLT99

models. Comparison with results from other studies is given in section 4. Discussion is100

given in section 5 and conclusions are drawn in the last section.101

2. Data and Method

To study the LPP we used following data:102

• one-hour averages of geomagnetic indices Dst and AE;103

• three-hour averages of the geomagnetic index Ap;104

• one-hour averages of the solar wind velocity V , IMF magnitude B and components105

Bx, By, Bz in GSM (Geocentric Solar Magnetospheric) of the IMF vector B;106

• dataset of plasmapause positions based on the plasma wave receiver that was onboard107

CRRES satellite.108

Within the studied period there are a lot of gaps in the solar wind data, which are often109

long lasting (5-8 days). Roughly 55% of solar wind data is missing.110

We used the dataset of 963 plasmapause positions obtained from in situ CRRES electron111

density observations made in 1990-1991. For the description of the methodology employed112

to identify the LPP we refer to Paper II. There is a gap in the data coverage around noon113
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at larger radial distances and near midnight at middle radial distance. Also, because of114

the orbital characteristics plasmapause at L shell >7 could not be collected.115

We employed the following solar wind based LPP indicators: V , BV and dΦmp/dt

[Newell et al., 2007] defined as:

Φmp/dt = V 4/3B
2/3
T sin8/3(θc/2) (1)

where BT =
√
B2
y +B2

z and θc = arctan(By/Bz).116

For these solar wind parameters we were able to obtain stable cross-correlation results.117

The importance of solar wind coupling functions BV and dΦmp/dt in accounting for much118

about the magnetospheric activity is explained in our previous work (Paper I). Here we119

only shortly discuss their physical meaning. Bz is related to the reconnection of the IMF120

with the Earth’s magnetic field, the process that is important for strengthening the mag-121

netospheric convection. BV is proportional to the interplanetary electric field. dΦmp/dt122

takes into account different physical processes related to the magnetospheric activity. In123

addition to the previously mentioned solar wind parameters, past work has shown that the124

plasmapause location is well correlated with V [Cho et al., 2015]. Furthermore, Verbanac125

et al. [2011, 2013] have reported a strong relationship between geomagnetic indices and V126

during both solar minimum and solar maximum. We therefore also test the plasmapause127

response to this solar wind parameter in this study.128

The relationships between the LPP and LPP indicators are investigated binning the129

data in three and four MLT sectors as follow:130

• three sectors: Sector1-night (01-07 MLT), Sector2-day (07-16 MLT), Sector3-evening131

(16-01 MLT);132
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• four ”traditional” sectors: SectorI (00-06 MLT), SectorII (06-12 MLT), SectorIII133

(12-18 MLT), SectorIV (18-00 MLT);134

and also when all MLTs are taken together.135

The MLT intervals in both three and four sector divisions were carefully chosen to136

provide reliable statistics in each time bin. The three sector division is the same as in137

Paper I, allowing us to directly compare the obtained results with our previous work.138

Employing the cross-correlation analysis we obtain the time lags of the plasmapause re-139

sponse to LPP indicators and linear least-squares fit parameters for the highest correlation140

time lags which describe the relationship between the LPP and different LPP indicators.141

Following our previous study (Paper I) we consider here the time window of 30 hours be-142

fore the plasmapause crossings. For detailed description of the employed cross-correlation143

analysis, the reader is referred to Paper I.144

Concerning solar wind based LPP indicators, the cross-correlation analyses are per-145

formed only if there were ≥ 70% data in the interval of 30 hours preceding the UT of each146

of the plasmapause crossing. Imposing this criterion, we analyse ∼300 LPP , similar to the147

number of LPP investigated in PaperI, which is adequate to perform reliable statistics.148

The number of plasmapause positions meeting this condition for each of the solar wind149

Lpp indicator in both three and four sector divisions is given in Table 1. For geomagnetic150

indices (thereafter GI), all the available Lpp in each sector are used (in total 963 Lpp), and151

the numbers are also displayed in Table 1. Note that in four sector division, SectorIII152

(12-18 MLT) contains significantly less data than other sectors. For solar wind based LPP153

indicators, the numbers of Lpp are additionally reduced due to the gaps in solar wind154
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data. Thus for solar wind parameters we focus on the three sector division only in order155

to ensure reliable statistics.156

3. Results

3.1. Best linear fit models

Here we present the results obtained employing the cross-correlation analysis, as ex-157

plained in the previous section. In Table 2 we present the time lags ∆t, and the RMS158

errors (RMSE) of the best fits obtained by binning the data into three MLT sectors (01-07159

MLT, 07-16 MLT, 16-01 MLT) as well as for all MLTs taken together. The correlation160

coefficients are given for the case when all MLTs are taken together. For GI we addition-161

ally show ∆t and RMSE of the best fits for four MLT sector divisions (00-06 MLT, 06-12162

MLT, 12-18 MLT, 18-00 MLT) in Table 3.163

The RMS errors displayed in both tables are approximately 0.6-1 L in all MLTs taken164

together or in sectors. The sectors that comprise dusk and evening (Sector3 in the three165

sector division and SectorIV in the four sector division) have considerably more scatter166

than the other MLT sectors. The lowest model RMSEs found in Sector2 for three sector167

division and in SectorIII for four sector division likely reflect the absence of LPP > 5168

on the dayside and generally less plasmapause data between 12 MLT and 18 MLT (for169

the details about the data coverage the reader is referred to Paper II). We calculate170

the statistical significance of the RMSE differences between models using a Monte Carlo171

bootstrap procedure. We first generate distributions of RMSEs for each model by creating172

the data samples from the original data set using random selection with replacement. For173

each pair of the RMSE distributions within each column of Table 2 and Table 3 we then174

calculate the probability to observe a larger RMSE in the first distribution belonging to175
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the pair than in the second. If this probability is larger than 0.95 or smaller than 0.05 then176

the two RMSEs are considered to be distinguishable. These calculations provide following177

results. For three sectors division, only Dst in the day sector (07-16 MLT) provides a178

relatively superior model since it is the only model which is statistically distinguishable179

from Ap model even if not from all other LPP models. The RMSEs of all other models are180

not statistically distinguishable from the RMSEs of any model. Note that although V in181

Sector2 (07-16 MLT) has the same RMSE as Dst, and lower than other LPP indicators,182

the probability of observing larger RMSE than any of the others, taken individually, is of183

the order of 10%. For four sector division Dst is statistically distinguishable from both184

Ap and AE in SectorII (06-12 MLT), and provide the best model in this sector. Note that185

AE in SectorIII (12-18 MLT) has the lowest RMSE, but there is no statistical significance186

of the differences in regards to Dst and Ap models. Our calculations give 25% percent187

probability of observing a higher value of AE RMSE than the RMSE observed for the188

other two models.189

The main conclusion that comes out of Table 2 and Table 3 is that for all LPP indicators,190

the time lag corresponding to the highest correlation is a function of MLT. The obtained191

time lags ascend from Sector1 to Sector3/SectorIV. The only exception is parameter V ,192

where the lags in Sector1 and Sector2 are comparable. Similar ∆ts are obtained for Ap193

and AE, and notably shorter ∆t for Dst and V (2-12 hours shorter depending on the194

sector). Intermediate lags are found for both BV and dΦmp/dt − Lpp. Time lag versus195

MLT is shown in Figure 1. The plotted lags are obtained by binning the data into 6-hours196

MLT for GI, and into three MLT sectors for solar wind based LPP indicators. We note197

here that the observed MLT dependence of the time lags indicates that the plasmapause198
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is first formed in the postmidnight to dawn side, and later in other MLTs. The more199

detailed discussion is given in section 4.200

The coefficients of the best linear fit models are given in Table 4. We present the fit201

coefficients for three sector division in order to analyse them for all LPP indicators. Recall202

that for solar wind based LPP indicators, data could not be adequately described if binned203

into four MLT sectors, due to the lower number of LPP between 12 MLT and 18 MLT204

and due to additional gaps in the solar wind data.205

The shape of the plasmapause was examined in respect to low and high values of LPP206

indicators as identified from the analysed datasets. However, note that the developed207

models work for any given geomagnetic index or solar wind parameters, thus not only for208

some extreme values (low and high values). In Table 5 the fitted LPP values for low and209

high geomagnetic activity are shown. Based on all LPP relationships, the lowest LPP is210

found in Sector2 and amounts ∼ 2.8 RE. We link this LPP value to the indicator values211

at high geomagnetic activity.212

The LPP values reported in Table 5 together with the RMSE given in Table 2 indicate213

that at quiet time the bulge is likely located in the premidnight side as concerning GI. The214

given solar wind based plasmapause values are indistinguishable in Sector1 and Sector3215

within the error limits. At higher activity the bulge is located in Sector3 according to all216

LPP indicators.217

Figure 2 shows the location of the plasmapause for each model for two identified levels218

of geomagnetic activity as given in Table 5.219

3.2. Continuous MLT models

We further develop more complex models by including a first harmonic in MLT.220
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For a certain Lpp indicator Q at a given MLT , plasmapause position is expressed as:221

Lpp = AA ·Q+BB (2)

AA and BB are defined as:222

AA(φ) = a1 [1 + amlt cos(φ− aφ)]; BB(φ) = b1 [1 + bmlt cos(φ− bφ)] (3)

where φ = 2π(MLT/24).223

To determine the set of model coefficients (a1, amlt, aφ, b1, bmlt and bφ), firstly some224

finite MLT division has to be chosen. A linear regression in each sector is then performed225

(Lpp=aQ+b) and pairs of coefficients a and b are obtained, by which the model coefficients226

are calculated. As initial MLT bins, we selected four MLT sector division to maximize as227

much as possible the resolution in MLT but also to enable enough data in each sector for228

adequate statistics. This unfortunately allows us only to build models using geomagnetic229

indices. Recall that for solar wind based Lpp indicators, only binning the data into three230

MLT sectors was possible. The parameters of the obtained MLT plasmapause model231

are given in Table 6. The errors of the parameters are calculated with a Monte Carlo232

approach. We generate samples of the distribution of the linear regression coefficients (a233

and b) assuming that they are independent and distributed with Gaussian probability. For234

each sample we then calculate the model coefficients in order to obtain their probability235

distribution from which we determine their standard deviations. In this way we didn’t236

have to assume that the errors are small, as required by e.g., error-propagation formulae.237
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The RMSE reported in Table 6 are very similar to those for simpler models given in238

Table 3. Only when all local times are considered, the RMSE are reduced compared to239

simpler models.240

We note that following coefficients and their products, aφ, bφ, a1Q + b1, a1amltQ and241

b1bmlt, determine the plasmapause shape. The location of the bulge is given by the phase242

containing the combination of these coefficient products, and not with aφ, bφ solely as243

argued in O’Brien and Moldwin [2003].244

Right panels in Figure 3 depict Lpp(MLT) for each model and for two levels of geo-245

magnetic activity, as given in Table 5. Blue and red lines indicate low and high activity,246

respectively. The symbols show the MLT of maximum Lpp for each continuous model.247

To compare with the simpler models obtained from the cross-correlation analysis, we also248

show the Lpp in four-MLT bins (left panels). Simple Ap and Dst models for low activity249

cannot resolve whether the maximum plasmapause extension is in SectorI or in SectorIV,250

while simple AE model indicates the bulge location in SectorIV. Continuous MLT models251

give a maximum Lpp between 22 MLT and 0 MLT, depending on the model. At high activ-252

ity the bulge is observed in SectorIV, according to all of simple models. Continuous models253

provide the maximum Lpp at around 21 MLT. All these indicate the midnight/premidnight254

plasmapause bulge which rotates toward dusk as geomagnetic activity increases.255

4. Comparison with past studies

In the following we first compare the plasmapause shapes from our models (denoted256

as CRRES2 models) with those presented by O’Brien and Moldwin [2003]; Liu and Liu257

[2014]; Liu et al. [2015] (denoted as CRRES1, THEMIS1, and THEMIS2 models, respec-258

tively).259
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We could compare only our models that are based on geomagnetic indices with others,260

since none of these previous models are based on solar wind parameters. The past stud-261

ies utilize the procedure of identifying the time window in respect to the plasmapause262

crossing over which the maximum (or minimum) or/and mean of the Lpp indicator is then263

determined. This approach is widely used for plasmapause modeling [e.g., Carpenter and264

Anderson, 1992; Moldwin et al., 2002; Cho et al., 2015]. On the other side, our method265

employs the Lpp indicator values at the highest correlation time lags and additionally pro-266

vides the delays in the MLT response of the plasmapause. For comparison, plasmapause is267

simulated for two levels of geomagnetic activity (low and high) using each of these models.268

For CRRES1, THEMIS1 and CRRES2 the comparison is performed for both AE and Dst269

based models. When calculating predictions from CRRES1 and THEMIS1 models, the270

geomagnetic index values are taken as: AE=80 nT and Dst=-2 nT at low geomagnetic271

activity; AE=1200 nT and Dst=-250 nT at high geomagnetic activity. Plasmapause from272

THEMIS2 model is derived by setting the inputs at low geomagnetic activity to: mean273

AE=30 nT, mean Kp=1, mean AL=-20 nT, maximum AU=15 nT, maximum SYMH=-274

20 nT. For high geomagnetic activity the parameters are taken as: mean AE=800 nT,275

mean Kp=4, mean AL=-560 nT, maximum AU=400 nT, maximum SYMH=-260 nT.276

Here, it is important to note that these values used to obtain model predictions cannot277

be the same for our CRRES2 models because the peak values of the geomagnetic index278

or SW parameter are generally higher than the one obtained at the highest correlation279

time lag (see Table 2 and Table5 in Verbanac et al. [2015]). For CRRES2 we set AE=2280

nT and Dst=30 nT at low geomagnetic activity; AE=700 nT and Dst=-70 nT at high281

geomagnetic activity. In Figure 4 plasmapause shapes obtained from CRRES1, CRRES2,282
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X - 16 BANDIĆ ET AL.: MLT PLASMAPAUSE, SOLAR WIND, GEOMAG. ACTIVITY

THEMIS1, and THEMIS2 models are directly compared. At low geomagnetic activity,283

CRRES1, CRRES2, and THEMIS2 models give the bulge in the night side, from 21 MLT284

to 03 MLT depending on the used geomagnetic index. In contrast, the THEMIS1 models285

place the bulge on the day side. However, note that the plasmapause from CRRES1,286

CRRES2, and THEMIS1 is relatively circular with the difference between its maximum287

and minimum extension only about 0.5 RE. Only CRRES1 AE based model give a bulge288

comparable to THEMIS2 model, with difference between the lowest and the largest Lpp289

of around 2 RE. At higher geomagnetic activity, all models gives the bulge between 18290

MLT and 21 MLT. The difference between the minimum and maximum Lpp extension is291

somewhat larger than at low activity, and is again more pronounced for THEMIS2 model292

(amounting for ∼ 2.5 RE) than for other three models. Generally, THEMIS2 model pro-293

vides the largest plasmapause variations. This model is built by multi-index fitting using294

the largest number of plasmapause crossings. On the other side, CRRES1, THEMIS1295

and CRRES2 models are obtained by including a first harmonic in MLT providing more296

smoothed plasmapause shapes. The plasmapause extension within each model (CRRES1,297

CRRES2, and THEMIS1) is different for AE and Dst at both levels of geomagnetic ac-298

tivity. In general, AE models give somewhat larger plasmapause than Dst models. We299

note that these differences between AE and Dst models are lower for our CRRES2 model.300

The RMSE values of CRRES1, CRRES2, THEMIS1, and THEMIS2 models are similar,301

approximately in the range 0.5-1 L. THEMIS2 has the lowest RMSE in postmidnight and302

dawn side (see Figure6 in Liu et al. [2015]). All these models have the largest RMSE in303

dusk side and night side.304
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Discontinuous models obtained from CLUSTER based plasmapause presented in PaperI305

(thereafter CLUSTER model), suggest the bulge location on the day side (between 7 MLT306

and 16 MLT) at low geomagnetic activity, opposite to what we have observed in the present307

study. On the other side, the observed Lpp peak on the premidnight side during more308

active geomagnetic periods is in accordance with CLUSTER results. Our RMSE range309

of values coincide with those from CLUSTER model. Further comparison with results310

presented by both Kwon et al. [2015] and Katus et al. [2015] shows that the plasmapause311

peak locations derived from our models are consistent with their observations. The first312

study showed quiet-time plasmapause location derived from medians and means of two313

years (2008-2009) of THEMIS-based plasmapause crossings, and indicates nearly circular314

plasmapause with slight bulge in postdusk sector (around 20-22 MLT). This bulge rotates315

toward dusk under moderate geomagnetic conditions. In the latter study, IMAGE EUV-316

based plasmapause that results from 43 geomagnetic storms (2000-2002) indicates the317

bulge position near dusk and across dayside. The MLT of the bulge formation is found318

to be dependent on the type of solar wind driver. The MLT of the plasmapause peak at319

low and high geomagnetic activity (characterized with parameter values as listed above)320

obtained from all above studies are summarized in Table 4.321

Finally, we compare the obtained delays in the plasmapause response to the arrival322

of Lpp indicators with those obtained from CLUSTER model in MLT sectors and also323

when all MLT are taken together (see Table3 in Paper I), and those derived by Larsen324

et al. [2007] from IMAGE EUV plasmapause crossings in 2001 (therefore IMAGE2001325

models). Note that IMAGE2001 models provide only the delays of the Lpp averaged in326

MLT. Delay times resulting from our models are generally lower than those obtained327
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based on CLUSTER dataset (see Table3 in Paper I). The delay times derived from all328

Lpp are around 4 hours, significantly lower than the CLUSTER ones which are around 20329

hours depending on the indicator. Note however that these delays are close to the values330

obtained from IMAGE2001 model. For both CRRES2 and CLUSTER models, the time331

lags increase from postmidnight across dayside to midnight. The correlations between Lpp332

and Lpp indicators when all MLTs are taken together are in general similar for these three333

models, and are between ∼ 0.4-0.5.334

5. Discussion

In the following we list the obtained results and summarize the comparison with other335

studies. Our main results are as follows:336

i) The quality of developed linear models based on both geomagnetic indices and solar337

wind coupling functions are very similar, although for solar wind parameters less data338

were available. The only exception is Ap model with somewhat larger RMS errors in all339

sectors and also when all MLTs are considered.340

ii) The quality of developed continuous MLT models are very similar to the quality of341

the simple linear models. This shows that with adequate data coverage, the simple models342

can well simulate the plasmapause shape. Only when all local times are considered, the343

RMSE are reduced compared to that of simpler models.344

iii) Simple GI models indicate that plasmapause bulge is likely formed between 18 MLT345

and 00 MLT at quiet times. Solar wind based models cannot resolve whether the bulge is346

between 18 MLT and 00 MLT or between 00 MLT and 06 MLT. At high geomagnetic ac-347

tivity, all models indicate maximum plasmapause extension on the postdusk/premidnight348

side.349
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iv) Developed continuous models place a plasmapause bulge at low geomagnetic activity350

between 22 MLT and 00 MLT, depending on the model. All these models predict a bulge351

around 21 MLT for higher geomagnetic activity.352

v) The values of the derived delay times of Lpp to the arrival of Lpp indicators range353

from 1 to 18 hours, depending on the MLT and on the indicator. For all LPP indicators,354

the time lag corresponding to the highest correlation is a function of MLT. Lags increase355

from postmidnight side through dawn to the evening side.356

Since different types of Lpp indicators (solar wind parameters and geomagnetic indices)357

provide the same conclusions, we consider our results reliable. As in many previous stud-358

ies, all of our models show that the plasmapause is closer to the Earth during enhanced359

geomagnetic activity. The simulated plasmapause shapes are in agreement with past stud-360

ies for higher level of geomagnetic activity. The differences are found in the comparison361

with THEMIS1 and CLUSTER models which both indicate the bulge in the day side at362

low geomagnetic activity. However, important to note is that as geomagnetic activity363

decreases, the plasmapause becomes more circular and thus, the bulge is less pronounced.364

Nevertheless, it would be worth to investigate these differences further, e.g., modeling the365

Lpp dataset used to build the THEMIS2 model by including the first harmonic in MLT.366

This may help to distinguish the influences of the applied method and of the number of367

used data on the results. When new CLUSTER data will be available, we will perform368

the analyses to check whether the plasmapause will peak at different MLTs or not at369

low activity. Generally, the observed discrepancy in the plasmapause shape, as well as in370

the overall change of the plasmapause radial position likely results from different plasma-371
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pause observations, different methodology, unequal number of plasmapause crossings and372

different parameters used in these studies.373

6. Conclusion

In this study we analyse the relationship between different Lpp indicators based on both374

solar wind and geomagnetic indices, and CRRES based plasmapause positions. We built375

linear fit models for two different data binning (in three and four MLT sectors), and more376

complex models by including a first harmonic in MLT.377

The plasmapause shapes based on all investigated parameters are similar, ensuring that378

final conclusions are reliable. Monte Carlo bootstrap calculations indicate that Dst pro-379

vides superior models in the day side. The maximal plasmapause extension is observed in380

the postdusk side at high geomagnetic activity, confirming findings from previous works.381

The decrease in the convection electric field places the bulge toward midnight, plasma-382

pause moves away from the Earth and becomes nearly circular. The MLT peak of the383

plasmapause at low activity should be investigated further, as indicated in the previous384

section.385

The advantage of our approach based on the Lpp indicator values at the highest correla-386

tion time lags is that it allows to obtain both the MLT plasmapause distribution and the387

time offset of the plasmapause response to various Lpp indicators. With a clear evidence388

that the time lags corresponding to the highest correlation is a function of MLT, this study389

verifies the findings presented in Paper I and contributes to constrain the physical mech-390

anism by which the plasmapause is formed. We propose the following simple scenario of391

the plasmapause formation. Information about LPP indicators during 30 hours before the392

LPP response reside within the plasmasphere. After 1-4 hours (depending on the indica-393
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BANDIĆ ET AL.: MLT PLASMAPAUSE, SOLAR WIND, GEOMAG. ACTIVITY X - 21

tor), plasmasphere responds in the postmidnight MLT sector, where the formation of the394

new plasmapause is initiated by the interchange instability. Via mechanism of interchange395

instability motion proposed by Lemaire and Pierrard [2008] and Pierrard et al. [2008] the396

interchange instability propagates to other MLT sectors. In such a way, new plasmapause397

is formed in all MLTs. The follow-up study dedicated to detailed investigation of the398

above proposed scenario by employing different dataset is in progress.399

The calculated time lags further indicate that after the plasmapause is formed, infor-400

mation is then quickly passed from postmidnight through dawn to noon (likely at higher401

rate than the co-rotation velocity), and then at somewhat slower rate to midnight. The402

different time delays obtained from CRRES2, IMAGE2001 and CLUSTER models in-403

dicate that the interchange instability by which the plasmapause is formed propagates404

faster during solar maximum than around solar minimum in the solar activity cycle. This405

may be associated with the different state of the heliosphere during the studied periods.406

Namely, both CRESS and IMAGE based Lpp cover solar maximum only, while CLUSTER407

Lpp dataset embraces declining phase, minimum, and early ascending phase of the solar408

cycle. This issue should be investigated further and is left for future study.409
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Figure 1. Time lag versus MLT obtained by binning the data into 6-hours MLT for geomagnetic

indices (solid lines) and into three MLT sectors for solar wind based LPP indicators (dashed lines).

Figure 2. The Lpp in three MLT sectors from linear fit models based on: (left panels) Dst, Ap,

AE, and (right panels) V , BV , dΦmp/dt. Blue and red lines indicate low and high geomagnetic

activity as given in Table 5, respectively.

Figure 3. The Lpp from: (left panels) linear fit models in four MLT sectors, (right) continuous

MLT models. Blue and red lines indicate low and high geomagnetic activity. The symbols

indicate the MLT of maximum Lpp for each continuous model as given in Table 5, respectively.

Figure 4. Plasmapause shapes obtained from CRRES1 (green), CRRES2 (dark blue),

THEMIS1 (light blue), and THEMIS2 (red) models for two levels of geomagnetic activity, low

(left panels) and high (right panels). Models based on Dst and AE index are shown at the top

and bottom panels, respectively. For details see text.

490
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Table 1. Number of Lpp (in three and four sector divisions, and for all MLTs) for investigated

Lpp indicators. GI represents geomagnetic indices (GI = Dst,Ap,AE).

V BV dΦmp/dt GI
Sect1 (MLT 01-07) 121 115 115 364
Sect2 (MLT 07-16) 85 84 84 249
Sect3 (MLT 16-01) 94 89 89 350

SectI (MLT 00-06) 129 123 123 393
SectII (MLT 06-12) 78 76 76 226
SectIII (MLT 12-18) 25 24 24 102
SectIV (MLT 18-24) 68 65 65 242
All 300 288 288 963
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Table 2. Time–lags ∆t (in hours) of the relationship between LPP and LPP indicators (Dst,

Ap, AE, V , BV , dΦmp/dt) for the highest-correlation time–lags obtained with cross–correlation

analyses. σs are the RMS errors of the best LPP fits. Subscripts i and all refer to the MLT

Sectors 1-3 (01-07 MLT, 07-16 MLT, 16-01 MLT) and to all MLTs sectors, respectively. The last

column contains the correlation coefficients (R) obtained when all MLTs are taken together.

∆t1 ∆t2 ∆t3 ∆tall σ1 σ2 σ3 σall Rall

Dst− Lpp 1 3 10 3 0.75 0.61 0.92 0.83 0.54
Ap− Lpp 3 8 19 3 0.81 0.72 0.96 0.90 -0.39
AE − Lpp 1 9 20 4 0.76 0.68 0.92 0.86 -0.49
V − Lpp 4 3 7 4 0.75 0.61 0.87 0.79 -0.49
BV − Lpp 4 12 18 4 0.76 0.71 0.90 0.85 -0.40

dΦmp/dt− Lpp 6 9 18 11 0.79 0.73 0.85 0.86 -0.41

Table 3. Time–lags ∆t (in hours) of the relationship between LPP and LPP indicators (Dst,

Ap, AE) for the highest-correlation time–lags obtained with cross–correlation analyses. The last

five columns are the RMS errors (σ) of the best LPP fits. Subscripts i and all refer to the MLT

Sectors I-IV (00-06 MLT, 06-12 MLT, 12-18 MLT, 18-00 MLT) respectively.

∆tI ∆tII ∆tIII ∆tIV σI σII σIII σIV
Dst− Lpp 1 2 7 10 0.74 0.60 0.72 0.97
Ap− Lpp 3 5 19 28 0.79 0.74 0.73 1.02
AE − Lpp 1 4 19 29 0.75 0.70 0.67 0.96
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Table 5. The LPP obtained from the linear least square fits for two values of each of the LPP

indicator. The first one is related to the low indicator values, the second one to that at which

LPP amounts for ∼ 2.8 RE.

V BV dΦmp/dt Dst Ap AE
(km s−1) (mV m−1) (km s−1)4/3 (nT)2/3 (nT) (nT) (nT)
340 580 2 7.5 0.1 × 104 1.35 × 104 10 -60 5 65 30 650

Sect1 4.85 3.22 4.63 2.89 4.69 2.96 4.73 3.33 4.44 3.06 4.66 3.13
Sect2 4.37 2.93 4.03 2.91 4.01 2.74 4.29 2.86 3.76 2.89 4.00 2.93
Sect3 4.61 3.45 4.46 3.55 4.59 3.18 4.72 3.65 4.41 3.50 4.65 3.47
SecAll 4.58 3.20 4.43 3.20 4.42 3.28 4.64 3.29 4.26 3.27 4.51 3.25

Table 6. The parameters of the best fit complex models for the highest-correlation time–lag

and RMSE.

Fit RMSE

a1 × 102 amlt × 101 (24/2π)aφ b1 bmlt × 101 (24/2π)bφ σ1 σ2 σ3 σ4 σall

Dst 1.91 ± 0.10 2.83 ± 0.77 7.57 ± 1.27 4.42 ± 0.04 0.64 ± 0.13 23.38 ± 0.87 0.75 0.58 0.73 0.95 0.77

Ap -2.07 ± 0.14 -1.61 ± 0.92 18.85 ± 3.34 4.37 ± 0.04 0.79 ± 0.15 23.16 ± 0.72 0.81 0.71 0.76 1.00 0.83

AE -0.22 ± 0.01 -1.34 ± 0.72 13.62 ± 2.85 4.57 ± 0.04 0.82 ± 0.14 22.58 ± 0.73 0.76 0.68 0.70 0.95 0.79

Table 7. The MLT of plasmapause peak at low and high geomagnetic activity derived from

various models (see text for details). The examined year periods are indicated for each model.

Model CLUSTER CRRES1 CRRES2 THEMIS1 THEMIS2 Kwon2015 (THEMIS) Katus2015 (IMAGE)

(2007-2011) (1990-1991) (1990-1991) (2010-2011) (2009-2013) (2008-2009) (2000-2002)

Low 07-16 22-03 22 - 00 09-12 21 20-21 -

High 16-01 20-22 21 18-20 19 - around dusk
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