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ABSTRACT

The proteome is the study of the protein content of a
definable component of an organism in biology. How-
ever, the tissue-specific expression of proteins and the
varied post-translational modifications, splice variants
and protein–protein complexes that may form, make
the study of protein a challenging yet vital tool in
answering many of the unanswered questions in medi-
cine and biology to date. Indeed, the spatial, temporal
and functional composition of proteins in the human
body has proven difficult to elucidate for many years.
Given the effect of microRNA and epigenetic regulation
on silencing and enhancing gene transcription, the
study of protein arguably provides more accurate infor-
mation on homeostasis and perturbation in health and
disease. There have been significant advances in the
field of proteomics in recent years, with new technolo-
gies and platforms available to the research community.
In this review, we briefly discuss some of these new
technologies and developments in the context of respi-
ratory disease. We also discuss the types of data science
approaches to analyses and interpretation of the large
volumes of data generated in proteomic studies. We dis-
cuss the application of these technologies with regard to
respiratory disease and highlight the potential for pro-
teomics in generating major advances in the under-
standing of respiratory pathophysiology into the future.
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INTRODUCTION

Proteomics is the study of ‘proteomes’ or the study and
characterization of the protein composition of a cell,
organ or other definable compartment of living organ-
isms. Proteins are compounds of one or more long
chains of amino acids and are vital parts of all living
organisms. Amino acids are compounds composed of
both a carboxyl (-COOH) and an amino (-NH2) group
and form the building blocks of proteins. These pro-
teins are generated from translation of mRNA and pro-
vide the principal information on how cells or organs
function.1 The lung is a fascinating and complex arena
for proteomic studies, with innate and adaptive
immune systems, extracellular matrix/interstitium, resi-
dent and recruited leucocytes and an epithelial lining
that is constantly exposed to the external environment.
Pulmonary diseases remain a major contributor to
global morbidity and mortality and there are many dif-
ficult questions that remain unanswered in pulmonary
pathophysiology.2 Proteomics has the potential to
address many of these shortcomings.
Protein is generated from translation of mRNA, yet

flow of information from DNA to mRNA and then pro-
tein is confounded by epigenetic changes and micro-
RNA which can work to alter, amplify or dampen these
genetic signals.3,4 The human genome consists of
approximately 31 000 protein-coding genes,5 and
remains largely unchanged throughout life. Therefore,
study of DNA and mRNA sequences does not account
for changing environmental influences. Nucleic acid
studies provide data on the potential for organ and
cellular pathobiology and risk of disease and
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perturbation.5,6 However, the human proteome adds
incredible complexity to the human genome. The
tissue-specific expression of genes, translation of pro-
tein and subsequent splice variants, post-translational
modifications (PTM) and protein–protein complexes/
interactions7 and regulation of protein abundance
largely at a translational level8 mean that interrogating
the human proteome is arguably more challenging
than interrogating the human genome (Fig. 1).
Historically, technologies available to quantify protein

in biological matrices were limited, costly and cumber-
some. There has been considerable recent progress. The
human proteome has been tentatively mapped using an
integrative omics’ approach (transcriptomics and
antibody-based techniques) and represents a major step
forward for proteomic research.9 Central to this has been
the development of the human protein atlas, an invalu-
able research tool for protein localization and tissue
expression, which includes a proteome map of normal
human lung.10,11 One of the major focuses of proteomic
research to date has been identification of accurate dis-
ease biomarkers and targets for intervention.12 Proteo-
mics arguably has the most potential of the ‘omics’
fields to provide new knowledge on disease pathogene-
sis, generate reliable biomarkers and facilitate discovery
of new therapeutic strategies for human disease.
In this review, we discuss some of the recent

advances in proteomic technology and describe current
proteomic applications including mass spectrometry
(MS) and aptamer approaches. We also detail several
bioinformatic techniques and workflows to approach,
analyse and interpret proteomic data. Finally, we high-
light the application of proteomic technology to respi-
ratory diseases and discuss some of the potential future
uses of these technologies.

PROTEOMIC APPLICATIONS
AND CHALLENGES

Herein, we provide a basic guide to some proteomic
applications, namely MS and aptamer approaches.
An important consideration is that proteomic plat-
forms are constantly evolving, have mixed versatility,
difficulty and technical challenges. For instance, the
field includes diverse projects from cell organelle
protein expression profiling to human blood bio-
marker identification. Certain platforms may be bet-
ter suited to addressing different scientific questions
over others. All proteomic approaches will not be
covered here and the interested reader is directed to
a comprehensive review of proteomic applications
and MS elsewhere.13

Challenges in proteomic applications have been sig-
nificant and have dampened enthusiasm for these
platforms over the years. The spectrum of proteins
that exist span a dynamic concentration range of at
least 12 logs and this has hampered progress.14,15 For
instance, albumin, a large abundant protein in plasma
is separated from the rarest measurable plasma pro-
teins by 10 orders of magnitude.15 The complexity of
proteins involving splice variant and PTM has also
generated difficulties. The exact frequency of PTM is
unclear, although the top 15 experimentally validated
modifications represent the bulk of reported PTM.16

Common PTM are listed in Table 1. Moreover, splice
variants add further complexity. Indeed, fibronectin,
an important component of the pulmonary intersti-
tium, has more than 20 known isoforms.17 Despite
these hurdles, new advances have improved our tech-
nical abilities and these challenges have become less
daunting.
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Mass spectrometry
Significant advances in MS technology have accumu-
lated in the last decade. These advances have improved
the ability of these platforms to accurately measure
thousands of proteins in a biological matrix.
Protein extraction from biological samples requires

preformed knowledge of study design as different types
of biological matrices and methods of extraction may
induce bias and affect protein quantity and activity. For
instance, blood within a tissue sample may give non-
representative falsely elevated results for certain pro-
teins. Lysis and digestion of a biological matrix can
generate peptide mixtures which need some degree of
fractionation or enrichment to be compatible with pro-
teomic applications. Fractionation can be achieved
based on charge, isoelectric point or hydrophobicity
properties of peptides and is typically achieved using
gel electrophoresis, affinity chromatography or isoelec-
tric focusing.13 Specific subsets of peptides can be
enriched by targeting PTM (e.g. phosphorylation and
acetylation) using affinity resins or antibody immuno-
precipitation. Liquid chromatography (LC) is then
applied to the reduced samples for further separation
and sample reduction. MS is the next crucial analytical
step as information garnered is then used to identify
varied proteins. In brief, as MS measures the mass to
charge ratio of ions (m/z) in gas phase, peptides must
be transferred into the gas phase and then ionized.
Once ionized, peptide precursor ions are submitted to
the mass spectrometer where the m/z ratio is mea-
sured. Single precursor ions are then selected and sub-
jected to tandem MS to generate characteristic
fragment ions. This combination of precursor m/z ratio
and its fragment ions is then matched to known pep-
tide sequences from curated protein databases for pro-
tein identification. There are multiple technologies and
methods for peptide fractionation, enrichment, ioniza-
tion and types of mass spectrometers commercially
available.13 MS has been used widely in biomarker
studies of respiratory disease to date including chronic
obstructive pulmonary disease (COPD),18–20 acute respi-
ratory distress syndrome (ARDS)21–23 and interstitial
lung disease (ILD).24–26

Aptamer-based techniques
Aptamers are short single-stranded RNA or DNA oligo-
nucleotides that bind specific parts of a target molecule
with high affinity and specificity.27 Aptamer generation
is less expensive and less arduous than antibody gener-
ation, and aptamers are not known to be toxic or
immunogenic.28 In recent years, a new class of aptamer
has been developed, termed slow off-rate modified
aptamers (SOMAmer), which consist of single-stranded

DNA-based molecular recognition elements.29,30 They
are fully synthetic and developed in vitro using librar-
ies of randomized sequences through modifications of
the systematic evolution of ligands by exponential
enrichment (SELEX) process. The selected SOMAmers
have distinct recognizable nucleotide sequences and
act as protein-binding elements with defined shapes.
The nucleotide sequences can be recognized by com-
plementary hybridization probes. The assay takes
advantage of the slow dissociation rate between
SOMAmer and their cognate proteins. Non-cognate
interactions between SOMAmer and protein will disso-
ciate rapidly. The cognate SOMAmers are hybridized
to complementary probes on a standard DNA micro-
array. The SOMAmer data quantitatively represent the
protein concentration in the sampled matrix. This is
achieved by converting the assay signal in relative
fluorescent units to protein concentration.31 SOMAmers
have been used to develop biomarker tools in several
forms of respiratory disease including lung cancer,32–34

pulmonary tuberculosis35,36 and idiopathic pulmonary
fibrosis (IPF).37,38

BIOINFORMATIC ANALYSIS
OF PROTEOMIC DATA

New proteomic experimental technologies generate
large volumes of data, but a major challenge lies in
analysing these data to provide new biological insight.
The fields of bioinformatics, computational biology and
systems biology have developed techniques to facilitate
curating, analysis and interpretation of ‘omics’ data
with many of these approaches described as either
data-driven or knowledge-based.39 Data-driven
approaches rely only on protein data to identify pro-
teins of interest in differentiating clinical or biological
groups, and knowledge-based approaches rely on pre-
viously reported functions and pathways.

Data-driven analysis
The goal of data-driven analysis is to use proteomic
data to discover new proteins that are associated with
certain experimental or clinical groups, without
employing prior knowledge of these proteins’ func-
tions. One way to begin analysis of a new proteomic
data set involves employing data-driven tools to enable
visualization of the overall differences in protein
expression data between clinical or biological groups. A
common method used to visualize protein expression
is a volcano plot, which displays information about
each protein’s fold change in expression across groups
on the x-axis versus the significance of this change
(determined by t-test or other statistical analysis) on
the y-axis40 (Fig. 2A). As determining statistical signifi-
cance in large proteomic data sets may involve per-
forming many statistical tests, it is important to correct
for multiple comparisons to control for the Type I error
rate in order to reduce the number of false-positive
findings. The Bonferroni41 and Benjamini–Hochberg42

correction are common tests used in order to control
for this, and can also be displayed on the volcano plot
(Fig. 2A).

Table 1 Common post-translational modifications

Phosphoserine 4-hydroxyproline

Phosphothreonine Pyrrolidone carboxylic acid

N-linked glycosylation N-acetylalanine

N-6 acetyllysine O-linked glycosylation

Glycyl lysine isopeptide Phosphotyrosine

Citrullination
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Hierarchical clustering is another visualization tech-
nique that additionally highlights the presence of pro-
tein clusters that differentiate multiple groups of
interest. The hierarchical clustering algorithm employs
a distance metric (such as Pearson’s correlation coeffi-
cient, Euclidean distance or others described by Jasko-
wiak et al.43) to cluster samples and proteins in terms
of similarity. Identified clusters can then be displayed
as dendrograms, with an associated heat map of colour
intensity to display changes in expression of each pro-
tein across groups of interest (Fig. 2B).
Two other data-driven analytical approaches used to

visualize differences between clinical or biological
groups employ linear algebra: principal component
(PC) analysis (PCA) and partial least squares discrimi-
nant analysis (PLSDA).44,45 PCA and PLSDA algorithms
identify weighted linear combinations (or ‘patterns’) of
measured proteins that capture variance across the
samples. Each sample can then be plotted on these key
combinations (called latent variables (LV) in PLSDA
and PC in PCA), generating an interpretable scores plot

in which differences between groups of interest may be
visualized. Although PCA and PLSDA create figures
that can look similar, an important difference between
them is that the PLSDA algorithm also receives infor-
mation about patient groups and searches for variance
that differentiates these groups, making it a ‘super-
vised’ approach (Fig. 2C,D). In contrast, PCA only eval-
uates overall variance (without information about
groups), making it ‘unsupervised’.
Another approach for evaluating large proteomic

data sets is correlation network analysis, which enables
graphical visualization of significant correlations
between protein pairs. Correlation networks are con-
structed by calculating Pearson’s or Spearman’s corre-
lation coefficients between measured proteins. A map
is then created indicating significant connections and
the strength of each correlation (Fig. 2E). These graphs
allow quick identification of highly connected proteins
that may be network regulators, and how these interac-
tions change across groups. Again, multiple compari-
son tests should be used to reduce Type I error.

Figure 2 Data-driven analysis aids in proteome visualization. (A) A volcano plot highlights significantly differences in expressed pro-

teins between Groups A and B. Red indicates proteins that were significantly different (P < 0.05) between the two groups after correct-

ing for multiple comparisons with the Bonferroni test ( , Bonferroni-corrected P-value < 0.05; , Bonferroni-corrected P-value ≥ 0.05).

(B) Hierarchical clustering illustrates groupings of proteins that differ in expression between Groups A and B. Colour intensity indicates

abundance, with increased expression in red, white unchanged and decreased expression in blue compared with mean values (colour

bar to left of figure). Pearson’s correlation was used as the distance metric in this cluster. (C) A partial least squares discriminant analy-

sis (PLSDA) scores plot illustrates distinct clustering between Groups a and B with loadings (D) indicating a distinct signature (deter-

mined using least absolute shrinkage and selection operator (LASSO)) of 22 proteins that best classified Groups A and B. (E) A protein

correlation network based on protein expression in Group a. Each node is a protein, with lines indicating significant correlations

(P < 0.05) to other proteins. Line thickness and colour indicate Pearson’s correlation coefficient, with node size indicating the number

of significant correlations. Significance was determined after correcting for the Type I error with the Bonferroni method.
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In addition to visualization, data-driven approaches
are also useful for eliminating proteins that are not rel-
evant to a biological or clinical question of interest. In
proteomic data sets, considerably large numbers of
proteins may be unchanged between groups of interest,
masking the important and differentially regulated pro-
teins. In this case, quantitative feature selection tech-
niques inherent to some data-driven approaches can
be used to identify subsets, or ‘minimum signatures’,
of proteins that best separate the groups of interest.
Two such examples are the least absolute shrinkage
and selection operator method (LASSO)46 and selection
using variable importance in projection (VIP) scores in
PLSDA.47

Knowledge-based analysis
Knowledge-based bioinformatic tools take advantage of
prior knowledge to analyse proteomic data sets in the
context of known protein function and ontology. These
tools enable identification of biological pathways that
are both enriched in the data set and known to be
involved in specific functions and processes.
Knowledge-based analysis employs previously gener-

ated databases where proteins have been tagged with
unique identifier labels. UniProt IDs48 are the most
commonly used protein identifiers, although gene IDs
(with gene identifiers given by Ensembl49) or the
Enzyme Commission numbering system50 are also
often used in proteomics. The choice in which identi-
fier to use depends on the type of proteins that are
being measured, and on which identifiers a given
knowledge-based database will accept. Once proteins
are linked with unique identifiers, prior knowledge
databases with annotated information about biological
functions and pathways can be employed to identify
associated processes. One such tool is gene ontology
(GO).51 GO terms, which standardize the naming of
genes and gene products, are used to report the spe-
cific ‘biological processes’, ‘molecular functions’ and
‘cellular compartments’ annotations associated with
measured genes and proteins. Similar to GO terms, the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
links protein and gene names with their functions and
chemical information.52 KEGG differs from GO in that
it is more focused on known protein interactions.
KEGG’s mapped pathways include those describing
metabolism, human disease, signal transduction and
many others. Other pathway databases include
Reactome,53 PANTHER pathways54 and WikiPathways.55

In addition to biological annotation, knowledge-based
analysis can be used to identify functions or pathways
that are significantly enriched in data sets of interest. This
involves comparing how many times a certain pathway is
included in the protein set of interest with how many
times it appears in a reference (control) set of proteins or
genes (such as that organism’s genome). A P-value can
be calculated and used to determine if the pathway is sig-
nificantly enriched in the proteomic data set of interest.
One such tool that both annotates proteins and performs
functional enrichment analyses is the Database for Anno-
tation, Visualization and Integrated Discovery (DAVID).56

DAVID’s strength is that it performs enrichment analyses
on multiple annotation types (such as GO terms and

KEGG pathways) and displays the results in both charts
and clustered heat maps. Other knowledge-based enrich-
ment analyses and visualization tools include Cytoscape57

and its ClueGO plug in,58 EnrichNet,59 and the commer-
cial Ingenuity Pathway Analysis (IPA),60 as well as others
as described by Laukens et al.61

Combining data-driven and knowledge-based

analysis techniques
Data-driven and knowledge-based proteomic analyses
complement each other well when combined. In this pro-
cess, data-driven tools can identify key minimum signa-
tures of proteins that differentiate the groups of interest,
with knowledge-based tools providing a deeper biological
context for this smaller list of proteins. For example, a
feature selection technique (LASSO or VIP scores) or a
volcano plot can be used to narrow down the proteomic
data set into a list of the proteins that vary between the
groups of interest. These identified significant proteins
can subsequently be labelled with UniProt IDs and input
into DAVID to discover enriched pathways and biological
processes, generating new hypotheses regarding mecha-
nisms of action associated with disease.

PROTEOMIC APPLICATIONS
IN RESPIRATORY DISEASE

Diseases of the respiratory system remain a major
source of global morbidity and mortality.2 Proteomic
discovery in lung is a rapidly evolving field, and cur-
rently much of the focus has been centred on the role
of proteomics in lung cancer (Fig. 3).

Idiopathic pulmonary fibrosis
IPF is the most common form of ILD and is invariably
fatal with a median survival of 2–3 years.62 IPF aetiol-
ogy and pathogenesis are poorly understood.63 The dis-
ease results in aberrant accumulation of extracellular
matrix within the interstitium of the lung, promoting
impaired gas exchange and respiratory failure.37

However, recent studies have started to explore differ-
ences in protein expression and profiling in IPF patients.
Comparative proteomic analysis of lung tissue samples
derived from IPF patients and human donor transplant
lungs using 2D gel electrophoresis and matrix-assisted
laser desorption/ionization-time of flight (MALDI-TOF)-
MS demonstrated significant differences in protein
expression.25 Fifty-one proteins were upregulated and
38 downregulated in IPF lung compared with normal.
Proteins involved in unfolded protein response (UPR)
were upregulated and immunohistochemistry confirmed
induction of markers of UPR within type 2 pneumocytes.
Furthermore, there was downregulation of antioxidants
and structural epithelial proteins supporting epithelial cell
injury as a key feature of IPF pathogenesis. The ability to
differentiate between different types of ILD pathology
using proteomic profiles would mark a major advance-
ment in ILD management. Landi et al. employed bronch-
oalveolar lavage fluid (BALF) derived from IPF,
sarcoidosis, Langerhans cell histiocytosis and scleroderma
(SSc)-associated ILD patients to examine differentially
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expressed protein profiles.26 They reported novel findings
supporting the regulation of ILD pathogenesis by factors
in alternative complement activation, blood coagulation,
protein folding and Slit-Robo signalling. The acquisition
of BALF however may be challenging in chronic lung dis-
ease. Recent work by our group applied novel aptamer
approaches to investigate the blood plasma proteome in
IPF patients from the Correlating Outcomes With Bio-
chemical Markers to Estimate Time-progression
(COMET) study.38 SOMAmer were measured in IPF
patients and then analysed to generate a panel of six
plasma biomarkers to predict disease progression based
on a composite disease progression index. IPF patients
with high levels of inducible T-cell costimulatory (ICOS)
and trypsin 3 (TRY3) and low levels of ficolin-2 (FCN2),
cathepsin-S (Cath-S), legumain (LGMN) and soluble vas-
cular endothelial growth factor receptor 2 (VEGFsR2) pre-
dicted poorer progression-free survival. We next
examined the differential expression of plasma proteins
in healthy volunteers and IPF patients. In this recent
proof of concept study, we employed hierarchical cluster-
ing of statistically significant differentially expressed pro-
teins in IPF patients and healthy volunteers,
demonstrating visually distinct plasma proteomes
between healthy volunteers and IPF patients37 (Fig. 4).
This study highlights the potential use of proteomic pro-
files derived from easily accessible blood in the diagnostic
workup of ILD patients. Foster et al. recently employed
two different proteomic platforms to BALF from IPF
patients and demonstrated the increased expression of
osteopontin.64 This work importantly validated previous
studies and results across quantitative proteomic plat-
forms.65 Schiller et al. recently applied quantitative label-
free MS to address common protein regulations across

apparently heterogeneous lung fibrosis tissue from human
patients (including IPF).66 They report a possible common
regulator, MZB1 (Marginal Zone B and B1 Cell-Specific
Protein) + plasma B cells, present at high prevalence in
both fibrotic lung and skin tissue including IPF,
hypersensitivity pneumonitis (HP), cryptogenic organizing
pneumonia (COP), SSc-associated ILD and
unclassifiable ILD.

Asthma
Asthma is a chronic inflammatory airway disorder
characterized by variable airflow obstruction.67 The dis-
ease is associated with exposure to aeroallergens which
leads to immunological changes within the airway epi-
thelium. To date, there are several studies that have
examined the role of proteomic technologies in both
development of biomarkers and improved understand-
ing of asthma pathogenesis.
Initial studies using high-performance liquid chroma-

tography (HPLC) resulted in discovery of the chemokine
CCL5 (RANTES (Regulated Upon Activation, Normally T-
Expressed And Presumably Secreted)) as a BALF bio-
marker of allergic inflammation and eosinophilic
activation in asthma patients.68 A further study of endo-
bronchial biopsies in a small number of asthma patients
and healthy volunteers using MS also identified CCL5 as
a biomarker. These authors used pathway analysis to
identify biologically important functional pathways
including acute phase response, cell–cell signalling and
tissue development in asthmatic airways compared with
controls.69 Hamsten et al. also demonstrated alterations
in CCL5 plasma protein levels with significantly lower
levels reported in children with persistent asthma com-
pared with controls.70 Wu et al. used LC–MS/MS of BALF
samples after allergen challenge in asthma patients to
describe the complex biological pathways activated in the
lung.71 They found approximately 150 proteins that were
upregulated in response to allergen exposure in BALF,
and the upregulated proteins were associated with wide
ranging functional pathways including proteolysis,
inflammation, cell proliferation and signal transduction.
Potentially interesting upregulated proteins included
matrix metalloproteinase (MMP) 9 and Serpin Family A
Member 3 (SERPINA3). MMP9 is a matrix metalloprotei-
nase involved in lung remodelling that is generated in
part by airway neutrophils.72 Proteomic studies of sputum
samples from asthma patients have also been employed
to study asthma pathobiology. Gharib et al. examined air-
way sputum samples from 10 patients and reported
17 target proteins including alpha 1-antichymotrypsin.73

Sputum samples are acquired by non-invasive means
and therefore provide an advantage over other types of
pulmonary sampling. Aptamer approaches have also
been reported in studies of asthma. Loza et al. reported
increases in serum C-reactive protein (CRP) and IgE and
reductions in serum carbonic anhydrase 6 and osteomo-
dulin in severe asthma.74

Chronic obstructive pulmonary disease
COPD is a common disease with global impact and
high related morbidity and mortality. COPD is charac-
terized by airflow obstruction that is poorly reversible.75
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There is obstruction of small airways and destruction
of distal alveolar structures resulting in air trapping,
impaired gas exchange, cough, dyspnoea and sputum
production.76 Proteomic approaches have been utilized
in studies of COPD from BALF, tissue and blood for
biomarker discovery. Nano-LC–MS techniques identi-
fied 76 differentially expressed proteins in BALF from
COPD patients, and pathway analysis identified biologi-
cal processes including inflammatory processes, glycol-
ysis and oxidation reduction.77 Given the issues with
dilution of epithelial lining fluid (ELF) on BALF acqui-
sition, one investigative group obtained ELF directly
from the airway using microprobes during bronchos-
copy and then applied microfluidics-based nano-LC–
MS/MS to identify and quantify proteins in the ELF of
COPD patients. They identified elevated levels of lacto-
transferrin, high-mobility group protein B1 (HGMB1)
and alpha-1 antichymotrypsin in ELF from COPD
patients compared with healthy controls.78 Interest-
ingly, alpha-1 antichymotrypsin encoded for by the
SERPINA3 gene is reportedly elevated in the sputum of
asthma patients, possibly reflecting a shared mecha-
nism in chronic inflammatory airway disorders.71 Stud-
ies have also examined proteins in sputum to better
understand COPD pathogenesis. Baraniuk et al. identi-
fied a higher abundance of mucin 5AC in sputum from
COPD and healthy smokers. Patients with emphysema
features had higher levels of defensins and protein
components of neutrophil extracellular traps (NETS).79

Lee et al. employed MALDI-TOF-MS in tissue samples
from COPD patients and healthy smokers.19 They
reported significant upregulation of MMP13 mainly in
alveolar macrophages and thioredoxin-like 2 (TXL2) in
bronchial epithelium compared with healthy smokers.
A further comprehensive study of tissue, plasma and

sputum in COPD, IPF and alpha-1-antitrypsin defi-
ciency patients identified the protein transglutaminase
2 (TGM2) as a COPD-specific protein.80 Tissue levels of
TGM2 associated with disease severity, and sputum
and plasma levels of TGM2 correlated with forced expi-
ratory volume in 1 s (FEV1) % predicted values.

Lung cancer
The detection of lung cancer during the early phases of
disease is crucial to providing optimal management
strategies and potential cure, as it is often diagnosed at
an advanced stage.81 Therefore, the discovery of accu-
rate and reliable biomarkers is an important goal.
Extensive use of proteomic research applications has
occurred in the lung cancer field but the proposed bio-
markers have yet to be adopted for clinical applica-
tions.82 Most lung cancer proteomic studies have been
undertaken in diseased tissue samples; however, some
studies have been carried out on serum, blood, BALF,
pleural fluid and saliva.82

Wu et al. studied plasma samples from lung adeno-
carcinoma (AC) (non-small cell lung carcinoma, NSCLC)
patients and age- and gender-matched healthy controls
and reported nine candidate proteins that discriminated
between cancer and health.83 These proteins included
gelsolin (GSN), galectin-1 (LGALS1) and actin cytoplas-
mic 1 (ACTB). It may be possible to use blood proteo-
mics to stratify risk of developing lung cancer. One
study applied proteomics to plasma from never, current
or former smokers and reported a significant association
with plasma apolipoprotein E (APOE) levels and the
development of squamous metaplasia in the lungs, sup-
porting the potential to develop proteomic plasma bio-
markers capable of predicting pre-malignant and early
forms of lung cancer.84 However, lung tissue samples
from cancer patients have received more extensive anal-
ysis. Numerous studies have analysed proteomic
changes within lung tissue samples. Pernemalm et al.
used isobaric tags for relative and absolute quantitation
(ITRAQ)-based quantitative proteomics to compare lung
cancer tissue samples associated with 2-year relapse and
those without relapse. Using pathway analysis, they
reported that tumours associated with relapse had a
higher dependence on glycolysis and higher hypoxia-
inducible factor (HIF) activity.85 Kikuchi et al. pooled
samples of lung AC, squamous carcinoma (SCC) and
control tissue and used shotgun proteomics to profile
the lung tumour proteome. They found higher levels of
Mapsin (SERPINAB5) in SCC tissue samples and identi-
fied, for the first time, dysregulation of the p21-activated
kinases in NSCLC.86

TRANSLATING PROTEOMIC STUDIES

To date, the results of many proteomic studies in medi-
cine have been centred on the development of reliable
biomarkers for disease and outcomes. For instance, the
largest aptamer study of plasma proteins to date was
employed to risk stratify patients with cardiovascular
disease.87 However, it is important to note that the
study of proteins may have vast implications in medi-
cine and science. Proteomic platforms may be used to

Figure 4 The peripheral blood proteome of idiopathic pulmonary

fibrosis (IPF; ) differs from healthy ( ). Hierarchical clustering of 1129

measured blood proteins in healthy and IPF patients illustrates visu-

ally distinct expression in the two groups. Proteomic abundance is

displayed with colour intensity, with red indicating overabundant pro-

teins and blue indicating underabundant proteins compared with the

mean expression level. Clustering was created using unsupervised

average linkage with Pearson’s correlation as the distance metric.

Respirology (2018) 23, 993–1003 © 2018 Asian Pacific Society of Respirology

Proteomics in lung disease 999



generate hypothesis on disease pathophysiology,
develop new therapies and novel strategies and assess
for clinical efficacy and safety of new drugs.88–91 Given
the array of proteomic tools available including ELISA,
aptamer and MS platforms, an important goal for the
field is an improved understanding of accuracy and
reproducibility across proteome-specific platforms.
These questions remain difficult to address without
large-scale cross-platform studies in humans. We have
previously shown significant correlations between pro-
tein measured by both ELISA and aptamer techniques
within the same human cohort.38 However, this is an
area where further study is required. The future of pro-
teomics is exciting and likely to yield major advances
in medicine. Recent work has shown how proteomics
may be integrated with genomic data to demonstrate
overlap between quantitative gene, protein and
disease-associated loci, with evidence of causal links
between specific proteins and disease.92 These
advances may lead to accurate mapping in real-time of
disease states, biological pathways and therapeutic
targets.

CONCLUSION

The last two decades have ushered in a timely revolu-
tion in proteomics. New technologies and modifica-
tions of old ones are facilitating studies of thousands of
proteins in biological samples, allowing for an ever
improved understanding of protein expression, func-
tion and dynamics. Leveraging the power of proteomics
to provide an accurate estimate of immediate health or
disease remains an achievable and vital goal. The con-
tinued evolution and expansion of proteomic technolo-
gies such as aptamer approaches and the parallel
development of bioinformatic tools and applications
will facilitate this goal. While challenges remain, evolv-
ing proteomic applications and the era of integrating
genomic and proteomic human data in disease and
health will alter the current architecture of how we
understand, diagnose and manage human disease in
the lung and elsewhere in the body.
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