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Abstract

The most critical issue in evaluating policies and projects that affect generations

of individuals is the choice of social discount rate. This paper shows that there exist

social discount rates such that the planner can simultaneously be (i) an exponential

discounting expected utility maximizer; (ii) intergenerationally Pareto—i.e., if all indi-

viduals from all generations prefer one policy/project to another, the planner agrees;

and (iii) strongly non-dictatorial—i.e., no individual from any generation is ignored.

Moreover, to satisfy (i)–(iii), if the time horizon is long enough, it is generically suf-

ficient and necessary for social discounting to be more patient than the most patient

individual’s long-run discounting, independent of the social risk attitude.
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1 Introduction

Many economic decisions are inherently dynamic and affect multiple generations, such as

corporate and household long-term investment decisions, intertemporal taxation, durable

public good provision, environmental policies, etc. These decisions crucially depend on one

parameter, the social discount rate, which encapsulates the trade-off between the current

benefit and future benefit from the society’s point of view. Unfortunately, there is no con-

sensus on which social discount rate should be used. This disagreement has sparked debate,

for example, about the cost-benefit analysis of environmental projects that affect many, if

not all, future generations. Moreover, the evaluation of those projects is sensitive to the

choice of social discount rate. The famous Stern review uses a near-zero social discount rate

(pure rate of time preference), and suggests that we should take strong and immediate action

on climate change (see Stern (2007)).1 Nordhaus (2007) argues that Stern’s conclusion does

not hold if a market rate is used instead. Many economists, however, believe that using a

high discount rate (such as a market rate) is ethically indefensible.

In the social discounting literature, some economists have argued that social discount-

ing should be more patient than individual discounting (for example, see Caplin and Leahy

(2004) and Farhi and Werning (2007)). The idea is that if social discounting takes into

account how future generations will feel about their consumption, then because future gen-

erations will value future consumption relatively more than the current generation values

future consumption, social discounting will also value future consumption more than the cur-

rent generation does.2 However, these studies usually assume that only one (representative)

individual is in the society. How their insight carries over to a society with heterogeneous

individuals—and which individual’s discounting social discounting should be more patient

than—remains unanswered.

1The consumption discount rate derived from the Ramsey formula used in the Stern review depends on
the pure rate of time preference, the elasticity of the marginal utility of consumption, and the growth rate
of per capita consumption.

2Some economists have also argued that individuals’ altruistic discounting for future generations should
be excluded from the planner’s aggregation. See Hammond (1987) and Boadway (2012).
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Let us explain what will go wrong with heterogeneous individuals. What is common

among these dynamic economic decisions is that there is a benevolent planner who must

make choices from risky alternatives for generations of individuals. In such a setting, first,

economists often assume that the planner’s objective is an exponential discounting (expected)

utility function. This assumption is widely used and normatively appealing, because it is

equivalent to assuming that the planner’s preference is time-consistent, time-invariant, and

stationary.3 Second, it is often assumed that a benevolent planner respects individuals’

preferences. In other words, some notion of the Pareto property should hold: If “all” indi-

viduals agree that one policy/project is better than another, the planner should agree that

the former is better.

Despite the fact that these two assumptions are fundamental to economics, they cannot

be satisfied simultaneously (see Gollier and Zeckhauser (2005), Zuber (2011), and Jackson

and Yariv (2015)). Even if every individual has an exponential discounting utility function,

a planner must be dictatorial to ensure that her exponential discounting utility function

satisfies some Pareto property. The negative result also challenges the conclusion that social

discounting should be more patient than individual discounting. In light of the negative

result, with heterogeneous individuals, perhaps we can only conclude that the planner is

more patient than the only individual (dictator) she cares about.

This paper addresses these issues using a classic approach. We introduce a new Pareto

property, and characterize the range of (pure-time-preference) social discount rates that are

compatible with the new property. In models that generate the negative result, there is often

only one generation of individuals. The Pareto property they use, which we call current-

generation Pareto, is the key to the negative result. Current-generation Pareto requires that

whenever a consumption sequence p is preferred to another sequence q by every current-

generation individual, then the planner prefers p to q. In many problems we consider,

3A version of the definition of time consistency, time invariance, and stationarity can be found in Halevy
(2015). Under the assumption that the utility function is a time-additively separable expected utility func-
tion, Halevy’s version of the three properties is equivalent to assuming an exponential discounting expected
utility function.
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multiple generations of individuals are involved. As Pigou (1920) argues, the planner should

not only respect how the current generation discounts the future, but also care about the

actual well-being of future generations—that is, how future generations will feel about their

consumption and how they will discount the future. The Pareto property we introduce,

intergenerational Pareto, captures this. It requires that whenever a consumption sequence

p is preferred to q by every individual from every generation, then the planner prefers p to

q.

Specifically, each generation-t individual i lives for one period, and has a discount function

δi(τ − t) to discount period-τ consumption.4 The planner is intergenerationally Pareto and

has an exponential discounting utility function. To contrast with the negative result, we

require that the planner be strongly non-dictatorial in the sense that she never ignores

the preference of any individual from any generation. Under these assumptions, we show

how the range of social discount factors depends on (a) individual relative discounting,

average discounting, and long-run discounting, and (b) the linear dependency of individual

instantaneous utility functions.5

We first characterize the range of social discount factors assuming that individual dis-

count functions are exponential. This allows us to compare our results to the negative result

directly. We examine two cases. In the first case, individuals share the same instanta-

neous utility function. In this way, we focus on aggregating individual discount functions.

The negative result is avoided: We find that the planner is intergenerationally Pareto and

strongly non-dictatorial if and only if the social discount factor is higher than the least patient

individual’s discount factor.

Since the least patient individual’s discount factor could be quite low, a wide range

of social discount factors can be supported by the first result. The result will be rather

different in our second case in which individual instantaneous utility functions are linearly

independent. When there are many consumption goods, individual instantaneous utility

4Individuals altruistically care about future generations’ consumption.
5The discount rate is equal to one minus the discount factor.
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functions are generically linearly independent. Under this assumption, we find that the

planner is intergenerationally Pareto and strongly non-dictatorial if and only if the social

discount factor is higher than the most patient individual’s discount factor, independent of

the planner’s instantaneous utility function. This result thus provides a new justification for

the use of a near-zero social discount rate.

In general, individual discount functions are not exponential. One challenge that comes

with general individual discount functions is that when we say that social discounting is

more patient than individual discounting, it is not even clear what individual discounting

refers to. We show that when individuals share the same instantaneous utility function,

there exist two cutoffs for the social discount factor. One is related to the least patient

individual’s maximal relative discount factor, and the other to the least patient individual’s

asymptotic average discount factor. If the social discount factor is above the first cutoff, the

planner is intergenerationally Pareto and strongly non-dictatorial. Conversely, if the social

discount factor is below the second cutoff, the planner must violate intergenerational Pareto

as long as the time horizon is long enough; that is, there exist two consumption sequences

such that every individual from every generation thinks that one is better than the other,

but the planner disagrees. The two cutoffs are tight.

The two cutoffs merge into one cutoff when individuals exhibit present bias. The unique

cutoff is equal to the least patient individual’s long-run discount factor. Each individual’s

long-run discount factor is defined as the asymptotic relative discount factor and the asymp-

totic average discount factor.

Lastly, if individual instantaneous utility functions are linearly independent, the cutoff for

the social discount factor jumps from the least patient individual’s long-run discount factor

to the most patient one’s, again independent of the planner’s instantaneous utility function.

We also characterize how the cutoff for the social discount factor changes gradually from the

least patient individual’s long-run discount factor to the most patient one’s, as the number

of types of individual instantaneous utility functions increases.
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1.1 Related Literature

This paper is not the first to aggregate the preferences of multiple generations of individuals.

Indeed, there is a long-running debate on whether future generations should be aggregated.

Among others, Pigou (1920), Ramsey (1928), Sen (1961), Feldstein (1964), Solow (1974),

Arrow (1999), Caplin and Leahy (2004), and Farhi and Werning (2007) are in favor, and

Eckstein (1957), Bain (1960), and Marglin (1963) believe that the government’s or the policy

maker’s decision should only reflect the preferences of the current generation. Our approach

is closer to Caplin and Leahy and Farhi and Werning, who show that assuming there is only

one individual in each generation, social discounting should be more patient than the sole

individual’s discounting. Our results show that having multiple heterogeneous individuals

in each generation makes an important difference.

Many papers have analyzed the aggregation of one generation of heterogeneous indi-

viduals. Weitzman (2001) conducts a survey of economists’ discount rates to motivate a

gamma discounting model. Gollier and Zeckhauser (2005) study a dynamic efficient allo-

cation problem with heterogeneous individuals and show that even when individuals have

constant discount rates, the representative agent has a decreasing discount rate. Zuber (2011)

establishes that a planner cannot have an exponential discounting utility function and be

(current-generation) Pareto when individuals have private consumption. Jackson and Yariv

(2015) present a similar negative result, in which consumption is public. Millner and Heal

(2018) show that the negative result goes away if we only require that the planner’s objective

be time-consistent. A key difference between these papers and ours is that they aggregate

only one generation of individuals, whereas we aggregate multiple generations. This distinc-

tion is important in economic decisions that have long-term impact, such as environmental

policies and intertemporal taxation.

There are other approaches to the study of social discounting. Our paper emphasizes

the relation between social discounting and individual discounting implied by intergenera-

tional Pareto. Chambers and Echenique (2018) study three models of discount rates. One
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aggregates exponential individual discount functions in a utilitarian way, which is similar

to Weitzman (2001), Zuber (2011), and Jackson and Yariv (2014, 2015). The other two

aggregate exponential individual discount functions by selecting the most pessimistic utili-

tarian weight and discount function, respectively. Millner (2016) shows that if heterogeneous

individuals are not fully paternalistic, they will agree on parameters for the long-run social

discount rate. Zuber and Asheim (2012), Asheim and Zuber (2014), Fleurbaey and Zuber

(2015), and Piacquadio (2017) study models in which social discounting is due to intergen-

erational inequality aversion. Jonsson and Voorneveld (2018) study a welfare criterion for

multiple generations. Each generation has one individual, and in the limit of the criterion,

different generations are treated equally.

In the first part of Drugeon and Wigniolle (2017), they characterize what exponential

discounting utility functions can be written as weighted sums of individuals’ current selves’

and future selves’ quasi-hyperbolic discounting utility functions; their result is related to

our Propositions 4 and S1, and Proposition 5 of Galperti and Strulovici (2017). Drugeon

and Wigniolle (2016) and the second part of Drugeon and Wigniolle (2017) study time-

consistent solutions for consumption-saving problems with heterogeneous exponential and

quasi-hyperbolic discounting individuals, respectively. The planner in period t maximizes

the weighted sum of period-t individuals’ utility, and the solution is the subgame perfect

Nash equilibrium of the game between the planner’s multiple selves.

Our paper is also related to Mongin (1998), who establishes that under a standard form

of Pareto, as long as individuals’ subjective probabilities are linearly independent or their

instantaneous utility functions are affinely independent, the planner must be dictatorial.

Related results can be found in Mongin (1995) and Chambers and Hayashi (2006). In

our model, if we view periods as states and discount factors as subjective probabilities,

Mongin’s result seems to apply. Nonetheless, our planner is not dictatorial. The technical

reason why our Theorem 1 can bypass Mongin’s negative result is the assumption that

all individuals share the same instantaneous utility function. As for Theorem 2, we first
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aggregate individual utility functions with identical instantaneous utility functions into an

EDU function whose discount factor is equal to the social discount factor. Then, we aggregate

utility functions with identical discount factors (subjective probabilities). Both steps bypass

Mongin’s negative result.

The paper proceeds as follows. In Section 2, we describe individuals’ and the planner’s

preferences. Section 3 introduces a variant of the negative result and two key assumptions of

the paper, intergenerational Pareto and strong non-dictatorship. We characterize the range

of social discount factors under the assumption that individuals have exponential discount

functions in Section 4, and under the assumption that individuals have general discount

functions in Section 5. Section 6 concludes.

2 Preferences

There are 2 < T < +∞ generations/periods. In each generation, 1 < N < +∞ individuals

live for one period. With an abuse of notation, let N := {1, . . . , N} and T := {1, . . . , T}.

The generation-t individual i is the parent of the generation-(t + 1) individual i, in which

t, t + 1 ∈ T and i ∈ N . In each period, there is a public risky consumption good denoted

by Δ(X), in which Δ(X) is the set of probability measures on a compact set X ⊂ R
m.6 A

typical consumption sequence is denoted by p = (p1, . . . , pT ) ∈ Δ(X)T .7

Although individuals live for one period, they altruistically care about future generations’

consumption. We assume throughout the paper that the generation-t individual i has the

following discounting utility function:

Ui,t(p) =
T∑

τ=t

δi(τ − t)ui(pτ ), (1)

6All results we derive apply to the case in which each individual has his own consumption. We only
need to view public consumption as an N -tuple of individual consumption, and let each individual care only
about his own component.

7We discuss what may change if we allow uncertainty to resolve over time in Section S4 in the Supple-
mental Material.
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in which δi : {0, . . . , T − 1} → R++ with δi(0) = 1 is called the discount function, and the

instantaneous utility function ui : Δ(X) → R is a continuous expected utility function. The

generation-t individual i’s discounting utility function induces a preference, denoted by �i,t,

over consumption sequences Δ(X)T .

We have assumed that the generation-(t + 1) individual i inherits the generation-t indi-

vidual i’s discount function and instantaneous utility function. This assumption does not

imply that a parent and his offspring have the same preference, because the generation-(t+1)

individuals’ discount functions are shifted one period forward. This assumption simplifies

our analysis and can be relaxed (see Section S1.1 in the Supplemental Material).

In each period t ∈ T , the planner’s objective is an exponential discounting utility (EDU)

function:

Ut(p) =
T∑

τ=t

δτ−tu(pτ ), (2)

in which δ > 0 is the social discount factor, and u, a continuous expected utility function on

Δ(X), is the planner’s instantaneous utility function. In each period t ∈ T , Ut induces the

planner’s preference, denoted by �t, over consumption sequences Δ(X)T .

It is well known that if the planner’s objective is a discounting utility function, the

planner is time-consistent if and only if the planner’s discount function is exponential.8 More

generally, (2) holds if and only if the planner’s preference is time-consistent, time-invariant,

and stationary (see footnote 3). Also note that (2) holds for every t ∈ T ; that is, the social

discount factor and the planner’s instantaneous utility function never change.

Lastly, to rule out uninteresting cases and simplify the statement of our results, we assume

that there are some fixed consequences x∗, x
∗ ∈ X such that for any i ∈ N , ui(x∗) = u(x∗) =

0 and ui(x
∗) = u(x∗) = 1 throughout the paper. A similar assumption, called the minimum

agreement condition, also appears in De Meyer and Mongin (1995). Our main findings do

not rely on this assumption, and we provide a more detailed discussion following Lemma 1.

8Since individuals only live for one period, time consistency may have a nonstandard interpretation for
them. In contrast, the planner is a long-lived entity who tries to stick to an objective function that exhibits
nice properties. The interpretation of time consistency for the planner is similar to the standard one.
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More generally, for any continuous expected utility function v defined on Δ(X), we say that

it is normalized if v(x∗) = 1 and v(x∗) = 0. One may think of x∗ as one dollar and x∗ as

zero dollars, or x∗ as the best consumption good and x∗ as the worst.

3 Intergenerational Pareto and Dictatorship

We want to assume that the planner’s preference (�t)t∈T satisfies some Pareto property. In

a dynamic setting, however, there are multiple ways to define the Pareto property. Different

notions of Pareto have different implications. For example, Zuber (2011) and Jackson and

Yariv (2015) show that if a planner has an EDU function and follows their Pareto property,

the planner must be dictatorial. To motivate our new Pareto property, it is useful to first

understand the negative result. Below, we introduce a version of the negative result.

3.1 A Variant of the Negative Result

Below is a variant of the Pareto property used by Zuber (2011) and Jackson and Yariv (2015)

that fits our setting.

Definition 1 The planner’s preference (�t)t∈T is current-generation Pareto if for any con-

sumption sequences p,q ∈ Δ(X)T , in each period t ∈ T , p �i,t q for all i ∈ N implies

p �t q, and p �i,t q for all i ∈ N implies p �t q.

This notion of Pareto says that in any period t, if all current-generation individuals agree

that a consumption sequence p is preferred to another sequence q, the planner should agree

that p �tq. The same applies when the preferences are all strict.

Consider a situation in which every generation-t individual i has an EDU function; that

is, for some discount factor δi > 0,

Ui,t(p) =
T∑

τ=t

δτ−t
i ui(pτ ).
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Let us present below a variant of the negative result.

Proposition 1 Suppose each generation-t individual i has an EDU function with discount

factor δi and instantaneous utility function ui such that δi’s are distinct. The planner is

current-generation Pareto if and only if there exists some i ∈ N such that for any t ∈ T ,

Ut = Ui,t.

The result says that if we require that the planner be current-generation Pareto and have

an EDU function, the planner’s preference must be identical to some individual’s preference

in every period. Since consumption is public, our setting is closer to Jackson and Yariv

(2015). However, Jackson and Yariv’s result is different from the above proposition. For

example, they require that instantaneous utility functions be defined on a one-dimensional

space and twice continuously differentiable, and we require that instantaneous utility func-

tions be expected utility functions.

The intuition is as follows. First, the planner is current-generation Pareto if and only

if her EDU function is equal to a weighted sum of the individuals’ EDU functions; because

we consider expected utility functions, this is an implication of Harsanyi (1955). Next,

for simplicity, suppose there are only two individuals with identical instantaneous utility

functions u1 = u2. The planner attaches a weight ω ∈ [0, 1] to the first individual and 1− ω

to the second individual. Now, for the planner to not be dictatorial, there must be some

ω ∈ (0, 1) and δ > 0 such that

ωδ1 + (1− ω)δ2 = δ,

and

ωδ21 + (1− ω)δ22 = δ2.

However, one cannot find such a δ, unless ω = 0 or 1.

11
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3.2 Intergenerational Pareto

A key feature of environmental policies and many other economic policies is that such de-

cisions affect multiple generations. Current-generation Pareto only takes into account the

preferences of the current generation. Although current-generation individuals altruistically

care about future consumption and the planner should respect how they discount the future,

how they think about the future may well differ from how future generations will think.

Since future generations will be affected by the planner’s decision, the planner should take

into account their actual well-being (including how they will discount their own future). The

following Pareto property captures this idea.

Definition 2 The planner’s preference (�t)t∈T is intergenerationally Pareto if for any con-

sumption sequences p,q ∈ Δ(X)T , in each period t ∈ T , p �i,s q for all i ∈ N and all s ≥ t

implies p �t q, and p �i,s q for all i ∈ N and all s ≥ t implies p �t q.

Intergenerational Pareto says that in any period t, if all current- and future-generation

individuals agree that a consumption sequence is preferred to another sequence, the planner

should agree. For example, suppose all current-generation individuals are extremely selfish:

They are willing to sacrifice the environment to increase their own consumption. If the

planner is current-generation Pareto, the planner must agree with them, and let them destroy

the environment. However, if the planner is intergenerationally Pareto, the planner is allowed

to disagree with them, because what they prefer hurts future generations. Note that if

the planner is current-generation Pareto, she is also intergenerationally Pareto. Therefore,

intergenerational Pareto is weaker than current-generation Pareto.

Our model considers expected utility functions. This enables us to apply the classic result

from Harsanyi (1955) and Fishburn (1984) to characterize the consequence of intergenera-

tional Pareto.

Lemma 1 (Harsanyi (1955)) The planner’s preference (�t)t∈T is intergenerationally Pareto

if and only if in each period t ∈ T , there exists a finite sequence of nonnegative numbers

12
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(ωt(i, s))i∈N,s≥t such that

Ut =
N∑

i=1

T∑

s=t

ωt(i, s)Ui,s.

The lemma above follows from Harsanyi (1955) and Fishburn (1984), and shows that

intergenerational Pareto is equivalent to intergenerational utilitarianism in our setting; that

is, the planner is intergenerationally Pareto if and only if in each period, her utility func-

tion is equal to a weighted sum of all the current- and future-generation individuals’ utility

functions. In contrast, current-generation Pareto is equivalent to current-generation utilitar-

ianism. We omit the proof of this lemma.

Instantaneous utility functions are normalized. In general, it is possible that there do not

exist two consumption sequences such that all individuals strictly prefer one to the other;

in that case, if the planner is indifferent to all consumption sequences, the planner will

be intergenerational Pareto trivially. If the planner is always indifferent, her instantaneous

utility function is constant and her discount function can be arbitrary. The normalization

assumption rules out this uninteresting case.

3.3 Dictatorship

In the negative result, a planner can have an EDU function and be current-generation Pareto

as long as she is dictatorial. To rule out dictatorship, we introduce a strong notion of non-

dictatorship such that not only is the planner not dictatorial, but also every individual from

every generation has a say.9

Definition 3 We say that the planner is strongly non-dictatorial if for each t ∈ T ,

Ut(p) = ft (U1,t(p), . . . , U1,T (p), U2,t(p), . . . , U2,T (p), . . . , UN,T (p))

for some (strictly) increasing function ft.

9When the planner is not dictatorial, we only know that at least two individuals’ preferences are taken
into account by the planner.
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In light of Lemma 1, under intergenerational Pareto, this means that the planner’s util-

ity function can be written as a weighted sum of individual utility functions with positive

weights.

Intergenerational Pareto is weaker than current-generation Pareto. According to Lemma

1, the planner has more utilitarian weights to assign under intergenerational Pareto, which

makes it easier for the planner to aggregate individuals’ utility functions into an EDU func-

tion. The strongly non-dictatorial property, on the other hand, makes the aggregation prob-

lem harder, because it requires that all weights be positive.

4 Individuals with Exponential Discount Functions

We address two aspects of social discounting. First, can we bypass the negative result?

If so, which social discount factors are reasonable? In particular, which social discount

factors, under our assumptions, are compatible with intergenerational Pareto? Second, recall

that in the social discounting literature, economists have argued that the social discount

factor should be higher than the individual discount factor. Accordingly, with heterogeneous

individuals, which individual’s discount factor should the social discount factor be higher

than?

To contrast with the negative result, we first examine a special case of our model in which

individual discount functions are exponential.

4.1 Aggregating Individual Discount Functions

To focus on discounting, suppose that all individual instantaneous utility functions are iden-

tical; that is, there is some continuous expected utility function u : Δ(X) → R such that

each generation-t individual i’s utility function is

Ui,t(p) =
T∑

τ=t

δτ−t
i u(pτ ).
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This assumption will be relaxed soon, and we will use the result established under this

assumption to highlight how the range of reasonable social discount factors is affected by

individual instantaneous utility functions. An alternative interpretation of this assumption

is that the planner only wants to aggregate individual discount functions. Therefore, it is

without loss of generality to replace the (possibly heterogeneous) individual instantaneous

utility functions with the planner’s instantaneous utility function u.10

Proposition 2 Suppose each generation-t individual i has an EDU function with discount

factor δi and instantaneous utility function u. Let the planner’s instantaneous utility function

be u. The planner is intergenerationally Pareto and strongly non-dictatorial if and only if

δ > mini δi.

When individuals share the same instantaneous utility function, according to Lemma 1,

the planner must use the same instantaneous utility function in order to satisfy the Pareto

property.

Proposition 2 shows that under intergenerational Pareto rather than current-generation

Pareto, a positive result can be established. Moreover, under the current set of assumptions,

it is the least patient individual’s discount factor that the social discount factor should be

higher than.

Because discount functions are exponential and consumption is public, Proposition 2 can

be directly compared to Jackson and Yariv (2014, 2015). In Jackson and Yariv, adding

more current-generation exponential discounting individuals to the aggregation cannot help

eliminate the negative result. In contrast, we add future-generation exponential discounting

individuals to the aggregation, and this helps.

To see why, first recall that when ui = u, Jackson and Yariv (2014) show that utilitarian

aggregation of the current generation leads to a social discount function that exhibits present

bias. The fact that future generations will not care about past consumption as much as past

10In this interpretation, however, each individual i’s preference in the definition of Pareto properties must
be replaced with another preference induced by a discounting utility function with a discount function δi
and an instantaneous utility function u chosen by the planner.
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generations did helps us remove the present bias. In our model, past consumption does not

enter future generations’ utility functions; that is, δi(τ) = 0 for any τ < 0. This implies

that, for example, generation-t individual i’s relative discount factor applied to period-t

consumption (relative to period-(t − 1) consumption) is equal to “δi(0)/δi(−1) = +∞.”

Thus, generation-t is “infinitely patient” between period t − 1 and period t. The infinite

patience can be used in the aggregation to offset the present bias generated by aggregating

the current generation alone. In fact, the same result continues to hold even if individuals

backward discount past consumption exponentially (see Section S3 in the Supplemental

Material).11

To understand how the proposition is proved, consider the planner in the first period.

According to Lemma 1, the planner is intergenerationally Pareto if and only if her objective

function U1 satisfies

U1(p) =
T∑

t=1

N∑

i=1

ω(i, t)Ui,t(p), (3)

for any consumption sequence p, in which ω(i, t) ≥ 0 is the weight the planner assigns to the

generation-t individual i. Consider how the planner discounts period-τ consumption. Since

the planner and individuals have EDU functions, and their instantaneous utility functions

are identical, equation (3) becomes

δτ−1 =
τ∑

t=1

N∑

i=1

ω(i, t)δτ−t
i . (4)

To prove the “if” part of the proposition, we let all individuals’ weights be equal to some

small numbers, except for the least patient individuals. We show that if those weights are

sufficiently small, there exist positive weights for the least patient individuals such that the

weighted sum of all individuals’ utility functions is an EDU function with the social discount

factor δ > mini δi. For example, suppose N = T = 2 and δ1 < δ2.
12 Let ω(i, t) = ε whenever

11See Caplin and Leahy (2004) and Ray et al. (2017) for models that allow backward discounting for past
consumption.

12We have assumed T > 2 because when T ≤ 2, there will be no negative result (such as Proposition 1)
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i = 2. Equation (4) implies that

ω(1, 1) = 1− ω(2, 1) = 1− ε

and

ω(1, 2) = δ − ω(1, 1)δ1 − ω(2, 1)δ2 − ω(2, 2) = δ − δ1 + ε(δ1 − δ2 − 1).

Since δ > δ1, ω(1, 1) and ω(1, 2) are positive when ε = 0. Therefore, when ε > 0 is sufficiently

small, ω(i, t)’s can all be positive.

To understand the “only-if” part, suppose individual 1’s discount factor is the lowest.

By letting τ = 1, equation (4) implies that
∑N

i=1 ω(i, 1) = 1. Since the planner is strongly

non-dictatorial, we can assume that ω(i, t)’s are positive, and hence
∑τ

t=1

∑N
i=1 ω(i, t) > 1.

Then, equation (4) implies that

δτ−1 =
τ∑

t=1

N∑

i=1

ω(i, t)δτ−t
i ≥ δτ−1

1

τ∑

t=1

N∑

i=1

ω(i, t) > δτ−1
1 , (5)

which means δ > δ1.

Note that Proposition 2 is not very helpful in pinning down social discount factors,

because the least patient individual’s discount factor can be quite low. Thus, many social

discount factors can satisfy our requirements. However, as will be shown below, this is no

longer the case once we relax the unrealistic assumption that individuals share the same

instantaneous utility function.

4.2 Social Discounting and Individual Instantaneous Utility Func-

tions

The assumption that individuals share the same instantaneous utility function is clearly

unrealistic. As long as |X| ≥ N (i.e., the number of deterministic consumption goods is

trivially. However, to illustrate the idea of the proof here, we only need an example with T = 2.
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higher than the number of individuals in each generation), generically, the instantaneous

utility functions should not only be different, but also linearly independent.13

Definition 4 An N-tuple of continuous expected utility functions (ui)i∈N is linearly inde-

pendent if there are no constants α1, . . . , αN that are not all zero, and
∑

i∈N αiui(p) = 0 for

all p ∈ Δ(X).

It turns out that when individual instantaneous utility functions are linearly independent,

the cutoff for the social discount factor jumps from mini δi to maxi δi; that is, generically, the

social discount factor should be higher than the most patient individual’s discount factor.

Proposition 3 Suppose each generation-t individual i has an EDU function with discount

factor δi and instantaneous utility function ui such that (ui)i∈N is linearly independent. Let

the planner’s instantaneous utility function u be an arbitrary strict convex combination of

(ui)i∈N .
14 The planner is intergenerationally Pareto and strongly non-dictatorial if and only

if δ > maxi δi.

To understand why we assume that the planner’s instantaneous utility function is a

strict convex combination of individual instantaneous utility functions, note that Lemma

1 implies that the intergenerationally Pareto and strongly non-dictatorial planner’s utility

function is equal to a weighted sum of individual discounting utility functions with positive

weights. Thus, the planner’s instantaneous utility function must also be a positively weighted

sum of individual instantaneous utility functions. Since instantaneous utility functions are

normalized, the weights sum up to 1.

Notice that the planner’s instantaneous utility function—in other words, her risk attitude—

is independent of the cutoff for the social discount factor. This is somewhat surprising.

13However, for example, if individual instantaneous utility functions are drawn from some fixed small set
of continuous expected utility functions rather than the set of all continuous expected utility functions, or
the number of consumption goods is lower than N , individual instantaneous utility functions need not be
linearly independent. See Theorem 3 for results without assuming linear independence.

14By a strict convex combination of (ui)i∈N , we mean that u is in the interior of the convex hull of
u1, . . . , uN .
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Suppose there are two individuals, 1 and 2, and individual 2 is more patient. The above

result says that even if the social discount factor is close to individual 2’s discount factor, it

is not necessarily the case that the planner’s risk attitude is also close to individual 2’s risk

attitude. We can have a planner whose risk attitude is close to individual 1’s, but the social

discount factor is close to individual 2’s.

If there are many individuals with a wide range of discount factors, this result may imply

that the planner must be very patient in order to be intergenerationally Pareto and strongly

non-dictatorial. This provides a new justification for the use of the near-zero social discount

rate by Stern (2007). If one thinks that a market rate is higher than the lowest individual

discount rate, this result also rules out the use of a market rate as the social discount rate.

This result shows that the cutoff for the social discount factor in Proposition 2 is not

robust. When ui = uj for any i, j ∈ N , the cutoff is mini δi. If we introduce a small

perturbation to ui’s, generically, the cutoff jumps discontinuously to maxi δi.

One may wonder whether there is any intermediate case that yields a cutoff for the social

discount factor between mini δi and maxi δi. In Section 5.4, under a more general assumption

about individual instantaneous utility functions, we explain the intermediate cases.

To understand how this proposition is proved, consider again the planner in the first

period. To prove the “if” part of Proposition 3, we want to find positive weights ω(i, t)’s

such that the weighted sum of all individuals’ EDU functions is equal to the planner’s

EDU function. Focus on one arbitrary j ∈ N . We show that we can find positive weights

ω̃(j, 1), . . . , ω̃(j, T ) such that
∑

t∈T ω̃(j, t)Uj,t is equal to an EDU function with any discount

factor that is higher than δj. In particular, we can find positive weights ω̃(i, 1), . . . , ω̃(i, T )

for each i ∈ N such that

T∑

t=1

ω̃(i, t)Ui,t(p) =
T∑

τ=1

δτ−1ui(pτ ),

for any consumption sequence p, because δ > maxi δi. Now, since the planner’s instantaneous
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utility function u =
∑

i∈N λiui for some positive numbers λi’s, we only need to let ω(i, t) =

λiω̃(i, t).

The “only-if” part of Proposition 3 may be surprising. Note that when (ui)i∈N is linearly

independent and u is in the interior of co({ui}i∈N), there is a unique way to write u as a

strict convex combination of (ui)i∈N .
15 Suppose

∑
i∈N λiui = u and

∑
i∈N λi = 1 for some

positive numbers λi’s. The planner’s period-1 EDU function satisfies

U1(p) =
T∑

t=1

N∑

i=1

ω(i, t)Ui,t(p) =
T∑

t=1

N∑

i=1

ω(i, t)
T∑

τ=t

δτ−t
i ui(pτ ), (6)

in which ω(i, t) > 0 is the weight the planner assigns to the generation-t individual i. This

implies that the planner’s instantaneous utility function for period-1 consumption satisfies

u(p1) =
N∑

i=1

ω(i, 1)ui(p1)

for any p1. Because u =
∑

i∈N λiui and (ui)i∈N is linearly independent,

ω(i, 1) = λi (7)

must hold for any i ∈ N . Similarly, for period-2 consumption, equation (6) implies that

δu(p2) =
N∑

i=1

[ω(i, 1)δi + ω(i, 2)]ui(p2)

for any p2. Since instantaneous utility functions do not change over time, the unique way

to write u as a strict convex combination of (ui)i∈N does not change; that is, δu(p2) =

δ
∑

i∈N λiui(p2) for any p2. Then, for any i ∈ N ,

λiδ = ω(i, 1)δi + ω(i, 2). (8)

15We use co(·) to denote the convex hull of a set.
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Equations (7) and (8), together with the strongly non-dictatorial property, imply that δ > δi

for any i ∈ N . Hence, δ > maxi δi.

5 Individuals with General Discount Functions

Individual discount functions are often not exponential (see Strotz (1955), Laibson (1997),

and Frederick et al. (2002)).16 Allowing individuals to have general discount functions, as in

(1), raises a challenge to our previous findings: When we say that the social discount factor

should be higher than some individual’s discount factor, it is not clear how individual discount

factors should be defined. Our analysis below shows how the range of reasonable social

discount factors depends on some asymptotic characteristic of general individual discount

functions, and how our positive results in Section 4 can be generalized.

5.1 Aggregating Individual Discount Functions

Again, we begin with the case in which individual instantaneous utility functions are identi-

cal; that is, there is some continuous expected utility function u : Δ(X) → R such that each

generation-t individual i’s utility function is

Ui,t(p) =
T∑

τ=t

δi(τ − t)u(pτ ).

Because we will need to vary T in part of the results below, we assume that individual

discount functions are well defined for natural numbers. Starting from a set of individual

discount functions δi’s defined over natural numbers N, whenever a finite T is chosen, we

restrict the domain of δi’s to {0, . . . , T − 1}. For instance, suppose individuals have quasi-

hyperbolic discount functions. We first define δi(τ) = βiδ
τ−1
i for any τ > 0. Then, we choose

T and focus on δi(0), . . . , δi(T − 1).

16In contrast, for normative reasons, we may prefer to require that the planner have an EDU function.
Such a requirement also makes our positive results sharper.
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For each individual discount function δi, we call
τ
√
δi(τ) the average discount function, and

δi(τ+1)
δi(τ)

the relative discount function. The average discount function measures the equivalent

exponential discount factor for τ -period-ahead consumption. The relative discount function

captures the instantaneous discounting for consumption that is τ + 1 periods ahead relative

to consumption that is τ periods ahead.

We make two assumptions about the individual discount functions. The first assumption

says that average discounting has a limit; that is,

lim
τ→∞

τ
√
δi(τ) exists. (A1)

The second assumption says that the relative discount function is bounded; that is,

there exists some α > 0 such that
δi(τ + 1)

δi(τ)
< α for all τ ≥ 0. (A2)

The following theorem characterizes the set of social discount factors that are compatible

with intergenerational Pareto under these assumptions.

Theorem 1 Suppose each generation-t individual i’s discounting utility function has an

instantaneous utility function u and a discount function δi such that (A1) and (A2) hold.

Let the planner’s instantaneous utility function be u. Then,

1. for each δ > mini maxτ∈{0,...,T−2}
δi(τ+1)
δi(τ)

, the planner is intergenerationally Pareto and

strongly non-dictatorial;

2. for each δ < mini limτ→∞
τ
√
δi(τ), there exists some T ∗ > 0 such that if T ≥ T ∗, the

planner is not intergenerationally Pareto.

The theorem shows how social discounting depends on individual discounting when indi-

viduals have heterogeneous general discount functions. We can find two cutoffs for the social

discount factor. If the social discount factor is above the least patient individual’s max-

imal relative discount factor, the planner’s preference must be intergenerationally Pareto
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and strongly non-dictatorial. If the social discount factor is below the least patient individ-

ual’s asymptotic average discount factor, the planner’s preference must have violated the

intergenerationally Pareto property as long as T is large enough.

The first part of the theorem confirms that positive results can still be established when

individuals have arbitrary discount functions. Given a social discount factor, we can also

apply this result to check whether intergenerational Pareto holds. The second part of the

theorem says that if the social discount factor is too low, there must be two consumption

sequences such that all individuals from all generations prefer one over the other, but the

planner disagrees. A reasonable social discount factor should not allow this to happen.

Note that for any fixed T , max
τ∈{0,...,T−2}

δi(τ+1)
δi(τ)

≥ T−1
√
δi(T − 1), because

T−1
√
δi(T − 1) = T−1

√
δi(T − 1)

δi(T − 2)
· · · · · δi(1)

δi(0)
; (9)

that is, T−1
√
δi(T − 1) is the geometric mean of δi(τ+1)

δi(τ)
’s. Therefore, max

τ∈{0,...,T−2}
δi(τ+1)
δi(τ)

will

not be lower than limτ→∞
τ
√
δi(τ) when T is large enough, and hence the first cutoff for the

social discount factor will eventually be higher than the second cutoff.

Although the first cutoff may be strictly higher than the second, the two cutoffs in the

theorem are “tight” in the following sense. For the first cutoff, there exist some individual dis-

count functions δi’s and T such that if the social discount factor δ ≤ mini maxτ∈{0,...,T−2}
δi(τ+1)
δi(τ)

,

the planner cannot be both intergenerationally Pareto and strongly non-dictatorial. This

happens, for example, when δi’s are exponential. Similarly, for the second cutoff, we can

find individual discount functions δi’s such that for any finite T , if the social discount fac-

tor δ ≥ mini limτ→∞
τ
√
δi(τ), the planner is intergenerationally Pareto. This happens, for

example, when δi’s are quasi-hyperbolic (see Section S2 in the Supplemental Material).

To prove the first part of this theorem, we first focus on one arbitrary i ∈ N . The key

step is to show that for each t ∈ T , we can find positive weights (ω̃(i, t, s))Ts=t such that
∑T

s=t ω̃(i, t, s)Ui,s is equal to an EDU function with any discount factor that is higher than
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maxτ∈{0,...,T−2}
δi(τ+1)
δi(τ)

. Therefore, the planner can use utilitarian aggregation to transform

each generation-t individual i’s discounting utility function into an EDU function with a

discount factor that is higher than maxτ∈{0,...,T−2}
δi(τ+1)
δi(τ)

. Then, we only need to let the

planner use utilitarian weights to aggregate these EDU functions, as in Proposition 2.

The proof of the second part is similar to that of Proposition 2. Suppose individual 1’s

asymptotic average discount factor is the lowest strictly. When τ is large enough (and hence

T must be large enough), we know that δi(τ − s) ≥ δ1(τ − s). Hence, (5) becomes

δτ−1 =
τ∑

t=1

N∑

i=1

ω(i, t)δi(τ − t) ≥ δ1(τ − 1)
τ∑

t=1

N∑

i=1

ω(i, t) ≥ δ1(τ − 1).

Therefore, δ ≥ limτ→∞
τ
√
δ1(τ) when τ is large enough.

5.2 Individual Long-Run Discounting

It turns out that for many widely used classes of individual discount functions, the two

cutoffs in Theorem 1 merge into one. This is not a coincidence, and will help us identify an

important characteristic of the individual discount function that determines the cutoff for

the social discount factor. Let us introduce the following assumption:

the relative discount function
δi(τ + 1)

δi(τ)
is nondecreasing in τ. (A3)

In the literature of time inconsistency, when an individual has a nondecreasing relative

discount function, the individual has (weak) present bias. A discount function δi is hyperbolic

if for some αi, βi > 0, δi(τ) = (1+αiτ)
−βi , and is quasi-hyperbolic if for some βi ∈ (0, 1] and

δi > 0, δi(τ) = βiδ
τ
i for any τ > 0. Exponential, hyperbolic, and quasi-hyperbolic discount

functions all satisfy (A3).

Under (A2) and (A3), δi(τ+1)
δi(τ)

is nondecreasing and bounded. Hence, limτ→∞
δi(τ+1)
δi(τ)

exists.

Whenever limτ→∞
δi(τ+1)
δi(τ)

exists, because the average discount factor is the geometric mean
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of relative discount factors (see equation (9)), the average discount factor also has a limit.

Therefore, assumptions (A2) and (A3) imply (A1).

More importantly, when limτ→∞
δi(τ+1)
δi(τ)

exists, the asymptotic relative discount factor

and the asymptotic average discount factor coincide:

lim
τ→∞

δi(τ + 1)

δi(τ)
= lim

τ→∞
τ
√
δi(τ).

Definition 5 When limτ→∞
δi(τ+1)
δi(τ)

exists, we call δ∗i := limτ→∞
δi(τ+1)
δi(τ)

= limτ→∞
τ
√
δi(τ)

individual i’s long-run discount factor.

The following corollary of Theorem 1 has only one cutoff for the social discount factor,

and shows how social discounting is related to individual long-run discounting.

Corollary 1 Suppose each generation-t individual i’s discounting utility function has an

instantaneous utility function u and a discount function δi such that (A2) and (A3) hold.

Let the planner’s instantaneous utility function be u. Then,

1. for each δ > mini δ
∗
i , the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. for each δ < mini δ
∗
i , there exists some T ∗ > 0 such that if T ≥ T ∗, the planner is not

intergenerationally Pareto.

If individuals have hyperbolic discount functions, the cutoff for the social discount factor

is mini δ
∗
i = 1; if individuals have quasi-hyperbolic discount functions with δi(τ) = βiδ

τ
i , the

cutoff is mini δ
∗
i = mini δi.

In Section S2 in the Supplemental Material, we reinterpret the generation-(t + s) indi-

vidual i (with s > 0) as a future self of the generation-t individual i, which offers a new

interpretation of intergenerational Pareto and allows us to discuss how our findings are re-

lated to the time-inconsistency literature. In addition, we provide a stronger result similar

to Corollary 1 for the case in which individuals have quasi-hyperbolic discount functions.
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From here on, to simplify the statement of our results, we focus on the case in which

long-run discount factors δ∗i ’s are well defined.

5.3 Social Discounting and Individual Instantaneous Utility Func-

tions

Corollary 1 shows that if all individuals share the same instantaneous utility function, the

social discount factor only has to be higher than the lowest individual long-run discount

factor. As one may expect, when individual instantaneous utility functions are linearly

independent, the cutoff for the social discount factor jumps from mini δ
∗
i to maxi δ

∗
i . Thus,

generically, if social discounting is more patient than the most patient individual’s long-run

discounting, the planner is intergenerationally Pareto and strongly non-dictatorial; otherwise,

if the time horizon is long enough, intergenerational Pareto is violated.

Theorem 2 Suppose each generation-t individual i’s discounting utility function has an

instantaneous utility function ui and a discount function δi such that (A2) and (A3) hold

and (ui)i∈N is linearly independent. Let the planner’s instantaneous utility function u be an

arbitrary strict convex combination of (ui)i∈N . Then,

1. for each δ > maxi δ
∗
i , the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. for each δ < maxi δ
∗
i , there exists some T ∗ > 0 such that if T ≥ T ∗, the planner is not

intergenerationally Pareto.

Again, the cutoff is independent of the planner’s risk attitude. Theorem 2 assumes (A2)

and (A3). If we replace (A3) with (A1), as in Theorem 1, the only change in the statement

of Theorem 2 will be that instead of one cutoff, we will have two cutoffs, as in Theorem 1.

The proof of this theorem is similar to Proposition 3, with some new elements taken from

the proof of Theorem 1. Similar to Theorem 1, the second part of Theorem 2 requires that

the time horizon be long enough.
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5.4 Transition of the Cutoff

Let us further illustrate how the cutoff changes from the least patient individual’s long-

run discount factor to the most patient individual’s. An individual’s instantaneous utility

function describes his risk attitude. Let Θ be some positive integer between 1 and N .

Suppose there is a linearly independent Θ-tuple of instantaneous utility functions (uθ)Θθ=1

representing Θ generic types of risk attitude. Assume that individual i’s instantaneous utility

function ui ∈ {uθ}Θθ=1, and there is no redundant type in {uθ}Θθ=1; that is, for each type uθ,

at least one individual’s instantaneous utility function is equal to uθ. If Θ = 1, we are in the

case of Theorem 1. If Θ = N , we are in the case of Theorem 2. Define δ∗θ := min
k∈{i∈N :ui=uθ}

δ∗k;

that is, for each θ, let δ∗θ be the least patient individual’s long-run discount factor whose

type is uθ. Define

δ∗maxmin := max
θ

δ∗θ .

Theorem 3 Suppose for some linearly independent Θ-tuple of instantaneous utility func-

tions (uθ)Θθ=1, each generation-t individual i’s discounting utility function has an instanta-

neous utility function ui ∈ {uθ}Θθ=1 and a discount function δi such that (A2) and (A3) hold

and {ui}i∈N = {uθ}Θθ=1. Let the planner’s instantaneous utility function u be an arbitrary

strict convex combination of (ui)i∈N . Then,

1. for each δ >δ∗maxmin, the planner is intergenerationally Pareto and strongly non-dictatorial;

2. for each δ <δ∗maxmin, there exists some T ∗ > 0 such that if T ≥ T ∗, the planner is not

intergenerationally Pareto.

Note that as Θ increases from 1 to N , the cutoff may not increase monotonically. The

idea of the proof of the theorem is as follows. For each type of risk attitude uθ, we can apply

Theorem 1 to show that the cutoff for the social discount factor implied by aggregating

type-uθ individuals is δ∗θ . When aggregating across types, we apply Theorem 2 to show that

the maximal δ∗θ is the cutoff for the social discount factor.
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6 Conclusion

The value of a policy or a public project that affects generations of individuals often cru-

cially depends on which social discount rate is used for the evaluation. However, there is

no consensus on which social discount rate is the right one to use. This paper considers

a few important and widely used assumptions in economics, and characterizes the set of

social discount rates that are compatible with those assumptions. The key assumptions are

(i) individuals discount future consumption heterogeneously, (ii) the planner has an expo-

nential discounting expected utility function, (iii) the planner is intergenerationally Pareto,

which means that if all individuals from the current and future generations agree that one

consumption sequence is better than another, the planner must agree, and (iv) the planner

never completely ignores any individual’s preference.

We show that for a generic set of individual instantaneous utility functions, social dis-

counting should be more patient than the most patient individual’s long-run discounting, as

long as the time horizon is long enough, independent of the planner’s instantaneous utility

function. Therefore, using a near-zero social discount rate is justifiable in our framework.
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A Appendix

A.1 Proof of Proposition 1

Proof. If Part If there exists some i ∈ N such that Ut = Ui,t for any t ∈ T , the planner

only takes individual i into account in period t. The corresponding weights in period t are

ωi = 1 and ωj = 0 for all j 
= i. According to Lemma 1, the planner’s preference (�t)t∈T is

current-generation Pareto.

Only-If Part Suppose the planner is current-generation Pareto. We only prove the only-

if part for the first period. According to Lemma 1, there exists an N -tuple of nonnegative

weights (ωi)i∈N , such that

N∑

i=1

ωi

T∑

τ=1

δτ−1
i ui(pτ ) =

T∑

τ=1

δτ−1u(pτ );

that is, for τ = 1, . . . , T − 1,

N∑

i=1

ωiδ
τ−1
i ui(pτ ) = δτ−1u(pτ ).

Let τ = 1, 2, and 3. We have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑N
i=1 ωiui(p) = u(p),

∑N
i=1 ωiδiui(p) = δu(p),

∑N
i=1 ωiδ

2
i ui(p) = δ2u(p),

for any p ∈ Δ(X). Let p = x∗. The first equation shows that
∑

i∈N ωi = 1. Combining the

second and the third equations above,

(
N∑

i=1

ωiδi

)2

=
N∑

i=1

ωiδ
2. (10)

Since
∑

i∈N ωi = 1 and δi’s are distinct, by Jensen’s inequality, equation (10) holds if and
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only if there is some i ∈ N such that ωi = 1 (ωj = 0 for any j 
= i). Thus, U1 = Ui,1. Since

the planner’s instantaneous utility function and the social discount factor do not change over

time, Ut = Ui,t for any t ∈ T .

A.2 Proof of Proposition 2

Proof. The following lemma will be useful in proving Proposition 2.

Lemma 2 Given a positive N-tuple (δi)i∈N , for any t ∈ T , there exists a finite sequence of

positive numbers (ωt(i, s))i∈N,s≥t such that

N∑

i=1

τ∑

s=t

ωt(i, s)δ
τ−s
i = δτ−t (11)

for any τ ≥ t if and only if δ > mini δi.

Proof. If Part Without loss of generality, we assume that δ1 = mini δi. First, we fix all the

weights other than individual 1’s. Let ωt(i, s) = εt(s) > 0 for any i ≥ 2, t ≥ 1, and s ≥ t.

The remaining part is to find (ωt(1, s))t∈T,s≥t such that

1. equation (11) holds;

2. ωt(1, s) > 0, for any t ≥ 1 and s ≥ t.

Construct (ωt(1, s))t∈T,s≥t by the following recursive formula:

ωt(1, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1−
N∑
i=2

ωt(i, s), if s = t,

δs−t −
N∑
i=1

ωt(i, t)δ
s−t
i − · · · −

N∑
i=1

ωt(i, s− 1)δi −
N∑
i=2

ωt(i, s), if s > t.

(12)

It can be verified that (12) ensures that equation (11) holds for any t ∈ T and τ ≥ t. The

remaining part is to show that (ω1,t(s))t∈T,s≥t derived from (12) are strictly greater than

zero, if (εt(s))t∈T,s≥t are small enough. We prove it in two steps.
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Step 1 Setting εt(s) = 0, the recursive formula (12) becomes

ωt(1, s) =

⎧
⎪⎨

⎪⎩

1, if s = t,

δs−t−1(δ − δ1), if s > t,

for each t ∈ T . This can be proved by induction. Since δ > δ1, we have ωt(1, s) > 0.

Step 2 Plugging εt(s) into formula (12), we have,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωt(1, t) = 1− (N − 1)εt(t),

ωt(1, t+ 1) = δ − δ1 −
[

N∑
i=2

(δi − δ1)

]
εt(t)− (N − 1)εt(t+ 1),

ωt(1, t+ 2) = δ(δ − δ1)−
[

N∑
i=2

δi(δi − δ1)

]
εt(t)−

[
N∑
i=2

(δi − δ1)

]
εt(t+ 1)− (N − 1)εt(t+ 2),

...

Then, we know that ωt(1, s) = F
(s)
t (εt(t), . . . , εt(s)|δ, δ1, . . . , δn), in which F

(s)
t is an affine

(and hence continuous) function of εt(t), . . . , εt(s). Since F
(s)
t is continuous, the weights

ωt(1, s)’s are strictly greater than zero, if εt(s)’s are small enough.

Only-If Part For any t < T , let τ = t, t+ 1 in (11). We have

⎧
⎪⎨

⎪⎩

∑N
i=1 ωt(i, t) = 1,

∑N
i=1 ωt(i, t)δi +

∑N
i=1 ωt(i, t+ 1) = δ.

Combining the above two equations,

N∑

i=1

ωt(i, t)δ =
N∑

i=1

ωt(i, t)δi +
N∑

i=1

ωt(i, t+ 1).

Rearranging the above equation, we have

δ =

N∑
i=1

ωt(i, t)δi +
N∑
i=1

ωt(i, t+ 1)

N∑
i=1

ωt(i, t)

>

N∑
i=1

ωt(i, t)δi

N∑
i=1

ωt(i, t)

>

N∑
i=1

ωt(i, t)mini δi

N∑
i=1

ωt(i, t)

= min
i∈N

δi.
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Now we prove Proposition 2.

If Part Taking the weights from the if part of Lemma 2, since the planner’s instantaneous

utility function u is identical to individual instantaneous utility function u, we immediately

know that the planner has the desired EDU function, because

Ut(p) =
T∑

s=t

N∑

i=1

ωt(i, s)Ui,s(p) =
T∑

s=t

N∑

i=1

ωt(i, s)
T∑

τ=s

δτ−s
i u(pτ )

=
T∑

τ=t

τ∑

s=t

N∑

i=1

ωt(i, s)δ
τ−s
i u(pτ ) =

T∑

τ=t

δτ−tu(pτ ).

Only-If Part Suppose the planner’s preference is intergenerationally Pareto and strongly

non-dictatorial. For each t ∈ T , there exists a finite sequence of positive numbers (ωt(i, s))i∈N,s≥t

such that

Ut(p) =
T∑

s=t

N∑

i=1

ωt(i, s)Ui,s(p) =
T∑

τ=t

τ∑

s=t

N∑

i=1

ωt(i, s)δ
τ−s
i u(pτ ).

Then, for any t ∈ T and τ ≥ t, the following equality holds:

τ∑

s=t

N∑

i=1

ωt(i, s)δ
τ−s
i u(pτ ) = δτ−tu(pτ ).

Let pτ = x∗. Lemma 2 implies that δ > mini δi.

A.3 One-Individual Intergenerational Aggregation

We prove the following lemma for intergenerational aggregation when each generation only

has one individual.

Lemma 3 Assume that N = {i}. Suppose each generation-t individual i’s discounting utility

function has an instantaneous utility function u and a discount function δi such that (A1)

and (A2) hold. For any δ > δ̂i := max
τ∈{0,...,T−2}

δi(τ+1)
δi(τ)

, the planner is intergenerationally Pareto

and strongly non-dictatorial.
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Proof. We want to show that for any δ > δ̂i and t ∈ T , there exists a finite sequence of

positive numbers (ωt(i, s))s≥t such that

Ut(p) =
T∑

τ=t

δτ−tu(pτ ) =
T∑

s=t

ωt(i, s)Ui,s(p).

Given any δ > δ̂i, for each t ∈ T , we can construct (ωt(i, s))s≥t according to the following

formula:

ωt(i, s) =

⎧
⎪⎨

⎪⎩

1, if s = t,

δs−t−1
(
δ − δ̂i

)
+

s−1∑
τ=t

[
δ̂iδi(s− 1− τ)− δi(s− τ)

]
ωt(i, τ), if s > t.

(13)

Note that by assuming δ > δ̂i, for s > t, the first term of ωt(i, s) is strictly greater than

0. According to the definition of δ̂i, the second term of ωt(i, s) is greater than 0. Hence,

ωt(i, s) > 0 for any s ≥ t. Then,

Ut(p) =
T∑

s=t

ωt(i, s)Ui,s(p) =
T∑

s=t

ωt(i, s)

[
T∑

τ=s

δi(τ − s)u(pτ )

]
=

T∑

τ=t

[
τ∑

s=t

δi(τ − s)ωt(i, s)

]
u(pτ ).

We want to prove that Ut(p) =
∑T

τ=t δ
τ−tu(pτ ) by induction. Consider

∑τ
s=t δi(τ −

s)ωt(i, s). When τ = t,
∑τ

s=t δi(τ − s)ωt(i, s) = ωt(i, t) = 1 = δ0. Suppose for some τ ≥ t,

we have proven that
∑τ

s=t δi(τ − s)ωt(i, s) = δτ−t. We want to prove that for τ + 1,

τ+1∑

s=t

δi(τ + 1− s)ωt(i, s) = δτ−t+1. (14)
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To prove (14), we only need to notice that according to (13),

τ+1∑

s=t

δi(τ + 1− s)ωt(i, s) = ωt(i, τ + 1) +
τ∑

s=t

δi(τ + 1− s)ωt(i, s)

= ωt(i, τ + 1) + δ̂i

[
δτ−t +

τ∑

s=t

δi(τ + 1− s)

δ̂i
ωt(i, s)− δτ−t

]

= ωt(i, τ + 1) + δ̂i

[
δτ−t +

τ∑

s=t

δi(τ + 1− s)

δ̂i
ωt(i, s)−

τ∑

s=t

δi(τ − s)ωt(i, s)

]

= ωt(i, τ + 1) + δ̂iδ
τ−t +

τ∑

s=t

[
δi(τ + 1− s)− δ̂iδi(τ − s)

]
ωt(i, s) = δτ−t+1.

By induction, we know that
∑τ

s=t δi(τ − s)ωt(i, s) = δτ−t for any τ ≥ t, and hence

Ut(p) =
∑T

τ=t δ
τ−tui(pτ ).

A.4 Proof of Proposition 3

Proof. If Part Lemma 3 states that the planner can find a sequence of positive numbers

(ω̃t(i, s))t∈T,i∈N,s≥t such that

T∑

s=1

ω̃t(i, s)Ui,s(p) =
T∑

τ=1

δτ−1ui(pτ ),

for any i ∈ N and consumption sequence p, because δ > maxi δ̂i = maxi δi. Now, since the

planner’s instantaneous utility function u =
∑

i∈N λiui, we only need to let ω(i, t) = λiω̃(i, t).

Then,

N∑

i=1

T∑

s=1

ωt(i, s)Ui,s(p) =
N∑

i=1

T∑

s=1

λiω̃t(i, s)Ui,s(p) =
N∑

i=1

λi

[
T∑

τ=1

δτ−1ui(pτ )

]
=

T∑

τ=1

δτ−1u(pτ ).

Only-If Part Note that when (ui)i∈N is linearly independent and u is in the interior

of co({ui}i∈N), there is a unique way to write u as a strict convex combination of (ui)i∈N .

Suppose
∑

i∈N λiui = u, in which λi > 0 and
∑

i∈N λi = 1. We only need to consider the
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period-1 planner. The planner’s discounting utility function satisfies

U1(p) =
T∑

s=1

N∑

i=1

ω1(i, s)Ui,s(p) =
T∑

s=1

N∑

i=1

ω1(i, s)
T∑

τ=s

δτ−s
i ui(pτ ), (15)

in which ω1(i, s) > 0 is the weight the period-1 planner assigns to the generation-s individual

i. Since p is arbitrary, this implies that the planner’s instantaneous utility function for

period-1 consumption satisfies

u(p1) =
N∑

i=1

ω1(i, 1)ui(p1)

for any p1. Because u =
∑

i∈N λiui and (ui)i∈N is linearly independent,

ω1(i, 1) = λi (16)

must hold for any i ∈ N . Similarly, equation (15) implies that for period-2 consumption,

δu(p2) =
N∑

i=1

[ω1(i, 1)δi + ω1(i, 2)]ui(p2)

for any p2. Since instantaneous utility functions do not depend on time, the unique way

to write u as a strict convex combination of (ui)i∈N does not change; that is, δu(p2) =

δ
∑

i∈N λiui(p2) for any p2. Then, for any i ∈ N ,

λiδ = ω1(i, 1)δi + ω1(i, 2). (17)

Combining equations (16) and (17) gives us

δ = δi +
ω1(i, 2)

ω1(i, 1)
> δi,

for any i ∈ N . The last strict inequality follows from the fact that ω1(i, s) > 0. Therefore,
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δ > maxi δi.

A.5 Proof of Theorem 1

Proof. Part I We prove the first part in three steps.

In the first step, the period-t planner does T−t+1 times aggregations for each individual

i. The σth aggregation aggregates individual i from generation σ to generation T (σ starts

from t and ends at T ), and it assigns weight ω̃t,σ(i, s) to generation-s individual i for s ≥ σ.

By Lemma 3, we know that for each t ∈ T , i ∈ N and σ ≥ t, the planner can find a

sequence of positive weights (ω̃t,σ(i, s))s≥σ such that

T∑

s=σ

ω̃t,σ(i, s)Ui,s(p) =
T∑

τ=σ

δτ−σu(pτ ),

for any δ > δ̂i . The σth aggregation, as if, gives the planner an exponential discounting

generation-σ individual i with a discount factor slightly higher than δ̂i.

In the second step, the period-t planner collects all of the weights assigned to generation-

s individual i for all T − t + 1 times step-one aggregations. Then the weight assigned to

generation-s individual i by the period-t planner is

ω̃t(i, s) =
T∑

σ=s

ω̃t,σ(i, s).

Essentially, in each period t, the step-two aggregation under weights (ω̃t(i, s))
i∈N
t∈T,s≥t gives the

planner N exponential discounting individuals from the tth generation to the T th generation,

and each individual has a discount factor slightly higher than δ̂i.

Lastly, by Proposition 2, the planner can aggregate N exponential discounting individuals

one more time, and obtain an EDU function with any social discount factor greater than

mini δ̂i.

Part II Define δ̃i := limτ→∞
τ
√
δi(τ). We assume that δ̃1 is the unique minimum of
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δ̃1, . . . , δ̃N . The proof can easily be extended to the case with multiple minima. We prove

it by contradiction. Suppose the planner is intergenerationally Pareto. For each t ∈ T ,

there exists a finite sequence of nonnegative numbers (ωt(i, s))i∈N,s≥t such that the following

equality holds:
τ∑

s=t

N∑

i=1

ωt(i, s)δi(τ − s)u(pτ ) = δτ−tu(pτ ) (18)

for any t ∈ T and τ ≥ t.

By letting τ = t, equation (18) shows that
∑

i∈N ωt(i, t) = 1 for any t ∈ T . Then,

δτ−t =

τ∑
s=t

N∑
i=1

ωt(i, s)δi(τ − s)

N∑
i=1

ωt(i, t)

≥

N∑
i=1

ωt(i, t)δi(τ − t)

N∑
i=1

ωt(i, t)

. (19)

Since δ̃1 = mini δ̃i, there exists T1 > 0 such that for each τ > T1, δ1(τ − t) = mini δi(τ − t).

Hence, (19) becomes

δτ−t ≥

N∑
i=1

ωi,t(t)δ1(τ − t)

N∑
i=1

ωi,t(t)

= δ1(τ − t). (20)

According to our assumptions, δ < δ̃1. Then, there exists T2 > 0 such that for each

τ > T2,

δτ−t < δ1(τ − t). (21)

Let T ∗ = max{T1, T2}. Then, (20) and (21) contradict each other.

A.6 Proof of Theorem 2

Proof. Part I We prove this theorem in two steps. First, we again consider the special

case in which there is only one individual i to be aggregated across generations. Since the

individual relative discount factor is nondecreasing, δ∗i ≥ δ̂i := max
τ∈{0,...,T−2}

δi(τ+1)
δi(τ)

. By Lemma

3, because the social discount factor δ > maxi δ
∗
i ≥ δ∗i , for any i ∈ N and t ∈ T , we can find
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some positive (ωt(i, s))s≥t such that

T∑

s=t

ωt(i, s)Ui,s(p) =
T∑

τ=t

δτ−tui(pτ );

that is, we can aggregate each individual’s utility functions across generations into an EDU

function with discount factor δ.

Consider any N -tuple of positive numbers (λi)i∈N such that
∑

i∈N λi = 1. Together with

the weights (ωt(i, s))t∈T,i∈N,s≥t we have found above, let the planner’s utility function satisfy

Ut(p) =
N∑

i=1

T∑

s=t

λiωt(i, s)Ui,s(p) =
N∑

i=1

T∑

τ=t

δτ−tλiui(pτ )

=
T∑

τ=t

δτ−t

N∑

i=1

λiui(pτ ) =
T∑

τ=t

δτ−tu(pτ ),

in which u =
∑

i∈N λiui is an arbitrary strict convex combination of (ui)i∈N .

Part II We prove it by contradiction. Suppose there exists an intergenerationally Pareto

planner with the social discount factor δ < maxi δ
∗
i . By intergenerational Pareto, for any

t ∈ T , there exists nonnegative numbers (ωt(i, s))i∈N,s≥t such that the following equality

holds for any t ∈ T :

T∑

τ=t

δτ−tu(pτ ) =
T∑

s=t

N∑

i=1

ωt(i, s)
T∑

τ=s

δi(τ − s)ui(pτ ) =
T∑

τ=t

N∑

i=1

τ∑

s=t

ωt(i, s)δi(τ − s)ui(pτ ).

Since p is arbitrary, the equation above implies that for any t ∈ T and τ ≥ t,

N∑

i=1

τ∑

s=t

ωt(i, s)δi(τ − s)ui(pτ ) = δτ−tu(pτ ). (22)

Recall that u is a strict convex combination of (ui)i∈N and (ui)i∈N is linearly independent.

There is a unique way to write u as a convex combination of (ui)i∈N . Moreover, when τ = t,
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equation (22) becomes
N∑

i=1

ωt(i, t)ui(pt) = u(pt) (23)

for any t ∈ T . Thus, ωt(i, t) > 0 for any i ∈ N and t ∈ T . Combining equations (22) and

(23), we have

δτ−t

N∑

i=1

ωt(i, t)ui(pτ ) =
N∑

i=1

τ∑

s=t

ωt(i, s)δi(τ − s)ui(pτ ).

Since (ui)i∈N is linearly independent, for any i ∈ N , t ∈ T , and τ ≥ t, the above equation

implies

ωt(i, t)δ
τ−t =

τ∑

s=t

ωt(i, s)δi(τ − s),

which in turn implies

δτ−t =

∑τ
s=t ωt(i, s)δi(τ − s)

ωt(i, t)
=

ωt(i, t)δi(τ − t) +
∑τ

s=t+1 ωt(i, s)δi(τ − s)

ωt(i, t)

≥ ωt(i, t)δi(τ − t)

ωt(i, t)
= δi(τ − t);

that is,

δ ≥ τ̂
√
δi(τ̂) (24)

for any 1 ≤ τ̂ < T .

Without loss of generality, we assume δ∗N is a maximum of {δ∗i }i∈N . Since δ < δ∗N =

limτ→∞
τ
√
δN(τ), there exists T ∗ such that for any T ≥ T ∗, δ < T−1

√
δN(T − 1), which

contradicts (24).

A.7 Proof of Theorem 3

Proof. Part I We prove Part I in two steps. First, we aggregate individuals who share the

same uθ. For each θ ∈ Θ, Iθ := {i ∈ N : ui = uθ} is called a “family,” which is the set of i’s

whose instantaneous utility functions are uθ. By Corollary 1, we know that for each θ and
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each δ > mini∈Iθ δ
∗
i , there exists a sequence of weights (ωt(i, s))t∈T,i∈Iθ,s≥t such that

U θ
t (p) =

T∑

τ=t

δτ−tuθ(pτ ) =
T∑

s=t

∑

i∈Iθ

ωt(i, s)Ui,s(p).

for each t ∈ T . Now, we have |Θ| exponential discounting expected utility functions U θ
t ’s

with linearly independent instantaneous utility functions uθ’s.

Next, we apply Proposition 3 to aggregate U θ
t ’s. It follows immediately that if δ >

maxθ∈Θmini∈Iθ δ
∗
i , the planner is intergenerationally Pareto and strongly non-dictatorial.

Part II We prove its contrapositive. Suppose the planner is intergenerationally Pareto.

Then, for each t ∈ T , there exists a finite sequence of positive numbers (ωt(i, s))i∈N,s≥t such

that

Ut(p) =
T∑

τ=t

δτ−tu(pτ ) =
T∑

s=t

∑

θ∈Θ

∑

i∈Iθ

ωt(i, s)
T∑

τ=s

δi(τ − s)ui(pτ ),

and hence

δτ−tu(pτ ) =
∑

θ∈Θ

∑

i∈Iθ

τ∑

s=t

ωt(i, s)δi(τ − s)uθ(pτ ) (25)

for any t ∈ T and τ ≥ t.

By letting τ = t in equation (25), we have

u(pt) =
∑

θ∈Θ

∑

i∈Iθ

ωt(i, t)u
θ(pt). (26)

Recall that u is a strict convex combination of (ui)i∈N . Equation (26) shows that
∑

i∈Iθ ωt(i, t) >

0 for each θ. Combining equations (25) and (26), we have

∑

θ∈Θ

∑

i∈Iθ

δτ−tωt(i, t)u
θ(pτ ) =

∑

θ∈Θ

∑

i∈Iθ

τ∑

s=t

ωt(i, s)δi(τ − s)uθ(pτ ).
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Since (uθ)Θi=1 is linearly independent, the above equation is equivalent to

∑

i∈Iθ

δτ−tωt(i, t) =
∑

i∈Iθ

τ∑

s=t

ωt(i, s)δi(τ − s)

for any θ ∈ Θ. Rearranging the above equation, we obtain

δτ−t =

∑
i∈Iθ

∑τ
s=t ωt(i, s)δi(τ − s)

∑
i∈Iθ ωt(i, t)

>

∑
i∈Iθ ωt(i, t)δi(τ − t)
∑

i∈Iθ ωt(i, t)
. (27)

Letting τ go to infinity, it is easy to see that (27) becomes δ ≥ mini∈Iθ δ
∗
i for ∀θ ∈ Θ.

Hence, δ ≥ maxθ∈Θmini∈Iθ δ
∗
i = δ∗maxmin.

A.8 Infinite Time Horizon

Our findings can be extended to the case with T = +∞. When T = +∞, we require

that individual discount factors (δi(τ))
∞
τ=0 be an absolutely summable sequence (in �1) and

maxi δ
∗
i < 1, and that the social discount factor δ < 1. The result below will show that

even when individual instantaneous utility functions are identical, the cutoff for the social

discount factor will jump from mini δ
∗
i to maxi δ

∗
i when T becomes infinite. We first define

intergenerational utilitarianism.

Definition 6 The planner is intergenerationally utilitarian if in each period t ∈ T , there

exists a sequence of nonnegative numbers (ωt(i, s))i∈N,s≥t such that 0 <
∑N

i=1

∑T
s=t ωt(i, s) <

∞, and

Ut =
N∑

i=1

T∑

s=t

ωt(i, s)Ui,s.

Below, we will assume intergenerational utilitarianism rather than intergenerational Pareto,

because the equivalence between intergenerational utilitarianism and intergenerational Pareto

for countably infinitely many individuals is not yet established.

Proposition 4 Suppose T = +∞, and each generation-t individual i’s discounting utility

function has an instantaneous utility function ui and a discount function δi such that (A2)
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and (A3) hold. Let the planner’s instantaneous utility function u be an arbitrary strict convex

combination of (ui)i∈N . Then,

1. for each maxi δ
∗
i < δ < 1, the planner is intergenerationally utilitarian and strongly

non-dictatorial;

2. for each δ < maxi δ
∗
i , the planner is not simultaneously intergenerationally utilitarian

and strongly non-dictatorial.

Proof. Part I Since u is a strict convex combination of (ui)i∈N , suppose u =
∑

i λiui for

some λ1, . . . , λN > 0 such that
∑

i λi = 1. For each i ∈ N and each t ∈ T , we want to

construct a sequence of positive and absolutely summable numbers (ωt(i, s))
∞
s=t such that

∞∑

s=t

ωt(i, s)Ui,s(p) =
∞∑

τ=t

δτ−tui(pτ ).

If this can be done, then in period t, let λiωt(i, s) be the planner’s utilitarian weight for the

generation-s individual i, in which case

N∑

i=1

∞∑

s=t

λiωt(i, s)Ui,s(p) =
∞∑

τ=t

δτ−tu(pτ ) = Ut(p),

which means that the planner is intergenerationally utilitarian and strongly non-dictatorial.

Next, we show that the following recursive definition of (ωt(i, s))
∞
s=t works: For each s ≥ t,

ωt(i, s) =

⎧
⎪⎨

⎪⎩

1, if s = t,
∑s−1

σ=t[δ · δi(s− σ)− δi(s− σ + 1)]ωt(i, σ), if s > t.
(28)

First, it can be verified that each ωt(i, s) is positive, because δ > maxi δ
∗
i and the individual

relative discount factor is nondecreasing. Second, it can be verified inductively that for any

finite τ ,
τ∑

s=t

N∑

i=1

ωt(i, s)δi(τ − s)ui(pτ ) = δτ−tu(pτ )
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for any pτ ∈ Δ(X). These two steps are similar to the steps in the proof of Lemma 3. Thus,

we only have to show that (ωt(i, s))
∞
s=t is summable. Clearly,

∑n
s=t ωt(i, s) is nondecreasing

in n. If we can show that
∑n

s=t ωt(i, s) is bounded above and the bound is a constant, this

part of the theorem is proven.

Sum up both sides of equation (28) from s = t to n. We obtain that

1 =
n−1∑

s=t

(
(1− δ)

n−1−s∑

τ=0

δi(τ) + δi(n− s)

)
ωt(i, s) + ωt(i, n).

Because
∑n−1−s

τ=0 δi(τ) > 1 and δi(n− s) > 0, (1− δ)
∑n−1−s

τ=0 δi(τ) + δi(n− s) > 1− δ, which

implies that

1 >

n−1∑

s=t

(1− δ)ωt(i, s) + ωt(i, n) > (1− δ)
n−1∑

s=t

ωt(i, s).

Therefore,
∑n−1

s=t ωt(i, s) is bounded above by 1/(1− δ) for any n.

Part II Assume that δ∗N is the unique maximum of {δ∗i }i∈N . The proof can easily

be extended to the case with multiple maxima. We prove the contrapositive of this part.

Suppose the planner is intergenerationally utilitarian and strongly non-dictatorial; that is,

for each t ∈ T , there exists a sequence of positive numbers (ωt(i, s))i∈N,s≥t such that Ut =
∑

i,s ωt(i, s)Ui,s. Hence, for any t ∈ T and τ ≥ t,

τ∑

s=t

N∑

i=1

ωt(i, s)δi(τ − s)ui(pτ ) = δτ−tu(pτ ).

Consider a consumption sequence that yields x∗ in every period, (x∗, x∗, . . . ). Then, the

equation above becomes
τ∑

s=t

N∑

i=1

ωt(i, s)δi(τ − s) = δτ−t.

Since ui’s and u are normalized, we know that for each t,
∑

i∈N ωt(i, t) = 1. Due to the
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strongly non-dictatorial property, in particular, ωt(N, t) ∈ (0, 1). Then,

δτ−t =
τ∑

s=t

N∑

i=1

ωt(i, s)δi(τ − s) > ωt(N, t)δN(τ − t).

Therefore, δ > τ−t
√
ωt(N, t)δN(τ − t) for every τ implies that δ ≥ δ∗N .

Proposition 4 covers the case in which ui’s are identical. Thus, Proposition 4 says that

if T = +∞, the cutoff for the social discount factor again jumps from mini δ
∗
i to maxi δ

∗
i ,

compared to Theorem 1/Corollary 1.

Note that the second part of Proposition 4 is weaker than the second part of Theorem 1,

Corollary 1, or Theorem 2. In Proposition 4, if the social discount factor is lower than the

highest individual long-run discount factor, the conclusion is that either intergenerational

utilitarianism is violated or the planner has ignored some individual from some generation.

Nonetheless, there is still discontinuity between Proposition 4 and Theorem 1/Corollary

1. In Theorem 1/Corollary 1, if the social discount factor is lower than the lowest individual

long-run discount factor, we know that intergenerational Pareto is violated, which implies

that at least one of the two properties, intergenerational utilitarianism or the strongly non-

dictatorial property, is violated, as in Proposition 4.

The intuition for this discontinuity is the following. For simplicity, suppose ui’s are the

same. Fixing an arbitrarily large but finite T , the planner can always attach small enough

utilitarian weights to individuals with high δ∗i . In this way, the planner can keep her social

discount factor low. However, if T is infinite, fixing any positive weights, as τ increases to

infinity, δi(τ) of the individual with the highest δ∗i dominates all other individuals’ discount

factors regardless of his weight. Therefore, the social discount factor cannot be strictly less

than maxi δ
∗
i .
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