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1  | INTRODUC TION

In many terrestrial taxa with populations separated by water (e.g., 
island systems), dispersal is typically constrained by the lack of an 
intrinsic mechanism of overwater dispersal. In contrast, in some 

species adapted to coastal habitats, dispersal by sea, not land, pre-
dominates (Kinlan & Gaines, 2003), as in many marine animal species 
where ocean currents facilitate larval dispersal (Galindo, Olson, & 
Palumbi, 2006; Nathan et al., 2008). For example, unlike most tree 
species, sea dispersal via propagules characterizes different man-
grove taxa, which live exclusively at the interface of the marine 
environment and coastlines. While ocean currents clearly are an 
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Abstract
A central goal of comparative phylogeography is to understand how species- specific 
traits interact with geomorphological history to govern the geographic distribution 
of genetic variation within species. One key biotic trait with an immense impact on 
the spatial patterns of intraspecific genetic differentiation is dispersal. Here, we 
quantify how species- specific traits directly related to dispersal affect genetic varia-
tion in terrestrial organisms with adaptations for dispersal by sea, not land—the man-
groves of the Caribbean. We investigate the phylogeography of white mangroves 
(Laguncularia racemosa, Combretaceae) and red mangroves (Rhizophora mangle, 
Rhizophoraceae) using chloroplast genomes and nuclear markers (thousands of RAD- 
Seq loci) from individuals throughout the Caribbean. Both coastal tree species have 
viviparous propagules that can float in salt water for months, meaning they are capa-
ble of dispersing long distances. Spatially explicit tests of the role of ocean currents 
on patterning genetic diversity revealed that ocean currents act as a mechanism for 
facilitating dispersal, but other means of moving genetic material are also important. 
We measured pollen-  vs. propagule- mediated gene flow and discovered that in white 
mangroves, seeds were more important for promoting genetic connectivity between 
populations, but in red mangroves, the opposite was true: pollen contributed more. 
This result challenges our concept of the importance of both proximity to ocean cur-
rents for moving mangrove seeds and the extent of long- distance pollen dispersal. 
This study also highlights the importance of spatially explicit quantification of both 
abiotic (ocean currents) and biotic (dispersal) factors contributing to gene flow to 
understand fully the phylogeographic histories of species.
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important abiotic factor influencing genetic patterns in some man-
grove species (Gillespie et al., 2011), biotic properties of the propa-
gules of species also differ, raising the prospect that species- specific 
traits, like those studied in their terrestrial plant counterparts (e.g., 
Massatti & Knowles, 2016), could also be important in shaping the 
degree to which coastal communities exhibit similar genetic pat-
terns. Here, we explore the relative roles of abiotic and biotic factors 
with a comparative analysis of two Caribbean coastal angiosperms, 
red mangroves (Rhizophora mangle, Rhizophoraceae) and white man-
groves (Laguncularia racemosa, Combretaceae).

Research in several subdisciplines of biology has shown that dis-
persal is a powerful force that can shape both the distributions of 
species and patterns of genetic structure within species. Early em-
pirical tests of island biogeography, such as Simberloff and Wilson’s 
(1969) classic fumigation experiments, showed that islands closer to 
continents were colonized more quickly than distant islands, high-
lighting the need to understand island colonization mechanisms. 
Historically, dispersal was not considered interesting and/or relevant 
to biogeographic studies—interpreted as little more than stochastic 
noise—and vicariance was the mechanism that drove biogeographic 
patterns (reviewed in Humphries & Parenti, 1999). More recently, 
the biogeographic research community has better acknowledged 
the importance of dispersal in determining species distributions (de 
Queiroz, 2005). Subsequent research found that abiotic factors (e.g., 
environmental barriers or environmental facilitation of colonization) 
and biotic factors (i.e., dispersal) are both important aspects of col-
onization (Gillespie et al., 2011; Losos & Schluter, 2000). Early phy-
logeographic studies accounted for the role of dispersal to a much 
greater extent than biogeographic studies (e.g., Avise, Alisauskas, 
Nelson, & Ankney, 1992; Burban & Petit, 2003). Nevertheless, a 
polarized view of vicariance and dispersal has continued into com-
parative phylogeographic studies (Papadopoulou & Knowles, 2016), 
in which a lack of phylogeographic concordance was considered to 
result from species- specific differences in dispersal, and therefore 
uninteresting and unimportant. As the body of comparative phylo-
geography literature has grown to include a wide range of organisms 
and greater amounts of genomic data, a more nuanced view of the 
vicariance–dispersal continuum has emerged—one that explicitly ad-
dresses species- specific biotic factors as well as abiotic ones, and 
that recognizes the importance of dispersal in shaping genetic struc-
ture within species.

Red and white mangroves are largely codistributed in neotrop-
ical coastal estuarine habitats, and both disperse via viviparous (i.e., 
germinated) seedlings that abscise from the parent plant and float 
for months in the ocean before potentially finding suitable substrate 
(Allen & Krauss, 2006; Rabinowitz, 1978; Tomlinson, 2016). Both 
species produce a large number of seeds, at a substantial cost to 
the parent plant (Tomlinson, 2016), but red mangroves have larger 
and longer- living seedlings, and live closer to the water, than do 
white mangroves. Thus, we predict that red mangroves will exhibit 
greater connectivity between populations through seeds than white 
mangroves, with relatively little difference between the two species 
in pollen- based estimates of gene flow, because even though the 

two species have different pollination syndromes (i.e., wind vs. in-
sect), this difference is relatively small compared to the differences 
in propagule traits between the species. Furthermore, we predict 
that the patterns of genetic differentiation will reflect differences 
in the degree of isolation among populations as a function of the 
geographic distance separating populations, augmented by oceanic 
currents (i.e., the seascape; Galindo et al., 2006). We characterize 
the phylogeographic structure of red and white mangroves using 
both nuclear (RAD- Seq loci) and chloroplast (chloroplast genome se-
quences) loci from sampling locations across the Caribbean to tease 
apart how differences in dispersal in these two species affect the 
observed phylogeographic patterns.

Moreover, we apply analyses, which in addition to quantifying 
the association between genes and geography, also provide a frame-
work for assessing departures from isolation- by- distance (IBD) pat-
terns. This includes both quantifications of statistical deviations, 
which when considered in the light of the geographic distribution 
of populations in a spatially explicit framework, can identify general 
trends that might correspond with impediments from currents, as 
well as identification of how abiotic factors influence genetic vari-
ation. We investigate the effect of two abiotic factors, land type 
(island or continent) and island size, on the degree to which the ge-
netics of a population deviated from the null expectation (i.e., IBD). 
The impact of land type (island vs. continental) and island size on fac-
tors important for biogeographic patterns (e.g., speciation rate) has 
been investigated in biogeographic studies (e.g., Losos & Ricklefs, 
2009), but spatially explicit phylogeographic investigation is needed 
in systems with both island and continental distributions, where abi-
otic and/or biotic factors may influence movement of genetic mate-
rial between the two.

Not only does this study add to a growing body of work on 
species- specific vs. assemblage- wide patterns of genetic variation 
(e.g., Carnaval, Hickerson, Haddad, Rodrigues, & Moritz, 2009; 
Oliveira et al., 2018; Papadopoulou & Knowles, 2016; Resende- 
Moreira et al., 2018), but it also expands such research to terrestrial 
taxa whose dispersal mode differs from most studies to date— 
terrestrial coastal taxa adapted to oceanic dispersal. For many taxa, 
the only way that genetic material will exchange between islands 
is through rare events. These events include slow, long- distance 
successful rafting that occurs with low probability, infrequent bird- 
mediated transport, and rare storms or hurricanes that can quickly 
transport genetic material long distances (Gillespie et al., 2011). We 
explore the rarity of long- distance dispersal (LDD) in species with 
continental and island distributions and how the relative frequency 
of LDD events affects genetic patterns. Many methodologies used 
in this study, particularly the spatially explicit quantification of abi-
otic factors that influence dispersal between populations, will be 
widely applicable to future research in other diverse taxa, including 
additional plants, as well as mammals, reptiles and insects in oceanic 
island systems (e.g., Heaney, Walsh, & Townsend Peterson, 2005; 
Juan, Emerson, Oromı,́ & Hewitt, 2000). Our analyses are also ap-
plicable to some terrestrial systems (e.g., some terrestrial systems—
sky islands—have many similarities to oceanic island systems; Moore 
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et al., 2013; Salerno, Señaris, Rojas- Runjaic, & Cannatella, 2015). 
Finally, populations in many other terrestrial systems in diverse 
taxa can be viewed as islands when an environmental feature limits 
genetic interchange between populations. Quantifying the abiotic 
factor(s) that isolate populations in a spatially explicit context will 
allow for more powerful analyses of how these factors interact with 
biotic factors to shape phylogeographic patterns (Riginos, Crandall, 
Liggins, Bongaerts, & Treml, 2016).

2  | MATERIAL S AND METHODS

2.1 | Sample collection and DNA isolation

We collected leaf tissue from mature plants of each species from 
sampling locations in North America, Central America, South 
America and Caribbean Islands (Supporting Information Table S1). 
Vouchers were deposited in the University of Florida herbarium 
(FLAS) at the Florida Museum of Natural History (accession num-
bers: FLAS 267604, 267605, 267607, 267608, 267610- 267612, 
267614, 267615, 267617- 267619). These two species are codistrib-
uted throughout coastlines in the neotropics; in total, we sampled 
28 populations of red mangroves and 20 populations of white man-
groves. At each location, we collected one leaf from 1 to 16 indi-
viduals that were spaced at least 15 m apart to minimize collecting 
closely related individuals. Herbarium specimens from the New York 
Botanical Garden (NYBG) were used in cases for sampling locations 
that were difficult or prohibitively expensive to reach. GPS coordi-
nates for each sampling location were recorded. For each sampling 
location, we used between one and eight individuals in genetic anal-
yses; in locations where herbarium specimens were used, we were 
often limited to one individual per location. In locations where more 
than eight individuals were sampled, we randomly selected eight in-
dividuals for use in genetic analyses. Each sampled leaf was placed 
in a labelled bag with silica gel and stored for 1- 12 months at 4°C; 
we then extracted DNA from the dried leaf tissue using a standard 
CTAB protocol (Doyle & Doyle, 1987).

2.2 | RAD- Seq library preparation and 
data processing

We followed the double- digest RAD- Seq protocol of Peterson, 
Weber, Kay, Fisher, and Hoekstra (2012). We constructed DNA li-
braries for each sample by digesting approximately 200 ng genomic 
DNA with EcoRI and MseI and then ligating Illumina adapters and 
unique 8- , 9- , 10-  and 14- nucleotide barcodes to the DNA fragments. 
The DNA libraries were PCR- amplified in 22 separate reactions and 
pooled to minimize early PCR bias. We size- selected 250-  to 450- bp 
fragments using a PIPPIN ELF gel and sequenced the DNA fragments 
using the 1X100- bp setting on the Illumina HiSeq 4000 platform at 
the University of Florida Interdisciplinary Center for Biotechnology 
Research (ICBR). Raw sequence data were deposited in the NCBI 
Sequence Read Archive (SRA; accession numbers SRR7501584- 
SRR7501638; SRR7504176- SRR7504186). We processed the raw 

Illumina reads using the iPyrad pipeline (Eaton, 2014; http://ipyrad.
readthedocs.io/). We used iPyrad to perform all necessary steps for 
processing RAD- Seq data (sorting, filtering, clustering, consensus, 
clustering, formatting). As all barcodes differed by at least two nu-
cleotides, we demultiplexed the loci, allowing one mismatch in the 
barcode and using the most stringent filtering of Illumina adapters.

The loci were assembled using a de novo approach with the 
following cut sites: CAATTC, ATT. We added a C before the EcoRI 
cut site (AATTC became CAATTC) because our double- digest 
RAD- Seq protocol adds a “protector base” to prevent any undi-
gested restriction enzymes from cleaving off recently incorporated 
adapters after the ligation step. For all other assembly parameters, 
we used the iPyrad defaults. We then filtered the loci for human, 
fungal and microbial contamination and filtered loci by representa-
tion across individuals using an R script (Data_Filtering.R; this script 
and all other scripts are available at https://github.com/richiehodel/ 
Caribbean_mangroves). We used minimal filtering of loci to avoid 
excluding informative loci, as both in silico and empirical studies in-
dicate that high amounts of missing data do not negatively impact 
RAD- Seq data sets (Hodel et al., 2017; Huang & Knowles, 2016).

We obtained an average of 3,991,640 reads (minimum: 70,631, 
maximum: 18,253,041) for red mangrove individuals in the RAD- 
Seq analysis. The final red mangrove nuclear data set consisted of 
an average of 28,929 RAD- Seq loci across 122 individuals (average 
19,219; minimum 426; maximum 27,978). The white mangrove reads 
consisted of an average of 1,446,498, minimum of 119,681 and max-
imum of 7,267,782. The white mangrove nuclear data set had 29,767 
loci (average 14,253; minimum 360; maximum 28,799) RAD- Seq loci 
for 54 individuals.

2.3 | Chloroplast genome sequencing and assembly

We selected 50 individuals of each species for complete chloroplast 
genome sequencing using a random- shearing genome skimming ap-
proach (Steele et al., 2012; Straub et al., 2011). The individuals were 
selected to provide wide coverage of the sampling locations; 1–3 
individuals per species per sampling location were used in chloro-
plast genome sequencing. DNA libraries were constructed by RAPiD 
Genomics (Gainesville, FL, USA) and sequenced at the UF ICBR using 
a HiSeq 4000 with 2 × 100 bp reads. Raw reads were de novo as-
sembled into contigs using Velvet (Zerbino & Birney, 2008) with 
Kmer lengths ranging from 31 to 81. The contigs were then mapped 
to a reference chloroplast genome of Oenothera villaricae (NCBI ac-
cession number NC_030532.1) for white mangroves and Populus 
alba (NCBI accession number AP008956.1) for red mangroves, using 
bowtie2 (Langmead & Salzberg, 2012), as implemented in Geneious 
(Kearse et al., 2012). These taxa were selected as references be-
cause they were the most closely related species that had publicly 
available chloroplast genome sequences. Raw reads and assembled 
chloroplast genomes were deposited in the NCBI Sequence Read 
Archive database (accession numbers SRR7779779- SRR7779767; 
SRR7781534- SRR7781581). The red mangrove chloroplast genome 
alignment (50 individuals) was 130,120 bp, and the overall pairwise 

http://ipyrad.readthedocs.io/
http://ipyrad.readthedocs.io/
https://github.com/richiehodel/Caribbean_mangroves
https://github.com/richiehodel/Caribbean_mangroves
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sequence identity was 99.6%. The average GC content was 36.2%, 
and on average, there were 15,707 bp of ambiguous sites per indi-
vidual. The white mangrove chloroplast alignment also consisted of 
50 individuals and was 135,357 bp in length. There was 99.4% pair-
wise sequence identity overall, and on average, there were 48,930 
ambiguous sites per individual.

2.4 | Phylogeographic analyses

Phylogeographic analyses were performed on both the nuclear 
(RAD- Seq) and chloroplast genome data separately for each species. 
To assess phylogeographic patterns within each species, we cal-
culated pairwise average FST using an R script (Pairwise_Fst.R) and 
the r packages “hierfstat” (Goudet, 2005) and “popgenome” (Pfeifer, 
Wittelsbürger, Ramos- Onsins, & Lercher, 2014). Pairwise FST is a val-
uable metric for assessing how historical factors and ongoing gene 
flow influence structure between populations. In these two species, 
historical factors (e.g., isolation between distant populations) and/or 
ongoing gene flow (e.g., via dispersal, pollen flow and colonization) 
could impact pairwise FST.

2.5 | Phylogenetic analyses with 
svdquartets and raxml

To determine genealogical relationships among individuals within 
species, we used coalescent analyses in svdquartets (Chifman & 
Kubatko, 2014). This program selects the optimal topology for a 
quartet of taxa, and, after sampling millions of quartets, infers a phy-
logeny for all individuals based on choosing the quartets with the 
best scores and assembling them into a phylogenetic tree. For each 
RAD data set, we evaluated all possible quartets and selected trees 
under the multispecies coalescent using QFM (Quartet Fiduccia 
Mattheyses) quartet assembly (Reaz, Bayzid, & Rahman, 2014). We 
used nonparametric bootstrapping (100 replicates for each data set) 
to assess confidence in inferred genealogical relationships between 
individuals. The R script Tree_Formatting.R was used to visualize 
and annotate the 50% majority- rule trees from svdquartets using 
the r packages “ape” (Paradis, Claude, & Strimmer, 2004) and “ggtree” 
(Yu, Smith, Zhu, Guan, & Lam, 2017). For comparative purposes, we 
also used raxml (Stamatakis, 2014) to infer the phylogenetic relation-
ships between individuals of both species using the RAD- Seq data. 
raxml was used to infer phylogenetic relationships between chloro-
plast genomes for each individual in each species. In all raxml analy-
ses, we employed the GTRGAMMA model of evolution and ran 100 
bootstrap replicates.

2.6 | Isolation- by- distance tests and 
Procrustes analysis

As geographic distance is often a key component in spatial pat-
terns of genetic diversity, we conducted Mantel tests to test for IBD 
by comparing matrices of geographic and genetic distances with 
the r package “vegan” (Oksanen et al., 2017) and a custom script 

(Mantel_Procrustes.R). A principal component analysis (PCA) imple-
mented in the r package “snprelate” (Zheng et al., 2012) identified 
clusters of individuals, using RAD data and chloroplast data sepa-
rately in each species (see R script VCF_PCA.R). To further investi-
gate the relationship between genes and geography, we implemented 
a Procrustes analysis, which finds an optimal transformation that 
maximizes the similarity between genetic variation in PCA space and 
sample locations in geographic space (Wang et al., 2010). For each 
species, the Procrustes analysis compared two matrices: one with the 
latitude and longitude of each sampling location, and one with prin-
cipal components one and two, as calculated using the r packages 
“gdsfmt” and “snprelate” using the script VCF_PCA.R. The Procrustes 
analysis not only quantifies the strength of the association between 
genetic and geographic variation, but also shows the amount of ge-
netic deviance of individuals from their expected genetic position 
based on where they were sampled geographically. As the Procrustes 
analysis identifies the optimal transformation (i.e., rotation of matri-
ces) that maximizes the similarity between genetic principal compo-
nents and geographical coordinates of sampling locations, the arrows 
represent the degree of deviation from a signature of IBD. The di-
rection of the arrows shows in two dimensions the strength of the 
deviation (e.g., how a population may genetically look much more like 
a neighbouring population to the north than would be expected given 
its geographic position). For each species and each data type, we cal-
culated t0, the association statistic between the two matrices, and 
assessed its significance by running 10,000 permutations. For both 
species, we also measured whether the magnitude of the Procrustes 
deformations was correlated with certain variables, namely: latitude, 
longitude, direction of Procrustes errors, whether the population was 
continental or insular and the size of the land mass containing the 
population. The size of the land mass was calculated by measuring the 
perimeter of an island or terrestrial shoreline. All correlations were 
tested using the r package “vegan” in the script Correlations.R.

2.7 | Ocean current analysis

We tested the relative importance of geographic distance and en-
vironmental distance (i.e., geographic distance scaled using the ef-
fects of ocean currents) using partial Mantel tests implemented in 
the r package “vegan.” For each population pair, we considered the 
geographic distance to be the Euclidean distance between the sam-
pling locations, and we considered environmental distance to be the 
Euclidean distance plus the distance added due to ocean currents 
preventing propagules from moving in a straight- line distance be-
tween two populations (Figure 1). We downloaded gridded ocean 
current data from NOAA (https://ferret.pmel.noaa.gov/); each file 
contained either the northward or eastward water velocity for each 
marine pixel (resolution: 1/12o) in the study area over a 24- hour pe-
riod. We downloaded data for 12 time points spaced over two years 
(February 2014–January 2016), ensuring that each month of the year 
was represented once to account for seasonal variation in current 
velocity. We averaged the northward velocities and eastward ve-
locities for all time periods and then created a single grid layer by 

https://ferret.pmel.noaa.gov/
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determining the ocean current bearing of each cell using the aver-
aged northward and eastward velocities and the “earthbear” func-
tion in the r package “fossil” (see R script Ocean.R).

The straight- line distance between each pair of populations was 
measured, and we then identified every grid cell in the averaged 
layer that intersected the line. If the bearing of a pixel were iden-
tical to the bearing of the line, the pixel would be given a score of 
zero. If the bearing of the pixel were different from the bearing of 
the line, it would be given a score between zero and 180, where 180 
implies that the ocean current bearing of the pixel is perpendicular 
to the line connecting the populations. We calculated the bearing 
of the line for both directions, but only retained the direction that 
minimized the sum of the absolute deviations from the bearings 
in the pixels. We then averaged the deviations across all pixels 

intersected by the line to obtain the scaled environmental distance, 
which would be greater than the Euclidean distance. In this way, we 
used the averaged ocean current layer as an environmental resis-
tance layer and measured its importance for explaining geographic 
patterns of genetic variation. Due to the coarse resolution of the 
gridded layers, some sampling locations appeared to be in marine 
(as opposed to terrestrial) pixels. Therefore, for this analysis, some 
GPS coordinates were shifted slightly to ensure that each sampling 
location was located on a terrestrial pixel. The data acquisition and 
processing were completed using the script Ocean.R. We followed 
Massatti, Doherty, and Wood (2017) and used partial Mantel tests 
to measure the correlation between distances penalized by ocean 
current and genetic distances (i.e., pairwise FST), controlling for 
Euclidean geographic distance separating populations.

F IGURE  1  In the top panel, 
sampling locations for white mangroves 
(Laguncularia racemosa; white dots) and 
red mangroves (Rhizophora mangle; red 
dots) are shown, and the black rectangle 
indicates the geographic extent of the 
bottom panel. GPS coordinates are 
listed for each sampling location in 
Supplemental Table 1.  The bottom panel 
depicts three sampling locations and 
the arrows show the Euclidean distance 
between each sampling location.  In both 
panels, the ocean is color coded according 
to the bearing in degrees of each marine 
pixel. The bearing values in every pixel 
that intersects a line segment connecting 
two sampling locations (i.e., the Euclidean 
distance) were used to calculate the 
penalized ocean current distance 
matrix [Colour figure can be viewed at 
wileyonlinelibrary.com]

0      60    120  180    240  300   360

Ocean current bearing (degrees) 

www.wileyonlinelibrary.com
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2.8 | Pollen vs. seed analysis

The maternally inherited chloroplast genome and the biparentally in-
herited nuclear genome have different evolutionary histories and as 
such will exhibit different amounts of genetic differentiation among 
sampling locations. In both red and white mangroves, the chloro-
plast is presumably maternally inherited, given well- documented 
evidence of maternal transmission in multiple closely related taxa 
(i.e., several representatives from families in the same order as each 
mangrove species; Zhang, Liu, & Sodmergen, 2003). When the rate 
of seed migration is smaller than that of pollen migration, population 
genetic theory predicts that greater subpopulation structure will be 
detected in (maternally inherited) chloroplast markers than in (bipa-
rentally inherited) nuclear markers (Petit et al., 2004). The maternal 
contribution to gene flow can be measured using chloroplast mark-
ers, and the paternal contribution to gene flow can be calculated by 
subtracting the maternal contribution to gene flow from the bipa-
rental contribution to gene flow. Thus, the ratio of seed migration to 
pollen migration (r) can be calculated using the following equation: 
r = (A- 2C)/C, where A = (1/FSTnuclear) - 1, and C = (1/FSTchloroplast) - 1 
(Hamilton & Miller, 2002). We used FST to calculate the ratio of seed 
migration to pollen migration for each species in a pairwise fashion 
for all pairs of sampling locations.

3  | RESULTS

3.1 | Geographic structuring of genetic variation

In both mangrove species, we found greater differentiation among 
sampling locations in chloroplast DNA vs. nuclear DNA (Supporting 
Information Tables S2 and S3). Pairwise FST estimated for red man-
groves using RAD loci was usually low, ranging from 0 to 0.679 
(average FST = 0.209; Supporting Information Table S2), and pair-
wise FST using chloroplast DNA ranged from 0.138 to 1.0 (average 
FST = 0.561; Supporting Information Table S3). Sampling locations 
on the margins of the study region (e.g., Anguilla, Senegal, New 
Port Richey) usually had higher values of pairwise FST (Supporting 
Information Table S2). There is a large range in the pairwise genetic 
differentiation estimated by chloroplast DNA for white mangroves 
(FST ranges from 0.075 to 1.0 with average FST = 0.506; Supporting 
Information Table S3), and the pairwise FST values for RAD loci 
vary from low differentiation (FST = 0.0 between several Florida 
and Grand Bahamas populations; Supporting Information Table S2) 
to high differentiation (FST = 0.595 between a Florida population 
(Melbourne) and Antigua; Supporting Information Table S2). The 
average pairwise FST using RAD loci in white mangroves was 0.285. 
The ratio of seed migration to pollen migration (r), calculated using 
the FST values for both species for both genomes, showed greater 
pollen gene flow than seed gene flow in red mangroves (ratio of 
pollen:seed = 7.87). In white mangroves, the ratio of pollen:seed 
gene flow is 0.16, indicating that the lower genetic differentiation 
among populations most likely is attributable to propagule, rather 
than pollen, dispersal.

The svdquartets trees showed that individuals and sampling 
locations were often clustered by geography when using nuclear 
loci (i.e., RAD- Seq data; Figure 2). Notably, several major clades in 
each species clustered geographically. In red mangroves, the fol-
lowing clades containing more than one sampling location had 
100% bootstrap support: Florida, Florida + Cuba + Grand Bahama, 
Florida + Cuba + Grand Bahama + Belize + Costa Rica (Caribbean) +  
Colombia + Nicaragua + Mexico + Honduras, and the previous 
clade + Costa Rica (Pacific) + Panama + Aruba + Venezuela + Cayman  
Islands + Long Island + Jamaica + Hispaniola (Figure 2). These rela-
tionships were also observed with high support when using raxml 
(Supporting Information Figure S1). Similarly, in white mangroves, mul-
tiple clades with 100% bootstrap support were congruent with geogra-
phy: Florida + Grand Bahama, Antigua + Aruba + Grenada + Puerto  
Rico, and the previous two clades + Costa Rica + Belize + Jamaica 
+ Cayman Islands (Figure 2). As in red mangroves, the svdquartets 
and raxml trees for white mangroves based on RAD- Seq data were 
largely congruent. The raxml trees inferred using chloroplast ge-
nomes in both species had fewer highly supported clades than trees 
generated from RAD- Seq data, although there were fewer tips in the 
chloroplast trees (Supporting Information Figure S2). Additionally, 
the phylogenetic relationships were less congruent with the geo-
graphic relationships of sampling locations than in the nuclear trees. 
In red mangroves, all Florida samples formed a highly supported 
clade, as did some individuals from Aruba, Antigua, Grenada and 
Jamaica—although not all Jamaica or Grenada individuals were rep-
resented in the clade. In white mangroves, one notable highly sup-
ported clade included samples from Belize, Colombia, Honduras, 
Hispaniola, Mexico and Puerto Rico—although not all samples from 
Colombia and Puerto Rico were in the clade. In general, the phylo-
genetic relationships in the chloroplast trees of white mangroves are 
less congruent with geography than those of red mangroves.

3.2 | Dispersal limitations as a function of 
geographic distance

Mantel tests were significant for both species when comparing 
geographic distance matrices with genetic matrices (Table 1); IBD 
explained at least a portion of genetic variance. Mantel tests are dis-
cussed in more detail in the subsequent section, where the results 
of the partial Mantel tests are summarized. For red mangroves, the 
Procrustes analysis based on RAD loci indicated that nuclear genetic 
data were significantly correlated with the geography of the sam-
pling locations (to = 0.561; p < 0.01; with Pacific samples included, 
t0 = 0.602; Figure 3; Supporting Information Figure S3). Similarly, 
in white mangroves, the Procrustes analysis based on RAD loci re-
vealed that nuclear genetic data were significantly correlated with 
geography (to = 0.684; p < 0.01; Table 2; Figure 4). For red mangroves, 
the Procrustes analysis also showed that there was not a significant 
relationship between geographic and genetic distance when using 
chloroplast data, although the relationship was barely nonsignificant 
(to = 0.284; p = 0.0575). For white mangroves, the Procrustes analysis 
using chloroplast DNA also found that genes were not significantly 
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correlated with geography (to = 0.0808; p = 0.845). In white man-
groves, the magnitude of deformations from the Procrustes analysis 
was significantly correlated with both latitude and longitude, but not 

with three other factors associated with sampling locations (island vs. 
continental location, island size, direction of Procrustes deformations; 
Table 3). In contrast, all five factors associated with sampling locations 

F IGURE  2 The SVDQuartets trees for white mangroves (Laguncularia racemosa; top panel) and red mangroves (Rhizophora mangle; 
bottom panel) inferred using RAD-Seq loci are shown. The color of each branch indicates the geographic region where the individual was 
sampled. Bootstrap values >70% are indicated on the nodes [Colour figure can be viewed at wileyonlinelibrary.com]
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were significantly correlated with the magnitude of Procrustes errors 
in red mangroves (Table 3).

3.3 | Dispersal mediated by ocean current

In both red and white mangroves, Mantel tests were signifi-
cant when comparing geographic distance and genetic distance 
(FST), and when comparing ocean current penalized distance 

and genetic distance (Table 1). In white mangroves, the r- value 
was higher in the Mantel test for geography (r = 0.694) than in 
ocean current penalized distance (r = 0.275; Table 1). There was 
a similar trend in red mangroves (r = 0.426 for geographic dis-
tance; r = 0.126 for ocean current penalized distance), and both 
r- values in red mangroves were lower than the corresponding 
value in white mangroves. Additionally, partial Mantel tests were 
significant (r = 0.249 for white mangroves and r = 0.242 for red 
mangroves; Table 1) and revealed that the ocean current penalty 
matrices explained some of the variation in spatial genetic pat-
terns when controlling for covariance associated with geographic 
distance.

4  | DISCUSSION

This study highlights how we can quantify key biotic traits of 
species to evaluate their interaction with abiotic factors, and 
how this interaction shapes the spatial distribution of genetic 
variation within species. Specifically, we investigated how differ-
ences in dispersal ability are affected by ocean currents, and how 
this interaction affects phylogeographic patterns. We predicted 
that red mangroves would exhibit greater connectivity between 

F IGURE  3 The sampling locations for red mangroves, represented by triangles, and the deformations identified by the Procrustes 
analysis for red mangrove RAD-Seq data are depicted by circles.  Arrows show the Procrustes deformation distance and connect the 
deformation points to the corresponding sampling location.  Samples from Brazil, Grenada, Guyana, and Senegal were removed because 
some individuals in these sampling locations had very large deformations relative to the majority of populations, and made it difficult to 
visualize the results.  Supplemental Figure 2 shows all red mangrove Procrustes results [Colour figure can be viewed at wileyonlinelibrary.
com]
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TABLE  1 Mantel tests assess the significance between genetic 
and geographic distance, genetic and ocean current penalized 
distance, and partial Mantel tests assess the impact of ocean 
current penalized distance while controlling for covariance from 
geographic distance

Laguncularia 
racemosa Rhizophora mangle

r p r p

Mantel (Geography) 0.694 0.001** 0.426 0.01*

Mantel (Ocean) 0.275 0.011* 0.126 0.046*

Partial Mantel 0.249 0.021* 0.242 0.001**

Note. *Significant when α = 0.05, **significant when α = 0.01, ***signifi-
cant when α = 0.001).
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populations through seeds than white mangroves and that the 
patterns of genetic differentiation would reflect differences in the 
degree of isolation among populations as a function of the geo-
graphic distance separating populations, augmented by oceanic 
currents. Here, we showed that comparative phylogeographic pat-
terns observed in the two mangrove species, combined with spa-
tially explicit analyses to assess abiotic drivers of phylogeographic 
patterns (i.e., ocean currents), revealed that species- specific dis-
persal traits such as propagule movement were important for 
patterning spatial genetic diversity—sometimes in unexpected 
ways—and that they were not the only important factor. Several 
key results supported the importance of ocean currents transport-
ing propagules, but there was also evidence that other means of 
moving genetic material were important. Phylogenetic, population 
genetic differentiation, and IBD analyses indicated both concord-
ant and discordant phylogeographic patterns when we compared 
these two mangrove species adapted for ocean dispersal. Here, 

we showed that ocean currents act as a mechanism for facilitating 
dispersal using spatially explicit tests of the role of ocean currents 
on patterning genetic diversity. Additionally, we measured relative 
amounts of pollen vs. propagule gene flow, which indicated critical 
differences between the two species regarding the importance of 
propagule movement. Contrary to expectations, white mangroves 
exhibited greater connectivity between populations through 
seeds than red mangroves. Importantly, methods in this study can 
be applied to many other species with spatial patterns of genetic 
variation impacted by both biotic and abiotic factors; below, we 
discuss the implications of our results, focusing on how our find-
ings impact understanding of how species- specific biotic traits 
and abiotic factors interact to shape phylogeographic patterns.

4.1 | Concordance and discord between species 
adapted for ocean dispersal

Several types of evidence supported similar phylogeographic pat-
terns in the two mangrove species investigated. Measures of popula-
tion differentiation revealed a wide range of interpopulation genetic 
differentiation in both species; typically, more proximate popula-
tions had lower differentiation (Supporting Information Tables S2 
and S3). Additionally, Mantel tests for IBD showed that Euclidean 
distance between populations was a significant predictor of genetic 
distance (FST) between populations in the nuclear genome for each 
species (Table 1). Phylogenetic analyses of each species corrobo-
rated this interpretation, as individuals from the same population 
or region often grouped together (Figure 2, Supporting Information 

TABLE  2 The results of the Procrustes analyses in each species 
for nuclear and chloroplast data

Laguncularia racemosa Rhizophora mangle

Nuclear Chloroplast Nuclear Chloroplast

t0 0.684 0.808 0.561 0.284

p <0.001*** 0.845 <0.001*** 0.058

Notes. For each species and each marker type, the t0 value and P value 
are shown.
***significant when α = 0.001. 

F IGURE  4 The sampling locations for white mangroves are represented by triangles, and the deformations identified by the Procrustes 
analysis for white mangrove RAD-Seq data are depicted by circles.  Arrows show the Procrustes deformation distance and connect the 
deformation points to the corresponding sampling location [Colour figure can be viewed at wileyonlinelibrary.com]
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Figures S1 and S2). However, there were key differences between 
the species: we detected greater differentiation between sampling 
locations in both nuclear and chloroplast data in white mangroves 
than in red mangroves (Supporting Information Tables S2 and S3), 
suggesting that some mechanism makes genetic exchange easier be-
tween populations of red mangroves than white mangroves. Several 
results indicated that LDD via water might not be as important as has 
been assumed. Specifically, IBD and Procrustes analyses revealed 
important insights about the patterns of genetic diversity in each of 
the species (Figures 3 and 4, Tables 1 and 2). Genetic differentiation 
in the nuclear genome of both species was partially determined by 
geography—indicating that successful LDD events in these species 
were not the only process shaping spatial patterns of genetic diver-
sity for the species.

4.2 | Ocean currents as a mechanism for dispersal

LDD via ocean currents is often considered the only important 
mechanism that moves genetic material between distant popula-
tions of mangroves (Tomlinson, 2016). Our results show that ocean 
currents may not be as important as assumed, but they do have a 
role in transporting propagules frequently enough to impact genetic 
diversity between populations (Table 3). Ocean currents had an 
effect on spatial genetic patterns in both species, as shown in the 
ocean current analysis (Figure 1, Table 1). However, ocean currents 
were not the only significant predictor of genetic patterns: Mantel 
and partial Mantel tests revealed that geographic distance was also 
important (Table 1). This implies that LDD via ocean currents is an 
important driver of genetic patterns in red and white mangroves, but 
that other processes, such as genetic drift, which led to IBD pat-
terns, need to be considered. Historical factors, such as past envi-
ronmental or physical barriers between populations, or changes in 
ocean currents and/or wind patterns, could have also affected esti-
mates of pairwise FST, and accordingly could impact IBD and other 
downstream analyses.

Key distinctions between island and continental populations 
exist in these two species that can disperse between the two land 
types. The magnitude of Procrustes deformations in each species 
was correlated with environmental factors, such as island size, 
longitude, latitude and direction of deformation (Table 3). Many 
mangrove populations, especially small populations, could have 
been recently founded, or could be readily extirpated in a major 
storm event—making it important to consider a variety of histori-
cal processes that could have led to the current patterns of genetic 
variation among populations. In the Procrustes analysis of red man-
groves, the deviations from expected patterns of variation under 
IBD are in the direction of the Cayman Islands, indicating that in-
dividuals from geographically distant populations are nonethe-
less very similar genetically to individuals sampled in the Cayman 
Islands; one potential hypothesis explaining this pattern is recent 
migration (Figure 3). In addition to ocean currents, other abiotic 
factors influenced observed genetic patterns—in red mangroves, 
island size was correlated with the Procrustes deformations that as-
sessed discordance between genes and geography; islands with less 
coastline are less likely to be a landing spot for drifting propagules 
(Table 3). This pattern was not detected in white mangroves, mean-
ing that propagule movement in white mangroves may be sufficient 
to counteract the effect of island size (Table 3). In general, smaller 
islands had larger deformations, meaning that in small islands, ge-
netic differentiation was more different than expected based on 
geography, as compared to large islands. Propagule dispersal was 
less important than expected in red mangroves, so successful col-
onization or immigration via propagules may be very rare and sub-
ject to stochastic effects regarding propagule origin. As island size 
alone was not able to explain the Procrustes deformations in both 
species, this result highlights the importance of considering both 
species- specific biotic traits and abiotic factors in comparative phy-
logeography studies.

4.3 | The importance of propagule dispersal relative 
to pollen

Biotic factors other than propagule dispersal are important for de-
termining genetic patterns. We collected genetic data from both 
the nuclear and chloroplast genomes so we could assess the rela-
tive importance of gene flow via propagules and gene flow via other 
processes (i.e., pollen movement). In white mangroves, propagule 
movement is important—seeds are approximately six times as im-
portant for moving genes as is pollen. However, in red mangroves, 
propagule movement is not nearly as important; the contribution of 
pollen to the movement of genes is almost eight times greater than 
that of propagules. Contrary to our predictions, propagule move-
ment in red mangroves was less than in white mangroves. The result 
for red mangroves strongly contradicts our expectation—the large, 
long- lived red mangrove propagules were predicted to contribute 
heavily to spatial patterns of genetic diversity. In white mangroves, 
we expected that propagules would contribute more to the genet-
ics of the species than pollen, although the relative importance of 

TABLE  3 The results of correlation tests between the 
magnitude of Procrustes deformations and factors associated with 
sampling locations. For each species, five factors were tested for 
correlation against the Procrustes deformations from the RAD- Seq 
data

Laguncularia racemosa Rhizophora mangle

F- value p F- value p

Island vs. 
continental

0.18 0.68 4.23 0.042*

Island size 0.23 0.8 3.75 0.026*

Direction 0.44 0.51 18.68 <0.0001***

Latitude 10.92 0.001** 6.77 0.010*

Longitude 14.94 <0.0001*** 73.2 <0.0001***

Note. *significant when α = 0.05, **significant when α = 0.01, ***signifi-
cant when α = 0.001.
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propagules to pollen in white mangroves as compared to red man-
groves is surprising.

Our results indicate that ocean currents may not be the major 
driving force of dispersal in red mangroves, as currently assumed 
(Nettel & Dodd, 2007; Takayama, Tamura, Tateishi, Webb, & Kajita, 
2013; Wee et al., 2015; Hodel, Cortez, Soltis, & Soltis, 2016; re-
viewed in Tomlinson, 2016). For a typical wind- pollinated plant spe-
cies, red mangrove pollen movement was perhaps not unexpected. 
In empirical studies, the rate of pollen movement is often at least 
one order of magnitude larger than the rate of seed movement (Petit 
et al., 2004). However, one would expect viviparous mangrove spe-
cies, that purportedly have the ability to disperse long distances 
using ocean currents, to have a lower pollen:seed ratio. Our find-
ings for white mangroves seem more in line with expectations for a 
mangrove species: a low pollen:seed ratio for a “typical” plant, but 
expected because of its dispersal mechanism. As noted previously, 
pairwise FST can account for both historical factors and ongoing gene 
flow, so the inferred amounts of pollen-  and seed- mediated gene 
flow may not be solely due to contemporary gene flow.

In summary, the pollen:seed ratio in red mangroves is surpris-
ingly high for a mangrove species, whereas that of white mangroves 
more closely matches expectations. A previous study of black 
mangroves (Avicennia germinans; Acanthaceae), another mangrove 
species distributed throughout the Caribbean, found a pollen:seed 
ratio of 5.1 (Nettel & Dodd, 2007). Black mangrove propagules are 
intermediate in size and longevity between those of white and red 
mangroves, and black mangrove parent plants occur at an interme-
diate distance from the water compared to the two focal species of 
this study. The results for black mangroves imply that smaller prop-
agules may be more valuable for LDD in mangrove systems, as the 
pollen:seed ratio for black mangroves is smaller than that of red 
mangroves. The Nettel and Dodd (2007) study used few  markers—
only two polymorphic chloroplast SSRs—so their chloroplast FST 
estimates would be expected to have large variance.

Many studies of mangrove genetic diversity (e.g., studies that 
used microsatellites) use ocean currents to explain the geographic 
distribution of genetic variation (Hodel et al., 2016; Nettel & Dodd, 
2007; Takayama et al., 2013; Wee et al., 2015). This approach is 
logical, as mangrove species have various types of vivipary, and 
propagules can float in salt water for months, often establishing 
in suitable substrate many kilometres away (Rabinowitz, 1978). 
However, propagules are not the only means of transmitting ge-
netic material—pollen can be critically important in patterning 
genetic diversity as well. Wind pollination, which typically moves 
pollen greater distances than transport via insects, characterizes 
red mangroves, in contrast to white mangroves, which are insect- 
pollinated (Tomlinson, 2016). Both species are self- compatible, and 
red mangroves have been documented to produce fruit from self- 
pollination at approximately one tenth of the frequency of wind 
pollination (Nadia & Machado, 2014). White mangrove flowers 
have been observed to self- pollinate when not visited by insects 
(Landry, 2013). Although both of these pollination syndromes 
can move genetic material via pollen, the majority of gene flow 

in mangrove species is assumed to occur via propagules, but until 
now, this had not been tested with genetic data in a spatially ex-
plicit context. Although differences in pollination syndrome could 
have impacted the results, our analyses demonstrated that propa-
gule movement is more important than pollen in determining spa-
tial patterns of genetic variation in white mangroves, but that the 
opposite was true in red mangroves.

4.4 | Applications to other species

Differences in dispersal ability between taxa can leave subtly dif-
ferent genetic signatures that require high- resolution data to tease 
apart. Historically, comparative phylogeography studies typically 
used single- locus DNA sequences (i.e., mitochondrial or chloro-
plast DNA) or nuclear microsatellite loci (Avise, 2000; Soltis, Morris, 
McLachlan, Manos, & Soltis, 2006). The number of markers used 
frequently numbered fewer than 20 microsatellites or fewer than 
10 linked regions on the chloroplast or mitochondrial genomes. 
Adequately testing dispersal requires sufficient resolution in differ-
ent genomes (i.e., both nuclear and organellar). Recent studies have 
embraced using many more (i.e., thousands) loci, such as phylogeo-
graphic studies using RAD- Seq data (reviewed in Andrews, Good, 
Miller, Luikart, & Hohenlohe, 2016). However, many comparative 
phylogeographic studies do not sample loci from both the nuclear 
and organellar genomes (Riddle, 2016). Even though organellar ge-
nomes are effectively single loci, the differences in their inheritance 
compared to the nuclear genome make including organellar data 
valuable for phylogeographic inference (Petit et al., 2004). For in-
stance, in an animal species with biased sex ratios and/or differences 
in mobility between the sexes, mitochondrial and nuclear data would 
provide different inferences of dispersal. Similarly, in a plant species 
with vast differences in the amount of dispersal possible via seeds 
and pollen, the chloroplast and nuclear genomes would show differ-
ent genomic signatures regarding dispersal.

This study highlighted the importance of ocean currents 
and species- specific dispersal traits and should inform how fu-
ture studies consider the interplay of biotic and abiotic traits. 
Specifically, our study has implications beyond these two man-
groves—the results directly apply to species that disperse over 
oceans and indirectly apply to other species that disperse across 
some type of barrier. Our results show that for coastal species 
that use water to facilitate dispersal, it is important to consider 
all of the mechanisms that spatially pattern genetic diversity. 
Studies of other water- dispersed plants, such as Hibiscus tilia-
ceus (Takayama, Kajita, Murata, & Tateishi, 2006), used chlo-
roplast DNA and detected moderate genetic structure (FST ~ 
0.25) between populations not immediately connected by water. 
However, the choice of markers (i.e., maternally inherited chloro-
plast DNA) made it impossible to tease apart the effect of pollen 
on the patterning of genetic diversity across geographic space. 
As in red mangroves, just because a species expends a lot of en-
ergy producing propagules that can disperse long distances, there 
is no guarantee that the propagules will successfully travel via 
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ocean currents to establish new populations or migrate to other 
distant existing populations. Future studies of water- dispersed 
plants should use both nuclear and uniparentally inherited organ-
ellar markers to assess the relative impacts of seeds and pollen on 
genetic patterns in the species of interest. Collecting both ade-
quate nuclear and organellar genetic data is a prudent strategy in 
almost all systems.

5  | CONCLUSIONS

We investigated how differences in a biotic factor between two 
species, dispersal—which differed between the species due to 
propagule size, longevity and the proximity of the parent plant 
to water—affected geographic patterns of genetic variation. 
Additionally, this study used explicit modelling of ocean currents, 
which assessed how much an abiotic factor impacted genetic 
differentiation between populations by moving propagules. We 
found that, propagule movement in the ocean is important in both 
species, and it is actually more important for moving genetic mate-
rial in white mangroves. Pollen movement, facilitated by wind, may 
be the driving force behind transporting genetic material between 
populations of red mangroves. The results of this study will im-
pact how shared phylogeographic patterns are investigated in taxa 
other than mangroves and coastal species. This study illustrates 
how it is important to fully investigate subtle differences between 
species using multiple types of data in a spatially explicit context. 
Without either the chloroplast or nuclear data, we still could have 
detected differences in genetic differentiation between species, 
but we would have been unable to determine the relative impor-
tance of propagule vs. pollen gene flow, which was critical to inter-
preting the results of this study. Furthermore, without explicitly 
investigating how ocean currents related to genetic differentiation, 
we would have been unable to explain the geographic patterns of 
genetic variation beyond an IBD scenario and perhaps may have 
discounted the importance of LDD in these species. Identifying 
subtle genetic differences between species requires a carefully 
designed study and understanding the species- specific biotic fac-
tors and abiotic environmental factors that are important for the 
study system and that led to observed patterns. Future studies 
comparing species with similar phylogeographic patterns should 
use data from both nuclear and organellar genomes and incor-
porate relevant biotic and abiotic drivers of intraspecific genetic 
variation, such as life history traits (e.g., dispersal, as in this study) 
or environmental data (e.g., spatially explicit ocean current data). 
Increasingly, it will be possible to investigate thoroughly the biotic 
and abiotic influences on genetic diversity, as more resources such 
as genomic data, digitized specimen records and environmental 
data layers become available and can be integrated (Soltis & Soltis, 
2017).

Finally, investigating the phylogeography of these two man-
grove species also has practical applications. Coastal species are 
often more vulnerable to the effects of climate change than plants 

occupying inland habitats (Barbier et al., 2011; Christensen, 2000; 
Tomlinson, 2016). Mangroves provide crucial ecosystem services: 
mitigating damage due to storm surges, providing habitat for ani-
mal species and filtering water (Barbier et al., 2011; Ewel, Twilley, & 
Ong, 1998; Rönnbäck, 1999; Walters et al., 2008). Anthropogenic 
climate change, overdevelopment of coastal areas, and increased 
shipping are negatively impacting mangroves (Kristensen, Bouillion, 
Dittmar, & Marchand, 2008). Conservation genetics theory has 
shown the importance of characterizing genotypes present in natu-
ral populations to combat deleterious forces such as inbreeding de-
pression, outbreeding depression, decline in genetic diversity, and 
loss of genetic adaptive potential (Crandall, Bininda- Emonds, Mace, 
& Wayne, 2000; Frankham, 2005; Moritz, 1994). Our improved un-
derstanding of the phylogeographic structure of mangroves will 
enable the efficient protection of these crucial coastal tree species 
throughout the Caribbean. Based on the results of this study, if it is 
not possible to use local propagules in restoration/re-introduction, 
locations that were identified as source populations should be used 
as propagule sources because there is a history of successful migra-
tion and colonization from those locations.
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