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Abstract There has been an explosive growth in the ability to model large water systems. While these
models are effective at routing water across massive scales, they do not yet forecast the street-level information
desired by local decision makers. Simultaneously, the increasing affordability of sensors has made it possible for
even small communities to measure the state of their watersheds. However, these real-time measurements are
often not attached to a predictive model, thus making them less useful for applications like flood warnings. In
this paper, we ask the question: how can highly localized forecasts be generated by fusing site-scale sensor
measurements with outputs from large-scale models? Rather than altering the larger physical model, our
approach uses the outputs of the unmodified model as the inputs to a dynamical system. To evaluate the
approach, a case study is carried out across the U.S. state of Iowa using publicly available measurements from
over 180 water level sensors and outputs from the National Water Model. The approach performs well across a
third of the studied sites, as quantified by a high normalized root mean squared error. A performance classifica-
tion is carried out based on Principal Component Analysis and Random Forests. We discuss how these results
will enable stakeholders with local measurements to quickly benefit from large-scale models without needing to
run or modify the models themselves. The results are also placed into a broader sensor-placement context to
provide guidance on how investments into local measurements can be made to maximize predictive benefits.

1. Introduction

As computational power has grown, so has the ability of hydrologists to model complex hydraulic and
hydrologic systems (Bl€oschl et al., 2014). No longer limited to the study of single stream reaches or small
watersheds, increasing access to supercomputers and graphical processing units (GPUs) is now enabling a
new generation of massive models, some of which would have seemed infeasible even recently. Presently,
one exciting example is the United States’ National Water Model (NWM) which provides forecasts for nearly
2.7 million stream and river reaches across the continental US (Office of Water Prediction, 2017). While very
impressive in scale, the performance of the model across most of these locations has still to be evaluated.
Beyond numerical modeling, a variety of studies have also highlighted the potential of big data in hydrol-
ogy, wherein large quantities of data are analyzed to provide scientific insight and improve forecasting per-
formance (e.g., Chang et al., 2017; Demir & Krajewski, 2013; Gilles et al., 2012; Karandish & �Simůnek, 2016;
Tiwari & Adamowski, 2015). As such, there is now an unprecedented opportunity to begin leveraging advan-
ces in computing and data science to explore a variety of large and complex water challenges.

Advances in computation have also been accompanied by improved access to real-time measurements.
Wireless sensor networks have become much more affordable (Jin et al., 2010) and cloud-based services are
now readily available, even to small research groups (e.g., Amazon Web Services, Microsoft Azure, Google
Cloud etc.). The open source hardware movement (e.g., Bartos et al., 2017; Bitella et al., 2014; Gilles et al.,
2012; Wong & Kerkez, 2016) is empowering many technological nonexperts, such as decision makers and
small research groups, who can now deploy their own sensors to measure a variety of water parameters in
near real-time. This is allowing important, but limited, sources of data, such as USGS gauges, to be supple-
mented by a variety of smaller and stakeholder-relevant measurements.

These advances still do not appear to be ushering in new wave of water management. At the level of indi-
vidual communities or cities, water managers seek answers to very practical and neighborhood-specific
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questions. For example, forecasting the water level at specific bridges or highway overpasses can help trig-
ger flood alerts or dispatch emergency response personnel. Given their spatial extent and therefore low
availability of relevant data, such as bathymetry and forcing data, large numerical models may not always
be accurate at high resolutions, meaning that their forecasts may not be immediately useful to decision
makers. Additionally, units and variables that are important to modelers (e.g., flow) may not be the units
and variables that decision makers care about (e.g., water level under a bridge). Alternatively, sensor obser-
vation alone may only go so far. While making a direct measurement at any specific site may provide real-
time information to decision makers, it does not provide a forecast or warning without a model. There is,
however, an opportunity to fuse the forecasting benefits of large-scale models with the site-level accuracy
offered by local measurements.

In this paper, we ask the question: how can highly localized forecasts be generated by fusing site-scale sen-
sor measurements with outputs from larger-scale physical models? Instead of increasing the complexity of
the physical model or recalibrating it to match the local measurement, our approach leaves the physical
model unchanged and uses a dynamical systems transformation to map the large-scale model outputs to
site-scale conditions. To evaluate this approach, we carry out a case study in which water levels, as mea-
sured by a sensor, are predicted from modeled flows made by a publicly available and large-scale physical
model. This will illustrate how city managers and other stakeholders, who have access to local measure-
ments, can quickly benefit from large-scale models without needing to run or modify the models them-
selves. Specifically, we apply this methodology to the outputs of the U.S. National Water Model and a
publicly available data set of hourly water level observations, made by over 180 sensors across the entire
U.S. state of Iowa. Beyond evaluating predictive performance, a Random Forest-based classification analysis
is also carried out to evaluate under which conditions the approach is expected to perform well. The paper
concludes with a discussion on the generalizability of the approach and places the findings into a broader
context of making big models and data useful to stakeholders.

1.1. Background
To illustrate the challenges that may be faced when translating macromodeled outputs to high-resolution
local conditions, we begin by using the outputs from the U.S. National Water Model (NWM) to predict water
levels at sites of interest. The desire to predict water levels, rather than flow, is motivated by two factors.
First, water levels are necessary for local flood inundation mapping (Gilles et al., 2012). Second, and more
importantly, local measurements of flow are expensive and rarely available. Water level sensors, on the
other hand, are relatively inexpensive to deploy and maintain, making them a more realistically available
data source (Jin et al., 2010).

Given its spatial extent, the NWM assumes trapezoidal stream cross sections, which are derived from the
National Hydrography Data set (U.S. Geological Survey, 2017). A mapping of flows to heights for specific
sites may thus not be directly evident, since each location will have its own nuanced topographic and
hydraulic properties. As such, there is a motivation to discover how the outputs of this large numerical
model can be translated to site-specific parameters that are not directly modeled. If a clear relationship can
be established between the modeled flows and measured heights for any given location, the forecasts of
the NWM could then be used to provide authorities with precise localized flood inundation maps. This
would allow local water managers, who have access to their own measurements and knowledge of local
inundation elevations, to benefit directly from the expertise embedded in the larger NWM.

Traditionally, rating curves have been a primary tool for deriving stream flows from stage measurements
and vice-versa (Herschy, 1999). Reliable rating curves require a relatively long history of stage and discharge
measurements. Measurement-constraint alternatives have been proposed (e.g., Aric�o et al., 2010; Damangir
& Abedini, 2014), but often only work under limited conditions. Second, even when a long history of obser-
vations is available, rating curves can have large uncertainties, particularly related to heteroscedasticity
(Petersen-Overlier, 2004), extrapolation outside of the history (Kuczera, 1996), hysteresis (Perumal et al.,
2004), measurement error (Westerberg et al., 2011), and backwater effects (Hidayat et al., 2011). Most impor-
tantly, however, in the context of our proposed problem, the flows are modeled rather than measured,
which poses additional challenges when attempting to estimate site-specific water levels. Indeed, the
NWM’s utility in predicting water levels has recently been studied by other researchers on smaller scales.
For instance, Javaheri et al. (2018) used an Ensemble Kalman Filter in conjunction with the Height Above
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Nearest Drainage (HAND) method to predict water levels from the NWM. This methodology should work
well for locations where a rating curve can be developed using the NWM flow estimates.

To illustrate the challenge of deriving local height estimates from modeled flows, we compare the output
of the NWM to two independent water level measurements made on small bridges in Iowa (Figure 1). For
the first example (Figure 1a), it is qualitatively apparent that there is a strong relationship between the mod-
eled flows and the measured heights. This is supported by a dynamical agreement between the two time
series (Figure 1c), which align well temporally, with clear agreement of the hydrograph peaks, as well as a
generally good agreement on the rates of the rising and falling limbs. This provides a reliable rating curve
and makes a strong case that the flow forecasts of the model could be used to predict future heights. On
the other hand, for the second example (Figure 1b), the relationship between modeled flows and measured
height is not nearly as clear. While the presence of a rain storm is evident in each time series (Figure 1d), it
is unclear how the dynamics of each variable are correlated. The modeled flow is temporally coarse and
does not match the dynamics of the measured water level. Without a clear rating curve, it may seem diffi-
cult to establish a relationship between modeled forecasts and measured heights, which may limit the
apparent utility of the modeled forecast to this specific site.

When modeled flows do not directly align with local observations, one alternative is to directly assimilate
the local measurements into the bigger model, thus improving its accuracy. Data assimilation is an estab-
lished field in the hydrologic modeling community, relying on methods such as the Kalman Filter (Beck,
1987) or Particle Filter (Moradkhani et al., 2005) to guide the model states toward the locally measured val-
ues. In fact, the current version of the NWM performs a computationally low-cost form of data assimilation
called Newtonian Nudging (Hoke & Anthes, 1976), whereby federal streamflow measurements from the
United States Geological Survey (USGS) are used to ‘‘nudge’’ the model toward observed values. While the
high quality and reliability of USGS gauges has been verified on many occasions (e.g., Koltun, 2015; South-
ard, 2013), the number of gauges is limited compared to the scale and resolution of the NWM. As such, the
NWM will benefit from assimilating alternative sources of information into its operation.

Expanding the coverage of the measurement network used by the NWM, such as measurements made by
individual communities, poses a number of practical challenges in the context of data assimilation. First,
given the sheer number of sensor manufacturers, deployment standards, and maintenance schedules,

Figure 1. Measured water levels made by bridge sensors and modeled flows derived from the NWM for two example sites
in the state of Iowa. The first example demonstrates a relatively strong relationship between modeled flows and
measured water levels, while the second site does not.
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some sources of local data may be more reliable than others. Since measurement errors can propagate into
the bigger model, assimilating local data thus poses questions regarding accuracy. Data will need to be
approved and quality checks will be needed to ensure that any faulty sensors do not damage the model’s
integrity. Computational capacity will also need to be increased to ensure a growing number of assimilation
points can be integrated. Given the sheer diversity of local water measurements and logistics associated
with large-scale data assimilation, it is unclear when or if all of them will ever be ingested into the NWM. For
those local water officials who do trust their own measurements, an alternative approach may still allow
them to benefit from the existing forecasts offered by the NWM.

1.2. Approach and Contributions
Motivated by the challenges posed in the prior section, the major contribution of this paper is a computa-
tional approach by which independently measured observations are combined with the output of a larger
physical or numerical model to provide a dynamical forecast of local site conditions. In other words, histori-
cal model forecasts and independent historical measurements will be used to derive high-resolution and
dynamical forecasts for a site of interest. The output will be an automated tool chain, which allows end-
users to benefit from the expertise embedded in a large model without needing to update the model itself
(Figure 2). Specifically, the approach will be evaluated by fusing outputs of the NWM and a large publicly-
accessible stream sensor network in the state of Iowa (Gilles et al., 2012). Since these measurements have
not been used in the NWM, they provide an independent data set for the evaluation of the approach. Practi-
cally, a successful demonstration of the approach will permit water managers, who may be inclined to
invest into local measurements, to benefit directly from forecasts made by the NWM.

Since a one-to-one stage-discharge mapping is not possible for all sites (Figure 1b), our approach is based
on dynamical systems theory (Luenberger, 1979). Here, we treat the output of the physical model as the
input to a dynamical system, with the idea that while the physical model may capture the general timing
and magnitude of impulses, these outputs need to be mapped through a dynamical transfer function, to
achieve agreement with measured values. Effectively, the approach will learn the response of a dynamical
system, whose input is the physical model and output is the measured stage, and use it to transform model
forecasts to water level estimates. At a low-order level, this approach is analogous to learning a unit hydro-
graph (Nash, 1957), which have been used to map rainfall to flows (Cluckie & Harpin, 1982; Yang & Han,
2006). However, simple single-order unit hydrographs are known to work mostly for smaller-scale catch-
ments (Damangir & Abedini, 2014). Our approach addresses this limitation by expanding the order of the
underlying system to be able to reflect more nuanced site-specific conditions.

The first part of this paper presents the theory, implementation, and application of this approach to a large
set of over 180 stream height observations. Second, we conduct a performance analysis which evaluates
under which conditions the proposed approach will perform well. Given the sheer number of sites, each of
which has a large number of physiographic features, a simple classification approach will not be adequate.
Therefore, two analytical tools (principal component analysis and random forests) are used to determine
which features explain when our approach can be used to reliably predict local conditions. The results of

Figure 2. Conceptual diagram of dynamical mapping methodology. Historical measurements made by a sensor are used
to ‘‘learn’’ a dynamical mapping between modeled flows and measured water levels. Once the parameters of the mapping
are learned, water levels can then be predicted by dynamically transforming the modeled flows.
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this analysis will provide a general sensor placement guide to help maximize the potential of mapping
NWM output to local sites.

2. Methods

2.1. System Identification Theory
We frame the problem of mapping a physical model output u(t) to a measured sensor value y(t) as a transfer
function operation, which can be represented in the time domain as a convolution with an impulse function
h(t) (Luenberger, 1979):

yðtÞ5
ð1

s50
hðsÞuðt2sÞds: (1)

In our case study, the physical model output u(t) represents the flow modeled by the NWM, while y(t) are
the height measurements made by a water level sensor at some location. The transfer function h(t) can be
converted to its frequency domain representation H(S) using a Laplace transform:

YðsÞ5HðsÞUðsÞ

HðsÞ5 YðsÞ
UðsÞ
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(2)

where (a0; a1; � � � ; an) and (b0; b1; � � � ; bn) are the nth order coefficients of the transfer function. More gener-
ally, the roots of the numerator’s polynomial are known as the zeros and the roots of the denominator are
known as the poles of the system. Since transfer functions are equivalent to systems of linear differential
equations, an increase in the order of the system reflects the ability to represent more nuanced dynamics.
Given a system order (i.e., number of poles and zeros), the goal is to learn the transfer function coefficients
from prior measurement and modeled values, after which equation (1) can be used to transform any future
modeled flows to their corresponding heights. In the dynamical systems literature, this problem is broadly
referred to as System Identification (Luenberger, 1979). A common approach to learning the parameter
h :¼ ½a1; � � � ; an; b0; � � � ; bn� of the model relies on the formulation

yðtÞ5ŷðt;u; hÞ1�ðt; hÞ (3)

where the measured output is a function of the predicted output ŷ given parameter set h, which is cor-
rupted by a noise term �ðt; hÞ. Finding an estimate of the parameters ĥ can be framed as an optimization
problem that seeks to minimize the difference between modeled and observed values. Here we use the
mean squared error as the loss function:

ĥðy;uÞ5 arg min h jjy2ŷjj22

5 arg min h

Xn

t51

ðyðtÞ2ŷðt;u; hÞÞ2
(4)

Our approach uses a Gauss-Newton method (Bjorck, 1996) to iteratively approach the minimum through
the use of a gradient-based solver:

hðk11Þ5hðkÞ2ðJT JÞ21JT �ðhðkÞÞ (5)

where �ðhðkÞÞ5y2ŷ is a vector of the errors at iteration k, and J is the Jacobian matrix:
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The Jacobian is a matrix of all the first-order partial derivatives of the error. Therefore, at each iteration, the
parameterization of the transfer function model (ĥ5½a1; � � � ; an; b0; � � � ; bn�) yields an estimated signal ŷ
that approaches the true signal y. Once h is learned using time series of the inputs and outputs, forecasts
can be made using equation (1). A visual summary of the approach is provided in Figure 2.

2.2. Data Sources and Implementation
To promote transparency, reproducibility, and broader adoption by others, the authors have made all the
formatted data, source code, and supporting information available freely as an open source implementation
on https://github.com/kLabUM/NWM/.

The approach was evaluated across two large data sources. These included the outputs of the U.S. National
Water Model, which served as the inputs u(t) to our method. The second data set included 182 indepen-
dently measured (not assimilated into or used in the calibration of the NWM) streamgages across the state
of Iowa, which represented the sensor measurements y(t). The objective was to compare how well local
water depths could be predicted by dynamically mapping the flows estimated flows by the NWM. Along
with a summary of performance, an extensive analysis was also carried out using Principal Component Anal-
ysis (Ouyang, 2005) and Logit Boosted Random Forests (Freund et al., 1996) to classify under which condi-
tions the proposed approach may perform reliably.
2.2.1. Data Source: The National Water Model
The National Water Model (NWM) became operational in the fall of 2016, and is continuing to be developed
by the Office of Water Prediction at NOAA. The NWM estimates flow for approximately 2.7 million stream
reaches across the continental United States. At its core, the NWM relies on large-scale Muskingum-Cunge
routing, which is coupled with a gridded subsurface flow routing scheme (Office of Water Prediction, 2017).
The model is forced by rainfall from the Multi-Radar/Multi-Sensor System (MRMS) (National Severe Storms
Laboratory, 2017) as well as a suite of model outputs ingested by WRF-Hydro (Office of Water Prediction,
2017). Land surface processes, such as snowmelt, evapotranspiration, infiltration, and groundwater transfer,
are simulated using Noah-MP (Office of Water Prediction, 2017). Additionally, the NWM assimilates measure-
ments from the national network of USGS streamgages. Given the continental scale of the model, a major
appeal is that it routes flows from far away regions and covers locales that are often not captured by any
other models. This should make it attractive for smaller communities seeking flash flood or streamflow fore-
casts but who may not have their own modeling resources. The NWM outputs hourly nowcasts, as well as
1–18 h short-term forecasts, 0–10 days medium-term forecasts, and 0–30 days long-term forecasts (Office
of Water Prediction, 2017). Presently, modeled flows from the previous two days are freely available for
download in NetCDF format on the National Centers for Environmental Prediction server (ftp://ftpprd.ncep.
noaa.gov/pub/data/nccf/com/nwm). The NWM also provides an Analysis and Assimilation product which
gives a 3 h hindcast. Because the NWM’s forecasting ability is constantly being updated and improved, this
paper uses this product to provide an upper bound baseline for our dynamical mapping approach.
2.2.2. Data Source: The Iowa Flood Information System Sensors
The Iowa Flood Center (IFC) was established in 2008 in response to the increasing frequency of flooding in
the state (Gilles et al., 2012). One of their major initiatives was establishing the Iowa Flood Information Sys-
tem (IFIS), which provides real-time stream conditions and flood warning alerts (Demir & Krajewski, 2013;
Iowa Flood Center, 2017). IFIS ingests data from approximately 500 stream sensors, of which half are man-
aged by the USGS and half are managed by the IFC (Figure 3). IFC gauges are primarily composed of
bridge-mounted ultrasonic water level sensors, which transmit subhourly measurements across a wireless
connection. Historical depth measurements are freely available on the IFIS website across a rolling 30 day
window (Iowa Flood Center, 2017). In this paper, we focus on the 220 bridge-mounted sensors that the IFC
manages, since these sensors were not used in the calibration of the NWM. As such, they provide an inde-
pendent validation data set for the proposed method.
2.2.3. Implementation
Outputs from NWM and IFIS gauge measurements were recorded using an automated Python script on an
hourly basis from October 2016 through May 2017 across the state of Iowa. IFIS gauge readings were
logged in real-time as measurements became available. Out of the 220 candidate sites, 182 were colocated
with outputs of the NWM and deemed to have a continuous record. For small data gaps (few missing
points), linear interpolation was applied to create continuous time series. The NWM and IFIS time series
were linked by location, thereby providing individual model-measurement pairs that could be used in our
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dynamical mapping approach. Data from October to December were used to train our system identification
approach, while data from March to May were used for validation. To reduce potential impacts of winter-
time conditions (freezing, snow, and snowmelt), which may have influenced NWM outputs and gauge main-
tenance, data across January and February were not used in the analysis. Additionally, stationary of the
physiographic features was assumed (e.g., it was assumed that erosion does not change stream width or
roughness over the study period).

Prior to applying the system identification procedure, sensor data were linearly detrended to remove the
impact of base flows, which was necessary to ensure that the transfer functions would decay to zero follow-
ing a storm event. Since the complexity of the dynamical mapping was not known a priori, an ensemble of
14 different transfer functions was learned using the training data, with each mapping having varying num-
bers of poles and zeros (see equation (2)). These included all possible pole-zero pairings for first through
fourth-order systems ([0 poles, 1 zero],[1 pole, 1 zero],[0 poles, 2 zeros],. . .,[4 poles, 4 zeros]). This allowed
for the average and upper-bound performance of the approach to be compared across mappings of varying
complexities. The final software toolchain was implemented in MATLAB, using an implementation of the
System Identification procedures from Ljung (1987). For comparison, a standard regression rating curve pro-
cedure (Turnipseed & Sauer, 2010) was also implemented, whereby prior stage-discharge relationships
(October–December) were used to predict future values (March–May). The normalized root mean squared
error (nRMSE), which is equivalent to the Nash Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970), was used to
evaluate performance:

E5100 12
jjy2ŷ jj
jjy2�y jj

� �
(7)

where E is the NSE in percent, y is the vector of observed water level, ŷ is the vector of predicted water level,
�y is the mean of the observed water level, and jj � jj is the Euclidean norm (Deza & Deza, 2009). For interpre-
tation, a value of 100% would imply a perfect prediction of water levels, a value of 0% would imply a predic-
tion that is as good as taking the historical average of water levels, and a value less than 0% indicates a
performance more inadequate than taking the average. An NSE of 50% or above is generally considered
the lower bound for a good predictor (Krause et al., 2005), which is the threshold we adopted in this paper.
The analysis considered the NSE of both the best ensemble member and the ensemble average.

Figure 3. Visualization of the nearly 62,000 streams modeled by the NWM in the state of Iowa. USGS gages, which are
assimilated into the NWM, are denoted as cyan circles. Locations of the IFIS water level sensors are denoted as yellow
circles, with diamonds denoting the three example sites used in this paper.
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2.3. Performance Classification
One major goal of this paper is to investigate under which conditions the proposed dynamical mapping
approach will work well. Not all locations may benefit directly from our approach, even if investments into
local sensors are made. Evaluating which features explain this behavior will be crucial to informing where
investments into sensors should be made to maximally leverage the NWM. To classify the performance of
our approach under various physiographic conditions, we used a combination of Principal Component
Analysis (Hastie et al., 2001) and Random Forest Classifiers (Freund et al., 1996).

The NWM is built on a number of distinct physiographic features from the National Hydrography Data set
(NHD) (U.S. Geological Survey, 2017). These include the channel bottom width, elevation, Manning’s rough-
ness, channel slope, and Strahler stream order (Strahler, 1957). Some features, such as side slope, were avail-
able, but were uniform throughout the study area and thus deemed uninformative. Some features served
as proxies for others that would have been too labor intensive to derive (e.g., stream order and relative
drainage area).We also calculated an additional feature, which captures the distance of a given water level
sensor to the nearest USGS gauge. This will indicate whether our approach performs better near official
NWM data assimilation locations. Overall, this provided six features that may be used to explain the perfor-
mance of our dynamical mapping approach. For example, intuition would suggest that our approach would
work well on larger rivers, where the NWM may be able to capture flow dynamics more accurately than in
smaller, ungauged basins. This, however, has to be confirmed, especially given the array of other complex
features that may explain performance.

Since some of the features analyzed in this study (e.g., stream order versus bottom width) may exhibit col-
linearity or multicollinearity, they must be orthogonalized to maximize the ability to classify around them.
Before the performance is classified, our approach used Principal Component Analysis (PCA) to shift the six
dimensional feature space into an orthogonal subspace (Hastie et al., 2001). PCA changes the coordinates
of the features, with the objective of finding a new set of features that are linear combinations of the origi-
nal features. PCA initially determines the direction in which the greatest amount of variance lies, defines the
first axis to align with that direction, and then iteratively re-orients subsequent axes such that each axis is
aligned in the direction of next greatest variance. In doing so, the features are decorrelated and combined
into composite principal axes that should maximize the ability to discover higher-dimensional hyperplanes
that can be used during classification. In consideration of succinctness, a theoretical discussion of our PCA
implementation is provided in Appendix A.

Once the features that describe all of the 182 sensor locations were PCA-transformed, each of the sites was
labeled based on performance of the dynamical mapping. The predictive performance was labeled in a
binary sense, whereby sites with a maximum NSE of 50% or greater were deemed to perform well (label 1),
while any remaining sites were labeled as inadequate (label 0). The performance classification was then
implemented as a supervised learning procedure, where the final classification seeks to predict how well the
dynamical mapping approach will perform for a given set of features. While various classification algorithms
exist, our approach used a statistical learning tool known as Logit Boosted Random Forests, or Adaboost
with trees (Freund et al., 1996).

Adaboost generates a large number of ‘‘weak learners’’ (Hastie et al., 2001) in the form of small classification
trees. A weak learner is a model that is only slightly better than randomly guessing (Zhou, 2012). A classifi-
cation tree partitions a feature space using a series of binary splits, resulting in a large number of labeled
bins. For example, a simple tree may categorize the performance of our dynamical approach as either
‘‘high’’ or ‘‘low.’’ These labels are assigned to training data, as described above. The tree may be trained to
classify based on decision variables, such as stream order or elevation. The training data are then placed
into bins, or leaves. The label of each bin is assigned based on majority voting, or how many ‘‘high’’ and
‘‘low’’ labels are inside each bin. The decision variables are used to improve binning. For example, all of the
data may first be split up by elevation to create two bins. These bins may then be split further by stream
order to reduce the label variance inside each bin. In this example, this would create only four bins. The low
number of bins, and thus low complexity, of such a classifier is the reason why it is called a weak learner.
Given their relative simplicity, these trees tend to have very low bias but also very high variance (Hastie
et al., 2001). This can be addressed by generating an ensemble, or a forest, of many trees. Going a step fur-
ther, we seek to ensure that each tree is developed to provide as much information gain as possible. In
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Logit Boosted Random Forests, each data entry (i.e., labeled row of our data matrix T) is given an initial
weight wi. Then, as new trees are learned, the data entries are reweighted so as to emphasize where the
model is failing. That is, the final algorithm (Algorithm 1) ensures that misclassified data are stressed more
in the learning of the next tree. In this implementation, t is the input data (i.e., a row of T), y is the observed
data (1 for a site labeled as well-performing site, 21 for a bad site), N is the number of observations, M is
the number of trees, pm is the probability output from tree m, and HðzÞ :¼ 1½z>0� is the Heaviside step func-
tion (Hastie et al., 2001). The M classification trees are learned in an iterative fashion.

The logit function (line 4 of the algorithm) is used to reweight the inputs (line 5). Because of the form of the
logit function, much larger values exist closer to 0 and 1. The result is that if the data entry ti is classified
properly and with high probability, then exp½2yifmðtiÞ� in line 5 will trend toward zero. If it is classified
improperly with high probability, then this term will approach infinity. This ensures the reweighting will tar-
get poorly classified data on the next iteration and that properly classified data will be largely ignored. After
learning all M models, any new input t can be provided and, when summing over all fmðxÞ trees, a predic-
tion can be made for whether a site will be a good candidate for our dynamical mapping approach. A good
site will be one that sums to be greater than 0 and a bad site will sum to be less.

Algorithm 1: Logit Boosted Random Forest

1 Initialize wi5
1
N ; i51; 2; . . . ;N;

2 for m 5 1,2,. . .,M do

3 Learn classification tree that outputs pmðtiÞ5Pwðy51jtiÞ 2 ½0; 1� with weights wi;

4 Set fmðtiÞ  1
2 log pmðtiÞ

12pmðtiÞ;

5 Set wi  wiexp ½2yifmðtiÞ�; i51; 2; . . . ;N, and renormalize such that
X

i

wi51;

6 end

7 Output classifier as H
XM

m51

fmðtÞ
" #

3. Results

3.1. Dynamical Mapping Performance
After training and applying the dynamical mapping (DM) procedure across all 182 sensor locations, predic-
tions at approximately one-third of the sites (55/182) exceeded the desired 50% NSE threshold, while per-
formance across 90 sites exhibited an NSE of at least 40%. The overall performance of the approach is
summarized in Figure 4, showing that the DM procedure consistently performed better than a simple rating
curve approach. Indeed, in all but eight cases, water levels were predicted more accurately using the pro-
posed DM approach compared to a regression between measured levels and NWM-modeled flows. The
order (i.e., the number of poles and zeros) of the transfer functions that had the best performance was not
consistent site-to-site. The order is analogous to the complexity of the transfer function, where higher-order
systems are capable of describing complex dynamics. However, complexity of the model in the frequency
domain does not necessarily lead to improved results in the time domain since the accuracy depends on
the amount of information that can be extracted from the system (Rojas et al., 2010). Here, information is
tied to the number of frequencies present in the signal. Put simply, if the dynamics of the measured water
level and NWM can be described by a small frequency range (which may be unique to each site), then mak-
ing the transfer function more complex will lead to improvements in performance since the additional coef-
ficients will be relatively small in magnitude. In many cases, higher-order poles and zeroes may actually
cancel, thus effectively providing an implicitly low-order model. As such, higher complexity may not neces-
sarily improve model performance. There were no site-specific physiographic features, which could be used
to determine what this upper bound was in our case study.

Given the sheer number of sites used in the analysis, this section will evaluate three locations in detail, while
the remainder is plotted in the supporting information. The three sites were selected to reflect three types
of performance, as measured by NSE. The first is a location for which our DM approach provides a strong
predictive performance, in large part due to a high correlation between the NWM predicted discharge and
the observed stage. The second site exhibits strong predictive performance, despite the NWM providing
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coarse outputs. The final example illustrates a case in which there is a limited ability to predict observed
heights from flows.

The first example demonstrates a case of strong predictive performance (Figure 5). The left column of the
figure displays the training data, which includes the NWM model outputs and measured water levels for the
Fall of 2016. The right column shows the NWM outputs and measured water levels for the Spring of 2017,
as well as the water level predictions made by our DM approach. Specifically, the bottom right panel is the
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Figure 4. Histograms of prediction performance (nRMSE) evaluated across 182 sensor locations. A comparison is made
between the best dynamical mapping (black), ensemble of dynamical mappings (gray), and a simple regression-based
rating curve approach (white).

Figure 5. Dynamically mapping modeled flows to local water levels on site 1 (see Figure 3). Data used to ‘‘learn’’ the map-
ping parameters are plotted in the left column, while the resulting mapping is applied to future data in the right column.
For this example site, the dynamical mapping performs relatively well (NSE of 80%). A simple regression-based rating
curve approach (not plotted) performs strongly as well, with an NSE of 76%.
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average prediction made by our approach across all 14 transfer functions (red line, with gray area indicating
variability within the ensemble) compared to the measured water levels (blue line). Overall, our DM proce-
dure performed well at this site, with an average NSE close to 80%. Predictions of water levels at this site
using a simpler regression-based rating curve performed nearly as well, with an average NSE of 76%.

Figure 6. Dynamically mapping modeled flows to local water levels on site 2, following convention used in Figure 5. For
this example site, the dynamical mapping performs relatively well (54% NSE), while a simple regression-based rating
curve approach does not (24% NSE).

Figure 7. Dynamically mapping modeled flows to local water levels on site 3, following convention in Figure 5. For this example site, neither the dynamical
mapping (0% NSE) nor regression-based rating curve (NSE of 214; 900%) perform well.
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The second example (Figure 6) illustrates a case where a simple regression approach did not perform well
(NSE of 24%). The modeled flows were quite impulsive and not representative of observed dynamics. How-
ever, when our DM approach was used, the results improved significantly, with an average NSE of over
50%.

Finally, the third example (Figure 7) illustrates a location at which no good predictive performance can be
reached, regardless of the approach used. As evident in the figure, the measurements reflected a slowly
changing system, while the NWM showed a series of rapid impulses. An average NSE of 2145% was
obtained using our DM approach, with only one of the 14 ensembled transfer functions showing a slightly
favorable NSE (49%). The rating curve method was even more ineffective, with an NSE of 214,900%. Fur-
ther, the rating curve method predicted water levels well outside the realm of possibility given its linear
extrapolation (close to 6km water height).

3.2. Performance Classification
The specific performance of the DM approach across sites 1–3 could be loosely described by channel width,
the stream order, and the distance to a USGS gage. Sites 1, 2, and 3 had channel widths of 20, 10, and 5 ft.;
stream orders of 5, 3, and 1; and distance to USGS gages of.2, 2.2, and 5.6 km, respectively. More broadly,
using the 50% NSE criterion, 55 of the 182 sites were labeled as locations of high performance, while 127
were labeled as low performing, reflecting the ability of our DM approach to predict flows from NWM out-
puts. These labels were then used to determine the combination of physiographic characteristics that
describes the conditions under which the DM approach exhibits high performance. The normalized distribu-
tions of each physiographic feature, split by performance criteria, are shown in Figure 8a. This normalization
was performed relative to all 64,000 streams in Iowa, not just the 182 sites studied. Overall, little distinction
was evident between high-performing and low-performing sites, with the distribution of each physio-
graphic feature showing similar means and variances. The distributions of channel bottom width and

Figure 8. Boxplots representing the relative distribution of features, when split by the ability of a dynamical mapping to
predict water levels from modeled flows. For any given feature, a clear difference between the two distributions would
indicate that this feature describes a general condition for the dynamical approach to work well. (a) This plot shows the
splits based on stream physiographic features. It is not apparent in this figure that any features describe a general condi-
tion for the DM approach to work well. (b) This plot shows the splits based on principal components (new variables 1–6).
Here, the first principal components exhibit the strongest difference between the high and low performing sites,
illustrating a potentially strong indicator of prediction performance.
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channel slope showed the relatively largest discrepancy, suggesting that sites at which the DM approach
performed well had a larger stream width and slope than lower-performing sites. However, the bounds on
these distributions were not sufficient to determine a consistent labeling.

Applying PCA to the physiographic features across the entire state of Iowa resulted in a 62,000 3 6 data
matrix. The resulting principal components are shown in Table 1. Each entry in a column of this table can
be interpreted as the relative influence of a physiographic variable to a particular principal component. For
example, considering the first principal component, which explains the greatest amount of variability in the
physiographic data, it becomes apparent that the channel bottom width and the stream order both
increase as the first principal component score increases. On the other hand, the Manning’s roughness
decreases as the principal component score increases. As such, if a stream reach in the data set has a large
first component score, it will be relatively larger and smoother than other streams. Further, a number of the
components exhibited opposing physiographic relationships. For example, for the second principal compo-
nent, streams closer to a USGS gauge and located at a relatively higher elevation had relatively higher com-
ponent values. For the fourth component, this relationship was reversed, as stream reaches at higher
elevations and located further away from a USGS gauge tend to have higher component values. Similar
interpretative examples could be provided for the other principal components.

The performance of the DM approach, split by principal components, is shown in Figure 8b. Compared to
splitting based on just physiographic features (Figure 8a), a more distinct clustering was evident for a few of
the new variables. This is especially true for the first principle component, for which a larger component
score generally corresponded with higher performance of the DM approach. While the other principal com-
ponents did not exhibit as large of a discrepancy, the opposing physiographic relationships within each of
their principal components, as noted above, suggested that application of a Logit Boosted Random Forest
would enable effective classification.

To understand why Random Forests were considered as an appropriate next step, consider an example vari-
able with a range of 0–1. Class 1 may have values of less than 0.25 or greater than 0.75, whereas class 2
may have a range of 0.25–0.75. The mean of the two classes would be indistinguishable, but the variance
would be different. Therefore, one may conclude that this variable is not very useful for prediction. How-
ever, placing two binary splits on that data (at 0.25 and 0.75) will yield a very strong classifier. Now, if one
considers six variables in a high-dimensional space, finding similar split points through visual inspection
would be difficult, if not impossible. Instead, all six can be ingested into the Logit Boosted Random Forest
to leverage all potential partitions. If a variable provides no predictive power, then very few split points will
occur on that variable and the performance should not be impacted.

After applying the Logit Boosted Random Forest algorithm (Algorithm 1), cross validation reflected a 75%
accuracy in classifying whether the DM approach would work or not (Area under receiver-operator curve was
0.69). The resulting Random Forest model was then applied to all 62,000 PCA-transformed stream reaches
in Iowa. The outputs were standardized on a scale from 0 to 1, indicating the probability that our DM algo-
rithm would perform well at transforming NWM outputs to water levels. The final results are plotted for all
stream reaches in Iowa in Figure 9, where the color blue is used to denote locations at which the DM
approach is expected to perform well. It is important to note that this map covers many more streams than

Table 1
Principal Components Resulting from Applying PCA to Features of 62,000 Streams Across the Entire State of Iowa

Stream feature Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

r53:16 r51:09 r50:86 r50:77 r50:08 r50:04
Bottom width 0.534 0.140 0.185 20.041 0.693 20.423
Elevation 20.198 0.648 0.182 0.712 0.016 0.000
Manning’s roughness 20.535 20.143 20.170 0.008 0.720 0.382
Slope 20.254 20.075 0.932 20.240 20.015 0.062
Order 0.545 0.141 0.105 20.004 0.023 0.819
Proximity to USGS gage 20.165 0.717 20.157 20.659 20.012 0.003

Note. r is the singular value associated with that component whose relative magnitude indicates the amount of
variability the component explains in the data.
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are measured by the 182 level sensors. As such, it should be interpreted as a map of potential future sensor
sites. That is, placing a level sensor into any of the dark blue regions should correspond, on average, with a
higher likelihood of successfully mapping NWM outputs to water levels using our DM approach.

4. Discussion

In lieu of recalibrating or expanding the complexity of a large numerical model, there may instead be imme-
diate benefits to be gained by using sensor data to ‘‘learn’’ how larger-scale model outputs map to site-level
conditions. To start, at approximately 30 of the 180 sites, a strong flow-to-height relationship already
existed. Some of those sites were located close to USGS gages, which are assimilated into the NWM. For
instance, Site 1 (Figure 5) is located only a few hundred meters from a USGS gage. Due to direct assimila-
tion, the numerical model is likely to represent the nuanced flow dynamics more accurately at these loca-
tions, which leads to more reliable rating curves. In these instances, even a simple regression would have
sufficed to predict local water levels. Naturally, our dynamical mapping approach performed well in all of
these cases, too, since it can be generalized as a linear transformation (Ljung, 1987).

While a simple regression may work in some cases, the number of instances where it can be used is fairly
small. By comparing modeled flows from the NWM to measured water levels, our analysis demonstrated
that these mappings are often not straightforward. Given the lack of a clear one-to-one mapping, a
regression-based approach, or one that is based on simple physical equations, may not perform well
because it does not account for the temporal transformation of the input signal. As such, a major benefit of
our approach relates to its ability to make predictions when modeled values and local measurements do
not exhibit a clear point-to-point relationship. This is particularly evident in cases where site-scale dynamics
were accurately reconstructed despite the fact that large-scale NWM outputs appeared like a rapid set of
impulses (Figure 6). To this end, a dynamical mapping, parameterized through system identification, shows
promise as a general tool to transform modeled values to more accurate local predictions.

Our specific case study of the NWM reveals a number of generalizable requirements for the dynamical map-
ping to work well. Regardless of model or site-specific dynamics, the modeled values and sensor measure-
ments should generally agree in relative magnitude and timing. In other words, if the modeled flows show
an increase over a period of time, a corresponding rise in water levels should be measured as well. This
could occur irrespective of specific dynamical features. Namely, even if the modeled values appear as a set

Figure 9. Map of site performance potential across the state of Iowa, showing a spectrum of locations where the dynami-
cal mapping approach is expected to perform well in predicting local water levels from flows (blue) to those where it will
likely not perform well (red).
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of sudden impulses, they can be adequately mapped to the more continuous in situ sensor values if a suffi-
cient level of agreement exists between the two times series. In the case of a hydrologic model, when using
routing procedures like Muskingum-Cunge, particularly in headwater areas, it is not uncommon for flows to
be modeled as ‘‘flashy’’ or as a series of brief spikes. While the physical model may not be designed to
account for nuanced site-level dynamics, it may, in fact, be routing the mass of water correctly. In such
cases, our approach can be used to represent these site-level dynamics by relying on the ability of the larger
model to explain the underlying inputs. This is quite powerful, as it suggests that in many cases the site-
level complexity can be explained without changing much, if anything, about the larger underlying numeri-
cal model. Rather, it may often be possible to rely on local sensor data to explain how modeled values are
transformed to local observations.

Our classification analysis brings to bear under which conditions the DM approach may not perform well. In
fact, at over two thirds of the evaluated sites our approach did not perform well in mapping NWM flows to
local water levels, as quantified by the 50% NSE criterion. This may not necessarily be a limitation of the
actual approach, but rather an indicator that the approach will improve as the physical model becomes
more generally representative of local flows. In many cases, there was simply a general lack of temporal
agreement between the numerical model and the measured data, with many instances of false positives
and false negatives (e.g., Figure 7). There were many instances during which the NWM predicted a change
in flows, while no change in heights was ever measured. Similarly, many sensors measured storms that
were never seen in the NWM. Naturally, our approach will not work under these conditions, since it requires
changes in the inputs to be mapped to changes in outputs. Of course, our DM approach could benefit by
including additional local data (e.g., independently made rainfall measurements), but this increases its com-
plexity, increases implementation overhead, and decreases its generalizability. This would defeat the origi-
nal goal of simply relying on a publicly available physical model that someone else updates and maintains.
To that end, we expect that the performance of the DM approach will improve as the underlying physical
model is improved, which is an ongoing and promising effort within the NWM community.

A number of insights, specific to the NWM, also emerged from our performance classification. Given the
size, complexity, and collinearity of the data set, we illustrated quickly that a simple classification of perfor-
mance, based on individual physiographic features, does not provide much insight (Figure 8a). One take-
away, though not strongly consistent, appears to be that our dynamical mapping performs well on larger
streams and rivers. This should be intuitive, since the NWM would be expected to represent larger gauged
rivers more effectively than smaller upstream headwater catchments. Furthermore, Muskingum-Cunge
methods have been shown to work quite well in laboratory settings, but can introduce errors in field set-
tings that, while negligible at small scales, can have major impacts as these errors propagate (Perumal et al.,
2009; Sahoo, 2013).

While the application of PCA removed the challenge of using correlated features to explain the perfor-
mance of the DM approach, the intuitive interpretation of principal components reaches a limit quickly. To
that end, our application of Logit Boosted Random Forests allowed for the creation of a map that summa-
rizes the expected performance of our approach across all 62,000 streams in Iowa (Figure 9). This visual rep-
resentation provided an intuitive means by which to assess broader performance. As expected, our DM
approach is expected to perform well across the major rivers in the state (thicker lines in map). Given their
size, these streams are more likely to be instrumented by USGS gauges, meaning the NWM is more likely to
accurately estimate flows. Many of the remaining streams on the performance map (Figure 9) showed
roughly a 50% probability of successfully applying the dynamical mapping. Most of these were character-
ized by a midlevel stream order. These streams are likely more sensitive to local precipitation dynamics,
which may not be captured by the MRMS precipitation product used by the NWM. At finer resolutions, the
noise in the MRMS estimates may have a greater impact on the overall accuracy since feeding noisy obser-
vations into a nonlinear model may amplify errors. As water is routed through the system, the spatiotempo-
ral accuracy of the precipitation estimates likely has less of an impact as the overall volume is correct. This
suggests that improved precipitation inputs have the potential to dramatically improve the accuracy of the
NWM at higher resolutions, which should, in turn, improve the performance of our dynamical mapping.

Given its impressive extent, the NWM already shows great promise to provide high-resolution forecasts.
Increasing the resolution, parameterization, and complexity of the underlying numerical model is one way
of reaching the ultimate goal of high-resolution local forecasts. Alternatively, as our case study
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demonstrated, the existing model may already be very strong in many locations, but its outputs just have
to be mapped to site-specific features using locally available sensor data and a suitable mathematical trans-
form. In other words, outputs from NWM, though still in their early stages, can be useful in estimating
highly-local water levels even now. Nonetheless, our results may also provide a guide to help improve the
numerical model. The map in Figure 9 intuitively conveys a general assessment of the performance of the
underlying numerical model. Since the NWM is a relatively new model, it would be expected to initially per-
form well at larger scales. Even with this general trend, there are still lower-order streams on the map that
suggest the possibility of successfully applying our DM approach. These red and purple regions on the map
(0–50% chance of applying the dynamical transformation) may be of interest to modelers as locations at
which the numerical model could be improved to reduce false positive and negative forecasts. Improving
the model on these stream sections will likely also translate to better model performance on stream reaches
that share similar physiographic or PCA-transformed features.

From a water management perspective, the benefits of our DM approach may already be realizable opera-
tionally. This is true for a number of already existing sensor locations, as well as potentially other similar
streams on the map in Figure 9. A simple web-service application (Wong & Kerkez, 2016) could be written
to extract NWM outputs and fuse them with local sensor data. If the dynamical mapping is reliable at this
location, the site would benefit immediately from a localized water level forecast. Alternatively, if local
measurements are not available, the map in Figure 9 could be used to deploy low-cost sensors at locations
that maximize the probability of using the DM approach. Given the general structure and input data of the
NWM across the United States, we also anticipate that similar maps could be created for regions outside of
Iowa by relying on the results from this study. For the approach to become operational, a moving training
window may be needed to account for varying hydrologic regimes or seasons (e.g., spring vs summer). The
effect of hydrological regimes was not evaluated as part of our case study due to the time required to log
data from the NWM and level sensors. Fortunately, the training window needed for fitting the DM model is
quite small compared to that of a rating curve, which will allow for effects of seasonality to be evaluated in
the future.

5. Conclusions

In this paper, we provided a means by which outputs from a large-scale model can be fused with local sen-
sor data to provide site-level forecasts. The novelty of the approach relies on using the outputs of the physi-
cal models as the inputs into a dynamical mapping that learns what a specific sensor will measure. This is
quite powerful, as it does not rely on the modification of the actual physical model or the direct assimilation
of the sensor data, both of which would be infeasible for smaller communities. Instead, the approach is gen-
eral, in that it can be directly repeated for any combination of sensor-model pairs. As such, the approach
developed here could be applied directly without any modification of our open-source code. While the
approach will not work under all conditions, it may already provide an immediate benefit to a large number
of locations.

In the age of Big Data in Hydrology, we contend that even models can be viewed as just one of many
streams of data that will enable decision making. Overall, the approach of dynamically mapping outputs
form large models to local sites may work for a number of models beyond just the NWM. The ability to use
the approach with short data histories (e.g., only a few months of training data) makes it appealing for
urban applications, where land use changes may occur rapidly and system re-identification may need to
occur frequently. In such cases, our approach could be combined with popular urban water models, such as
the storm water management model (SWMM) to provide improved forecasts of urban flooding or sewer
flows. More examples can be given, but we anticipate that the our data-driven approach could be general-
ized for many hydrologic and hydraulic models.

Appendix A: Principal Component Analysis

The goal of PCA is to find the weighting vectors, or principal components, that yield linear combinations of
the original feature space. We define X 2 Rn3d as the data matrix with n rows of observations and d fea-
tures, which in our case is populated with the physiographic features of the nearly 62,000 stream reaches in
Iowa. Before PCA is applied, all input features also need to be standardized in magnitude to reduce impacts
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of overweighting some features over others (Hastie et al., 2001). By standardizing across each variable, one
can consider the relative impacts of each more effectively.

To find the first principal component, w1, we find a unit vector that maximizes the variance of X, that is:

w15 arg max
jjwjj51

jjXwjj25arg max
wT XT Xw

wT w
(A1)

This is a Rayleigh quotient (Horn & Johnson, 1990), and therefore the solution to this maximization problem
is the largest eigenvector (i.e., the eigenvector of the largest eigenvalue) of XT X. Each successive principal
component is the next largest eigenvector of XT X. Therefore, rather than solving iteratively for each princi-
pal component, it is possible to consider the singular value decomposition (equation (A2)) of the data
matrix X:

X5URWT (A2)

XT X5WRUT URWT 5WR2WT (A3)

As such, the eigenvectors of XT X are the rows of W, meaning the principal components are the right singu-
lar vectors of our data matrix. Therefore, to place our data in an orthogonal feature space such that all the
variables are decorrelated, the new data matrix, T, is simply:

T5XW (A4)

Using this matrix will lead to a more stable classification procedure, will reduce the likelihood of over fitting,
and will enable more complex interactions between features to be captured (Hastie et al., 2001).
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