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Abstract

Medical three-dimensional (3D) printing has expanded dramatically over the past three decades with growth in
both facility adoption and the variety of medical applications. Consideration for each step required to create
accurate 3D printed models from medical imaging data impacts patient care and management. In this paper, a
writing group representing the Radiological Society of North America Special Interest Group on 3D Printing (SIG)
provides recommendations that have been vetted and voted on by the SIG active membership. This body of work
includes appropriate clinical use of anatomic models 3D printed for diagnostic use in the care of patients with
specific medical conditions. The recommendations provide guidance for approaches and tools in medical 3D
printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a
3D-printable model, and post-processing of 3D printed anatomic models for patient care.
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Background
In 2016, the Radiological Society of North America
(RSNA) approved a proposal to create the Special Inter-
est Group on 3D Printing (SIG). This document fulfills
two of the original SIG goals: to provide recommenda-
tions towards consistent and safe production of 3D
printed models derived from medical images, and to de-
scribe a set of clinical scenarios for 3D printing is appro-
priate for the intended use of caring for patients with
those medical conditions. This project also fills a previ-
ously unmet need for practice parameters/guidelines re-
garding the clinical service of anatomic modeling (3D

Printing) described for proposed new billing codes, in-
cluding those for the American Medical Association.
These practice parameters and recommendations are
not intended as comprehensive standards but do reflect
several salient aspects of clinical anatomic modeling and
appropriateness. The guidelines subcommittee of the
SIG will maintain and devote the time and effort neces-
sary to continually develop and update these recommen-
dations. This subcommittee is comprised of volunteer
members of the SIG who form the writing group of this
document.
In its current state, medical 3D printing [1–576] has

been performed for a variety of patients, but without
evidence-based appropriateness guidelines. For many
body parts, this document includes a comprehensive as-
sessment of appropriateness from the medical literature,
supplemented by expert opinion (SIG members) when
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there is a paucity of peer-review data. After the clinical
decision to use 3D printing for patient care, there are
many subsequent steps, as reviewed in prior literature
[563, 566, 577]. These include image acquisition, image
segmentation (demarcation of the desired 3D anatomy),
creating 3D-printable file types for each segmented part,
printing, and post processing of 3D medical models.
This document differs from existing works, including
case reports, small and larger studies, and 3D printing
review articles in the literature. This is not a review art-
icle; instead of reviewing the literature or providing data
regarding the clinical utility of medical 3D printing, the
RSNA SIG has assembled a group of experts to begin to
provide consensus recommendations on the practice of
medical modeling and 3D printing, particularly for prac-
tice within healthcare facilities. 3D printing of anatomical
models within a hospital has recently become recognized
as point-of-care manufacturing. These recommendations
create a foundational outline to provide practice recom-
mendations for those steps required for medical 3D print-
ing, including image acquisition, segmentation, printing,
post-processing, and model verification.

Methods
Consensus methodology recommendations
The recommendations regarding medical image acquisi-
tion, image data preparation and manipulation, generation
of 3D printed models, quality control, communication
with referring physicians, preoperative planning using 3D
printed models, and considerations regarding materials
were discussed and summarized by members of the RSNA
Special Interest Group for 3D Printing during several
meetings, including on August 31 (Silver Spring, MD) and
December 1, 2017 (Chicago, IL) after review of the rele-
vant medical 3D printing literature [1–576] and the local
clinical practice of representative members of the Special
Interest Group. Relevant recommendations were further
exposed to internal online discussion and summarized by
a focused taskforce. The final recommendations were
reviewed and vetted by all RSNA 3D printing SIG
members.

Appropriateness consensus guideline generation
The Special Interest Group has initiated the quality and
safety scholarship to identify those clinical situations for
which 3D Printing is considered an appropriate, and not
appropriate, representation of the data contained in a
medical imaging examination. These documents highlight
appropriateness of medical 3D printing for clinical
utilization, research, scientific, and informational pur-
poses. This work is loosely modeled after the American
College of Radiology Appropriateness Criteria® [553, 554]
in that the guidelines committee uses an evidence-based

approach at scoring. Consensus among members is used
when there is a paucity of evidence.
Each category was led by a separate writing group,

composed of a small group of experts in that domain of
medical imaging and 3D printing. The SIG Executive
committee, led by the Guidelines Chairperson, formed
the review panel. Ratings were generated via by a vote of
Special Interest Group members at in-person meetings.
The results of the ratings follow the following 1–9 for-
mat (with 9 being the most appropriate):

1–3, red, rarely appropriate: There is a lack of a clear
benefit or experience that shows an advantage over
usual practice.
4–6, yellow, maybe appropriate: There may be times
when there is an advantage, but the data is lacking, or
the benefits have not been fully defined.
7–9, green, usually appropriate: Data and experience
shows an advantage to 3D printing as a method to
represent and/or extend the value of data contained in
the medical imaging examination.

The supporting evidence was obtained through struc-
tured PubMed searches, as detailed in the Appendix. In
rare circumstances, supporting literature was recom-
mended directly by the members of the committee and
was explicitly identified outside of the structured
PubMed search results.
A subset of applications of 3D printing, including in

congenital heart, vascular, craniomaxillofacial, musculo-
skeletal, genitounirary, and breast pathologies was se-
lected for detailed review. All final components of this
section were vetted and approved by vote of Special
Interest Group members at several face-to-face meetings
including on August 31 (Silver Spring, MD) and Decem-
ber 1, 2017 (Chicago, IL) as well as via internal posting
on the SIG member intranet.

Results
Consensus methodology recommendations
Medical image acquisition
The most common medical imaging modalities for 3D
printing are computed tomography (CT) and magnetic
resonance imaging (MRI); however, any 3D imaging data-
set including sonography (e.g., echocardiography) may be
utilized as input data for segmentation. The international
standard format for these imaging files is Digital Imaging
and Communications in Medicine (DICOM). At this time,
DICOM images are not routinely sent directly to a 3D
printer for printing, so medical images are segmented and
converted to a file type that is recognized by 3D printers.
Common file types include Standard Tessellation Lan-
guage (STL), OBJ, VRML/WRL, AMF, 3MF, and X3D.
Once this functionality is implemented by 3D printing
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vendors, picture archiving and communication system
(PACS) vendors, and at the point of care facility, it will
allow 3D files in the form of STLs, for example, to be
stored in a patient’s medical record.

Spatial resolution and slice thickness Medical imaging
data should have sufficient spatial resolution to accur-
ately represent the anatomy to be modeled. The spatial
resolution of an imaging method refers to the smallest
resolvable distance between two different objects or two
different features of the same object. Low spatial reso-
lution techniques will be unable to differentiate two ad-
jacent structures that are close together and have similar
tissue properties. When the intent to produce a 3D
model is known prior to a medical imaging procedure,
the image acquisition should be tailored so that the anat-
omy in the intended 3D model can be adequately visual-
ized. The optimal spatial resolution will depend on the
anatomy being imaged.
Slice thickness, which influences the spatial resolution

and image noise (discussed in the next section), can also be
optimized depending on the intended use. In general, this
means that the smallest anatomy of interest should be cap-
tured on multiple sequential DICOM images of a particular
series. For example, if the anatomy of interest measures
3 mm, it would be desirable for this anatomy to be cap-
tured on at least 3 sequential image slices; therefore, the
slice thickness should be no greater than 1 mm, and prefer-
ably smaller. If images are acquired with a large slice thick-
ness, stair-step boundaries may be seen in the 3D model.
For CT, in combination with scan distance, consider-

ation may be given regarding collimation (the thickness
of the X-ray beam) and overlap. Typically, the scan dis-
tance and collimation are the same; however, if the slice
distance is smaller than the collimation, there will be an
overlap which may lead to improved results. Cone Beam
CT has technical differences with conventional CT, and
often results in a lower patient radiation exposure and
subsequently less image contrast that typical clinical CT
images. Image artifacts and consistency of SNR through-
out the scan can also limit studies. For MRI, voxels may
be isotropic or rectangular solids and the resolution may
be different in the three dimensions. The size of the
voxel depends on the matrix size, the field of view
(FOV), and the slice thickness.
In some clinical scenarios, there are patients for which

suboptimal imaging data is available, but a separate ac-
quisition is contraindicated. If superior spatial resolution
is preferred and CT data is required, that benefit should
be weighed against the risk of delivering more radiation
to the patient.

Signal to Noise Ratio (SNR) and Contrast to Noise
Ratio (CNR) The SNR is a metric of image quality. A

higher SNR, all else being equal, implies more trust-
worthy data for 3D printing. The CNR is the relationship
of the signal intensity differences (the contrast) between
two regions, scaled to noise. High contrast between vari-
ous organs in the body is an important feature of med-
ical imaging and is necessary to delineate structures for
3D printing. The SNR and CNR of images used for 3D
printing should be comparable to, or superior to,
those for “3D visualization”, defined as the compre-
hensive ensemble of manipulation of a volumetric
data set for viewing on a 2D surface such as a com-
puter monitor [563].
If the SNR and/or CNR are inconsistent, or subopti-

mal, the risks of inaccurate segmentation must be
weighed against those of rescanning the patient. Regard-
ing high noise data, a judgment call must be made to de-
termine whether the segmentation operator is capable of
delineating the data (e.g. in the case of a cone beam CT
image series).
In CT, the X-ray tube voltage may also be adjusted to

maximize the signal. A lower kV can be used to increase
the enhancement of iodine contrast when building vas-
cular models. In addition, the raw data reconstruction
parameters selected may affect the appearance of specific
anatomical structures. For example, the reconstruction
kernel (image filter) impacts both the spatial resolution
and image noise, which must be balanced, based on the
application. Typically, kernel options range from “sharp”
to “smooth.” Sharpening filters increase edge sharpness
at a cost of increasing noise while smoothing filters re-
duce noise content in images by also decrease edge
sharpness. For models with fine structures, such as the
temporal bone, a sharp kernel is preferred; and for lar-
ger, low contrast models, a smooth kernel is more ap-
propriate. CT is considered the imaging modality of
choice for bone imaging and is often used to produce
3D anatomical models of hard tissue structures such as
bone. In MRI, the SNR may be improved by performing
a volume acquisition (at the expense of time), decreasing
noise by reducing the bandwidth, altering the echo time
or repeat time, increasing the FOV, decreasing the
matrix size, or increasing the slice thickness.

Image artifact The sub-volume of the imaging dataset
that will be 3D printed is defined in this document as
the printing Region of Interest (ROI). All medical images
contain artifact, and image processing steps should be
taken to minimize artifact. The ROI should be small
enough to enable confident segmentation for 3D print-
ing. There are cases for which medical interpretation is
possible (see Image interpretation Section), but 3D
printing can be limited by the presence of artifact, mo-
tion, or other spatial or noise limitations in DICOM im-
ages. When this is the case, we recommend that the
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model be annotated with documentation of those parts
of the ROI where segmentation quality may be limited.

Image interpretation Medical images acquired for a
clinical indication should be interpreted with the inter-
pretation being incorporated into the patient medical rec-
ord. The interpretation should include the ROI being
considered for printing. Often, interpretation of the ROI
incorporates 3D visualization to enable or enhance diag-
nosis. Examples of 3D visualization include multi-planar
reformatting, maximum intensity projections, and volume
rendering. Such interpretations are currently billable in
the United States under CPT codes 76376 and 76377.

Image data preparation and manipulation
Image segmentation
Image segmentation is necessary to create 3D printable
files from medical images. The segmentation process,
which subdivides medical images into anatomical re-
gions, typically begins by importing a set of DICOM im-
ages into dedicated image post-processing software.
Anatomical regions are selected using a combination of
automated and semi-automated tools. Once the desired
ROI for 3D printing has been selected, data is interpo-
lated and a surface-based 3D model which describes the
3D geometry of that volume is calculated. To date, the
most common, widely used, and accepted file format for
medical 3D printed objects is the STL file.
STL files are composed of triangular faces, and the

number of these faces can affect anatomical accuracy of
a model. Each lab should determine the appropriate
number of faces/triangles for their medical models to
adequately represent anatomy. Operators should be
aware of any reduction, smoothing, or further file ma-
nipulation or optimization within the segmentation soft-
ware when creating and exporting the STL file.
The contours of the STL file should be routinely

checked against the source medical imaging data; typical
segmentation software packages allow the final STL to
be re-imported and its contours displayed over the ori-
ginal DICOM images. This option can be used to verify
the surface accuracy of an anatomical model STL file.
Additional file formats noted above should also meet the
same criteria.

Segmentation and Computer Aided Design (CAD) software
Medical image processing software is required to gener-
ate a file format amenable to 3D printing. The RSNA 3D
printing SIG concurs with the FDA that software that
has been favorably evaluated by the FDA be used to
translate medical images into formats amenable to 3D
printing for all aspects of patient care, defined by the
SIG as all interactions with healthcare professionals, or
patients and their families, related to medical care. The

SIG recommends that software used for segmentation is
FDA cleared to produce 3D Printed models suitable for
diagnostic use, specifically using the FDA definition of
diagnostic use and noting that FDA cleared software for
3D printed models will also include machines and mate-
rials validated for this intended use. At the time of
manuscript submission, the FDA has approved one
complete system, consisting of software through the
printing process, for medical model production.

File storage and descriptors
Files stored within a repository should contain or be
linked to a set of corresponding descriptors, including
those pertaining to image acquisition and further im-
aging processing. Descriptors should be supported by
standardized terminology from a consensus vocabu-
lary; the SIG acknowledges that this vocabulary repre-
sents a current, unmet need. If the descriptors are
not within digital files, this information should be
otherwise archived.

Reference to file manipulation and alteration
Data from medical images undergo alterations in the
design of the physical model. These changes have
been categorized into Minor and Major alterations
[578], with the latter generally representing changes
that could impact clinical care. When modifications
include major changes, the operator should verify that
both the digital file and 3D printed model is labeled/
identified appropriately.

Generation of 3D printed model
3D printing
There are many different 3D printing technologies, each
differing in the way that the final 3D printed model is
created. When 3D printed models are generated from
medical images, the resolution of the 3D printer should
be equal to, or superior to that of the clinical images
used to segment the model. Similar to the DICOM ac-
quisition stage, it is preferable that printed layers be a
multiplier of the smallest geometry of interest. For ex-
ample, if the smallest anatomical object of interest on
the 3D model is 1 mm, this object should be printed on
at least 3 layers of the model. Due to the nature of med-
ical models, and the need for sub-millimeter accuracy, a
layer thickness of no more than one-third of a milli-
meter is recommended, and preferably less than or equal
to one-eighth of a millimeter. In addition to the layer
thickness of the 3D printing hardware, the in-plane (x-y)
resolution should be known, with a target of less than
one-quarter of a millimeter. The values above are global
recommendations may not be applicable in all cases. If a
model requires a higher or lower accuracy, these param-
eters should be modified accordingly.
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The medical model should include a patient identifier
or an internal unique identification number that can be
tracked back to the patient and date of the image acqui-
sition. Labels can be incorporated (3D printed) into the
model itself. Labels should be externally attached to the
model if size or location does not allow for printed label-
ing. Printed models are assumed to be of anatomic size
(1:1) unless a scaling factor is otherwise noted. Add-
itional identifiers such as model sidedness (left, right)
should be noted, as appropriate. Institutional guidelines
should be used to verify models are free of protected
health information, or models are handled appropriately
in accordance to Health Insurance Portability and Ac-
countability Act (HIPAA) guidelines.

Post-processing printed models
Post-processing steps should not alter the intended
morphology and desired accuracy of the part, but in-
stead should only enhance the utility (including clarity
and transparency) and/or durability of the model. It
should be noted that finishing may slightly alter the di-
mensional accuracy of a part, but this variation should
be minimal (or within the desired global accuracy of the
part) and the benefits (for example: strength and clarity)
should outweigh the dimensional change. All support
materials and residual manufacturing materials and/or
substances should be removed as completely as possible.
If all supporting material is not capable of being re-
moved, this should be noted and presented to the
requesting provider. Should the model be damaged ei-
ther during or after post-processing and cleaning, repairs
should be performed in a manner that reconstitutes the
quality to which the original model adhered. If these re-
pairs are not possible, the model should be reprinted. Any
damage should be noted to the provider and the option to
reprint should be presented. Cleaning solution concentra-
tion and saturation levels should be monitored and main-
tained in accordance to manufacture recommendations.

Model inspection
The model should be inspected by the 3D printing la-
boratory before clinical use. For cases where the model
may be limited by a known image artifact, the model will
be noted with any areas of concern. Qualitative and/or
quantitative measures to confirm that the 3D printed
model matches the desired input data will be taken, in-
cluding but not limited to expert subjective assessment
and objective fitting to the original volume submitted
for printing. This can be done on a per part basis, per
build basis, or in accordance with an additional internal
protocol of the 3D lab. Some examples of qualitative as-
sessments could include comparing the model to a
digital representation or printed picture of the model
and inspecting the model for printing imperfections or

inaccuracies. Some examples of quantitative inspections
could include measurements of a test specimen, mea-
surements of the model, or scanning and comparing the
model back to the original DICOM data sets.

The U.S. Food and Drug Administration (FDA)
The U.S. Food and Drug Administration (FDA) en-
sures the safety and efficacy of personalized devices
in the United States of America. 3D Printing falls
under the auspices of The Center for Devices and
Radiological Health (CDRH). There have been four
FDA benchmarks related to 3D printing and medical
devices from 2014 to 2018.
First, in October 2014, the FDA held a public work-

shop entitled “Additive Manufacturing of Medical De-
vices: An Interactive Discussion on the Technical
Considerations of 3D Printing”. Second, the FDA pub-
lished “Additively Manufactured Medical Products –
The FDA Perspective” [579]. Third, in December 2017,
the FDA published “Technical Considerations for Addi-
tive Manufactured Devices” [580]. This perspective in-
cluded insights regarding 3D printing data manipulation
and hardware for modeling patient-specific anatomy.
Fourth, the FDA commented on the publication “Main-
taining Safety and Efficacy for 3D Printing in Medicine”
[578]. This paper uses a similar, logical 3-step format of
these consensus recommendations, and then develops
different suggestions for regulatory models that depend
on how much, if at all, the anatomical data is modified
before 3D printing. On August 31st, 2017, the RSNA
SIG and the FDA engaged in a joint meeting to discuss
3D printed anatomic models. The intended output of
this meeting is a co-published white paper that will form
the next benchmark.

Quality control program
Due to environmental factors and material properties,
model morphology is expected to change over time. As
part of a complete quality control program, 3D printers
should undergo regular accuracy testing, including test
prints, preventative maintenance, and recalibration [581,
582]. Laboratories may develop a process using a
phantom to ensure regular quality standards for their
printers. If the reference standard is known or assumed,
mathematical operations [583] can be applied equally to
those volumes in the ROI to determine the overall ac-
curacy of the model, including not only potential manual
errors from segmentation, but also generation of the
final data set including digital post-processing steps such
as smoothing.

Delivery and discussion with referring physicians
3D printed models represent an advanced form of com-
munication of the data in medical images, and may
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include the summation of data from multiple sources.
Extensive multidisciplinary teaching opportunities for
3D printing have been realized [584–586]. Physicians
should have an opportunity to discuss the salient fea-
tures and intended use of all models. Any concerns
about the model or segmentation process, if not dis-
cussed previously, should be noted to the provider at the
time of delivery. Where possible, annotations detailing
critical points of model anatomy should be stored both
within the digital record of the model, and physically
placed on the 3D printed model. One example is annota-
tion of a subtle fracture that may not otherwise be
represented in either or both, the segmented, or the 3D
printed model.

Pre-operative planning
“Pre-operative planning” with 3D printing refers to vir-
tual surgical planning (also called digital templating,
digital surgical planning, virtual planning, computerized
planning, computer-assisted surgical simulation). This
detailed planning of the intervention occurs in the
digital space. There are times when the simulation itself
is the end product, and the interventionist acquires valu-
able information regarding patient anatomy and medical
devices to be used to increase confidence and knowledge
before surgery. For these cases the digital plan is trans-
ferred to patient care by way of 3D printed templates,
guides, or models. This type of planning usually involves
major changes to the digital model while utilizing ori-
ginal patient contours. This necessitates the systematic
application of the 3D printing recommendations out-
lined above to the models used for virtual surgical plan-
ning as a minimum requirement.

Material biocompatibility, cleaning, and sterilization
For anatomical models and surgical guides/templates/
jigs potentially entering a surgical field, material biocom-
patibility, cleaning, and sterilization are vitally important.
The details are beyond the scope of this document.
However, biocompatibility of materials depends on sev-
eral factors including base material, the 3D printing
process (and any variations), any post-processing tech-
niques, and hospital cleaning and sterilization methods
and requirements. Manufacturers should provide clean-
ing recommendations and specifications for materials
which have been formally tested for biocompatibility and
sterility, and these specifications should be followed by
the facility. Additional internal sterilization policies may
exist depending on the hospital.

Appropriateness of 3D printing (anatomic modeling) for
selected clinical scenarios
This section provides evidence-based guidelines, supple-
mented by expert opinion when there is a paucity of

peer-review data, to define and support the use of 3D
printing for patients with a variety of conditions, in-
cluding congenital heart, vascular, craniomaxillofacial,
musculoskeletal, genitounirary, and breast pathologies
(Table 1).

Discussion
Reviews that include the types of 3D printers commonly
used in medicine have been published [563, 584]. Re-
garding image post-processing and software, several tu-
torials are available for step-by-step training. The
following discussion includes the specific descriptions
from the SIG writing group for each clinical group of
clinical scenarios considered for appropriateness.

Congenital heart disease
Congenital heart diseases (CHD) are the most common
significant birth defects. Substantial literature supports
the benefit of 3D printing for patients with congenital
heart disease [1–7]. Regarding improved outcomes, pre-
cise preoperative understanding of the complex anatomy
from a printed model may obviate or shorten lengthy ex-
ploration, and therefore operation and cardiopulmonary
bypass time can be reduced.
These recommendations utilize and conform to the

CHD nomenclature defined by the European Association
for Cardio-Thoracic Surgery / Society of Thoracic Sur-
gery (EACTS-STS) version of the International Pediatric
and Congenital Cardiac Code (IPCCC), except as where
noted otherwise. The clinical scenarios defined by the
IPCCC include the following: Septal Defects, Pulmonary
Venous Anomalies, Cor Triatriatum, Pulmonary Venous
Stenosis, Right Heart Lesions, Left Heart Lesions, Single
Ventricle, Transposition of the Great Arteries, DORV,
DOLV.
Structured searches were performed using the US Na-

tional Library of Medicine (PubMed), which enabled the
querying and retrieval of appropriate clinical documents
supporting the appropriateness of 3D printing-enabled
technologies for each specific diagnosis. The search re-
sults were reviewed by experts and some references were
removed and some were relocated to different categor-
ies. As noted above, references outside of the structured
searches were added but noted and approved by the
writing group. As a general rule, the benefits of 3D
printing to define and rehearse an intervention increase
with the overall degree of complexity of disease.

Craniomaxillofacial pathologies
The International Classification of Diseases, Tenth Revision
(ICD-10) [555] descriptions and categorization were used
to categorize the clinical scenarios for rating craniomaxillo-
facial conditions. Four major groups were used as the start-
ing point; 1) Craniomaxillofacial Trauma, 2) Congenital
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Table 1 Ratings Summary: Appropriateness Guidelines (scoring system defined in Methods) for patients who present with a variety
of medical conditions, and for whom 3D Printing is often considered
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Table 1 Ratings Summary: Appropriateness Guidelines (scoring system defined in Methods) for patients who present with a variety
of medical conditions, and for whom 3D Printing is often considered (Continued)

Chepelev et al. 3D Printing in Medicine            (2018) 4:11 Page 8 of 38



Malformations, 3) Acquired/Developmental Deformities
and 4) Neoplasms. Further sub-groups were formed under-
neath the major groupings. Additional clarification for
“simple” versus “complex” diagnoses within a particular
group was given based on inherent differences in appropri-
ateness ratings between subgroups of patients in these
groups. Further language describing each diagnostic group-
ing helps describe the difference between a simple and a
complex case in each subcategory.
Structured searches were performed using the US

National Library of Medicine (PubMed), which en-
abled the querying and retrieval of appropriate clinical
documents supporting the appropriateness of 3D
printing-enabled technologies for a specific condition.
The search results were reviewed by experts and
some references were removed because they were not
relevant. A small number of references were added
because they were found to be relevant, but not
appearing using the stated search string. As noted
above, these were vetted by the writing group before
inclusion. Clinical scenarios that were only dental or
only brain have not been included. The authors
recognize that these include many important clinical
scenarios of for 3D printing, and the goal is to in-
clude them in upcoming documents.
Craniomaxillofacial (CMF) conditions for the purposes

of this document encompass several different surgical
specialties all working in the head and neck area with
both pediatric and adult patients. These include oral and
maxillofacial surgery, craniofacial surgery, plastic sur-
gery, microvascular surgery, pediatric neurosurgery and
otolaryngology. Use of 3D printing-enabled technologies
to aid clinical care in the craniomaxillofacial area has
been seen from the very advent of 3D printing in the late
1980s [556, 557]. Even before the commercialization of
stereolithography there were surgeons, engineers and re-
searchers figuring out more manual ways of converting
medical imaging datasets into 3D models [558]. The fit
seems clear, CMF surgery has both a functional compo-
nent, and for most cases an aesthetic component, where
the form carries importance along with the functional
restoration. In the CMF arena, the use of anatomical
models of anatomy is primarily derived from CT and
MRI datasets, and also from an increasing volume of
cone beam CT datasets. Patient-specific anatomical
models are the baseline, but for many of these applica-
tions the value of these technologies has been found in
either, a) patient-matched implants (for instance tem-
poromandibular joint reconstruction), or b) virtual sur-
gery combined with templates and guides (for instance
orthognathic surgery). The scenarios to follow were
thought of in this way, with some of them relying heavily
on anatomical models alone and some of them relying
with increasing importance on the role that digital

planning combined with patient-matched implants or
templating is playing.

Genitourinary pathologies
The genitourinary conditions have been organized ana-
tomically, recognizing that common genitourinary inter-
ventions are largely based on anatomic considerations.
The complication rate after major genitourinary surger-
ies is reflected in the complexity of the lesion. For
example, more complex kidney tumors are associated
with longer operative times, warm ischemia times, and
greater blood loss [559]. High kidney tumor complexity
can also be correlated to the risk of major postoperative
complications requiring a secondary intervention [560].
There is a growing body of literature that supports the

benefits to patients from 3D printed models. Specifically,
3D printed models may improve comprehension of anat-
omy and facilitate pre-surgical planning for complex sur-
gical cases, ultimately reducing operation times and
improving patient outcomes.
This document describes and provides rating for the

clinical scenarios related to 3D printing of genitourinary
pathology [561, 562]. Structured searches were per-
formed using the US National Library of Medicine
(PubMed), which enabled the querying and retrieval of
appropriated clinical documents supporting the appro-
priateness of 3D printing for a specific diagnosis. As a
general rule, the benefits of 3D printing to define and re-
hearse a genitourinary intervention increases with the
overall degree of complexity of the pathology that is rep-
resented by the physical model based on a medical im-
aging study performed in a radiology department.

Musculoskeletal pathologies
The role of 3D printed models in addressing musculo-
skeletal pathologies can vary depending on a specific
clinical scenario, ranging from aiding in informed con-
sent to use in preoperative planning. Custom fixation
plates, surgical osteotomy guides and implants can also
be generated from 3D data, allowing for virtual surgery
and design of a custom implant that is modeled after the
contralateral healthy side. In addition, mock surgeries
can be performed on the physical 3D models, allowing
for more intuitive problem solving and measurements
preoperatively. Such planning alters surgical manage-
ment for some patients, either by delaying intervention,
or by suggesting an alternative approach. Pre-surgical
planning can also decrease operating room time and the
number of devices and tools that need to be tried and
subsequently wasted and/or re-sterilized. In this sense,
3D printing has proven useful for demonstrating muscu-
loskeletal pathology and for planning interventions.
Based on the accumulating evidence, the use of 3D

printed models can positively impact numerous metrics

Chepelev et al. 3D Printing in Medicine            (2018) 4:11 Page 9 of 38



associated with musculoskeletal interventions, including
patient and physician satisfaction, operative time, blood
loss, and the various direct and indirect costs associated
with patient-centered decision making regarding man-
agement of complex disease. At present, the musculo-
skeletal pathologies with potential and established 3D
printing-enabled management have been broadly catego-
rized into fractures, chronic osseous abnormalities, de-
generative disorders, neoplastic pathologies, scoliosis,
and miscellaneous specific applications including liga-
mentous injury and heterotopic ossification.

Vascular pathologies
3D printing has been shown to be useful for understand-
ing the vascular anatomy, evaluation of hemodynamics,
treatment planning (surgical and endovascular) as well
as preclinical testing of devices. It has also been used for
medical education and procedural training on vascular
models [563–566]. There are several clinical scenarios
for which 3D printing has been used in the care of pa-
tients with vascular disease. Because of the nature of
vascular pathology, dissection, aneurysm, and stenosis
are often treated with medical management and “watch-
ful waiting”; most patients follow this algorithm, and
there is little to no role for 3D printing. However, some
patients have a clinical presentation and non-invasive
tests that warrant intervention, while others progress
from watchful waiting to planned intervention. For many
of these patients, 3D printing is appropriate. Of note,
coronary 3D printing, and cardiac printing in general
falls outside the scope of this document. These clinical
scenarios will be discussed in future documents.
Most aortic dissections are treated medically, and for

these patients there is no indication for 3D printing.
However, 3D printing may be appropriate for planning
intervention in complex dissections, and in particular
dissections that also have enlargement. Models have
been used for planning and simulation of stent deploy-
ment [495]. Simulation on models can help in identify-
ing the best projections for angiography, best catheter
and wire combinations to navigate the anatomy, in for
determining appropriate balloon and stent size as well as
position.
Endovascular repair of complex aortic aneurysm in-

volving the origin of branches, extreme angulations,
complex neck anatomy, and short landing zones can be
quite challenging. Use of 3D printed models can aid un-
derstanding of complex anatomy, device selection, and
design of prosthesis best suited for patient’s anatomy.
These models have shown to be useful in planning pro-
cedures and increase operator confidence [491]. 3D
printed models have also been used to precisely place
fenestrations on stent grafts to treat complex aneurysms
[479, 567]. In addition, graft replicas can be tested on

patient specific 3D model for suitability before being de-
ployed in patients.
Aortic surgeries, especially in the region of aortic arch

and upper abdominal aorta can be quite challenging due
to origin of branches, angulation and complex aneurysm
neck anatomy. 3D printed models have shown to im-
prove surgeons’ understanding of anatomy and help pre-
operative planning [485]. Further, 3D printed models
can potentially also be used to plan and simulate surgical
and endovascular interventions on visceral aneurysms
[502, 503]. These models can also be used for designing
[486] and testing [568, 576] endovascular devices like
catheters, coils, balloons, and stents.

Breast pathologies
Breast cancer is the most common solid malignancy in
women in the United States [570]. The overall lifetime
risk of developing breast cancer for women in the
United States is 12.4%. Advancements in diagnostic tests
and treatments have led to decreasing death rates of
1.8% per year from 2005 to 2014 [570, 571]. Understand-
ing the extent of disease at the time of diagnosis allows
appropriate staging and determination of prognosis and
survival, in addition to selection of suitable surgical op-
tions [572]. Benefits from 3D printed models and its role
as an aid to clinical care has been increasingly described
in the literature. 3D printed models have the ability of
depicting the extent of disease and relationships of sensi-
tive anatomy, thereby possibly reducing operating time,
enhancing utilization of new oncoplastic techniques, and
improving patient outcomes.
Benign breast diseases are common and include a wide

range of entities [573]. The most common of these en-
tities, fibrocystic change, is clinically observed in up to
50% of women and found histologically in 90% of
women [573]. Fibroadenomas are the next most com-
mon benign breast disease occurring in 15–23% of
women [574]. Surgical management of these entities
may be needed in cases where cosmesis is altered or
when symptom relief is needed. Surgical management
may impact developing breast tissue in young women
leading to alterations in its proper development [575].
Therefore, careful understanding of the anatomy may
minimize the deleterious effects of surgery in benign
breast disease.

Conclusions
3D printing will play an increasingly important role in en-
abling precision medicine. This document addresses the
clinical scenarios where pathology complexity necessitates
a transformation of clinical imaging data into a physical
model. Adoption of common clinical standards regarding
appropriate use, information and material management,
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and quality control are needed to ensure the greatest pos-
sible clinical benefit from3D printing.
This work provides the first comprehensive

literature-based guideline document regarding the im-
plementation of 3D printing in clinical practice and de-
tails the appropriate scenarios for numerous clinical
applications of 3D printing. It is anticipated that this
consensus guideline document, created by the members
of the RSNA 3D printing special group, will provide the
initial reference for method and clinical application
standardization. The document and will be substantially
expanded and refined, based on expanding clinical
applications.

Appendix
Search Methodology and Search Results
Structured searches were performed using the US Na-
tional Library of Medicine (PubMed), which enabled the
querying and retrieval of appropriated clinical docu-
ments regarding the appropriateness of 3D printing in
each of the scenarios.
Congenital Heart Disease (Retrieved August 2017)
Atrial Septal Defect (ASD): Large; small or spontan-

eously closed
PubMed Search: ((3D printing) AND (ASD)) OR

((rapid prototyping) AND (ASD)) OR ((3D printing)
AND (atrial septal defect)) OR ((rapid prototyping)
AND (atrial septal defect))
Results: [1–7]
Ventricular Septal Defect (VSD): complex; large

(noncomplex); small
PubMed Search: ((3D printing) AND (VSD)) OR

((rapid prototyping) AND (VSD)) OR ((3D printing)
AND (ventricular septal defect)) OR ((rapid prototyping)
AND (ventricular septal defect))
Results: [8–16]
Atrioventricular Canal (AV Canal)
PubMed Search: ((3D printing) AND (AVSD)) OR

((rapid prototyping) AND (AVSD)) OR ((3D printing)
AND (atrioventricular septal defect)) OR ((rapid proto-
typing) AND (atrioventricular septal defect)) OR ((3D
printing) AND (AV Canal)) OR ((rapid prototyping)
AND (AV Canal)) OR ((3D printing) AND (atrioven-
tricular canal)) OR ((rapid prototyping) AND (atrioven-
tricular canal))
Results: None
Aortopulmonary window (AP Window)
PubMed Search: ((3D printing) AND (AP window))

OR ((rapid prototyping) AND (AP Window)) OR ((3D
printing) AND (aortopulmonary window)) OR ((rapid
prototyping) AND (aortopulmonary window))
Results: None
Truncus Arteriosus

PubMed search: ((3D printing) AND truncus) OR
((rapid prototyping) AND truncus)
Results: None
Partial Anomalous Pulmonary Venous Connection

(PAPVR)
PubMed search: ((3D printing) AND (Anomalous pul-

monary)) OR ((rapid prototyping) AND (Anomalous
pulmonary)) OR ((3D printing) AND TAPVR) OR
((rapid prototyping) AND TAPVR) OR ((3D printing)
AND PAPVR) OR ((rapid prototyping) AND PAPVR)
Results: None
Total Anomalous Pulmonary Venous Connection

(TAPVR)
PubMed search: ((3D printing) AND (Anomalous pul-

monary)) OR ((rapid prototyping) AND (Anomalous
pulmonary)) OR ((3D printing) AND TAPVR) OR
((rapid prototyping) AND TAPVR) OR ((3D printing)
AND PAPVR) OR ((rapid prototyping) AND PAPVR)
Results: None
Cor Triatriatum
PubMed search: ((3D printing) AND (Cor Triatria-

tum)) OR ((rapid prototyping) AND (Cor Triatriatum))
Results: None
Pulmonary Venous Stenosis
PubMed search: ((3D printing) AND (pulmonary ven-

ous stenosis)) OR ((rapid prototyping) AND ((pulmonary
venous stenosis)) OR ((3D printing) AND (pulmonary
vein stenosis)) OR ((rapid prototyping) AND ((pulmon-
ary vein stenosis))
Results: None
Tetralogy of Fallot (TOF): NOS; accompanied with

major aortopulmonary collateral arteries
PubMed search: ((3D printing) AND TOF) OR ((rapid

prototyping) AND TOF) OR ((3D printing) AND tetral-
ogy) OR ((rapid prototyping) AND tetralogy)
Results: [11, 17] Outside of Search, suggested by SIG

Members: [18]
Tricuspid Valve Disease and Ebstein’s Anomaly
PubMed search: ((3D printing) AND ebstein) OR ((rapid

prototyping) AND ebstein) OR ((3D printing) AND
ebsteins) OR ((rapid prototyping) AND ebsteins) OR ((3D
printing) AND ebstein’s) OR ((rapid prototyping) AND
ebstein’s) OR ((3D printing) AND (tricuspid valve disease))
OR ((rapid prototyping) AND (tricuspid valve disease))
Results: None
RVOT Obstruction and/or Pulmonary Stenosis
PubMed search: ((3D printing) AND (RVOT obstruc-

tion)) OR ((rapid prototyping) AND (RVOT obstruc-
tion)) OR ((3D printing) AND (pulmonary stenosis)) OR
((rapid prototyping) AND (pulmonary stenosis))
Results: [12, 16]
Hypoplastic Left Heart Syndrome
PubMed search: ((3D printing) AND HLHS) OR

((rapid prototyping) AND HLHS) OR ((3D printing)
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AND (hypoplastic left)) OR ((rapid prototyping) AND
(hypoplastic left))
Results: [9–11, 19–24]
Shone’s Syndrome
PubMed search: ((3D printing) AND shones) OR

((rapid prototyping) AND shones) OR ((3D printing)
AND shone’s) OR ((rapid prototyping) AND shone’s)
Results: None
Double Inlet Left Ventricle
PubMed search: ((3D printing) AND DILV) OR ((rapid

prototyping) AND DILV) OR ((3D printing) AND
(double inlet left)) OR ((rapid prototyping) AND (double
inlet left))
Results: None
Double Inlet Right Ventricle
PubMed search: ((3D printing) AND DIRV) OR

((rapid prototyping) AND DIRV) OR ((3D printing)
AND (double inlet right)) OR ((rapid prototyping) AND
(double inlet right))
Results: None
Mitral atresia
PubMed search: ((3D printing) AND (mitral atresia))

OR ((rapid prototyping) AND (mitral atresia))
Results: None
Tricuspid atresia
PubMed search: ((3D printing) AND (tricuspid atre-

sia)) OR ((rapid prototyping) AND (tricuspid atresia))
Results: None
Unbalanced AV canal
PubMed search: ((3D printing) AND unbalanced) OR

((rapid prototyping) AND unbalanced)
Results: None
Single ventricle (general)
PubMed search: ((3D printing) AND SV) OR ((rapid

prototyping) AND SV) OR ((3D printing) AND (single ven-
tricle)) OR ((rapid prototyping) AND (single ventricle))
Results: [25–27]
Congenitally Corrected TGA (levo-TGA)
PubMed search: ((3D printing) AND (L-TGA)) OR

((rapid prototyping) AND (L-TGA)) OR ((3D printing)
AND LTGA) OR ((rapid prototyping) AND LTGA) OR
((3D printing) AND (levo-transposition)) OR ((rapid
prototyping) AND (levo-transposition)) OR ((3D print-
ing) AND (l-transposition)) OR ((rapid prototyping)
AND (l-transposition)) OR ((3D printing) AND CCTG
A) OR ((rapid prototyping) AND CCTGA) OR ((3D
printing) AND (CC-TGA)) OR ((rapid prototyping)
AND (CC-TGA)) OR ((3D printing) AND (congenitally
corrected transposition)) OR ((rapid prototyping) AND
(congenitally corrected transposition)) OR ((3D printing)
AND (congenitally corrected transposition)) OR ((rapid
prototyping) AND (congenitally corrected transpos-
ition)) OR ((3D printing) AND (CC-transposition)) OR
((rapid prototyping) AND (CC-transposition))

Results: [23, 28]
Transposition of the Great Arteries (dextro-TGA)
PubMed search: ((3D printing) AND (D-TGA)) OR

((rapid prototyping) AND (D-TGA)) OR ((3D printing)
AND DTGA) OR ((rapid prototyping) AND DTGA) OR
((3D printing) AND (dextro-transposition)) OR ((rapid
prototyping) AND (dextro-transposition)) OR ((3D
printing) AND (d-transposition)) OR ((rapid prototyp-
ing) AND (d-transposition))
Results: [29]
Double Outlet Right Ventricle
PubMed search: ((3D printing) AND DORV) OR

((rapid prototyping) AND DORV) OR ((3D printing)
AND (double outlet)) OR ((rapid prototyping) AND
(double outlet))
Results: [9–12, 19, 20, 23, 24, 30]
Double Outlet Left Ventricle
PubMed search: ((3D printing) AND DOLV) OR

((rapid prototyping) AND DOLV) OR ((3D printing)
AND (double outlet left)) OR ((rapid prototyping) AND
(double outlet left))
Results: None
Craniomaxillofacial (Retrieved August 2017)
Skull Fractures: Fractures of the cranium include the

frontal bone, frontal sinus, parietal, sphenoid, temporal,
occipital and mastoid bone. Simple fractures would be
non-displaced and may not need surgery. Complex frac-
tures may be comminuted and most likely require sur-
gery early for decompression and/or later for cranial
reconstruction. Any violation of the dura or brain re-
quires immediate surgery. ICD-10: S02.0 Fracture of
Vault of Skull, S02.1 Fracture of Base of Skull
PubMed Search: ((3D Printing) AND (Skull Fracture))

OR ((Rapid Prototyping) AND (Skull Fracture))
Results: [31–43]
Facial Fractures: Description: Facial fractures include

fractures of the maxilla, zygoma, nasal bones, and frontal
bone in addition to the orbit, which is composed of the
orbital surface of the maxillary bone, lamina papyracea
of the ethmoid bone, lacrimal bone, greater and lesser
wings of the sphenoid bone, orbital process of the zygo-
matic bone, the orbital process of the palatine bone, and
the pars orbitalis of the frontal bone. Non-displaced
fractures often heal uneventfully and may be managed
non-surgically. Displaced fractures---either linear or
comminuted---generally require operative repair to
avoid functional or esthetic complications. High energy
injuries, such as those seen with unrestrained motor ve-
hicle collisions or gunshot wounds, often result in
greater three-dimensional disruption and displacement
than low energy injuries, which are often the result of
assaults and ground level falls. Patient-matched implants
may be required for reconstruction of complex injuries,
particularly those involving the orbit and zygoma.
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ICD-10: S02.2 Fracture of Nasal Bones, S02.3 Fracture of
Orbital Floor, S02.4 Fracture of Malar, Maxillary and
Zygoma Bones
PubMed Search: ((3D Printing) AND (Facial Fracture))

OR ((Rapid Prototyping) AND (Facial Fracture))
Results: [31–43]
Mandible Fractures: Mandible fractures include frac-

tures to the condyle, ramus, coronoid process, mandibu-
lar angle, body of the mandible or symphysis. Linear
fractures are likely to be less three-dimensional as com-
pared to comminuted fractures, which are often signifi-
cantly displaced. Depending on the complexity of the
fracture, the degree of dislocation and the location, open
reduction and internal fixation with titanium plates and
screws may be required. Secondary reconstruction of
complex post-traumatic deformity may also require
patient-matched implants. ICD-10: S02.6 Fracture of
Mandible (body), S02.61 Fracture of Condylar Process of
Mandible, S02.62 Fracture of Subcondylar Process of
Mandible, S02.63 Fracture of Coronoid Process of Man-
dible, S02.64 Fracture of Ramus of Mandible, S02.65
Fracture of Angle of Mandible, S02.66 Fracture of Sym-
physis of Mandible
PubMed Search: ((3D Printing) AND (Mandible Frac-

ture)) OR ((Rapid Prototyping) AND (Mandible Fracture))
Results: [32, 35–37, 44–69]
Congenital Malformations of Skull & Facial Bones:

Syndromal or non-syndromal cases characterized mainly by
anomalies which may vary from mild to severe and may
present with asymmetric involvement of the skull and facial
bones. In simple craniosynostosis one or more sutures may
be involved. In complex or syndromal craniosynostosis pa-
tients may be programmed genetically to grow abnormally
and require repeated surgical operations until growth is
complete including cranial vault, facial-orbital advancement
including maxillae and mandible surgery after eruption of
the secondary dentition. Congenital birth defects character-
ized by incomplete development or absence of face struc-
tures, usually affecting one side of the face. Simple cases
would include those such as positional plagiocephaly which
most likely involve non-surgical treatment. Complex cases
for facial reconstruction (for craniofacial macrosomia or
hypertelorism, for instance) or total vault reconstruction in
an infant require extensive planning and surgical care.
Secondary reconstruction in the growing child or adult
may require continued surgical care as the skeleton de-
velops further before reaching skeletal maturity. ICD-10:
Q75.0 Craniosynostosis, Q75.1 Craniofacial Dysostosis,
Q75.2 Hypertelorism, Q75.3 Macrocephaly, Q75.4
Mandibulofacial Dysostosis, Q75.5 Oculomandibular
Dysostosis, Q67.0 Congenital Facial Asymmetry, Q67.3
Plagiocephaly
PubMed Search: ((3D Printing) AND (craniosynostosis))

OR ((Rapid Prototyping) AND (craniosynostosis)) OR ((3D

Printing) AND (Hypertelorism)) OR ((Rapid Prototyping)
AND (Hypertelorism)) OR ((3D Printing) AND (Plagioce-
phaly)) OR ((Rapid Prototyping) AND (Plagiocephaly)) OR
((3D Printing) AND (Facial Asymmetry)) OR ((Rapid
Prototyping) AND (Facial Asymmetry))
Results: [32, 33, 53, 60, 88–122]
Cleft Lip & Palate: Cleft lip and cleft palate are birth

defects that affect the upper lip, nose, alveolus, soft and
or hard palate. The problem can range from a small
notch in the lip (simple) to a unilateral or bilateral
complete or incomplete involvement of lip, alveolar
bone, soft and hard palate with displacement of the pal-
atal muscles. The functional problems associated with
cleft lip and/or palate include problems with eating,
speech, and eustachian tube malfunction and middle ear
effusion requiring grommet tube insertion into the ear
drum. Growth may be abnormal requiring jaw surgery.
Surgery involves alveolar bone grafting, lip and nose re-
pair, palate repair including palatal muscle repair and
closure of the palatal cleft. Later secondary surgery may
be necessary. ICD-10: Q35.1 Cleft Hard Palate, Q35.3
Cleft Soft Palate, Q35.5 Cleft Hard Palate and Cleft Soft
Palate, Q36.0 Cleft Lip, Bilateral, Q36.1 Cleft Lip, Me-
dian, Q36.9 Cleft Lip, Unilateral
PubMed Search: ((3D Printing) AND (Cleft Palate))

OR ((Rapid Prototyping) AND (Cleft Palate)) OR ((3D
Printing) AND (Cleft Lip)) OR ((Rapid Prototyping)
AND (Cleft Lip))
Results: [123–135]
Ear Malformations: Malformations of the ear can in-

clude missing portions of the ear, misshapen portions of
the ear, malpositioned ears, large ears (macrotia) or
small/missing ears (microtia). Simple cases may require
surgical excision of extra tissue or a procedure to restrict
prominence. Complex cases are typically very complex
surgical cases and may require total auricular recon-
struction with autogenous tissues. ICD-10: Q17.1
Macrotia, Q17.2 Microtia
PubMed Search: ((3D Printing) AND (Microtia)) OR

((Rapid Prototyping) AND (Microtia)) OR ((3D Print-
ing) AND (Macrotia)) OR ((Rapid Prototyping) AND
(Macrotia))
Results: [136–146]
Osteochondroplasias: Osteogenesis imperfecta (OI) is

a genetic disorder in which bones break easily. Fibrous
Dysplasia of the craniomaxillofacial skeleton may result
in benign overgrowth of tissue which is fibrous and lack-
ing calcium. Fibrous dysplasia may impact skeletal ap-
pearance but the complex cases begin to compromise
other vital structures/organs such as the optic nerve and
the brain. Simple cases of OI may include bony fractures
which will be handled such as in the Trauma (Group A,
II or III classification). Complex fibrous dysplasia cases
can be very difficult surgically and require three-
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dimensional removal/sculpting of the mass while paying
close attention to close-by vital structures. Surgical re-
placement of tumor resection can be very complex.
ICD-10: Q78.0 Osteogenesis Imperfecta, Q78.1 Polyos-
totic Fibrous Dysplasia
PubMed Search: ((3D Printing) AND (Osteogenesis

Imperfecta)) OR ((Rapid Prototyping) AND (Osteogenesis
Imperfecta)) OR ((3D Printing) AND (Fibrous Dysplasia))
OR ((Rapid Prototyping) AND (Fibrous Dysplasia))
Results: [53, 147–156]
Dentofacial Anomalies Including Malocclusion:

Dentofacial anomalies can include over or undergrowth
of either the upper jaw (maxilla) or the lower jaw (man-
dible). Malocclusion happens when the teeth are not ap-
proximating in a way that allows for normal function
and can be any combination of one jaw being smaller,
larger or asymmetric as compared to the other. Simple
cases may involve surgical repositioning of only one of
the jaws and typically symmetrical movements. Complex
cases typically involve bimaxillary surgery with highly
complex movements of both jaws based upon the clin-
ical and radiographic examination. ICD-10: M26.01
Maxillary hyperplasia, M26.02 Maxillary hypoplasia,
M26.03 Mandibular hyperplasia, M26.04 Mandibular hy-
poplasia, M26.05 Macrogenia, M26.06 Microgenia,
M26.07 Excessive tuberosity of jaw, M26.1 Anomalies of
Jaw-Cranial Base Relationship, M26.11 Maxillary asym-
metry, M26.211 Malocclusion Angle Class I, M26.212
Malocclusion Angle Class II, M26.213 Malocclusion
Angle Class III, M26.22 Open Occlusal Relationship,
M26.220 Open Anterior Occlusal Relationship, M26.221
Open Posterior Occlusal Relationship
PubMed Search: ((3D Printing) AND (Orthognathic

Surgery)) OR ((Rapid Prototyping) AND (Orthognathic
Surgery)) OR ((3D Printing) AND (Maxillary Hyperpla-
sia)) OR ((Rapid Prototyping) AND (Maxillary Hyperpla-
sia)) OR ((3D Printing) AND (Maxillary Asymmetry))
OR ((Rapid Prototyping) AND (Maxillary Asymmetry))
OR ((3D Printing) AND (Malocclusion)) OR ((Rapid
Prototyping) AND (Malocclusion)) OR ((3D Printing)
AND (Anterior Open Bite)) OR ((Rapid Prototyping)
AND (Anterior Open Bite)) OR ((3D Printing) AND
(Posterior Open Bite)) OR ((Rapid Prototyping) AND
(posterior open bite)) OR ((3D Printing) AND (virtual
surgical planning)) OR ((Rapid Prototyping) AND (vir-
tual surgical planning))
Results: [36, 53, 79, 81, 92, 93, 98, 99, 101–103, 107,

108, 110, 117, 120, 123, 157–201]
Other Diseases of Jaws: Other diseases of jaws in-

clude inflammatory, infectious, vascular or iatrogenic
processes in which bone is remodeled or eroded, such as
osteoradionecrosis and osteomyelitis. Bony lesions such
as giant cell lesions and benign cysts may require partial
resection of the jaw. Uncomplicated cases may require

simple excision. Complicated and destructive lesions
may involve segmental resection of the mandible or
maxilla and reconstruction, typically with autogenous
tissues supported by rigid fixation. Secondary recon-
struction with patient-matched implants or further free
flaps may be required for complex cases. ICD-10: M27.1
Giant Cell Granuloma, Central, M27.2 Inflammatory
Conditions of Jaws (osteoradionecrosis, osteomyelitis,
others), M27.3 Alveolitis of Jaws
PubMed Search: ((3D Printing) AND (Giant Cell

Granuloma Jaw)) OR ((Rapid Prototyping) AND (Giant
Cell Granuloma Jaw)) OR ((3D Printing) AND (Osteora-
dionecrosis)) OR ((Rapid Prototyping) AND (Osteora-
dionecrosis)) OR ((3D Printing) AND (Osteomyelitis))
OR ((Rapid Prototyping) AND (Osteomyelitis)) OR ((3D
Printing) AND (Alveolitis)) OR ((Rapid Prototyping)
AND (Alveolitis))
Results: [150, 202–207]
Temporomandibular Joint Disorders: Temporoman-

dibular joint disorders relate to a variety of conditions
affecting the anatomic and functional characteristics of
the temporomandibular joint. Factors contributing to
the complexity of temporomandibular diseases are its re-
lation to dentition and mastication and the symptomatic
effects in other areas which account for referred pain to
the joint. Common diseases are developmental abnor-
malities, trauma, subluxation, luxation, arthritis, and
neoplasia. Simple cases may not need surgical interven-
tion or may require arthroscopy. Cases that involve loss
or gain of vertical dimension in the condyle and result
in loss of jaw function (malocclusion or range of mo-
tion) may require joint total joint replacement and will
often rely on patient-matched implants for reconstruc-
tion of the joint(s). Complex conditions such as
ankylosis of the joint require careful surgical interven-
tion to avoid surrounding vital structures such as nerves
and vasculature. ICD-10: M26.601 Right temporoman-
dibular joint disorder, unspecified, M26.602 Left tem-
poromandibular joint disorder, unspecified, M26.603
Bilateral temporomandibular joint disorder, unspecified
PubMed Search: ((3D Printing) AND (Temporoman-

dibular Joint)) OR ((Rapid Prototyping) AND (Temporo-
mandibular Joint)) OR ((Stereolithography) AND
(Temporomandibular Joint)) OR ((CAD-CAM) and
(Temporomandibular Joint))
Results: [32, 36, 208–243]
Benign Neoplasms (Bone): Bony benign neoplasms of

the craniomaxillofacial area may involve the skull, max-
illa, orbit, sinuses and mandible. These can range from
simple cases where excision of a mass may be required
to very complex cases requiring three-dimensional surgi-
cal excision and reconstruction. Reconstruction for com-
plex cases may require autogenous tissue or a free flap
and may at times also require patient-matched implants
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or fixation plates. ICD-10: D16.4 Benign neoplasm of
bones of skull and face, D16.5 Benign neoplasm of lower
jaw bone
PubMed Search: ((3D Printing) AND (Benign Facial

Neoplasm)) OR ((Rapid Prototyping) AND (Benign Fa-
cial Neoplasm)) OR ((3D Printing) AND (Benign Jaw
Neoplasm)) OR ((Rapid Prototyping) AND (Benign Jaw
Neoplasm))
Results: [244, 245]
Benign Neoplasms (Soft Tissue): Benign soft tissue

neoplasms of the craniomaxillofacial area include lesions
of parotid or salivary glands, the lip, the floor of mouth,
other parts of the mouth, tonsil, oropharynx, nasophar-
ynx and hypopharynx. Other cutaneous lesions include
neurofibromas, gliomas, dermoids, hemangiomas, lym-
phangiomas and many other rarer tumors. Diagnosis
and excision is indicated in all these lesions when pos-
sible. Complex cases can include resection and recon-
struction of soft tissue and hard tissue concomitantly.
Reconstruction for complex cases may require autogen-
ous tissue or a free flap and may at times also require
patient-matched implants or rigid fixation. ICD-10:
D11.0 Benign neoplasm of parotid gland, D11.7 Benign
neoplasm of other major salivary glands, D10.0 Benign
neoplasm of lip, D10.1 Benign neoplasm of tongue,
D10.2 Benign neoplasm of floor of mouth, D10.3 Benign
neoplasm of other and unspecified parts of mouth,
D10.4 Benign neoplasm of tonsil, D10.5 Benign neo-
plasm of other parts of oropharynx, D10.6 Benign neo-
plasm of nasopharynx, D10.7 Benign neoplasm of
hypopharynx, D10.9 Benign neoplasm of pharynx,
unspecified
PubMed Search: ((3D Printing) AND (Benign Parotid

Neoplasm)) OR ((Rapid Prototyping) AND (Benign Par-
otid Neoplasm)) OR ((3D Printing) AND (Benign Saliv-
ary Gland Neoplasm)) OR ((Rapid Prototyping) AND
(Benign Salivary Gland Neoplasm)) OR ((3D Printing)
AND (Benign Neoplasm Tonsil)) OR ((Rapid Prototyp-
ing) AND (Benign Neoplasm Tonsil)) OR ((3D Printing)
AND (Benign Neoplasm Oropharynx)) OR ((Rapid
Prototyping) AND (Benign Neoplasm Oropharynx)) OR
((3D Printing) AND (Benign Neoplasm Nasopharynx))
OR ((Rapid Prototyping) AND (Benign Neoplasm Naso-
pharynx)) OR ((3D Printing) AND (Benign Neoplasm
Hypopharynx)) OR ((Rapid Prototyping) AND (Benign
Neoplasm Hypopharynx))
Results: No Relevant Papers
Malignant Neoplasms (Bone): Malignant neoplasms

of bone which can occur in the craniomaxillofacial re-
gion almost always require complex surgical interven-
tion. Many times bone and soft tissue are involved in
these cases and the resections encompass a margin of
uninvolved tissue to prevent recurrence. The difference
between simple and complex may relate to the size of

the area to be resected/reconstructed, the three-dimen-
sionality of the affected area or its approximation to vital
structures. Reconstruction for complex cases most times
require a free flap and may at times also require
patient-matched implants or patient-matched rigid fix-
ation. ICD-10: C41.0 Malignant neoplasm of bones of
skull and face, C41.1 Malignant neoplasm of mandible
PubMed Search: ((3D Printing) AND (Malignant Neo-

plasm Skull)) OR ((Rapid Prototyping) AND (Malignant
Neoplasm Skull)) OR ((3D Printing) AND (Malignant
Neoplasm Mandible)) OR ((Rapid Prototyping) AND
(Malignant Neoplasm Mandible)) OR ((virtual surgical
planning) AND (Malignant Neoplasm Mandible)) OR
((patient matched implant) AND (Malignant Neoplasm
Mandible))
Results: [36, 55, 72, 73, 82, 88, 107, 111, 114, 161,

202–205, 246–300]
Malignant Neoplasms (Soft Tissue): Malignant neo-

plasms of the soft tissue within the craniomaxillofacial
region include cancers of the oral cavity (e.g. tongue,
floor of mouth maxillary and mandibular gingiva), oro-
pharynx, hypopharynx, orbit, skull base and larynx. Simple
cases may only require biopsy while complex cases can in-
clude composite resection and reconstruction of soft tis-
sue and hard tissue concomitantly. Reconstruction for
complex cases may require autogenous tissue or a free flap
and may at times also require patient-matched implants
or rigid fixation. ICD-10: C00 Malignant Neoplasm of Lip,
C01 Malignant Neoplasm of Base of Tongue, C04 Malig-
nant Neoplasm of Floor of Mouth, C05 Malignant Neo-
plasm of Palate, C30 Malignant neoplasm of nasal cavity
and middle ear, C31 Malignant neoplasm of accessory si-
nuses, C32 Malignant neoplasm of larynx, C33 Malignant
neoplasm of trachea, D00.0 Carcinoma in situ of lip, oral
cavity and pharynx, D00.1 Carcinoma in situ of esophagus
PubMed Search: ((3D Printing) AND (Malignant Neo-

plasm Lip)) OR ((Rapid Prototyping) AND (Malignant
Neoplasm Lip)) OR ((3D Printing) AND (Malignant
Neoplasm Tongue)) OR ((Rapid Prototyping) AND (Ma-
lignant Neoplasm Tongue)) OR ((3D Printing) AND
(Malignant Neoplasm Palate)) OR ((Rapid Prototyping)
AND (Malignant Neoplasm Palate)) OR ((3D Printing)
AND (Malignant Neoplasm Sinus)) OR ((Rapid Proto-
typing) AND (Malignant Neoplasm Sinus)) OR ((3D
Printing) AND (Malignant Neoplasm Larynx)) OR
((Rapid Prototyping) AND (Malignant Neoplasm Lar-
ynx)) OR ((3D Printing) AND (Malignant Neoplasm
Trachea)) OR ((Rapid Prototyping) AND (Malignant
Neoplasm Trachea)) OR ((3D Printing) AND (Carcin-
oma Lip)) OR ((Rapid Prototyping) AND (Carcinoma
Lip)) OR ((3D Printing) AND (Carcinoma Pharynx)) OR
((Rapid Prototyping) AND (Carcinoma Pharynx)) OR
((3D Printing) AND (Carcinoma esophagus)) OR ((Rapid
Prototyping) AND (Carcinoma Esophagus)) OR ((3D
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Printing) AND (Carcinoma Oral Cavity)) OR ((Rapid
Prototyping) AND (Carcinoma Oral Cavity)) OR ((vir-
tual surgical planning) AND (Malignant Neoplasm Base
of Tongue)) OR ((patient matched implant) AND (Ma-
lignant Neoplasm Base of Tongue))
Results: [55, 150, 204, 247–250, 278, 279, 287, 290,

301, 302]
Genitourinary (Retrieved August 2017)
Urolithiasis, Surgical or Medical Management: Cal-

culi or stones that form in the urinary tract, affecting the
kidneys, ureters, bladder or urethra is common and in-
creasing in prevalence due to a variety of proposed fac-
tors including obesity, dietary changes, and global
warming. Terms associated with urolithiasis include kid-
ney stones, renal stones, renal calculus disease, nephro-
lithiasis, calculi.
PubMed Search: (3D printing AND urolithiasis) OR

(3D printing AND kidney stones) OR (3D printing AND
renal stones) OR (3D printing AND renal calculus dis-
ease) OR (3D printing AND nephrolithiasis) OR (3D
printing AND calculi) OR (rapid prototyping AND uro-
lithiasis) OR (rapid prototyping AND kidney stones) OR
(rapid prototyping AND renal stones) OR (rapid proto-
typing AND renal calculus disease) OR (rapid prototyp-
ing AND nephrolithiasis) OR (rapid prototyping AND
calculi)
Results: [303–309]
Renal Cancer: Renal cancer is common, with renal

cell carcinoma (RCC) accounting for approximately 3.5%
of all malignancies [562]. In the US, there is predicted to
be 63,990 new diagnoses of RCC and 14,400 kidney can-
cer related deaths in 2017. Surgical resection is the
standard of care for RCC, with minimally invasive partial
nephrectomy the treatment of choice for localized le-
sions [561].
PubMed Search: (3D printing AND kidney cancer) OR

(rapid prototyping and kidney cancer) OR (3D printing
AND renal cancer) OR (rapid prototyping AND renal
cancer) OR (3D printing AND renal mass) OR (3D
printing AND kidney mass) OR (rapid prototyping
AND renal mass) OR (rapid prototyping AND kidney
mass) OR (3D printing AND renal cell carcinoma)
OR (3D printing AND RCC) OR (rapid prototyping
AND renal cell carcinoma) OR (rapid prototyping
AND RCC)
Results: [308, 310–324]
The terms renal lymphoma, angiomyolipoma (AML)

and renal oncocytoma generated no results when
searched with 3D printing or rapid prototyping.
Renal Cysts: Renal cysts are common; they are hetero-

geneous in both origin and pathogenesis; and most are
simple and are usually of little clinical significance. Cys-
tic renal disease may be sporadic, from congenital anom-
alies of the kidney and urinary tract that result in

abnormal development of the renal parenchyma, or
inherited, due to abnormal cilium signaling in tubular
epithelial cells [561]. Inherited cystic renal diseases are
now included in the group of diseases termed ciliopa-
thies. Renal cysts are characterized based on the Bos-
niak classification system which divides cystic renal
masses into five categories based on imaging charac-
teristics. Simple cysts are considered Bosniak 1, min-
imally complex are Bosniak 2, intermediate are
Bosniak 3, and malignant are Bosniak 4. Bosniak 3
and 4 lesions undergoing surgical treatment such as
partial nephrectomy or radiofrequency ablation should
be grouped in the renal cancer group described in
the previous section.
PubMed Search: (3D printing AND Bosniak cystic le-

sions) or (rapid prototyping AND Bosniak cystic lesions)
OR (3D printing AND Bosniak) OR (rapid prototyping
AND Bosniak) OR (3D printing AND renal cysts) OR
(rapid prototyping AND renal cysts) OR (3D printing
AND kidney cyst) OR (rapid prototyping AND kidney
cyst) OR (3D printing AND, cystic renal dysplasia) OR
(rapid prototyping AND cystic renal dysplasia) OR (3D
printing AND polycystic kidney disease) OR (rapid
prototyping AND polycystic kidney disease)
Results: None
Lower Tract Tumors (bladder and urethra) and

Upper Tract Tumors (pyelocaliceal cavities and ur-
eter): Urothelial carcinomas can be located in the lower
(bladder and urethra) or the upper (pyelocalyceal cavities
and ureter) urinary tract. Bladder cancer accounts for
the majority of urothelial malignancies. In 2017, there
are estimated to be 79,030 new cases of bladder cancer
in the United States, 60,490 in men, making it the 4th
most prevalent cancer in men [562]. Cancer of the ur-
eter is uncommon and occurs most often in older adults
who have been previously treated for bladder cancer.
Transitional cell carcinoma is the most common hist-
ology observed.
PubMed Search: 3D printing AND urothelial malig-

nancy OR rapid prototyping AND urothelial malignancy,
3D printing AND urothelial malignancies OR rapid
prototyping AND urothelial malignancies, 3D printing
AND urothelial carcinoma OR rapid prototyping AND
urothelial carcinoma, 3D printing AND transitional cell
carcinoma OR rapid prototyping AND transitional cell
carcinoma, 3D printing AND bladder malignancy OR
rapid prototyping AND bladder malignancy, 3D printing
AND bladder malignancies OR rapid prototyping AND
bladder malignancies, (3D printing AND bladder cancer
OR rapid prototyping AND bladder cancer, 3D printing
AND bladder neoplasm OR rapid prototyping AND
bladder neoplasm, 3D printing AND bladder mass OR
rapid prototyping AND bladder mass
Results: None Relevant
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PubMed Search: (3D printing AND ureteral malig-
nancy) OR (3D printing AND ureteral malignancies) OR
(rapid prototyping AND ureteral malignancy) OR (rapid
prototyping and ureteral malignancies) OR (3D printing
AND intrarenal collecting system malignancies) OR
(rapid prototyping AND intrarenal collecting system ma-
lignancies) OR (3D printing AND pyelocaliceal) OR
(rapid prototyping AND pyelocaliceal) OR (3D printing
AND pyelocalyceal) OR (rapid prototyping AND
pyelocalyceal)
Results: None Relevant
Adrenal Disease: The adrenal glands may be affected

by a variety of pathologies, the majority of which are be-
nign. Causes of adrenal gland disorders include genetic
mutations, tumors, infections, regulatory pathologies, or
certain medications.
PubMed search: (3D printing AND adrenal disease)

OR (rapid prototyping AND adrenal disease) OR (3D
printing AND adrenal gland) OR (rapid prototyping
AND adrenal gland)
Results: [325]
Penile Cancer: Cancer of the penis is an uncommon

lesion occurring almost entirely in uncircumcised men.
An important pathological process in penile cancer, is
squamous cell carcinoma, which is caused by the human
papillomavirus (HPV).
PubMed Search: (3D printing AND penile cancer) OR

(rapid prototyping AND penile cancer)
Results: None
Testicular Cancer: The majorities (95%) of testicular

tumors are derived from germ cells and all masses of
the testes are considered malignant until proven
otherwise [562].
PubMed Search: (3D printing AND testicular cancer)

OR (rapid prototyping AND testicular cancer)
Results: None
Prostate Cancer: Prostate cancer is the most common

cancer in American men, accounting for almost 1 in 5
new diagnoses [583]. Men diagnosed with prostate can-
cer have three primary treatment options including ac-
tive surveillance, surgery, and radiation.
PubMed Search: (3D printing AND prostate cancer)

OR (rapid prototyping AND prostate cancer)
Results: [326–334]
Ovarian Disease: Ovarian disease includes ovarian

cancer and ovarian cysts, as well as polycystic ovarian
syndrome.
PubMed Search: (3D printing AND ovarian tumor)

OR (rapid prototyping AND ovarian tumor) OR (3D
printing AND ovarian cancer) OR (rapid prototyping
AND ovarian cancer)
Results: None Relevant
PubMed Search: (3D printing AND polycystic ovarian

disease) OR (3D printing AND PCOD) OR (rapid

prototyping AND polycystic ovarian disease) OR (rapid
prototyping AND PCOD)
Results: None
Uterine and Cervical Disease: The uterine corpus is

composed of endometrial mucosa and the underlying
smooth muscle myometrium. Frequent and significant
uterine disorders include endometriosis, adenomyosis,
abnormal uterine bleeding, and lesions of the endomet-
rium and myometrium including endometrial hyperpla-
sia, endometrial carcinomas, endometrial polyps, and
smooth muscle tumors.
PubMed Search: (3D printing AND uterine cancer)

OR (rapid prototyping AND uterine cancer) OR (3D
printing AND cervical cancer) OR (rapid prototyping
AND cervical cancer)
Results: [335–342]
The terms endometrial adenocarcinoma, leiomyoma

(uterine fibroids), leiomyosarcoma, and endometrial
stromal sarcoma generated no results when searched
with 3D printing or rapid prototyping.
PubMed Search: (3D printing AND endometriosis) OR

(rapid prototyping AND endometriosis)
Results: [342]
PubMed Search: (3D printing AND endometritis) OR

(3D printing AND adenomyosis) OR (3D printing AND
uterine bleeding) OR (rapid prototyping AND endomet-
ritis) OR (rapid prototyping AND adenomyosis) OR
(rapid prototyping) AND (uterine bleeding)
Results: None
Vaginal Cancer
PubMed Search: 3D printing AND vaginal tumor OR

rapid prototyping AND vaginal tumor OR 3D printing
AND vaginal cancer OR rapid prototyping AND vaginal
cancer
Results: [339, 343]
Genitourinary Reconstruction: Genitourinary recon-

struction encompasses a broad range of surgical proce-
dures whose purpose is to correct congenital or acquired
abnormalities. Terms: genitourinary conditions, genito-
urinary disorders, genitourinary anomalies, genitourinary
abnormalities, genital conditions, genital disorders, geni-
tal anomalies, genital abnormalities.
PubMed Search: (3D printing AND genitourinary re-

construction) OR (rapid prototyping AND genitourinary
reconstruction) OR (3D printing AND genitourinary dis-
orders) OR (rapid prototyping AND genitourinary disor-
ders) OR (3D printing AND genitourinary disorder) OR
(rapid prototyping AND genitourinary disorder) OR (3D
printing AND genitourinary anomaly) OR (rapid proto-
typing AND genitourinary anomaly) OR (3D printing
AND genitourinary anomalies) OR (rapid prototyping
AND genitourinary anomalies) OR (3D printing AND
genitourinary abnormalities) OR (rapid prototyping
AND genitourinary abnormalities) OR (3D printing
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AND genitourinary abnormality) OR (rapid prototyping
AND genitourinary abnormality) OR (3D printing AND
genital condition) OR (rapid prototyping AND genital
condition) OR (3D printing AND genital anomaly) OR
(rapid prototyping AND genital anomaly) OR (3D print-
ing AND genital anomalies) OR (rapid prototyping AND
genital anomalies) OR (3D printing AND genitourinary
abnormalities) OR (rapid prototyping AND genitouri-
nary abnormalities) OR (3D printing AND genitourinary
abnormality) OR (rapid prototyping AND genitourinary
abnormality)
Results: None Relevant
Genitourinary Trauma: Injury to the genitourinary

tract is a common occurrence after both blunt and pene-
trating trauma. Terms: genitourinary injury, urinary tract
trauma, renal trauma, kidney trauma (renal lacerations,
renal collecting system injury, renal vascular injury), ur-
eteral trauma, bladder trauma, urethral trauma, adrenal
trauma, scrotal trauma.
PubMed Search: (3D printing AND genitourinary

trauma) OR (rapid prototyping AND genitourinary
trauma) OR (3D printing AND genitourinary injury) OR
(additive manufacturing AND genitourinary injury) OR
(3D printing AND urinary tract trauma) OR (additive
manufacturing AND urinary tract trauma) OR (3D
printing AND renal trauma) OR (rapid prototyping
AND renal trauma) OR (3D printing AND kidney
trauma) OR (rapid prototyping AND kidney trauma) OR
(3D printing AND renal laceration) OR (rapid prototyp-
ing AND renal laceration) OR (3D printing AND renal
collecting system injury) OR (rapid prototyping AND
renal collecting system injury) OR (3D printing AND
renal vascular injury) OR (rapid prototyping AND renal
vascular injury) OR (3D printing AND ureteral trauma)
OR (additive manufacturing AND ureteral trauma) OR
(3D printing AND ureteral injury) OR (additive manu-
facturing AND ureteral injury) OR (3D printing AND
bladder injury) OR (rapid prototyping AND bladder in-
jury) OR (3D printing AND bladder trauma) OR (rapid
prototyping AND bladder trauma) OR (3D printing AND
adrenal trauma AND rapid prototyping AND adrenal
trauma) OR (3d printing AND adrenal injury) OR (3D
printing AND scrotal trauma) OR (rapid prototyping
AND scrotal trauma) OR (3d printing AND scrotal injury)
Results: None Relevant
Pediatric Infection and Reflux: Acute pyelonephritis

is inflammation of the kidney, usually bacterial in origin.
Terms: vesicoureteral reflux (VUR), urinary tract infec-
tion (UTI), acute pyelonephritis
PubMed search: (3D printing AND vesicoureteral re-

flux) OR (rapid prototyping AND vesicoureteral reflux)
OR (3D printing AND VUR) OR (rapid prototyping
AND VUR)
Results: [344]

No results for PubMed search with 3D printing OR
rapid prototyping AND the following: urinary tract in-
fection, UTI, or pyelonephritis
Pediatric Retroperitoneal Genitourinary Tumors:

The terms included Wilms tumor, nephroblastoma, and
genitourinary tumor.
PubMed Search: (3D printing AND pediatric genito-

urinary tumor) OR (rapid prototyping AND pediatric
genitourinary tumor) OR (3D printing AND Wilms
tumor) OR (rapid prototyping AND Wilms tumor) OR
(3D printing AND nephroblastoma) OR (rapid prototyp-
ing AND nephroblastoma)
Results: None Relevant
Musculoskeletal (Retrieved February 2017)
Fracture: Simple, Acute Complex Long Bone, Acute

Complex Intraarticular, Complex, Acetabular,
Non-Pathological Vertebral, Pathological Vertebral,
Fracture Malunion.
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (rapid[All Fields] AND
prototyping[All Fields])) AND ((“fractures, bone”[MeSH
Terms] OR (“fractures”[All Fields] AND “bone”[All
Fields]) OR “bone fractures”[All Fields] OR “fracture”[All
Fields]) OR malunion[All Fields])
Results: [345–406]
Heterotopic Ossification
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (rapid[All Fields] AND
prototyping[All Fields])) AND (“ossification, heteroto-
pic”[MeSH Terms] OR (“ossification”[All Fields] AND
“heterotopic”[All Fields]) OR “heterotopic ossification”[All
Fields] OR (“heterotopic”[All Fields] AND “ossificatio-
n”[All Fields]))
Results: None relevant
Ligamentous Injury
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (rapid[All Fields] AND
prototyping[All Fields])) AND ((“tendons”[MeSH
Terms] OR “tendons”[All Fields] OR “tendon”[All
Fields]) OR (“ligaments”[MeSH Terms] OR “ligament-
s”[All Fields] OR “ligament”[All Fields]))
Results: [407, 408]
Hip Dysplasia
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-
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dimensional”[All Fields]) OR “three-dimensional printin-
g”[All Fields] OR (“3d”[All Fields] AND “printing”[All
Fields]) OR “3d printing”[All Fields]) OR (rapid[All
Fields] AND prototyping[All Fields])) AND (“hip dislo-
cation”[MeSH Terms] OR (“hip”[All Fields] AND “dislo-
cation”[All Fields]) OR “hip dislocation”[All Fields] OR
(“hip”[All Fields] AND “dysplasia”[All Fields]) OR “hip
dysplasia”[All Fields])
Results: [389, 409–414]
Bone or Soft Tissues Neoplasm: With or Without

Joint and Neurovascular Involvement
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (rapid[All Fields] AND
prototyping[All Fields])) AND (“bone neoplasms”[MeSH
Terms] OR (“bone”[All Fields] AND “neoplasms”[All
Fields]) OR “bone neoplasms”[All Fields] OR (“bone”[All
Fields] AND “tumor”[All Fields]) OR “bone tumor”[All
Fields])
Results: [324, 353, 415–443]
Arthritis, Not Otherwise Specified
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (rapid[All Fields] AND
prototyping[All Fields])) AND (“arthritis”[MeSH Terms]
OR “arthritis”[All Fields])
Results: [358, 444–453]
Scoliosis: Secondary to Congenital Vertebral Anom-

aly, Severe/Marked, Thoracic Kyphosis, None of the
Above
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (rapid[All Fields] AND
prototyping[All Fields])) AND (“scoliosis”[MeSH Terms]
OR “scoliosis”[All Fields])
Results: [438, 454–463]
Vascular (Retrieved: Initial November 2017, Updated

June 2018)
Aortic Pathologies: Dissection, Aneurysm, Stenting,

Pseudoaneurysm
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (rapid[All Fields] AND
prototyping[All Fields])) AND ((“aneurysm, dissecting”[-
MeSH Terms] OR (“aneurysm”[All Fields] AND “dissec-
ting”[All Fields]) OR “dissecting aneurysm”[All Fields]

OR (“aortic”[All Fields] AND “dissection”[All Fields])
OR “aortic dissection”[All Fields]) OR (“aortic aneur-
ysm”[MeSH Terms] OR (“aortic”[All Fields] AND
“aneurysm”[All Fields]) OR “aortic aneurysm”[All
Fields]) OR ((“aorta”[MeSH Terms] OR “aorta”[All
Fields] OR “aortic”[All Fields]) AND (“stents”[MeSH
Terms] OR “stents”[All Fields] OR “stent”[All Fields]))
OR ((“aorta”[MeSH Terms] OR “aorta”[All Fields] OR
“aortic”[All Fields]) AND (“aneurysm, false”[MeSH
Terms] OR (“aneurysm”[All Fields] AND “false”[All
Fields]) OR “false aneurysm”[All Fields] OR “pseudoa-
neurysm”[All Fields])))
Results: [464–499]
Peripheral Aneurysm
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (Rapid[All Fields] AND
Prototyping[All Fields])) AND ((“arteries”[MeSH Terms]
OR “arteries”[All Fields] OR “arterial”[All Fields]) AND
(“aneurysm”[MeSH Terms] OR “aneurysm”[All Fields]))
Results: [500–505]
Stenosis, Arterial, Extracranial, for Patient-Specific

Simulations
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (Rapid[All Fields] AND
Prototyping[All Fields])) AND ((“constriction, patholo-
gic”[MeSH Terms] OR (“constriction”[All Fields] AND
“pathologic”[All Fields]) OR “pathologic constriction”[All
Fields] OR “stenosis”[All Fields]) OR (“peripheral arterial
disease”[MeSH Terms] OR (“peripheral”[All Fields]
AND “arterial”[All Fields] AND “disease”[All Fields]) OR
“peripheral arterial disease”[All Fields]))
Results: [506–508]
Vascular Malformations: Acquired, Congenital,

Rings, Slings, For Interventional Consideration – Ex-
cluding congenital heart disease and intracranial
pathologies.
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (Rapid[All Fields] AND
Prototyping[All Fields])) AND ((“vascular malforma-
tions”[MeSH Terms] OR (“vascular”[All Fields] AND
“malformations”[All Fields]) OR “vascular malformation-
s”[All Fields] OR (“vascular”[All Fields] AND “malforma-
tion”[All Fields]) OR “vascular malformation”[All
Fields]) OR (“vascular ring”[MeSH Terms] OR (“vascu-
lar”[All Fields] AND “ring”[All Fields]) OR “vascular
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ring”[All Fields]) OR (“vascular ring”[MeSH Terms] OR
(“vascular”[All Fields] AND “ring”[All Fields]) OR “vas-
cular ring”[All Fields] OR (“vascular”[All Fields] AND
“sling”[All Fields]) OR “vascular sling”[All Fields]))
Results: [509]
Varices: Peripheral for Medical Management, Retro-

peritoneal for Medical Management, Intervention
Planning
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (Rapid[All Fields] AND
Prototyping[All Fields])) AND ((“varicose veins”[MeSH
Terms] OR (“varicose”[All Fields] AND “veins”[All
Fields]) OR “varicose veins”[All Fields] OR “varices”[All
Fields]) OR (“varicose veins”[MeSH Terms] OR (“varico-
se”[All Fields] AND “veins”[All Fields]) OR “varicose
veins”[All Fields] OR “varix”[All Fields]) OR varicose[All
Fields])
Results: None
Carotid Pathologies: Stenosis, Dissection, Pseudoa-

neurysm, Post-Endarterectomy
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (Rapid[All Fields] AND
Prototyping[All Fields])) AND carotid[All Fields]
Results: [510–514]
Intracranial Pathologies: Stenosis, Aneurysm, Dural

AV Fistula, Arteriovenous Malformation
PubMed Search: ((“printing, three-dimensional”[MeSH

Terms] OR (“printing”[All Fields] AND “three-dimensio-
nal”[All Fields]) OR “three-dimensional printing”[All
Fields] OR (“3d”[All Fields] AND “printing”[All Fields])
OR “3d printing”[All Fields]) OR (Rapid[All Fields] AND
Prototyping[All Fields])) AND ((“constriction, patholo-
gic”[MeSH Terms] OR (“constriction”[All Fields] AND
“pathologic”[All Fields]) OR “pathologic constriction”[All
Fields] OR “stenosis”[All Fields]) OR (“aneurysm”[MeSH
Terms] OR “aneurysm”[All Fields]) OR (Dural[All
Fields] AND (“arteriovenous fistula”[MeSH Terms] OR
(“arteriovenous”[All Fields] AND “fistula”[All Fields])
OR “arteriovenous fistula”[All Fields] OR (“av”[All
Fields] AND “fistula”[All Fields]) OR “av fistula”[All
Fields])) OR (“arteriovenous malformations”[MeSH
Terms] OR (“arteriovenous”[All Fields] AND “malforma-
tions”[All Fields]) OR “arteriovenous malformations”[All
Fields] OR (“arteriovenous”[All Fields] AND “malforma-
tion”[All Fields]) OR “arteriovenous malformation”[All
Fields]))
Results: [501, 515–545]
Breast (Retrieved November 2017)

Benign breast lesions: Benign breast lesions include
fibrocystic change, benign breast masses, inflammatory,
and peripartum conditions.
PubMed Search: ((3D printing) AND (fibrocystic

change)) OR ((3D printing) AND (benign breast
masses)) OR ((3D printing) AND (mastitis)) OR ((3D
printing) AND (galactocele)) OR ((rapid prototyping)
AND (fibrocystic change)) OR ((rapid prototyping) AND
(benign breast masses)) OR ((rapid prototyping) AND
(mastitis) OR ((rapid prototyping) AND (galactocele))
Results: None
High risk breast lesions: High risk lesions include flat

epithelial atypia, atypical ductal hyperplasia, lobular neo-
plasia, radial scar, papillary lesions and mucocele-like
lesions.
PubMed Search: ((3D printing) AND (flat epithelial

atypia)) OR ((3D printing) AND (atypical ductal hyper-
plasia)) OR ((3D printing) AND (lobular neoplasia)) OR
((3D printing) AND (radial scar)) OR ((3D printing)
AND (papillary lesions) OR ((3D printing) AND
(mucocele-like lesions)) OR ((rapid prototyping) AND
(flat epithelial atypia)) OR ((rapid prototyping) AND
(atypical ductal hyperplasia)) OR ((rapid prototyping)
AND (lobular neoplasia) OR ((rapid prototyping)
AND (radial scar)) OR ((rapid prototyping) AND
(papillary lesions)) OR ((rapid prototyping) AND
(mucocele-like lesions))
Results: No results found.
Breast cancer: Malignant breast lesions included

ductal carcinoma in situ ductal (DCIS) and invasive
breast carcinomas. Use in breast malignancies with chest
wall involvement and/or nipple-areolar complex involve-
ment, evaluation of tumor-breast size ratio, and tumors
where oncoplastic surgery is considered.
PubMed Search: ((3D printing) AND (breast cancer)

OR ((rapid prototyping) AND (breast cancer))
Results: [546–552]
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