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Abstract13

There has been an explosive growth in the ability to model large water systems. While14

these models are effective at routing water across massive scales, they do not yet fore-15

cast the street-level information desired by local decision makers. Simultaneously, the in-16

creasing affordability of sensors has made it possible for even small communities to mea-17

sure the state of their watersheds. However, these real-time measurements are often not18

attached to a predictive model, thus making them less useful for applications like flood19

warnings. In this paper we ask the question: how can highly localized forecasts be gen-20

erated by fusing site-scale sensor measurements with outputs from large-scale models?21

Rather than altering the larger physical model, our approach uses the outputs of the un-22

modified model as the inputs to a dynamical system. To evaluate the approach, a case23

study is carried out across the US state of Iowa using publicly-available measurements24

from over 180 water level sensors and outputs from the National Water Model. The ap-25

proach performs well across a third of the studied sites, as quantified by a high normalized26

root mean squared error. A performance classification is carried out based on Principal27

Component Analysis and Random Forests. We discuss how these results will enable stake-28

holders with local measurements to quickly benefit from large-scale models without need-29

ing to run or modify the models themselves. The results are also placed into a broader30

sensor-placement context to provide guidance on how investments into local measurements31

can be made to maximize predictive benefits.32

1 Introduction33

As computational power has grown, so has the ability of hydrologists to model com-34

plex hydraulic and hydrologic systems [Blöschl et al., 2014]. No longer limited to the35

study of single stream reaches or small watersheds, increasing access to supercomputers36

and graphical processing units (GPUs) is now enabling a new generation of massive mod-37

els, some of which would have seemed infeasible even recently. Presently, one exciting38

example is the United States’ National Water Model (NWM) which provides forecasts for39

nearly 2.7 million stream and river reaches across the continental US [Office of Water Pre-40

diction, 2017]. While very impressive in scale, the performance of the model across most41

of these locations has still to be evaluated. Beyond numerical modeling, a variety of stud-42

ies have also highlighted the potential of big data in hydrology, wherein large quantities of43

data are analyzed to provide scientific insight and improve forecasting performance (e.g.44
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Karandish and Šimůnek [2016]; Tiwari and Adamowski [2015]; Chang et al. [2017]; Demir45

and Krajewski [2013]; Gilles et al. [2012]). As such, there is now an unprecedented oppor-46

tunity to begin leveraging advances in computing and data science to explore a variety of47

large and complex water challenges.48

Advances in computation have also been accompanied by improved access to real-49

time measurements. Wireless sensor networks have become much more affordable [Jin50

et al., 2010] and cloud-based services are now readily available, even to small research51

groups (e.g. Amazon Web Services, Microsoft Azure, Google Cloud etc.). The open source52

hardware movement (e.g. Wong and Kerkez [2016]; Gilles et al. [2012]; Bitella et al. [2014];53

Bartos et al. [2017]) is empowering many technological non-experts, such as decision54

makers and small research groups, who can now deploy their own sensors to measure55

a variety of water parameters in near real-time. This is allowing important, but limited,56

sources of data, such as USGS gauges, to be supplemented by a variety of smaller and57

stakeholder-relevant measurements.58

These advances still do not appear to be ushering in new wave of water manage-59

ment. At the level of individual communities or cities, water managers seek answers to60

very practical and neighborhood-specific questions. For example, forecasting the water61

level at specific bridges or highway overpasses can help trigger flood alerts or dispatch62

emergency response personnel. Given their spatial extent and therefore low availability of63

relevant data, such as bathymetry and forcing data, large numerical models may not al-64

ways be accurate at high resolutions, meaning that their forecasts may not be immediately65

useful to decision makers. Additionally, units and variables that are important to model-66

ers (e.g. flow) may not be the units and variables that decision makers care about (e.g.67

water level under a bridge). Alternatively, sensor observation alone may only go so far.68

While making a direct measurement at any specific site may provide real-time informa-69

tion to decision makers, it does not provide a forecast or warning without a model. There70

is, however, an opportunity to fuse the forecasting benefits of large-scale models with the71

site-level accuracy offered by local measurements.72

In this paper we ask the question: how can highly localized forecasts be generated73

by fusing site-scale sensor measurements with outputs from larger-scale physical models?74

Instead of increasing the complexity of the physical model or re-calibrating it to match the75

local measurement, our approach leaves the physical model unchanged and uses a dynam-76
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ical systems transformation to map the large-scale model outputs to site-scale conditions.77

To evaluate this approach, we carry out a case study in which water levels, as measured78

by a sensor, are predicted from modeled flows made by a publicly-available and large-79

scale physical model. This will illustrate how city managers and other stakeholders, who80

have access to local measurements, can quickly benefit from large-scale models without81

needing to run or modify the models themselves. Specifically, we apply this methodology82

to the outputs of the US National Water Model and a publicly-available data set of hourly83

water level observations, made by over 180 sensors across the entire US state of Iowa. Be-84

yond evaluating predictive performance, a Random Forest-based classification analysis is85

also carried out to evaluate under which conditions the approach is expected to perform86

well. The paper concludes with a discussion on the generalizability of the approach and87

places the findings into into a broader context of making big models and data useful to88

stakeholders.89

1.1 Background90

To illustrate the challenges that may be faced when translating macro-modeled out-91

puts to high-resolution local conditions, we begin by using the outputs from the US Na-92

tional Water Model (NWM) to predict water levels at sites of interest. The desire to pre-93

dict water levels, rather than flow, is motivated by two factors. Firstly, water levels are94

necessary for local flood inundation mapping [Gilles et al., 2012]. Secondly, and more95

importantly, local measurements of flow are expensive and rarely available. Water level96

sensors, on the other hand, are relatively inexpensive to deploy and maintain, making them97

a more realistically available data source [Jin et al., 2010].98

Given its spatial extent, the NWM assumes trapezoidal stream cross sections, which99

are derived from the National Hydrography Dataset [US Geological Survey, 2017]. A100

mapping of flows to heights for specific sites may thus not be directly evident, since each101

location will have its own nuanced topographic and hydraulic properties. As such, there102

is a motivation to discover how the outputs of this large numerical model can be trans-103

lated to site-specific parameters that are not directly modeled. If a clear relationship can104

be established between the modeled flows and measured heights for any given location,105

the forecasts of the NWM could then be used to provide authorities with precise localized106

flood inundation maps. This would allow local water managers, who have access to their107
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own measurements and knowledge of local inundation elevations, to benefit directly from108

the expertise embedded in the larger NWM.109

Traditionally, rating curves have been a primary tool for deriving stream flows from110

stage measurements and vice-versa [Herschy, 1999]. Reliable rating curves require a rel-111

atively long history of stage and discharge measurements. Measurement-constraint alter-112

natives have been proposed (e.g. Damangir and Abedini [2014], Aricò et al. [2010]), but113

often only work under limited conditions. Secondly, even when a long history of obser-114

vations is available, rating curves can have large uncertainties, particularly related to het-115

eroscedasticity [Petersen-Overlier, 2004], extrapolation outside of the history [Kuczera,116

1996], hysteresis [Perumal et al., 2004], measurement error [Westerberg et al., 2011], and117

backwater effects [Hidayat et al., 2011]. Most importantly, however, in the context of our118

proposed problem, the flows are modeled rather than measured, which poses additional119

challenges when attempting to estimate site-specific water levels. Indeed, the NWM’s util-120

ity in predicting water levels has recently been studied by other researchers on smaller121

scales. For instance, Javaheri et al. [2018] used an Ensemble Kalman Filter in conjunction122

with the Height Above Nearest Drainage (HAND) method to predict water levels from the123

NWM. This methodology should work well for locations where a rating curve can be de-124

veloped using the NWM flow estimates.125

To illustrate the challenge of deriving local height estimates from modeled flows,126

we compare the output of the NWM to two independent water level measurements made127

on small bridges in Iowa (Figure 1). For the first example (Figure 1a), it is qualitatively128

apparent that there is a strong relationship between the modeled flows and the measured129

heights. This is supported by a dynamical agreement between the two time series (Figure130

1c), which align well temporally, with clear agreement of the hydrograph peaks, as well131

as a generally good agreement on the rates of the rising and falling limbs. This provides a132

reliable rating curve and makes a strong case that the flow forecasts of the model could be133

used to predict future heights. On the other hand, for the second example (Figure 1b), the134

relationship between modeled flows and measured height is not nearly as clear. While the135

presence of a rain storm is evident in each time series (Figure 1d), it is unclear how the136

dynamics of each variable are correlated. The modeled flow is temporally coarse and does137

not match the dynamics of the measured water level. Without a clear rating curve, it may138

seem difficult to establish a relationship between modeled forecasts and measured heights,139

which may limit the apparent utility of the modeled forecast to this specific site.140
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Figure 1. Measured water levels made by bridge sensors and modeled flows derived from the NWM for

two example sites in the state of Iowa. The first example demonstrates a relatively strong relationship between

modeled flows and measured water levels, while the second site does not.

141

142

143

When modeled flows do not directly align with local observations, one alternative144

is to directly assimilate the local measurements into the bigger model, thus improving its145

accuracy. Data assimilation is an established field in the hydrologic modeling community,146

relying on methods such as the Kalman Filter [Beck, 1987] or Particle Filter [Moradkhani147

et al., 2005] to guide the model states toward the locally-measured values. In fact, the cur-148

rent version of the NWM performs a computationally low-cost form of data assimilation149

called Newtonian Nudging [Hoke and Anthes, 1976], whereby federal streamflow measure-150

ments from the United States Geological Survey (USGS) are used to "nudge" the model151

toward observed values. While the high quality and reliability of USGS gauges has been152

verified on many occasions (e.g. U. S. Geological Survey and Koltun [2015], U. S. Geolog-153

ical Survey and Southard [2013]), the number of gauges is limited compared to the scale154

and resolution of the NWM. As such, the NWM will benefit from assimilating alternative155

sources of information into its operation.156

Expanding the coverage of the measurement network used by the NWM, such as157

measurements made by individual communities, poses a number of practical challenges158
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in the context of data assimilation. Firstly, given the sheer number of sensor manufactur-159

ers, deployment standards, and maintenance schedules, some sources of local data may be160

more reliable than others. Since measurement errors can propagate into the bigger model,161

assimilating local data thus poses questions regarding accuracy. Data will need to be ap-162

proved and quality checks will be needed to ensure that any faulty sensors do not damage163

the model’s integrity. Computational capacity will also need to be increased to ensure a164

growing number of assimilation points can be integrated. Given the sheer diversity of lo-165

cal water measurements and logistics associated with large-scale data assimilation, it is166

unclear when or if all of them will ever be ingested into the NWM. For those local wa-167

ter officials who do trust their own measurements, an alternative approach may still allow168

them to benefit from the existing forecasts offered by the NWM.169

1.2 Approach and Contributions170

Motivated by the challenges posed in the prior section, the major contribution of171

this paper is a computational approach by which independently-measured observations are172

combined with the output of a larger physical or numerical model to provide a dynamical173

forecast of local site conditions. In other words, historical model forecasts and indepen-174

dent historical measurements will be used to derive high-resolution and dynamical fore-175

casts for a site of interest. The output will be an automated tool chain, which allows end-176

users to benefit from the expertise embedded in a large model without needing to update177

the model itself (Figure 2). Specifically, the approach will be evaluated by fusing outputs178

of the NWM and a large publicly-accessible stream sensor network in the state of Iowa179

[Gilles et al., 2012]. Since these measurements have not been used in the NWM, they pro-180

vide an independent data set for the evaluation of the approach. Practically, a successful181

demonstration of the approach will permit water managers, who may be inclined to invest182

into local measurements, to benefit directly from forecasts made by the NWM.183

Since a one-to-one stage-discharge mapping is not possible for all sites (Figure 1b)188

our approach is based on dynamical systems theory [Luenberger, 1979]. Here, we treat189

the output of the physical model as the input to a dynamical system, with the idea that190

while the physical model may capture the general timing and magnitude of impulses, these191

outputs need to be mapped through a dynamical transfer function, to achieve agreement192

with measured values. Effectively, the approach will learn the response of a dynamical193

system, whose input is the physical model and output is the measured stage, and use it to194
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Figure 2. Conceptual diagram of dynamical mapping methodology. Historical measurements made by a

sensor are used to "learn" a dynamical mapping between modeled flows and measured water levels. Once the

parameters of the mapping are learned, water levels can then be predicted by dynamically transforming the

modeled flows.
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transform model forecasts to water level estimates. At a low-order level, this approach is195

analogous to learning a unit hydrograph [Nash, 1957], which have been used to map rain-196

fall to flows (Yang and Han [2006], Cluckie and Harpin [1982]). However, simple single-197

order unit hydrographs are known to work mostly for smaller scale catchments [Damangir198

and Abedini, 2014]. Our approach addresses this limitation by expanding the order of the199

underlying system to be able to reflect more nuanced site-specific conditions.200

The first part of this paper presents the theory, implementation and application of201

this approach to a large set of over 180 stream height observations. Secondly, we conduct202

a performance analysis which evaluates under which conditions the proposed approach203

will perform well. Given the sheer number of sites, each of which has a large number of204

physiographic features, a simple classification approach will not be adequate. Therefore,205

two analytical tools (principal component analysis and random forests) are used to deter-206

mine which features explain when our approach can be used to reliably predict local con-207

ditions. The results of this analysis will provide a general sensor placement guide to help208

maximize the potential of mapping NWM output to local sites.209

2 Methods210

2.1 System Identification Theory211

We frame the problem of mapping a physical model output u(t) to a measured sen-212

sor value y(t) as a transfer function operation, which can be represented in the time do-213
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main as a convolution with an impulse function h(t) [Luenberger, 1979]:214

y(t) =
∫ ∞

τ=0
h(τ)u(t − τ)dτ. (1)215

In our case study, the physical model output u(t) represents the flow modeled by the216

NWM, while y(t) are the height measurements made by a water level sensor at some lo-217

cation. The transfer function h(t) can be converted to its frequency domain representation218

H(S) using a Laplace transform:219

Y (s) = H(s)U(s)220

H(s) =
Y (s)
U(s)

221

=
b0sn + b1sn−1 + · · · + bn−1s + bn
sn + a1sn−1 + · · · + an−1s + an

(2)222

where (a0, a1, · · · , an) and (b0, b1, · · · , bn) are the nth order coefficients of the transfer223

function. More generally, the roots of the numerator’s polynomial are known as the ze-224

ros and the roots of the denominator are known as the poles of the system. Since transfer225

functions are equivalent to systems of linear differential equations, an increase in the order226

of the system reflects the ability to represent more nuanced dynamics. Given a system or-227

der (i.e. number of poles and zeros), the goal is to learn the transfer function coefficients228

from prior measurement and modeled values, after which Equation 1 can be used to trans-229

form any future modeled flows to their corresponding heights. In the dynamical systems230

literature, this problem is broadly referred to as System Identification [Luenberger, 1979].231

A common approach to learning the parameter θ := [a1, · · · , an, b0, · · · , bn] of the model232

relies on the formulation233

y(t) = ŷ(t, u; θ) + ε(t, θ) (3)234

where the measured output is a function of the predicted output ŷ given parameter235

set θ, which is corrupted by a noise term ε(t, θ). Finding an estimate of the parameters θ̂236

can be framed as an optimization problem that seeks to minimize the difference between237

modeled and observed values. Here we use the mean squared error as the loss function:238

θ̂(y, u) = arg min
θ
| |y − ŷ| |22239

= arg min
θ

n∑
t=1
(y(t) − ŷ(t, u; θ))2 (4)240
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Our approach uses a Gauss-Newton method [Bjorck, 1996] to iteratively approach241

the minimum through the use of a gradient-based solver:242

θ(k+1) = θ(k) − (JTJ)−1JT ε(θ(k)) (5)243

where ε(θ(k)) = y − ŷ is a vector of the errors at iteration k, and J is the Jacobian matrix:244

J =

©­­­­­­«

∂ε1(θ
(k))

∂θ
(k)
1

· · ·
∂ε1(θ

(k))

∂θ
(k)
n

...
. . .

...

∂εm(θ
(k))

∂θ
(k)
1

· · ·
∂εm(θ

(k))

∂θ
(k)
n

ª®®®®®®¬
(6)245

The Jacobian is a matrix of all the first-order partial derivatives of the error. There-246

fore, at each iteration, the parameterization of the transfer function model (θ̂ = [a1, · · · , an, b0, · · · , bn])247

yields an estimated signal ŷ that approaches the true signal y. Once θ is learned using248

time series of the inputs and outputs, forecasts can be made using Equation 1. A visual249

summary of the approach is provided in Figure 2.250

2.2 Data sources and implementation251

To promote transparency, reproducibility, and broader adoption by others, the authors252

have made all the formatted data, source code, and supplementary information available253

freely as an open source implementation on https://github.com/kLabUM/NWM/.254

The approach was evaluated across two large data sources. These included the out-255

puts of the US National Water Model, which served as the inputs u(t) to our method. The256

second data set included 182 independently-measured (not assimilated into or used in the257

calibration of the NWM) streamgages across the state of Iowa, which represented the sen-258

sor measurements y(t). The objective was to compare how well local water depths could259

be predicted by dynamically mapping the flows estimated flows by the NWM. Along with260

a summary of performance, an extensive analysis was also carried out using Principal261

Component Analysis [Ouyang, 2005] and Logit Boosted Random Forests [Freund et al.,262

1996] to classify under which conditions the proposed approach may perform reliably.263

2.2.1 Data Source: The National Water Model264

The National Water Model (NWM) became operational in the fall of 2016, and is265

continuing to be developed by the Office of Water Prediction at NOAA. The NWM es-266

timates flow for approximately 2.7 million stream reaches across the continental United267
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States. At its core, the NWM relies on large-scale Muskingum-Cunge routing, which is268

coupled with a gridded subsurface flow routing scheme [Office of Water Prediction, 2017].269

The model is forced by rainfall from the Multi-Radar/Multi-Sensor System (MRMS) [Na-270

tional Severe Storms Laboratory, 2017] as well as a suite of model outputs ingested by271

WRF-Hydro [Office of Water Prediction, 2017]. Land surface processes, such as snowmelt,272

evapotranspiration, infiltration, and groudwater transfer, are simulated using Noah-MP [Of-273

fice of Water Prediction, 2017]. Additionally, the NWM assimilates measurements from274

the national network of USGS streamgages. Given the continental scale of the model, a275

major appeal is that it routes flows from far away regions and covers locales that are often276

not captured by any other models. This should make it attractive for smaller communities277

seeking flash flood or streamflow forecasts but who may not have their own modeling re-278

sources. The NWM outputs hourly nowcasts, as well as 1-18 hour short-term forecasts, 0-279

10 days medium-term forecasts, and 0-30 days long-term forecasts [Office of Water Predic-280

tion, 2017]. Presently, modeled flows from the previous two days are freely available for281

download in NetCDF format on the National Centers for Environmental Prediction server282

(ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nwm). The NWM also provides an Analysis283

and Assimilation product which gives a three-hour hindcast. Because the NWM’s fore-284

casting ability is constantly being updated and improved, this paper uses this product to285

provide an upper bound baseline for our dynamical mapping approach.286

2.2.2 Data Source: The Iowa Flood Information System Sensors287

The Iowa Flood Center (IFC) was established in 2008 in response to the increas-288

ing frequency of flooding in the state [Gilles et al., 2012]. One of their major initiatives289

was establishing the Iowa Flood Information System (IFIS), which provides real-time290

stream conditions and flood warning alerts [Demir and Krajewski, 2013; Iowa Flood Cen-291

ter, 2017]. IFIS ingests data from approximately 500 stream sensors, of which half are292

managed by the USGS and half are managed by the IFC (Figure 3). IFC gauges are pri-293

marily composed of bridge-mounted ultrasonic water level sensors, which transmit sub-294

hourly measurements across a wireless connection. Historical depth measurements are295

freely available on the IFIS website across a rolling 30 day window [Iowa Flood Center,296

2017]. In this paper, we focus on the 220 bridge-mounted sensors that the IFC manages,297

since these sensors were not used in the calibration of the NWM. As such, they provide298

an independent validation data set for the proposed method.299
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Figure 3. Visualization of the nearly 62,000 streams modeled by the NWM in the state of Iowa. USGS

gages, which are assimilated into the NWM, are denoted as cyan circles. Locations of the IFIS water level

sensors are denoted as yellow circles, with diamonds denoting the three example sites used in this paper.

300

301

302

2.2.3 Implementation303

Outputs from NWM and IFIS gauge measurements were recorded using an auto-304

mated Python script on an hourly basis from October 2016 through May 2017 across305

the state of Iowa. IFIS gauge readings were logged in real-time as measurements became306

available. Out of the 220 candidate sites, 182 were co-located with outputs of the NWM307

and deemed to have a continuous record. For small data gaps (few missing points), lin-308

ear interpolation was applied to create continuous time series. The NWM and IFIS time-309

series were linked by location, thereby providing individual model-measurement pairs that310

could be used in our dynamical mapping approach. Data from October to December were311

used to train our system identification approach, while data from March to May were used312

for validation. To reduce potential impacts of wintertime conditions (freezing, snow, and313

snowmelt), which may have influenced NWM outputs and gauge maintenance, data across314

January and February were not used in the analysis. Additionally, stationary of the phys-315

iographic features was assumed (e.g. it was assumed that erosion does not change stream316

width or roughness over the study period).317
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Prior to applying the system identification procedure, sensor data were linearly de-318

trended to remove the impact of base flows, which was necessary to ensure that the trans-319

fer functions would decay to zero following a storm event. Since the complexity of the320

dynamical mapping was not known a priori, an ensemble of 14 different transfer functions321

was learned using the training data, with each mapping having varying numbers of poles322

and zeros (see Equation 2). These included all possible pole-zero pairings for first through323

fourth order systems ([0 poles, 1 zero],[1 pole, 1 zero],[0 poles, 2 zeros],...,[4 poles, 4 ze-324

ros]). This allowed for the average and upper-bound performance of the approach to be325

compared across mappings of varying complexities. The final software toolchain was im-326

plemented in MATLAB, using an implementation of the System Identification procedures327

from Ljung [1987]. For comparison, a standard regression rating curve procedure [U.S.328

Geological Survey et al., 2010] was also implemented, whereby prior stage-discharge re-329

lationships (October-December) were used to predict future values (March-May). The330

normalized root mean squared error (nRMSE), which is equivalent to the Nash Sutcliffe331

Efficiency (NSE) [Nash and Sutcliffe, 1970], was used to evaluate performance:332

E = 100
(
1 −
||y − ŷ | |

| |y − ȳ | |

)
(7)333

where E is the NSE in percent, y is the vector of observed water level, ŷ is the vector334

of predicted water level, ȳ is the mean of the observed water level , and | | · | | is the Eu-335

clidean norm [Deza and Deza, 2009]. For interpretation, a value of 100% would imply a336

perfect prediction of water levels, a value of 0% would imply a prediction that is as good337

as taking the historical average of water levels, and a value less than 0% indicates a per-338

formance more inadequate than taking the average. An NSE of 50% or above is generally339

considered the lower bound for a good predictor [Krause et al., 2005], which is the thresh-340

old we adopted in this paper. The analysis considered the NSE of both the best ensemble341

member and the ensemble average.342

2.3 Performance Classification343

One major goal of this paper is to investigate under which conditions the proposed344

dynamical mapping approach will work well. Not all locations may benefit directly from345

our approach, even if investments into local sensors are made. Evaluating which features346

explain this behavior will be crucial to informing where investments into sensors should347

be made to maximally leverage the NWM. To classify the performance of our approach348
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under various physiographic conditions, we used a combination of Principal Component349

Analysis [Hastie et al., 2001] and Random Forest Classifiers [Freund et al., 1996].350

The NWM is built on a number of distinct physiographic features from the National351

Hydrography Dataset (NHD) [US Geological Survey, 2017]. These include the channel352

bottom width, elevation, Manning’s roughness, channel slope, and Strahler stream order353

[Strahler, 1957]. Some features, such as side slope, were available, but were were uniform354

throughout the study area and thus deemed uninformative. Some features served as prox-355

ies for others that would have been too labor intensive to derive (e.g. stream order and356

relative drainage area).We also calculated an additional feature, which captures the dis-357

tance of a given water level sensor to the nearest USGS gauge. This will indicate whether358

our approach performs better near official NWM data assimilation locations. Overall, this359

provided six features that may be used to explain the performance of our dynamical map-360

ping approach. For example, intuition would suggest that our approach would work well361

on larger rivers, where the NWM may be able to capture flow dynamics more accurately362

than in smaller, ungauged basins. This, however, has to be confirmed, especially given the363

array of other complex features that may explain performance.364

Since some of the features analyzed in this study (e.g. stream order vs. bottom365

width) may exhibit collinearity or multicollinearity, they must be orthogonalized to max-366

imize the ability to classify around them. Before the performance is classified, our ap-367

proach used Principal Component Analysis (PCA) to shift the six dimensional feature368

space into an orthogonal subspace [Hastie et al., 2001]. PCA changes the coordinates of369

the features, with the objective of finding a new set of features that are linear combina-370

tions of the original features. PCA initially determines the direction in which the greatest371

amount of variance lies, defines the first axis to align with that direction, and then iter-372

atively re-orients subsequent axes such that each axis is aligned in the direction of next373

greatest variance. In doing so, the features are de-correlated and combined into composite374

principal axes that should maximize the ability to discover higher-dimensional hyperplanes375

that can be used during classification. In consideration of succinctness, a theoretical dis-376

cussion of our PCA implementation is provided in Appendix A: .377

Once the features that describe all of the 182 sensor locations were PCA-transformed,378

each of the sites was labeled based on performance of the dynamical mapping. The pre-379

dictive performance was labeled in a binary sense, whereby sites with a maximum NSE380
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of 50% or greater were deemed to perform well (label 1), while any remaining sites were381

labeled as inadequate (label 0). The performance classification was then implemented as382

a supervised learning procedure, where the final classification seeks to predict how well383

the dynamical mapping approach will perform for a given set of features. While various384

classification algorithms exist, our approach used a statistical learning tool known as Logit385

Boosted Random Forests, or Adaboost with trees [Freund et al., 1996].386

Adaboost generates a large number of "weak learners" [Hastie et al., 2001] in the387

form of small classification trees. A weak learner is a model that is only slightly better388

than randomly guessing [Zhou, 2012]. A classification tree partitions a feature space us-389

ing a series of binary splits, resulting in a large number of labeled bins. For example, a390

simple tree may categorize the performance of our dynamical approach as either "high"391

or "low". These labels are assigned to training data, as described above. The tree may392

be trained to classify based on decision variables, such as stream order or elevation. The393

training data are then placed into bins, or leaves. The label of each bin is assigned based394

on majority voting, or how many "high" and "low" labels are inside each bin. The deci-395

sion variables are used to improve binning. For example, all of the data may first be split396

up by elevation to create two bins. These bins may then be split further by stream order397

to reduce the label variance inside each bin. In this example, this would create only four398

bins. The low number of bins, and thus low complexity, of such a classifier is the reason399

why it is called a weak learner. Given their relative simplicity, these trees tend to have400

very low bias but also very high variance [Hastie et al., 2001]. This can be addressed by401

generating an ensemble, or a forest, of many trees. Going a step further, we seek to en-402

sure that each tree is developed to provide as much information gain as possible. In Logit403

Boosted Random Forests, each data entry (i.e. labeled row of our data matrix T) is given404

an initial weight wi . Then, as new trees are learned, the data entries are re-weighted so405

as to emphasize where the model is failing. That is, the final algorithm (Algorithm 1)406

ensures that misclassified data are stressed more in the learning of the next tree. In this407

implementation, t is the input data (i.e. a row of T), y is the observed data (1 for a site408

labeled as well-performing site, −1 for a bad site), N is the number of observations, M is409

the number of trees, pm is the probability output from tree m, and H(z) := 1[z>0] is the410

Heaviside step function [Hastie et al., 2001]. The M classification trees are learned in an411

iterative fashion.412
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1 Initialize wi =
1
N , i = 1, 2, ..., N;

2 for m=1,2,...,M do

3 Learn classification tree that outputs pm(ti) = Pw(y = 1|ti) ∈ [0, 1] with weights wi;

4 Set fm(ti) ←
1
2 log pm(ti)

1−pm(ti)
;

5 Set wi ← wi exp[−yi fm(ti)], i = 1, 2, ..., N , and renormalize such that
∑

i wi = 1;

6 end

7 Output classifier as H[
∑M

m=1 fm(t)]

Algorithm 1: Logit Boosted Random Forest

The logit function (line 4 of the algorithm) is used to re-weight the inputs (line413

5). Because of the form of the logit function, much larger values exist closer to 0 and414

1. The result is that if the data entry ti is classified properly and with high probability,415

then exp[−yi fm(ti)] in line 5 will trend towards zero. If it is classified improperly with416

high probability, then this term will approach infinity. This ensures the re-weighting will417

target poorly classified data on the next iteration and that properly classified data will be418

largely ignored. After learning all M models, any new input t can be provided and, when419

summing over all fm(x) trees, a prediction can be made for whether a site will be a good420

candidate for our dynamical mapping approach. A good site will be one that sums to be421

greater than 0 and a bad site will sum to be less.422

3 Results423

3.1 Dynamical Mapping Performance424

After training and applying the dynamical mapping (DM) procedure across all 182425

sensor locations, predictions at approximately one-third of the sites (55/182) exceeded the426

desired 50% NSE threshold, while performance across 90 sites exhibited an NSE of at427

least 40%. The overall performance of the approach is summarized in Figure 4, showing428

that the DM procedure consistently performed better than a simple rating curve approach.429

Indeed, in all but 8 cases, water levels were predicted more accurately using the proposed430

DM approach compared to a regression between measured levels and NWM-modeled431

flows. The order (i.e. the number of poles and zeros) of the transfer functions that had the432

best performance was not consistent site-to-site. The order is analogous to the complexity433

of the transfer function, where higher order systems are capable of describing complex dy-434
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namics. However, complexity of the model in the frequency domain does not necessarily435

lead to improved results in the time domain since the accuracy depends on the amount of436

information that can be extracted from the system [Rojas et al., 2010]. Here, information437

is tied to the number of frequencies present in the signal. Put simply, if the dynamics of438

the measured water level and NWM can be described by a small frequency range (which439

may be unique to each site), then making the transfer function more complex will lead to440

improvements in performance since the additional coefficients will be relatively small in441

magnitude. In many cases, higher-order poles and zeroes may actually cancel, thus effec-442

tively providing an implicitly low-order model. As such, higher complexity may not nec-443

essarily improve model performance. There were no site-specific physiographic features,444

which could be used to determine what this upper bound was in our case study.445
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Figure 4. Histograms of prediction performance (nRMSE) evaluated across 182 sensor locations. A com-

parison is made between the best dynamical mapping (black), ensemble of dynamical mappings (gray), and a

simple regression-based rating curve approach (white)

446

447

448

Given the sheer number of sites used in the analysis, this section will evaluate three449

locations in detail, while the remainder are plotted in the supplementary information. The450

three sites were selected to reflect three types of performance, as measured by NSE. The451

first is a location for which our DM approach provides a strong predictive performance,452

in large part due to a high correlation between the NWM predicted discharge and the ob-453

served stage. The second site exhibits strong predictive performance, despite the NWM454
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providing coarse outputs. The final example illustrates a case in which there is a limited455

ability to predict observed heights from flows.456

The first example demonstrates a case of strong predictive performance (Figure457

5). The left column of the figure displays the training data, which includes the NWM458

model outputs and measured water levels for the Fall of 2016. The right column shows459

the NWM outputs and measured water levels for the Spring of 2017, as well as the wa-460

ter level predictions made by our DM approach. Specifically, the bottom right panel is the461

average prediction made by our approach across all 14 transfer functions (red line, with462

gray area indicating variability within the ensemble) compared to the measured water lev-463

els (blue line). Overall, our DM procedure performed well at this site, with an average464

NSE close to 80%. Predictions of water levels at this site using a simpler regression-based465

rating curve performed nearly as well, with an average NSE of 76%.466
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Figure 5. Dynamically mapping modeled flows to local water levels on site 1 (see Figure 3). Data used

to "learn" the mapping parameters are plotted in the left column, while the resulting mapping is applied to

future data in the right column. For this example site, the dynamical mapping performs relatively well (NSE

of 80%). A simple regression-based rating curve approach (not plotted) performs strongly as well, with an

NSE of 76%.
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The second example (Figure 6) illustrates a case where a simple regression approach472

did not perform well (NSE of -4%). The modeled flows were quite impulsive and not rep-473

resentative of observed dynamics. However, when our DM approach was used, the results474

improved significantly, with an average NSE of over 50%.475
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Figure 6. Dynamically mapping modeled flows to local water levels on site 2, following convention used in

Figure 5. For this example site, the dynamical mapping performs relatively well (54% NSE), while a simple

regression-based rating curve approach does not (−4% NSE).

476

477

478

Finally, the third example (Figure 7) illustrates a location at which no good predic-479

tive performance can be reached, regardless of the approach used. As evident in the fig-480

ure, the measurements reflected a slowly changing system, while the NWM showed a se-481

ries of rapid impulses. An average NSE of -145% was obtained using our DM approach,482

with only one of the 14 ensembled transfer functions showing a slightly favorable NSE483

(49%). The rating curve method was even more ineffective, with an NSE of -14,900%.484

Further, the rating curve method predicted water levels well outside the realm of possibil-485

ity given its linear extrapolation (close to 6km water height).486
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Figure 7. Dynamically mapping modeled flows to local water levels on site 3, following convention in

Figure 5. For this example site, neither the dynamical mapping (0% NSE) nor regression-based rating curve

(NSE of −14, 900%) perform well.
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488

489

3.2 Performance Classification490

The specific performance of the DM approach across sites 1-3 could be loosely de-491

scribed by channel width, the stream order, and the distance to a USGS gage. Sites 1, 2492

and 3 had channel widths of 20ft, 10ft, and 5ft; stream orders of 5, 3, and 1; and distance493

to USGS gages of .2km, 2.2km, and 5.6km, respectively. More broadly, using the 50%494

NSE criterion, 55 of the 182 sites were labeled as locations of high performance, while495

127 were labeled as low performing, reflecting the ability of our DM approach to predict496

flows from NWM outputs. These labels were then used to determine the combination of497

physiographic characteristics that describes the conditions under which the DM approach498

exhibits high performance. The normalized distributions of each physiographic feature,499

split by performance criteria, is shown in Figure 8a. This normalization was performed500

relative to all 64000 streams in Iowa, not just the 182 sites studied. Overall, little distinc-501

tion was evident between high-performing and low-performing sites, with the distribution502

of each physiographic feature showing similar means and variances. The distributions of503

channel bottom width and channel slope showed the relatively largest discrepancy, sug-504

gesting that sites at which the DM approach performed well had a larger stream width and505

slope than lower-performing sites. However, the bounds on these distributions were not506

sufficient to determine a consistent labeling.507
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Figure 8. Boxplots representing the relative distribution of features, when split by the ability of a dynam-

ical mapping to predict water levels from modeled flows. For any given feature, a clear difference between

the two distributions would indicate that this feature describes a general condition for the dynamical approach

to work well. a) This plot shows the splits based on stream physiographic features. It is not apparent in this

figure that any features describe a general condition for the DM approach to work well. b) This plot shows the

splits based on principal components (new variables 1-6). Here, the first principal components exhibits the

strongest difference between the high and low performing sites, illustrating a potentially strong indicator of

prediction performance.
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Applying PCA to the physiographic features across the entire state of Iowa resulted516

in a 62000 × 6 data matrix. The resulting principal components are shown in Table 1.517

Each entry in a column of this table can be interpreted as the relative influence of a phys-518

iographic variable to a particular principal component. For example, considering the first519

principal component, which explains the greatest amount of variability in the physio-520

graphic data, it becomes apparent that the channel bottom width and the stream order521

both increase as the first principal component score increases. On the other hand, the522

Manning’s roughness decreases as the principal component score increases. As such, if523

a stream reach in the data set has a large first component score, it will be relatively larger524

and smoother than other streams. Further, a number of the components exhibited oppos-525
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ing physiographic relationships. For example, for the second principal component, streams526

closer to a USGS gauge and located at a relatively higher elevation had relatively higher527

component values. For the fourth component, this relationship was reversed, as stream528

reaches at higher elevations and located further away from a USGS gauge tend to have529

higher component values. Similar interpretative examples could be provided for the other530

principal components.531

Table 1. Principal Components resulting from applying PCA to features of 62,000 streams across the entire

state of Iowa. σ is the singular value associated with that component whose relative magnitude indicates the

amount of variability the component explains in the data.

532

533

534

Stream Feature Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

σ = 3.16 σ = 1.09 σ = 0.86 σ = 0.77 σ = 0.08 σ = 0.04

Bottom Width 0.534 0.140 0.185 -0.041 0.693 -0.423

Elevation -0.198 0.648 0.182 0.712 0.016 0.000

Manning’s Roughness -0.535 -0.143 -0.170 0.008 0.720 0.382

Slope -0.254 -0.075 0.932 -0.240 -0.015 0.062

Order 0.545 0.141 0.105 -0.004 0.023 0.819

Proximity to USGS gage -0.165 0.717 -0.157 -0.659 -0.012 0.003

The performance of the DM approach, split by principal components, is shown in535

Figure 8b. Compared to splitting based on just physiographic features (Figure 8a), a more536

distinct clustering was evident for a few of the new variables. This is especially true for537

the first principle component, for which a larger component score generally corresponded538

with higher performance of the DM approach. While the other principal components did539

not exhibit as large of a discrepancy, the opposing physiographic relationships within540

each of their principal components, as noted above, suggested that application of a Logit541

Boosted Random Forest would enable effective classification.542

To understand why Random Forests were considered as an appropriate next step,543

consider an example variable with a range of 0 to 1. Class 1 may have values of less than544

0.25 or greater than 0.75, whereas class 2 may have a range of 0.25 to 0.75. The mean of545

the two classes would be indistinguishable, but the variance would be different. Therefore,546

one may conclude that this variable is not very useful for prediction. However, placing547
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two binary splits on that data (at 0.25 and 0.75) will yield a very strong classifier. Now, if548

one considers 6 variables in a high-dimensional space, finding similar split points through549

visual inspection would be difficult, if not impossible. Instead, all 6 can be ingested into550

the Logit Boosted Random Forest to leverage all potential partitions. If a variable provides551

no predictive power, then very few split points will occur on that variable and the perfor-552

mance should not be impacted.553

After applying the Logit Boosted Random Forest algorithm (Algorithm 1), cross val-554

idation reflected a 75% accuracy in classifying whether the DM approach would work or555

not (Area under receiver-operator curve was 0.69). The resulting Random Forest model556

was then applied to all 62,000 PCA-transformed stream reaches in Iowa. The outputs were557

standardized on a scale from 0-1, indicating the probability that our DM algorithm would558

perform well at transforming NWM outputs to water levels. The final results are plotted559

for all stream reaches in Iowa in Figure 9, where the color blue is used to denote loca-560

tions at which the DM approach is expected to perform well. It is important to note that561

this map covers many more streams than are measured by the 182 level sensors. As such,562

it should be interpreted as a map of potential future sensor sites. That is, placing a level563

sensor into any of the dark blue regions should correspond, on average, with a higher like-564

lihood of successfully mapping NWM outputs to water levels using our DM approach.565

4 Discussion569

In lieu of recalibrating or expanding the complexity of a large numerical model,570

there may instead be immediate benefits to be gained by using sensor data to "learn" how571

larger-scale model outputs map to site-level conditions. To start, at approximately 30 of572

the 180 sites, a strong flow-to-height relationship already existed. Some of those sites573

were located close to USGS gages, which are assimilated into the NWM. For instance,574

Site 1 (Figure 5) is located only a few hundred meters from a USGS gage. Due to di-575

rect assimilation, the numerical model is likely to represent the nuanced flow dynamics576

more accurately at these locations, which leads to more reliable rating curves. In these577

instances, even a simple regression would have sufficed to predict local water levels. Nat-578

urally, our dynamical mapping approach performed well in all of these cases, too, since it579

can be generalized as a linear transformation [Ljung, 1987].580

–23–This article is protected by copyright. All rights reserved.



Figure 9. Map of site performance potential across the state of Iowa, showing a spectrum of locations

where the dynamical mapping approach is expected to perform well in predicting local water levels from flows

(blue) to those where it will likely not perform well (red).

566

567

568

While a simple regression may work in some cases, the number of instances where581

it can be used is fairly small. By comparing modeled flows from the NWM to measured582

water levels, our analysis demonstrated that these mappings are often not straightforward.583

Given the lack of a clear one-to-one mapping, a regression-based approach, or one that is584

based on simple physical equations, may not perform well because it does not account for585

the temporal transformation of the input signal. As such, a major benefit of our approach586

relates to its ability to make predictions when modeled values and local measurements587

do not exhibit a clear point-to-point relationship. This is particularly evident in cases588

where site-scale dynamics were accurately reconstructed despite the fact that large-scale589

NWM outputs appeared like a rapid set of impulses (Figure 6). To this end, a dynamical590

mapping, parameterized through system identification, shows promise as a general tool to591

transform modeled values to more accurate local predictions.592

Our specific case study of the NWM reveals a number of generalizable requirements593

for the dynamical mapping to work well. Regardless of model- or site-specific dynamics,594

the modeled values and sensor measurements should generally agree in relative magnitude595

and timing. In other words, if the modeled flows show an increase over a period of time, a596

corresponding rise in water levels should be measured as well. This could occur irrespec-597
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tive of specific dynamical features. Namely, even if the modeled values appear as a set of598

sudden impulses, they can be adequately mapped to the more continuous in-situ sensor599

values if a sufficient level of agreement exists between the two times series. In the case of600

a hydrologic model, when using routing procedures like Muskingum-Cunge, particularly601

in headwater areas, it is not uncommon for flows to be modeled as "flashy" or as a series602

of brief spikes. While the physical model may not be designed to account for nuanced603

site-level dynamics, it may, in fact, be routing the mass of water correctly. In such cases,604

our approach can be used to represent these site-level dynamics by relying on the ability605

of the larger model to explain the underlying inputs. This is quite powerful, as it suggests606

that in many cases the site-level complexity can be explained without changing much, if607

anything, about the larger underlying numerical model. Rather, it may often be possible to608

rely on local sensor data to explain how modeled values are transformed to local observa-609

tions.610

Our classification analysis brings to bear under which conditions the DM approach611

may not perform well. In fact, at over two thirds of the evaluated sites our approach did612

not perform well in mapping NWM flows to local water levels, as quantified by the 50%613

NSE criterion. This may not necessarily be a limitation of the actual approach, but rather614

an indicator that the approach will improve as the physical model becomes more generally615

representative of local flows. In many cases, there was simply a general lack of temporal616

agreement between the numerical model and the measured data, with many instances of617

false positives and false negatives (e.g Figure 7). There were many instances during which618

the NWM predicted a change in flows, while no change in heights was ever measured.619

Similarly, many sensors measured storms that were never seen in the NWM. Naturally, our620

approach will not work under these conditions, since it requires changes in the inputs to621

be mapped to changes in outputs. Of course, our DM approach could benefit by including622

additional local data (e.g. independently-made rainfall measurements), but this increases623

its complexity, increases implementation overhead, and decreases its generalizability. This624

would defeat the original goal of simply relying on a publicly-available physical model625

that someone else updates and maintains. To that end, we expect that the performance of626

the DM approach will improve as the underlying physical model is improved, which is an627

ongoing and promising effort within the NWM community.628

A number of insights, specific to the NWM, also emerged from our performance629

classification. Given the size, complexity, and collinearity of the data set, we illustrated630
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quickly that a simple classification of performance, based on individual physiographic631

features, does not provide much insight (Figure 8a). One take-away, though not strongly632

consistent, appears to be that our dynamical mapping performs well on larger streams and633

rivers. This should be intuitive, since the NWM would be expected to represent larger634

gauged rivers more effectively than smaller upstream headwater catchments. Furthermore,635

Muskingum-Cunge methods have been shown to work quite well in laboratory settings,636

but can introduce errors in field settings that, while negligible at small scales, can have637

major impacts as these errors propagate [Perumal et al., 2009; Sahoo, 2013].638

While the the application of PCA removed the challenge of using correlated fea-639

tures to explain the performance of the DM approach, the intuitive interpretation of prin-640

cipal components reaches a limit quickly. To that end, our application of Logit Boosted641

Random Forests allowed for the creation of a map that summarizes the expected perfor-642

mance of our approach across all 62,000 streams in Iowa (Figure 9). This visual represen-643

tation provided an intuitive means by which to assess broader performance. As expected,644

our DM approach is expected to perform well across the major rivers in the state (thicker645

lines in map). Given their size, these streams are more likely to be instrumented by USGS646

gauges, meaning the NWM is more likely to accurately estimate flows. Many of the re-647

maining streams on the performance map (Figure 9) showed roughly a 50% probability of648

successfully applying the dynamical mapping. Most of these were characterized by a mid-649

level stream order. These streams are likely more sensitive to local precipitation dynamics,650

which may not be captured by the MRMS precipitation product used by the NWM. At651

finer resolutions, the noise in the MRMS estimates may have a greater impact on the over-652

all accuracy since feeding noisy observations into a non-linear model may amplify errors.653

As water is routed through the system, the spatiotemporal accuracy of the precipitation654

estimates likely has less of an impact as the overall volume is correct. This suggests that655

improved precipitation inputs have the potential to dramatically improve the accuracy of656

the NWM at higher resolutions, which should, in turn, improve the performance of our657

dynamical mapping.658

Given its impressive extent, the NWM already shows great promise to provide high-659

resolution forecasts. Increasing the resolution, parameterization, and complexity of the un-660

derlying numerical model is one way of reaching the ultimate goal of high resolution local661

forecasts. Alternatively, as our case study demonstrated, the existing model may already662

be very strong in many locations, but its outputs just have to be mapped to site-specific663
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features using locally-available sensor data and a suitable mathematical transform. In other664

words, outputs from NWM, though still in their early stages, can be useful in estimating665

highly-local water levels even now. Nonetheless, our results may also provide a guide to666

help improve the numerical model. The map in Figure 9 intuitively conveys a general as-667

sessment of the performance of the underlying numerical model. Since the NWM is a668

relatively new model, it would be expected to initially perform well at larger scales. Even669

with this general trend, there are still lower-order streams on the map that suggest the pos-670

sibility of successfully applying our DM approach. These red and purple regions on the671

map (0-50% chance of applying the dynamical transformation) may be of interest to mod-672

elers as locations at which the numerical model could be improved to reduce false posi-673

tive and negative forecasts. Improving the model on these stream sections will likely also674

translate to better model performance on stream reaches that share similar physiographic675

or PCA-transformed features.676

From a water management perspective, the benefits of our DM approach may al-677

ready be realizable operationally. This is true for a number of already existing sensor loca-678

tions, as well as potentially other similar streams on the map in Figure 9. A simple web-679

service application [Wong and Kerkez, 2016] could be written to extract NWM outputs and680

fuse them with local sensor data. If the dynamical mapping is reliable at this location, the681

site would benefit immediately from a localized water level forecast. Alternatively, if lo-682

cal measurements are not available, the map in Figure 9 could be used to deploy low-cost683

sensors at locations that maximize the probability of using the DM approach. Given the684

general structure and input data of the NWM across the US, we also anticipate that sim-685

ilar maps could be created for regions outside of Iowa by relying on the results from this686

study. For the approach to become operational, a moving training window may be needed687

to account for varying hydrologic regimes or seasons (e.g. spring vs summer). The ef-688

fect of hydrological regimes was not evaluated as part of our case study due to the time689

required to log data from the NWM and level sensors. Fortunately, the training window690

needed for fitting the DM model is quite small compared to that of a rating curve, which691

will allow for effects of seasonality to be evaluated in the future.692

5 Conclusions693

In this paper, we provided a means by which outputs from a large-scale model can694

be fused with local sensor data to provide site-level forecasts. The novelty of the approach695
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relies on using the outputs of the physical models as the inputs into a dynamical mapping696

that learns what a specific sensor will measure. This is quite powerful, as it does not rely697

on the modification of the actual physical model or the direct assimilation of the sensor698

data, both of which would be infeasible for smaller communities. Instead, the approach699

is general, in that it can be directly repeated for any combination of sensor-model pairs.700

As such, the approach developed here could be applied directly without any modification701

of our open-source code. While the approach will not work under all conditions, it may702

already provide an immediate benefit to a large number of locations.703

In the age of Big Data in Hydrology we contend that even models can be viewed as704

just one of many streams of data that will enable decision making. Overall, the approach705

of dynamically mapping outputs form large models to local sites may work for a number706

of models beyond just the NWM. The ability to use the approach with short data histories707

(e.g. only a few months of training data) makes it appealing for urban applications, where708

land use changes may occur rapidly and system re-identification may need to occur fre-709

quently. In such cases, our approach could be combined with popular urban water models,710

such as the stormwater management model (SWMM) to provide improved forecasts of ur-711

ban flooding or sewer flows. More examples can be given, but we anticipate that the our712

data-driven approach could be generalized for many hydrologic and hydraulic models.713

A: Principal Component Analysis714

The goal of PCA is to find the weighting vectors, or principal components, that yield715

linear combinations of the original feature space. We define X ∈ Rn×d as the data matrix716

with n rows of observations and d features, which in our case is populated with the phys-717

iographic features of the nearly 62,000 stream reaches in Iowa. Before PCA is applied, all718

input features also need to be standardized in magnitude to reduce impacts of overweight-719

ing some features over others [Hastie et al., 2001]. By standardizing across each variable,720

one can consider the relative impacts of each more effectively.721

To find the first principal component, w1, we find a unit vector that maximizes the722

variance of X, that is:723

w1 = arg max
| |w | |=1

| |Xw| |2 = arg max
wTXTXw

wTw
(A.1)724

This is a Rayleigh quotient [Horn and Johnson, 1990], and therefore the solution to this725

maximization problem is the largest eigenvector (i.e. the eigenvector of the largest eigen-726
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value) of XTX. Each successive principal component is the next largest eigenvector of727

XTX. Therefore, rather than solving iteratively for each principal component, it is possible728

to consider the singular value decomposition (Equation A.2) of the data matrix X:729

X = UΣWT (A.2)730

XTX = WΣUTUΣWT =WΣ2WT (A.3)731

As such, the eigenvectors of XTX are the rows of W, meaning the principal components732

are the right singular vectors of our data matrix. Therefore, to place our data in an orthog-733

onal feature space such that all the variables are de-correlated, the new data matrix, T, is734

simply:735

T = XW (A.4)736

Using this matrix will lead to a more stable classification procedure, will reduce the like-737

lihood of over fitting, and will enable more complex interactions between features to be738

captured [Hastie et al., 2001].739
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