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Abstract: The estimation of changes in free energy upon mutation is central to the problem of protein
design. Modern protein design methods have had remarkable success over a wide range of design
targets, but are reaching their limits in ligand binding and enzyme design due to insufficient accuracy
in mutational free energies. Alchemical free energy calculations have the potential to supplement mod-
ern design methods through more accurate molecular dynamics based prediction of free energy
changes, but suffer from high computational cost. Multisite λ dynamics (MSλD) is a particularly effi-
cient and scalable free energy method with potential to explore combinatorially large sequence spaces
inaccessible with other free energy methods. This work aims to quantify the accuracy of MSλD and
demonstrate its scalability. We apply MSλD to the classic problem of calculating folding free energies
in T4 lysozyme, a system with a wealth of experimental measurements. Single site mutants consider-
ing 32 mutations show remarkable agreement with experiment with a Pearson correlation of 0.914 and
mean unsigned error of 1.19 kcal/mol. Multisite mutants in systems with up to five concurrent muta-
tions spanning 240 different sequences show comparable agreement with experiment. These results
demonstrate the promise of MSλD in exploring large sequence spaces for protein design.
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Introduction
The estimation of changes in free energy upon muta-
tion is one of the central problems of protein design.
Relevant free energies include the folding free energy,
ligand binding free energy, catalytic transition state
binding free energy, protein–protein association free
energy, and others. These free energies can be used
to design proteins with desired stability, ligand bind-
ing, catalytic, and dimerization properties, respec-
tively. Estimation of the appropriate free energy can
guide in silico evolution, through Monte Carlo sam-
pling of sequence space at some selection tempera-
ture1,2 to optimize the property of interest.

Modern protein design algorithms, such as
Rosetta3,4 and others,5–8 typically estimate free energies
for a particular sequence and conformation using heu-
ristic or empirical free energy estimates. Sequence and
conformational space are explored simultaneously
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through Monte Carlo sampling of rotamer libraries of
various side chains. This general approach has had
remarkable success in designing new sequences with
desired structural properties,9 as well as moderate suc-
cess in designing sequences with desired dimerization,10

ligand binding,11 and catalytic properties.12,13

In spite of this success, several unmet challenges
remain in ligand binding14 and enzyme design that
would benefit from improved predictions of free
energy differences. Designed enzymes continue to
show much lower activity than natural enzymes,15–17

but typically possess enough initial activity that their
efficiency may be raised to moderate levels through
directed evolution.12,13 Although directed evolution
can improve catalytic efficiency, better design algo-
rithms are highly desirable, because better initial
enzyme designs also tend to possess superior activi-
ties after directed evolution.13 Current enzyme design
methods suffer from a variety of limitations and
approximations. Limitations include the inability to
dock theozymes18 with more than about four catalytic
residues into candidate protein scaffolds,16 which
limits designed enzymes to simple reactions. Approxi-
mations include implicit solvent energy functions,
lack of long range electrostatics, and the neglect of
backbone flexibility during the design process.17 Due
to these approximations, many enzyme active sites
are no longer stable after redesign. In contrast,
explicit solvent molecular dynamics (MD) simulations
utilize more accurate energy functions and explicitly
account for protein flexibility. Indeed, long MD simu-
lations are frequently used in a diagnostic fashion to
assess the kinetic stability of designed sequences
before experimental testing.15,19

Alchemical free energy methods can make rigor-
ous estimates of thermodynamic stability using MD
simulations. Free energy methods include free energy
perturbation (FEP),20 thermodynamic integration
(TI),21 multisite λ dynamics (MSλD),22–24 enveloping
distribution sampling,25,26 and many others.27,28

These methods have most commonly been applied to
compute solvation free energies of ligands,22,29,30

drug binding free energies,31,32 and pKa values of
titratable groups in proteins.33–36 Studies using free
energy methods to estimate changes in peptide and
protein free energy upon side chain mutation are
much rarer.37–41 Last year, two large-scale applica-
tions of free energy methods to protein folding and
binding upon mutation appeared.42,43 Such studies
could in principle be used to guide protein design, but
in practice are far too slow to be of practical use in
driving design. However, in one case, rigorous
alchemical free energy calculations were used in post-
design evaluation to assess thermodynamic stability
and eliminate a less promising sequence.41

MSλD is a unique free energy technique with sev-
eral features that make it sufficiently efficient to drive
protein design. First, MSλD is highly efficient, and

requires one to two orders of magnitude less computa-
tion than other free energy methods to achieve compa-
rable levels of precision.24,38 Second, MSλD can be
tuned to screen the most promising sequences from a
larger set without wasting sampling on the remaining
sequences.22,44 Third, MSλD is highly scalable, allowing
the comparison of hundreds of physical systems in a
single simulation,45 whereas conventional techniques
like FEP and TI require independent simulations for
each pairwise comparison of physical states. Scalability
to combinatorial sequence spaces allows MSλD to miti-
gate the high cost of MD simulations by searching
much larger swaths of sequence space than FEP or
Rosetta during each in silico evolutionary step. λ

dynamics is over two decades old, but has matured sub-
stantially in recent years via generalization to multiple
sites,24 the use of implicit constraints to focus sampling
on physical endpoint states,46 enhanced sampling with
biasing potential replica exchange (BP-REX),47 adap-
tive landscape flattening (ALF) to remove alchemical
barriers,48 and the use of soft-core interactions.48,49

In this study, we seek to assess the accuracy limits
and demonstrate the scalability of MSλD for use in
future protein design projects. T4 lysozyme is an ideal
test system, as changes in folding free energy have been
measured for hundreds of mutants through the work of
Brian Matthews and coworkers.50 T4 lysozyme residue
L133 was also the system used by Kollman in the first
free energy simulations of protein mutation.37,51,52 We
begin by computing single site mutational free energies
at seven sites, A42, A98, L99, M102, M106, V149, and
F153, which were chosen because they possessed multi-
ple mutants and a large range of folding free energy
changes. Predicted ΔΔGFolding agree well with experi-
ment (Pearson correlation of 0.914 and mean unsigned
error of 1.19 kcal/mol). Next, we turned our attention to
simultaneous mutations at multiple sites exploring up
to 240 sequences concurrently. Agreement for these sys-
tems is of roughly equal quality (Pearson correlation of
0.860 and mean unsigned error of 1.12 kcal/mol). The
ability of MSλD to predict protein stability with high
accuracy in these large combinatorial sequence spaces
suggests this method holds promise for identifying the
most favorable mutations in future protein design
projects.

Results

Single site mutants
Mutation sites were chosen from and compared
against the experimental data in Reference [50]. Sin-
gle site mutants were chosen according to several cri-
teria: first, stabilities at a particular site must have
been measured at the same pH in the C54T/C97A
background, a mutant with the one native disulfide
bond between C54 and C97 removed. Second, at least
three sequences (native and two mutants), excluding
G and P for technical reasons, must have been
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measured. Finally, the range of stabilities must be at
least 3.5 kcal/mol. Seven sites, listed in Table I, met
these criteria.

MSλD simulations were run on each of the seven
single site mutants featuring three to nine side chains
per simulation, each scaled by its own λ variable,
according to the procedure outlined in Methods. Briefly,
the landscape was flattened using an updated ALF
framework to optimize sampling, and then five inde-
pendent trial simulations were run for each site for
either 40 ns without variable bias replica exchange
(VB-REX, see Methods) or 20 ns with VB-REX. The
entire procedure was run once with force switching
(FSWITCH) electrostatics53 and once with particle
mesh Ewald (PME) electrostatics36,54,55 to explore the
influence of long range electrostatics on the free energy
changes.

The overall agreement with experiment is shown
in Figure 1. FSWITCH and PME yielded comparable
accuracy with Pearson correlations of 0.914/0.893, mean
unsigned error (MUE) of 1.19/1.10 kcal/mol, and root
mean squared error (RMSE) of 1.39/1.50 kcal/mol,
respectively.

In most cases, mutations within an individual site
had substantially higher correlations and lower RMSE
than when all the sites were combined (Table II). Three
sites, A42, A98, and M102, proved difficult to sample in
preliminary simulations, consequently VB-REX was
employed to sample these sites more aggressively.
These sites proved difficult for two reasons. M102
involved a charge change, which is known to cause seri-
ous artifacts in free energy calculations,56 via mutation
to a buried lysine. A42 and A98 both involved muta-
tions from small to large residues in the protein core,
which in general may require relaxation of slow degrees
of freedom to accommodate the extra steric bulk.

To investigate whether relaxation of slow degrees
of freedom limited convergence in these particular
mutations, crystal structures for each of the seven
sites57–65 were visually inspected to identify distances
that correlate with mutation for use as structural
reaction coordinates. Distances averaged over all
frames where a particular substituent was on
(λ>0.99) agreed fairly well with the crystal structures,
though slight thermal expansion of about 0.1 Å was
seen in simulations and distances for S and T were

overestimated by 0.5 Å (Supporting Information
Table S3). Crystal structure analysis also suggests a
possible explanation for the large error in M102K:

Table I. Single Site Mutants

Site Mutations pH

A42 FILSV 3.0
A98 CFILMSVW 3.0
L99 AFIMV 3.0
M102 AK 5.4
M106 KL 3.0
V149 CIMST 5.4a

F153 AILMV 3.0
a V149T was measured at a different pH (3.0) from other
mutations at this site
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Figure 1. Comparison between predicted MSλD and
experimental folding free energies at all seven mutation sites
using (a) FSWITCH and (b) PME electrostatics. Open circles
denote charged mutants M102K and M106K. Dashed lines
denote y = x, and free energies are plotted relative to wild type
with C54T/C97A.

Table II. Site Specific Results

Site RMSEa R

FSWITCH
A42 1.12 0.952
A98 1.01 0.938
L99 0.97 0.968
M102 1.82 0.989
M106 0.25 1.000
V149 0.71 0.960
F153 0.98 0.884
All 1.39 0.914

PME
A42 0.92 0.920
A98 0.82 0.926
L99 0.82 0.970
M102 2.99 0.983
M106 0.29 0.999
V149 0.59 0.944
F153 0.91 0.897
All 1.50 0.893

a Centered RMSE in kcal/mol: (h(ΔΔGMSλD − ΔΔGExp)
2i

− hΔΔGMSλD − ΔΔGExpi2)1/2
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although M102K remains buried, Sδ in M106 reori-
ents to directly contact M102K. Interaction with a
polarizable sulfur atom likely ameliorates the cost of
charge burial but is neglected in our fixed charge
models.

As all reaction coordinates identified in crystals
were demonstrated to correlate with λ in our simula-
tions (Supporting Information Table S3), the autocorre-
lation time in these reaction coordinates gives a lower
bound for time scale of relaxations that are necessary
to obtain converged estimates of free energy. Autocorre-
lation times are shown in Figure 2 and show a clear
split between more rapidly relaxing sites (L99, M106,
and V149) and more slowly relaxing sites (A42, A98,
M102, and F153). Notably, three out of four of the more
slowly relaxing sites were sites that required VB-REX
for efficient sampling. These results also suggest that
A98 sampling could use further improvement due to its
long autocorrelation time.

Multisite mutants
Encouraged by our findings from the single site muta-
tion studies, we turned our attention to multisite
mutants. Three systems comprising 3, 4, and 5 muta-
tion sites were selected from methionine scan and
core redesign studies (Table III). The three site, four
site, and five site systems comprised 8 (2 × 2 × 2),
24 (2 × 2 × 3 × 2), and 240 (3 × 5 × 4 × 2 × 2)
sequences with all combinatorial permutations of the
individual mutations in Table III. Of these 8, 24, and
240 sequences, only 6, 14, and 9 have been experi-
mentally measured at the same pH,50 (see

Supporting Information Tables S5–S9 for identities of
these sequences), so only results for these sequences
are compared with experiment.

Interactions between side chains at different
sites are scaled by the product of their λ variables, so
mutating side chains at two sites only interact when
they are both on, which allows MSλD to explicitly
account for coupling between sites. VB-REX was
applied to all systems to increase sampling near the
alchemical endpoints, otherwise most endpoints were
not sampled using a λ cutoff of 0.99 in the five site
system.

Results are shown in Figure 3 and Table IV. The
four site system had a narrower range of stabilities
than the other two systems and consequently had a
lower Pearson correlation with experiment; however,
the four site system also had a lower RMSE with
experiment, demonstrating the ability of MSλD to
quantify the small effect of these mutations. Overall,
Pearson correlations were 0.860/0.845, the RMSEs
were 1.28/1.11 kcal/mol, and the MUEs were
1.12/1.02 kcal/mol when FSWITCH and PME respec-
tively were compared with experiment. The agree-
ment with experiment of these multisite mutational
results are strikingly comparable with the single site
results, suggesting errors do not increase rapidly
with the number of mutations.

In order to determine how much error came from
the force field and how much came from sampling, each
of the sites was mutated individually in single site λ

dynamics simulations (SSλD) run with VB-REX. These
point mutations were then compared against the same
point mutations in the MSλD ensemble (Fig. 3(c)) and
Supporting Information (Fig. S1). SSλD and MSλD
agreed closely in the three site system (Supporting
Information Fig. S1). Differences for the four site and
five site systems were slightly outside of statistical
uncertainty, suggesting there are reproducible differ-
ences that we attribute to lack of sampling in the MSλD
simulations. These differences are substantially smaller
than the deviation from experiment, suggesting most of
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Figure 2. Autocorrelation in structural reaction coordinates at
all seven sites (see Supporting Information for reaction
coordinate definitions). Sites divide into three groups: L99,
M106, and V149 decay rapidly; A42, M102, and F153 decay
more slowly; and A98 decays very slowly. This division roughly
parallels the sites requiring VB-REX and the sites not requiring
VB-REX. At sites A42 and M102 two distances were chosen to
capture the variety of structural changes observed. The
autocorrelation in the distance more strongly correlated with λ

is plotted; the other autocorrelation decays more rapidly in
both cases.

Table III. Multisite Mutants

Site Mutations

3 Site pH = 5.4
I17 M
I27 M
L33 M

4 Site pH = 3.0
L99 F
M102 L
V111 FI
F153 L

5 Site pH = 3.0
L121 AI
A129 LMVW
L133 AMV
V149 I
F153 L
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the deviation is due to force field errors or shared
approximations of the unfolded ensemble.

It should be noted that of the 240 sequences in
the five site system, either five or two sequences were
not sampled and 23 or 13 sequences were insuffi-
ciently sampled across all independent trials to esti-
mate statistical significance in the FSWITCH or
PME simulations, respectively (Supporting Informa-
tion Tables S7–S9). The sequences exhibiting these
characteristics were all less stable than the average
of the other 210 sequences, typically by 2–3 kcal/mol.
This outcome is likely due to cooperative effects
between pairs of conflicting mutations. Since such
sequences are particularly unstable, they are of less
interest in protein design, and inability to sample
them within the context of an MSλD design process is
only a minor concern.

Discussion

Comparison with other methods
Due to the importance of changes in protein stability
upon mutation, a wide variety of techniques exist to
predict ΔΔGFolding(S1 ! S2). Techniques range from
fast physics-based, knowledge-based, and machine
learning approaches3,66,67; to implicit solvent
methods68,69; to rigorous alchemical free energy calcula-
tions in explicit solvent.37–43

In one study comparing a variety of fast predic-
tion methods including Rosetta,3 FoldX,67 CC/PBSA68

and others, MUEs ranged from 1.00 to 1.68 kcal/mol
and Pearson correlations ranged from 0.26 to 0.59.66

While some of these methods may appear to be com-
petitive with MSλD in terms of MUE, this is because
these methods are designed to minimize error and
thus make conservative estimates, while most errors
by MSλD are overestimates. Consequently, the Pear-
son correlations, which normalize out overprediction
and underprediction, reveal MSλD clearly gives supe-
rior predictions. It is noteworthy that the worst per-
forming algorithm was Rosetta, which suggests
current design algorithms are still able to design
highly stable foldable proteins despite poor prediction
of free energies because they capture the underlying
physics of hydrophobic burial and side chain packing.
Consequently, MSλD may enable even more accurate
design of proteins, because in addition to these
effects, it also captures backbone flexibility and
ligand binding energetics, which are poorly modeled
by current design algorithms.14,17,70,71

It is also instructive to compare MSλD directly to
other alchemical free energy methods. Most alchemi-
cal free energy studies of protein mutations have
been small37–41; however, two large scale tests of FEP
for calculating folding free energies42 and protein–
protein binding free energies43 recently appeared.
The binding free energy study achieved excellent
accuracy (0.68 kcal/mol RMSE, Pearson correlation

0.70) due to the small data range, aggressive sam-
pling (100 ns per window in some cases), neglect of
charge changing mutations, and ability to ignore the
unfolded ensemble.43,*

The FEP folding free energy study allows a more
direct comparison with our results because both stud-
ies must grapple with the unfolded ensemble. In a
survey of 712 mutations in 10 proteins, that study
achieved a Pearson correlation of 0.63, an RMSE of
2.06 kcal/mol,† and an MUE of 1.58 kcal/mol.42 MSλD
achieved superior results with Pearson correlations of
0.914/0.893, RMSEs of 1.39/1.50 kcal/mol, and MUEs
of 1.15/1.07 kcal/mol for FSWITCH/PME, but the dif-
ferences in the mutation sets call for a more nuanced
comparison. First, 25% of the mutations in the FEP
study involved charge changes, while only 6.3% of
mutations in the present study did. Removing these
mutants gives FEP a correlation coefficient of 0.69,
an RMSE of 1.84 kcal/mol,‡ and an MUE of 1.38 kcal/
mol. MSλD results improve to correlation coefficients
of 0.901/0.896, RMSEs of 1.30/1.09 kcal/mol, and
MUEs of 1.12/0.93 kcal/mol for FSWITCH/PME.
Another noteworthy difference is in the relative num-
ber of large to small mutations (decreasing number of
heavy atoms), which may simply leave a void, versus
small to large mutations (increasing number of heavy
atoms), which may require slow relaxation of the pro-
tein core to relieve a steric clash. The FEP dataset is
comprised of mostly large to small mutations derived
from alanine and glycine scans; on average, muta-
tions involved loss of three heavy atoms, and only
7.6% mutations involved an equally sized or larger
side chain. In the MSλD dataset, 68.8% of the muta-
tions were to an equally sized or larger side chain.
The small to large mutants were harder to sample
and gave larger errors, suggesting the MSλD dataset
is a more challenging dataset. Removing the large to
small and equal-sized mutants from the MSλD data-
set gives roughly the same agreement with experi-
ment as removing the charge change mutants, and
does not result in further improvements because only
10 mutants remain, and of these, half are to F153,

*In studies of protein binding the two relevant ensembles are
the bound and unbound states, both of which can be sampled
starting from well defined structures, whereas in protein folding
the two ensembles are folded and unfolded. Due to the confor-
mational heterogeneity and slow relaxation in the true unfolded
ensemble, it is typically approximated using a short peptide.
The approximations in the unfolded ensemble seem to be one
of the primary causes of the difference in accuracy between
References 42,43.
†Reference 42 reported an RMSE of 2.27 kcal/mol, but
appears to use RMSE relative to native, rather than centered
RMSE. Given that a mean signed error of 0.95 kcal/mol was
observed, the centered RMSE would be 2.06 kcal/mol.
‡Reference 42 reported an RMSE of 2.07 kcal/mol. If the mean
signed error remained 0.95 kcal/mol, the centered RMSE
would be 1.84 kcal/mol.
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where the force field may not fully capture aromatic
interactions.

The improved accuracy of MSλD relative to con-
ventional FEP may be attributed to a variety of
causes. First, while both studies are large systematic
studies, the FEP study tackled more than an order of
magnitude more mutations. Consequently, the FEP

study merely identified poorly converged mutants
and noted that they degraded the quality of the
results. In contrast, due to its smaller scope, the pre-
sent study could identify poorly converged mutants
and focus sampling on them with VB-REX and reopti-
mization of biasing potential parameters. Second, the
accuracy of both methods is limited by the force field
used, and it is possible that the CHARMM36 force
field used here is more accurate than OPLS3, though
at least one study suggests that the two force fields to
have comparable accuracy.43 Finally, MSλD is more
computationally efficient; one study cites a factor of
20–3045; see Supporting Information for further dis-
cussion. Here, MSλD requires 0.22 simulations per
mutant (32 mutants in 7 simulations), while FEP
requires 12–16 simulations per mutant (55–73 times
more simulations per mutant).§ This allows MSλD to
use longer 20–40 ns simulations with multiple inde-
pendent trials, while FEP was limited to a single trial
of 5 ns per simulation per window. As in Methods,
substantial differences were noted between the bias-
ing potentials obtained during the 5 ns flattening
runs and the optimal biases in MSλD production, sug-
gesting the system was still relaxing after 5 ns. Auto-
correlations in structural reaction coordinates
confirm this for some sites (Fig. 2). Consequently, the
FEP simulations likely did not fully relax to
equilibrium.

Looking forward
The present study allows a comparison of FSWITCH
and PME electrostatics. In the systems considered
here, FSWITCH and PME achieved comparable
agreement with experiment. While the differences
are small, FSWITCH performed better for single site
mutants until charge mutations (which PME was not
corrected for) were removed. For multisite mutants,
PME performed better in terms of RMSE. Moving for-
ward it will be worthwhile to monitor the relative
performance of the two methods, as each has advan-
tages. PME is more computationally efficient than
FSWITCH because shorter cutoffs may be used. PME
appears to perform worse if uncorrected for charge
changes,56 but likely stabilizes the rest of the protein
structure more effectively.

Currently, MSλD does not treat all amino acid
mutations equally. In particular, charge changes are
handled less well than charge conserving mutations,
and mutations to or from G and P have been avoided
due to technical challenges. Corrections for charge
changes with PME electrostatics have been derived,56
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Figure 3. Accuracy of MSλD in multisite systems. Comparison
of multisite mutant results with experiment using (a) FSWITCH
and (b) PME electrostatics. (c) Comparison of 5 site results
from MSλD dynamics with more converged results run on a
single site only (SSλD). Comparison with SSλD is only affected
by sampling errors, comparison with experiment is affected by
sampling and force field errors. Dashed lines denote y = x, and
free energies are plotted relative to wild type with C54T/C97A.

§The use of replica exchange complicates the matter. Of the
seven MSλD simulations, four used a single replica and three
used three replicas for a total of 13 replicas for 32 mutants.
The 12–16 FEP simulations per mutant are coupled by replica
exchange, so they are technically a single simulation, but they
are just as expensive as 12–16 independent simulations,
though replica exchange improves the quality of the results.

Hayes et al. PROTEINSCIENCE | VOL 27:1910–1922 19151915



but the recent FEP folding study demonstrated that
large errors remain even when these corrections are
applied.42 Such errors have been attributed to
sampling,42 but some error would remain even with
perfect sampling due to the fixed protonation state of
mutating and surrounding residues. MSλD is ideally
poised to consider such protonation changes with the
use of constant pH MD simulations, which utilize the
same MSλD formalism.33–36 Glycine mutations, which
were considered in the FEP studies,42,43 require the
ability to change the charge on the Cα atom and to
scale CMAP interactions72,73 by λ, which are not cur-
rently implemented in the CHARMM molecular
dynamics package. Proline mutations are even more
challenging, requiring topology changes via the open-
ing of a ring.74 Such mutations could be allowed
through the use of soft bonds75,76 and other advances.
Overcoming these limitations with charged, G, and P
mutants represents an important direction for future
MSλD development.

The present study aimed to assess the level of
accuracy attainable with MSλD, not necessarily to
obtain the desired free energy changes with the

greatest efficiency. In particular, full production was
run with five independent trials, and then discarded
if the biasing potentials were determined to be subop-
timal. Running fewer production runs to see if biases
were converged before launching all five trialsk or
combining subsequent production runs together with
the weighted histogram analysis method (WHAM)77

would likely allow comparable precision with even
less computational expense and should be considered
in the future.

Sampling is a constant concern, and it is worth
noting the sampling difficulties encountered with this
approach. While MSλD gives good results for even the
nine sequence A98 system, the very long structural
autocorrelation time in this system (Fig. 2) reveals
sampling difficulties that are obscured by VB-REX.
Individual replicas are either trapped in a state tran-
sitioning slowly between W and F or in a state rap-
idly transitioning between the remaining seven side
chains. As both states are included in the full set of
replicas, reasonable free energy estimates can still be
obtained. However, advanced sampling techniques
beyond VB-REX, such as orthogonal space random
walk (OSRW)27 or replica exchange with solute tem-
pering (REST)78 may allow more facile transitions
between all mutants and yield superior results. In
addition, biasing potentials changed between the 5 ns
flattening simulations and the full length production
simulations, which suggests that the system does not
fully relax in 5 ns. It is likely the system is still not
fully relaxed after 20–40 ns, so longer production sim-
ulations might allow further relaxation, which could
improve agreement with experiment.

Prospects of MSλD for protein design
The FEP folding study offered discouraging prospects
for computational protein design, suggesting that favor-
able mutations could only be enriched by a factor of
three above random, or possibly more if aggressive fil-
tering were used.42 Such a strategy is not accurate
enough to generate new stable sequences and thus
requires constant experimental testing, and is of use
primarily for designing enriched libraries for directed
evolution. While useful, this may represent a step back-
ward from the current state of the art in enzyme
design, because it is perturbative and requires an exist-
ing enzyme with initial activity as a starting point,
whereas programs like Rosetta are generative and can
propose an enzyme with a new function as a starting
point for directed evolution.12,13,79

We believe the present study offers more poten-
tial for two reasons. First, errors are smaller, sug-
gesting MSλD can enrich favorable mutations at a
greater rate. Second, errors for multisite mutants are
comparable with errors for single site mutants, so

Table IV. Multisite Results

System
SSλDa Experimentb

RMSEc R RMSEd R

FSWITCH
3 site 0.04 1.000 1.43 0.841
4 site 0.47 0.946 0.98 0.726
5 site 0.52 0.970 1.03 0.806
All 1.28 0.860

PME
3 site 0.10 0.999 1.29 0.856
4 site 0.24 0.981 0.87 0.904
5 site 0.46 0.969 1.15 0.790
All 1.11 0.845

a Errors due to only sampling
b Errors due to force field, pentapeptide approximation of
unfolded ensemble, and sampling

c Centered RMSE in kcal/mol: (h(ΔΔGMSλD − ΔΔGSSλD)
2i −

hΔΔGMSλD − ΔΔGSSλDi2)1/2
d Centered RMSE in kcal/mol: (h(ΔΔGMSλD − ΔΔGExp)

2i −
hΔΔGMSλD − ΔΔGExpi2)1/2

Table V. Comparison of Alchemical Methods

Method Mutants R RMSEMUE

All Point Mutants
FEP (Reference [42]) 712 0.63 2.06a 1.58
MSλD with FSWITCH 32 0.914 1.39 1.15
MSλD with PME 32 0.893 1.50 1.07

Charge Conserving Point Mutants
FEP (Reference [42]) 534 0.69 1.84b 1.38
MSλD with FSWITCH 30 0.901 1.30 1.12
MSλD with PME 30 0.896 1.09 0.93

a The originally cited RMSE of 2.27 was uncentered
b The originally cited RMSE of 2.07 was uncentered

kReference 43 optimized computational expense in a similar
fashion
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errors appear not to compound significantly. This
suggests that while the force field and experiment
may disagree slightly, they capture the same physical
effects, and do not diverge rapidly as one moves
through sequence space. Therefore, MSλD offers the
ability to accurately search combinatorially large
sequence spaces, which is computationally intractable
with FEP. Consequently, by searching larger regions
of sequence space, MSλD possesses more potential for
finding favorable cooperative mutations that can be
aggressively screened.

The strength of MSλD lies in its ability to consider
large combinatorial sequence spaces. Modern protein
design algorithms function through a Monte Carlo
annealing search of sequence space, in which tens to
hundreds of thousands of point mutations are proposed
sequentially80 with dozens to hundreds of alternative
designs attempted in parallel.9,11 The improved accu-
racy of alchemical free energy approaches comes at a
high computational cost: multisite simulations with
MSλD required 54 h for flattening and 26 h for produc-
tion, which limits alchemical simulations to several
dozen steps in sequence space. The point mutations
considered by FEP are inadequate to optimize a protein
sequence in such a small number of steps; however,
MSλD enables much larger jumps in sequence space
which may allow sequence optimization in a small
number of steps.

The ability of MSλD to consider concurrent muta-
tions is critical for efficiently navigating the topological
complexities of sequence space81,82 such as fitness val-
leys. A simple example of a fitness valley is a case
where a small and a large residue are in contact in a
well-packed core. Even if switching the residue sizes is
favorable, the pathways to do so lie through a fitness
valley because either an unfavorable void or steric clash
is introduced before the second compensating mutation
can occur. Current design algorithms can cross fitness
valleys of several kTSelection through the sheer number
Monte Carlo steps. In contrast, alchemical methods
like FEP that only propose point mutations cannot
cross fitness valleys in the small number of Monte
Carlo steps available. MSλD can overcome this limi-
tation by considering concurrent mutations, which
allow movement directly to the other side of the fit-
ness valley in a single Monte Carlo step.

Conclusions
Multisite λ dynamics is a highly efficient and scalable
alchemical free energy method that allows high accu-
racy estimation of changes in folding free energy for
both single site and multisite mutants. The efficiency
enables longer simulations that appear to relax more
closely to equilibrium, while scalability allows the
exploration of large combinatorial sequence spaces.
This study represents a first step towards protein
design with MSλD by quantifying the accuracy of

MSλD and demonstrating its scalability to large
sequence spaces.

Additional work is required to extend MSλD to
poorly treated charged residues and technically
excluded G and P residues. Extension of MSλD to
charged residues will be aided by the identical formal-
ism underlying MSλD and constant pH MD. These
advances will enable protein design with the full pal-
ette of amino acids.

The strength of MSλD lies in its ability to con-
sider large combinatorial sequence spaces, and find
cooperative mutations within them that enable effi-
cient navigation of the protein sequence landscape.
This scalability is essential due to the high cost of
alchemical free energy calculations. The accuracy,
efficiency, and combinatorial scalability of MSλD sug-
gest it will become a powerful tool for protein design
in the future.

Methods

Multisite λ dynamics
Like most free energy methods, MSλD relies on a
thermodynamic scheme such as the one shown in
Figure 4 to calculate free energy differences. As free
energy is a state function, sequences S1 and S2 can
be compared by calculating ΔΔGFolding(S1 ! S2) in
one of the two ways:

ΔΔGFolding S1 !S2ð Þ¼ΔGFolding S2ð Þ−ΔGFolding S1ð Þ
¼ΔGFolded S1 !S2ð Þ−ΔGUnfolded S1 !S2ð Þ ð1Þ

While the first expression converges slowly because
many folding transitions are required for convergence,
the second expression converges rapidly and is readily
obtained by alchemically transforming from S1 to S2 in
both the folded and unfolded ensembles.

Alchemical free energy methods accomplish this
transformation through a coupling parameter λ,
which tunes the potential energy function from
sequence S1 at λ = 0 through nonphysical intermedi-
ates to sequence S2 at λ = 1. In traditional alchemical
methods, several MD simulations are run at closely

Figure 4. Thermodynamic scheme that enables the calculation
of ΔΔGFolding(S1 ! S2), the change in folding free energy upon
mutation from sequence S1 to sequence S2. The folded
ensemble is modeled starting from the crystal structure, the
unfolded ensemble is modeled using a capped pentapeptide.
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spaced fixed values of λ, and free energy differences
are then estimated using FEP,20 TI,21 or multistate
Bennett acceptance ratio (MBAR).83

In MSλD, λ is not fixed, but is rather a dynamic
variable with a pseudomass and velocity that is propa-
gated along with the other coordinates in the equations
of motion. Consequently, MSλD only requires two simu-
lations to estimate ΔΔGFolding(S1 ! S2), one for the
folded ensemble and one for the unfolded ensemble.
Furthermore, while traditional free energy methods are
limited to pairwise comparisons between sequences,
MSλD can evaluate multiple mutations at the same site
or even multiple sites using a multidimensional λ

space.24

Updated techniques
Recently, landscape flattening and soft-core interac-
tions have been shown to give marked improvements
in MSλD predictions of ΔΔG.48 Those methods are
used here with several important updates, including
a new biasing potential that better flattens soft-core
landscapes and a more general flattening algorithm.
A generalization of BP-REX47 called VB-REX is intro-
duced to improve sampling on multisite systems.
Finally, we extend the treatment of electrostatics
from FSWITCH to PME following the work of Shen.36

See Supporting Information for full details.
The previous set of biasing potentials were

designed to flatten alchemical free energy landscapes
observed with hard-core interactions. An additional
biasing potential of the form

VSkew ¼
XM

s

XNs

i

XNs

j6¼i

χsi,sjλsj 1− exp −λsi=σð Þð Þ, ð2Þ

with σ = 0.18, was found to give improved fits to free
energy profiles obtained with soft-core interactions.
The previous flattening algorithm handled a variety
of special cases on an individual basis, and could not
be easily modified to accommodate additional biasing
potentials such as Equation 2.

In the present work a more generalizable approach
was used to learn biasing potential parameters to flat-
ten the landscape. Free energy profiles are computed
from several recent sampling iterations using WHAM,77

the entropy of the implicit constraints is subtracted,46

and changes in the biasing potential parameters Δφsi,
Δψsi, sj, Δχsi, sj, and Δωsi, sj are computed for the next
round of sampling. A scoring function for proposed
changes in parameters at each site s is constructed as

E¼
XProfiles

p

XBins

b

wpb

2
Gpb +ΔGpb−Gp
� �2

+
XBiases

i

k
2γ02

Δγi2 ð3Þ

ΔGpb ¼
XBiases

i

∂Gpb

∂γi
Δγi, ð4Þ

where γi runs over all biasing potential parameters in
the set {“φsi, ψsi, sj, χsi, sj, ωsi, sj}. The first term of Equa-
tion 3 assesses landscape flatness and predicts the
effects of changes in biasing parameters on landscape
flatness through the linear approximation of ΔGpb, and
the second term prevents overfitting. The scoring func-
tion is minimized at each site s independently using

least squares with Gpb and Δγi as free parameters.
This flattening algorithm can be easily generalized to
other biasing potentials.

As in the previous version of ALF,48 50 cycles of
optimization were run with 100 ps of equilibration
and 100 ps of sampling, followed by 10 cycles of opti-
mization with 100 ps of equilibration and 1 ns of sam-
pling. We observed that biasing potentials at the end
of the 1 ns cycles were still suboptimal for some of
the more slowly converging sites (e.g. A42, A98, and
M102), so an additional phase with three cycles of
2 ns of equilibration and 5 ns of sampling were added
to the protocol for all sites. For production, five inde-
pendent simulations were run for 40 ns each, or 20 ns
when using VB-REX. It was observed often that some
substituents stopped being sampled after the system
had relaxed, therefore the first quarter of all produc-
tion runs was discarded as equilibration. If sampling
was poor during the remainder of production, land-
scape flattening parameters were reestimated and an
additional one to three rounds of production were
run, until all substituents were being sampled effi-
ciently during the remainder of production. (See Sup-
porting Information Table S2 for details.)

Inspired by BP-REX,47 a new form of biasing
potential replica exchange on the variable biases
(VB-REX) was implemented to encourage intercon-
version of side chains in low replicas, and endpoint
sampling in high replicas. This was achieved by
changing the biasing potential parameters between
neighboring replicas by Δψsi, sj = 2B and Δωsi, sj = 0.5B
for all si-sj combinations, in order to change the bar-
rier height by B. Parameters vary with the number of
sites, where B is tuned to optimize exchange rates,
while the number of replicas and the replica flattened
by ALF are tuned to sample primarily physical end-
point states in the final replica. For the five mutation
site system, even the small 1.8 kcal/mol barrier in the
final replica was adequate to increase the sampling of
approximately physical states (λ > 0.99 at all sites) by
about two orders of magnitude.

Three different electrostatic models were consid-
ered in this work: force shifting (FSHIFT), FSWITCH,
and PME. In preliminary simulations, FSHIFT showed
poorer correlation with experiment and roughly
0.5 kcal/mol greater RMSE, so only FSWITCH and
PME results are reported. FSWITCH multiplies the
electrostatic force by a function that decays smoothly
from one to zero within a narrow range, but neglects
long range electrostatics.53 PME splits the electrostatic
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potential into a short range piece accurately calculated
with cutoffs and a smooth long range piece accurately
calculated in Fourier space.54,55 Using PME in MSλD
simulations is not trivial, and we follow the approach of
Shen.36 Alchemical simulations involving a net change
in charge can result in significant artifacts.84–86 While
corrections for these effects have been devised for
PME,56 they were not applied in the present work as
only two of the considered mutants involved a charge
change. Application of these corrections is deferred
until it can be tested more systematically.

Simulation details
Simulations began from the T4 lysozyme structure
with the disulfide C54T/C97A mutated out (PDB ID:
1L63).87 The unfolded ensemble was modeled through
the use of short capped pentapeptides starting from
their conformation in the crystal structure. The pen-
tapeptide N-terminus was capped with an acetyl
group ( COCH3) and the C-terminus was capped
with an amide group ( NH2). The unfolded ensemble
for multisite systems was treated as an independent
sum of the pentapeptide systems for each individual
mutation site. Folded lysozyme and unfolded penta-
peptides were solvated with TIP3P88 in 72 Å and
40 Å cubic boxes respectively giving margins of at
least 10 Å on each side. Residues were protonated
according to pKa predictions by PropKa89 at pH
values corresponding to experimental measurements,
either 3.0 or 5.4. At a pH of 5.4, all K, R, and H were
positive, and all D and E were negative. At a pH of
3.0, only D47, E62, D89, D92, and D159 remained
negative. NaCl ions were added to a molality of
100 millimolal, and the system was neutralized by
switching an appropriate number of Na+ to Cl−.

Simulations were run with the CHARMM molec-
ular dynamics engine90,91 using the DOMDEC mod-
ule92 for GPU. Folded simulations achieved roughly
18 ns/day and unfolded pentapeptide simulations
achieved 67 ns/day with each replica using four
OpenMP threads on an Intel Xeon E5-2650 v3 CPU
and an Nvidia GeForce GTX 980 GPU. Simulations
used the CHARMM36 force field.73,93 Mutating resi-
dues were modeled using the patch facility of
CHARMM. Every mutation site had a single Cα atom
and side chains for each mutation were attached
starting at the Cβ atom with appropriate bonds,
angles, dihedrals, impropers, and 1–4 interactions.
Each side chain is assigned to a different block in the
CHARMM block module. The nonbonded potential
terms of each side chain are scaled by the appropriate
λ (or product of λs for site-site interactions) and do
not interact with other side chains at the same site.
Soft-core nonbonded interactions were used as
described in Reference [48]. Most bonded interactions
are not scaled by λ in order to maintain side chain
geometry when it is in the off state. Historically,
dihedrals have not been scaled in MSλD, but scaling

dihedrals that include side chain atoms was neces-
sary here, otherwise the side chain Cβ Cα NH C
and Cβ Cα C O dihedrals (with dihedral ampli-
tudes of 1.8 and 1.4 kcal/mol) would be double
counted by the number of side chains at a site. As
these dihderals involve the same rotatable bonds as
protein backbone φ and ψ angles, respectively, such
double counting would have adverse consequences on
the protein backbone conformations. CMAP interac-
tions72,73 do not include side chain atoms, so only one
CMAP interaction is present per residue, and scaling
it is unnecessary.
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