Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Macromol. Biosci., DOI: 10.1002/mabi.201800187

Branched Poly(ethylene imine)s as Anti-algal and Anticyanobacterial Agents with Selective Flocculation Behavior to Cyanobacteria over Algae

Premysl Mikula, Marie Mlnarikova, Haruko Takahashi, Pavel Babica, Kenichi Kuroda, Ludek Blaha, and Iva Sovadinova*

Branched Poly(ethylene imine)s as Anti-algal and Anti-cyanobacterial Agents with Selective Flocculation Behavior to Cyanobacteria over Algae

Premysl Mikula[†], Marie Mlnarikova[†], Haruko Takahashi[§], Pavel Babica[†], Kenichi Kuroda[§], Ludek Blaha[†] and Iva Sovadinova[†]*

 † Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 3, CZ-62500 Brno, Czech Republic

§ University of Michigan, School of Dentistry, Department of Biologic and Materials Sciences, 1011 North University Avenue, Ann Arbor, Michigan 48109, USA

Supporting Information. Polymer characteristics (**Supplementary Table S1**), additional characteristics of studied phototrophic microorganisms (**Supplementary Table S2**), summary of IC₅₀ values for growth-inhibitory effect (**Supplementary Table S3**), cidal, aggregation and flocculation activities of B-PEIs (**Supplementary Figure S1-5**) (PDF).

TABLES

B-PEIs ^{a)}	$\mathbf{MW}^{b)}$	$\overline{\pmb{M}}\mathbf{n}^{c)}$	$ar{m{M}}_{\mathbf{w}}^{d)}$	$\overline{M}_{ m w}/\overline{M}_{ m n}$	pK _{a1} ^{e)}	$\mathbf{pK_{a2}}^{e)}$
		(GPC)	(GPC)			
B-PEI _{0.5}	600	470	2,100	4.5	9.4	6.2
B-PEI _{1.1}	1,800	1,100	1,400	1.3	9.6	6.2
B-PEI ₁₂	10,000	12,000	19,000	1.6	9.0	5.8

Supplementary Table S1. Structural characteristics of B-PEIs used in this study.

^{*a*)} See the text for denotation; ^{*b*)} MW and volume reported by a supplier; ^{*c*)} The number average molecular weight; Gibney *et. al.* $(2012)^{[1]}$; ^{*d*)} The weight average molecular weight; Gibney *et. al.* $(2012)^{[1]}$; ^{*e*)} Gibney *et. al.* $(2012)^{[1]}$; ^{*e*)} Gibney *et. al.* $(2012)^{[1]}$; ^{*e*)} Gibney *et. al.* $(2012)^{[1]}$

Supplementary Table S2. Growth-inhibitory effect of low MW PPI-DEN and B-PEIs on freshwater green algae *Chlamydomonas reinhardtii* (*CR*) and *Desmodesmus quadricauda* (*DQ*) and cyanobacteria *Synechococcus elongatus* (*SE*) and *Microcystis aeruginosa* (*MA*) based on monitoring optical density ($\lambda = 680$ nm). IC₅₀ values are expressed for comparison in µg mL⁻¹ (**A**) and in µM (**B**).

Α													
	POLYMER	GREEN ALGAE						CYANOBACTERIA					
		С <i>R</i> IC _{50^{<i>a</i>)} (µg mL⁻¹)}			DQ IC ₅₀ (μg mL ⁻¹)			SE IC ₅₀ (μg mL ⁻¹)			MA IC ₅₀ (μg mL ⁻¹)		
	PPI-DEN	0.22	0.22	0.24 ^{aA}	3.04	2.72 ^{aB}	2.21	0.23	0.21	0.21 ^{aA}	0.28 ^{aA}	0.33	
		(0.09-0.55)	(0.09-0.74)	(0.21-0.36)	(1.27-7.30)	(1.63-4.55)	(1.46-3.34)	(0.10-0.49)	(0.12-0.36)	(0.14-0.33)	(0.10-0.49)	(0.23-0.50)	
	B-PEI0.5	0.35	0.18*	0.14* ^{abA}	3.39	2.59 ^{aB}	2.43	0.35	0.33	0.36 ^{bC}	0.22 ^{aAC}	0.26	
		(0.23-0.56)	(0.08-0.38)	(0.13-0.14)	(1.94-5.90)	(1.42-4.74)	(0.80-7.38)	(0.11-1.17)	(0.19-0.56)	(0.30-0.45)	(0.10-0.47)	(0.16-0.43)	
	B-PEI _{1.1}	0.32	0.21	0.21 ^{bA}	4.06	3.36 ^{aB}	2.71	0.23	0.24	0.27 ^{abA}	0.27 ^{aA}	0.26	
		(0.16-0.65)	(0.17-0.27)	(0.14-0.32)	(2.91-5.65)	(1.92-5.87)	(1.09-6.75)	(0.19-0.29)	(0.19-0.29)	(0.21-0.34)	(0.17-0.43)	(0.20-0.34)	
	B-PEI ₁₂	0.74	0.56	0.58 ^{cA}	~ ^{c)} 2.5-40	2.5-40 ^{aB}	~ 2.5-40	0.39	0.35	0.36 ^{bA}	0.24 ^{aA}	0.19	
		(0.35-1.53)	(0.45-0.70)	(0.48-0.69)	(40-44 %)	(40-47 %)	(40-47 %)	(0.19-1.13)	(0.27-0.50)	(0.27-0.55)	(0.15-0.39)	(0.09-0.40)	
B			•	•	•	1	•		1	1	•	•	
	PPI-DEN	0.70	0.68	0.74 ^{aA}	9.60	8.59 ^{aB}	6.98	0.73	0.66	0.66 ^{aA}	0.88 ^{aA}	1.04	
		(0.28-1.74)	(0.28-2.34)	(0.67-1.14)	(4.01-23.06)	(5.15-14.37)	(4.61-10.55)	(0.32-1.55)	(0.38-1.14)	(0.44-1.04)	(0.32-1.55)	(0.73-1.58)	
	B-PEI _{0.5}	0.74	0.38*	0.30* ^{bA}	7.21	5.51 ^{abB}	5.17	0.74	0.70	0.77 ^{aC}	0.47 ^{bAC}	0.455	
		(0.49-1.19)	(0.17-0.81)	(0.28-0.30)	(4.13-12.55)	(3.02-10.09)	(1.70-15.70)	(0.23-2.49)	(0.40-1.19)	(0.64-0.96)	(0.21-1.00)	(0.34-0.91)	
	B-PEI _{1.1}	0.29	0.19	0.19 ^{cA}	3.69	3.05 ^{bB}	2.46	0.21	0.22	0.25 ^{bA}	0.25 ^{cA}	0.24	
		(0.15-0.59)	(0.15-0.25)	(0.13-0.29)	(1.62-3.14)	(1.75-5.34)	(0.99-5.14)	(0.17-0.26)	(0.17-0.26)	(0.19-0.31)	(0.15-0.24)	(0.18-0.31)	
	B-PEI ₁₂	0.06	0.05	0.05 ^{dA}	~ ^{c)} 0.2-3.3	~0.2-3.3 ^{bB}	~0.2-3.3	0.03	0.03	0.03 ^{cC}	0.02 ^{dA}	0.02	
		(0.03-0.13)	(0.04-0.06)	(0.04-0.06)	(40-44 %)	(40-47 %)	(40-47 %)	(0.02-0.09)	(0.02-0.04)	(0.02-0.05)	(0.01-0.03)	(0.01-0.03)	

^{*a*)} The concentration of polymer causing 50% inhibition of the algal or cyanobacterial growth. The IC₅₀ value was determined for each independent experiment and the geometric mean with 95% confidence limits (CI) was calculated (n \geq 3); ^{*b*} Exposure time; ^{*c*} A clear concentration-dependent effect at the concentrations of 0.3-2.5 µg mL⁻¹ (0.03-0.2 µM) was followed by a plateau value of growth inhibition of about 40-47% observed along the concentration range from 5 to 40 µg mL⁻¹ (0.4-3 µM). Asterisk denotes the significant difference from the IC₅₀ value after 24 (48) h (P ≤0.05; one-way ANOVA with Tukey's method) among the polymers within the same microorganism tested. Values with different italic uppercase letter superscripts differ significantly (P ≤ 0.05; one-way ANOVA with Tukey's method) among different microorganisms tested within the same polymer. B-PEI, branched polyethylenimine; PPI-DEN, poly(propylenimine)-dendrimer.

S3

Genus	Species	Photo	Cell	Length/	Volume ^{b)}	$\mathbf{D}\mathbf{t}^{c)}$	Characteristics & Negative	Cell envelope
			shape ^[2]	width	(µm ³)	(h)	impact	(cell wall & membrane)
				(µm) ^{<i>a</i>)}				
n algae – eukaryotic cell type	CR		Sphere	6-12	113-904	19	• ubiquitous algae	• multilayers composed of high-molecular-
							• common species of	weight glycoproteins rich in hydroxyproline,
							extensive water blooms	arabinose and galactose (40-100 nm thick) ^[3]
							• model organisms for	• plasma membrane - mainly phospholipids
							antialgal tests and for	PG and PE, β -carotene, betaine lipid DGTS ^[4]
	DQ		Prolate	10-18/ 3.5-	64-462	26	biofouling	• multilayers composed of hemicellulosis
			spheroid	7				and sporopollenin ^[3a,5]
								• plasma membrane - mainly phospholipids
ree								PG, PE and PC, β -carotene ^[4]
U								
obacteria – prokaryotic cell type	SE		Rod-	0.6-1.6	0.1-2	14	• common cyanobacteria in	• external surface layers (slime or sheath)
			shaped \Rightarrow				freshwater sources	• outer membrane (neutral or low negative
			Sphere				• a model freshwater	charge) - phospholipids, lipopolysaccharide
			model ^[2]				cyanobacterium for	(LPS), glycolipids, carotenoids and porins ^[6]
							anticyanobacterial tests	• peptidoglycan (multilayers - thicker and
	MA		Sphere 3	3.5-6	22-113	27	• produces cyano toxins	with a higher degree of cross-linking between
							microcystins	PG chains than those in other Gram-negative
							• presence of gas vesicles	bacteria) ^[6]
							• causes harmful water blooms	• plasma membrane - mainly glycolipids
yan							of health, economic and	MGDG, DGDG and SQDG, and phospholipid
C							ecological importance	PG ^[4b,7]

Supplementary Table S3. Characteristics of studied freshwater phototrophic microorganisms

^{*a*)} Protist Information Server, URL: <u>http://protist.i.hosei.ac.ip/;</u> ^{*b*)} Calculated based on geometric models for phytoplankton^[2]; ^{*c*)} Doubling time (Dt) under the conditions of this study. DGDG, digalactosyldiacylglycerol; DGTS, Diacylglyceryltrimethylhomoserine; MGDG, monogalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol.

FIGURES

Figure S1. **Freshwater green algae** *DQ* **after treatment with B-PEIs.** Representative bright-field, fluorescence, overlay and magnified images of non-treated cells (naïve and solvent controls) and cells treated with B-PEI_{0.5}, B-PEI_{1.1} and B-PEI₁₂ at the concentration of 20 μ g mL⁻¹ for 72 h. *DQ*, *Desmodesmus quadricauda*. Scale bar = 20 μ m.

Figure S2. Cidal activity of B-PEIs to algae *CR*, but not to algae *DQ* and cyanobacteria *SE* and *MA*. (A) B-PEI_{0.5} and B-PEI_{1.1} against *Chlamydomonas reinhardtii* (*CR*) and *Desmodesmus quadricauda* (*DQ*) and cyanobacteria *Synechococcus elongatus* (*SE*) and *Microcystis aeruginosa* (*MA*) as assessed by autofluorescence ($\lambda_{ex} = 485 \text{ nm}/\lambda_{em} = 675 \text{ nm}$) at different time points (24-96 h). B-PEIs concentrations: 0-40 µg mL⁻¹. Data are expressed as a percentage of fluorescence units (FLUs) for initial inoculum and presented as means (SD; n = 3-5). (B) *CR* cells after treatment with B-PEI_{0.5} or B-PEI_{1.1}. Representative bright field, fluorescence and overlaid images of non-treated *CR* cells (naïve and solvent controls) and *CR* cells treated with B-PEI₁₂ at the concentration of 20 µg mL⁻¹ for 72 h. Scale bar = 20 µm.

Supplementary Figure S3. Cyanobacteria SE and MA after treatment with B-PEIs. Representative bright-field, fluorescence and overlaid images of non-treated cells (naïve and solvent controls) and cells treated with B-PEI_{0.5}, B-PEI_{1.1} and B-PEI₁₂ at the concentration of 20 μ g mL⁻¹ for 72 h. B-PEI, branched polyethylenimine; MA, Microcystis aeruginosa; SE, Synechococcus elongatus. Scale bar = 20 μ m (SE)/ 50 μ m (MA).

Supplementary Figure S4. Time-dependent aggregation and flocculation activities of B-PEI_{1.1} inducing clustering of both cyanobacterial cell types. Representative bright-field, fluorescence and overlay images of cyanobacteria *Synechococcus elongatus* (*SE*: **A**) or *Microcystis aeruginosa* (*MA*: **B**) treated with B-PEI_{1.1} at the concentration of 20 μ g mL⁻¹ for 0.5, 2, 5, 24, and 72 h. The aggregated cells (flocs) were still autofluorescent, suggesting the presence of live cells with intact photosynthetic pigments in the aggregates. Scale bar = 20 μ m (*SE*)/ 50 μ m (*MA*).

Supplementary Figure S5. Time-dependent aggregation and flocculation activities of B-PEI_{0.5} inducing clustering of cyanobacterial SE cells, but not MA cells. Representative bright-field, fluorescence and overlaid images of cyanobacteria Synechococcus elongatus (SE: A) or Microcystis aeruginosa (MA: B) treated with B-PEI_{0.5} at the concentration of 20 μ g mL⁻¹ for 0.5, 2, 5, 24 and 72 h. The aggregated cells (flocs) of SE were still autofluorescent, suggesting the presence of live cells with intact photosynthetic pigments in the aggregates. Scale bar = 20 μ m (SE)/ 50 μ m (MA).

REFERENCES

[1] K. A. Gibney, I. Sovadinova, A. I. Lopez, M. Urban, Z. Ridgway, G. A. Caputo, K. Kuroda, *Macromol. Biosci.* **2012**, *12*, 1279.

[2] J. Sun, D. Liu, J. Plankton Res. 2003, 25, 1331.

[3] a) D. S. Domozych, M. Ciancia, J. U. Fangel, M. D. Mikkelsen, P. Ulvskov, W. G. T. Willats,
 Front. Plant Sci. 2012, *3*, 82; 5; b) J. Voigt, J. Woestemeyer, R. Frank, *J. Biol. Chem.* 2007, 282, 30381.

[4] a) I. Domonkos, M. Kis, Z. Gombos, *Acta Biol. Szeged.* 2015, *59*, 83; b) D. R. Janero, R. Barrnett,
 J. Lipid Res. 1981, *22*, 1126.

[5] D. Umysova, M. Vitova, I. Douskova, K. Bisova, M. Hlavova, M. Cizkova, J. Machat, J. Doucha,
 V. Zachleder, *BMC Plant Biol.* 2009, *9*, 58.

[6] a) M. F. Fiore, J. T. Trevors, *Biometals* 1994, 7, 83; b) U. J. Jürgens, C. Martin, J. Weckesser, *FEMS Microbiol. Lett.* 1989, 65, 47; c) E. Hoiczyk, A. Hansel, *J. Bacteriol.* 2000, *1825*, 1191; d) E. Gantt, in *The Molecular Biology of Cyanobacteria*, (Ed: D. A. Bryant), Science 2006, p. 119.

[7] H. Wada, N. Murata, in *Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis and Respiration* (Eds: S. Paul-André, M. Norio), Springer, Dordrecht 2006, Vol. 16, p. 65.