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A novel all-optical double gradient-index (GRIN) lens optical-resolution photoacoustic 

microscopy (OR-PAM), termed as DGL-PAM, is demonstrated. The miniature probe consists 

of a single-mode fiber and double GRIN lenses for optical focusing and a miniature fiber 

Fabry-Perot sensor for ultrasound detection. The new design is simple and realizes high 

resolution with long working distance (WD) by virtue of the double GRIN lenses. The overall 

size of the probe is 2.7 mm in diameter. High lateral resolution of 3.7 µm (at 532 nm laser 

wavelength) and long WD of 5.5 mm are achieved. In vivo OR-PAM of mouse ear 

demonstrates the imaging ability of DGL-PAM. Since precise alignment of optical and 

acoustic foci is not needed, the proposed DGL-PAM is relatively easy to implement. It has 

potential to be developed as a low-cost, disposable OR-PAM probe and for endoscopic 

applications. The proposed double GRIN lenses for making miniature endoscopic probes can 
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also be applied to other modalities, such as optical coherence tomography and confocal 

fluorescence microscopy, to enable high resolution and long WD. 

 
1. Introduction 

Photoacoustic imaging is an attractive imaging technique since it combines the strengths of 

plentiful optical absorption contrast and low acoustic scattering in biological tissue. 

Photoacoustic imaging has been explored in a range of applications in biomedicine [1]. In 

photoacoustic imaging, the biological tissue is irradiated by a pulsed laser beam to engender 

an acoustic pulse due to thermoelastic expansion. Currently, the major implementations of 

photoacoustic imaging are photoacoustic computed tomography (PACT) [2], photoacoustic 

microscopy (PAM) [3−5], and photoacoustic endoscopy (PAE) [6]. PAM aims to provide 

high-resolution imaging and can be categorized into two types. In optical-resolution PAM 

(OR-PAM), high lateral resolution (several µm) is enabled by optical focusing, while in 

acoustic-resolution PAM, acoustic focusing is used to provide lateral resolution (tens to 

hundreds of µm) at depths to several millimeters. By virtue of its high resolution, OR-PAM is 

particularly useful in applications such as imaging microvasculature at capillary level and 

auscultating biological systems at cellular level [7,8]. To achieve such high resolution with 

satisfactory performances such as high sensitivity, long working distance (WD), and 

reflection-mode operation, sophisticated design and implementation of the imaging head as 

well as its components are required. 

 

OR-PAM has two schemes: transmission mode and reflection mode. In transmission mode, 

laser excitation and ultrasound detection are at the opposite sides of objects, and thus, 

This article is protected by copyright. All rights reserved.



  

diffraction-limited focusing can be achieved without much difficulty using an objective lens 

with a high numerical aperture (NA) [9,10]. However, in vivo applications are highly impeded 

due to usually thick tissue or even a body, which causes much acoustic attenuation for excited 

photoacoustic waves to propagate to the detection side. By contrast, reflection mode with 

laser excitation and ultrasound detection at the same sides of objects facilitates in vivo studies. 

However, in reflection mode, the ultrasonic detector is typically not transparent to the 

excitation wavelength and thus cannot be simply placed above or below the objective lens. 

Acoustically, placing the ultrasonic detector above the objective lens spoils efficient coupling 

of ultrasound to the detector since the objective lens generally has acoustic impedance 

mismatch with tissue. Therefore, efforts have been made in improved combination of laser 

focusing for high resolution and ultrasound detection for high sensitivity. 

 

There have been four methods explored for the optical-acoustic combination for reflection-

mode OR-PAM. (i) An optical-acoustic combiner was used to reflect the optical or acoustic 

beam so that confocal and coaxial alignment can be effectively realized [4,11,12]. However, 

the combiner is usually big, resulting in longer focal length and thus the smaller NA of the 

optical focusing. That is, high resolution is sacrificed. Moreover, skillful alignment of optical 

and acoustic foci is required to optimize the sensitivity. (ii) Off-axis method was employed by 

placing the ultrasound transducer in an oblique direction [13,14], which degrades the axial 

resolution and results in a relatively large imaging head if housed. (iii) A hollow focused 

ultrasound transducer was custom made to allow confocal and coaxial optical-acoustic 

alignment by utilizing the hole of the hollow transducer for laser transmission [15−17], yet the 
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design suffers from the tradeoff between resolution and sensitivity determined by the hole size 

of the transducer. A small hole hampers high-NA optical focusing for high resolution, while a 

large hole impairs high sensitivity. (iv) A reflective objective lens has a dark zone to allow 

direct placement of the transducer below the objective without degrading optical focusing 

[18,19]. However, the cost is much higher than a refractive-based objective. 

 

As an alternative to piezoelectric transducers, optical detection of ultrasound is a promising 

method in OR-PAM [20−25]. Optical resonance is utilized to realize sensitive ultrasound 

detection. For instance, noise-equivalent pressure (NEP) of 8 Pa over bandwidth of 20 MHz 

was demonstrated by a fiber Fabry-Perot (FP) ultrasound sensor [26]. Bandwidth up to 80 

MHz has also been achieved [27]. Photoacoustic imaging based on the fiber FP sensor has 

been extensively investigated [23,28,29]. For another example, a microring resonator with 

NEP of 105 Pa over ultrabroad bandwidth of 350 MHz has been reported [30], and promising 

applications of microrings including PACT [31], OR-PAM [20,21], PAE [22], ultrasound 

imaging [32], and even the detection of THz pulse radiation have been demonstrated [33]. 

Particularly, several unique features of the fiber FP ultrasound sensor render it an excellent 

detector for OR-PAM, including high sensitivity for high-quality imaging, broad bandwidth 

for high axial resolution, wide-angle detection for circumventing precise alignment, and 

miniature size for easy integration. 

 

Gradient-index (GRIN) lenses have been used to build miniature OR-PAM probes 

[16,17,22,34−36]. A GRIN lens with an imaging fiber bundle was used for focusing and 
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scanning the laser beam [34]. Although high resolution of 6 µm is achieved, a relatively short 

WD of 2 mm may restrict some specific in vivo applications such as brain imaging, where 

long WD with high resolution is desired [18]. Furthermore, the demonstrated probe using a 

piezoelectric transducer can only operate in transmission mode. The others employed a GRIN 

lens with a single-mode fiber (SMF) [16,17,22,35]. The best achieved resolution is 9.2 µm 

with WD of 4.4 mm (from the imaging head to the optical focus) [17]. However, compared 

with the method of the optical-acoustic combiner [4,11,12], there still exists more than 3-fold 

degradation in resolution (9.2 µm vs. <3 µm [11]). We recently demonstrated a miniature 

probe using twin GRIN lenses and a hollow transducer to achieve high resolution of 3.1 µm, 

yet suffered from short WD of 1.4 mm [36]. This is mainly limited by the small size of the 

GRIN lenses constrained by the small hole of the hollow transducer. 

 

In this work, we demonstrate a miniature OR-PAM probe using double GRIN lenses, which is 

termed DGL-PAM. Compared with a single GRIN lens or twin GRIN lenses [36], the double 

GRIN lenses with optimized design provide both high resolution of 3.7 µm and long WD of 

5.5 mm. Because the miniature fiber FP ultrasound sensor is employed in this probe, 

optimization of double GRIN lenses becomes possible. Moreover, the fiber FP sensor has 

wide-angle ultrasound detection, which facilitates easy integration. The proposed DGL-PAM 

is a new approach to implement the reflection-mode OR-PAM imaging head. Specifically, in 

contrast to existing methods with reflection-mode operation, DGL-PAM imaging head has 

advantages: (i) both high resolution and long WD, (ii) miniature size (2.7 mm) with potential 

for endoscopic applications, (iii) simple implementation, (iv) low cost, and (v) light weight. 
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The above advantages are not simultaneously possessed by the existing methods. The all-

optical scheme is advantageous in immunity against electromagnetic interference. 

 
2. Methods 

 

2.1. DGL-PAM Design and Optimization 

Theoretically, the optical diffraction-limited lateral resolution can be expressed as 

 Resolution = 0.51 𝜆
ENA

 ,  (1) 

where » denotes the laser wavelength and ENA denotes the effective NA for the optical 

focusing. The theoretical lateral resolution corresponds to full width at half maximum 

(FWHM) of the point spread function in imaging. ENA is determined by the expression: 

ENA = 𝑛 𝐷
2𝑓

 ,    (2) 

where n is the refractive index of the medium where the lens is working, D is the optical beam 

size on the lens and f is the distance from the lens to the optical focus (i.e., WD). Thus, for a 

fixed λ, n, and D, there is a trade-off relation between resolution and WD. 

 

In conventional OR-PAM, high resolution with long WD can be achieved with a large D by 

using a common focusing lens with a large aperture. By contrast, in miniaturized OR-PAM, a 

single GRIN lens is typically used, and high resolution and/or long WD are sacrificed. As 

mentioned above, the best achieved resolution is 9.2 µm with WD of 4.4 mm [17]. There are 

mainly two reasons: (i) the NA of commercially available SMFs at visible wavelengths is low 

(0.10−0.14); (ii) the D is limited to <1 mm due to the small hole of the hollow transducer. 

Hence, to optimize the resolution and WD, we equivalently employ a high-NA SMF by using 
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a common low-NA SMF and a 0.5 mm GRIN lens (GL1) and adopt a 2 mm GRIN lens (GL2) 

for light focusing. The latter is allowed because a miniature fiber FP sensor is used for 

ultrasound detection. 

 

It is clear that the 2 mm GL2 is helpful to improve resolution and WD by Eqs. (1) and (2). On 

the other hand, to illustrate the advantages of adding the intermediate GL1, we perform 

Zemax simulation to compare the cases of using the GL2 alone (a single GRIN lens) and 

using GL1 and GL2 (double GRIN lenses). A schematic of the two cases is shown in Fig. 1(a), 

where d1 is the distance between the SMF and the input of GL2 in the case of a single GRIN 

lens. Besides, d2, d3, and d4 are the distance between the SMF and the input of GL1, that 

between the output of GL1 and the focus after GL1, and that between the focus after GL1 and 

the input of GL2, respectively, in the case of double GRIN lenses. θ1 is the divergence angle 

related to the focus after GL1. The following parameters are used: the common SMF (NA = 

0.12), the 0.5 mm GL1 (pitch = 0.25; NA = 0.54), the 2 mm GL2 (pitch = 0.23; NA = 0.51), 

and design wavelength of 532 nm. Besides, the surrounding before the input of GL2 is the air, 

while that after GL2 is water (i.e., n = 1.33 in Eq. (2)). These parameters and surroundings are 

also used in experiments. 

 
Figure 1(b) shows the result of the case of a single GRIN lens. As can be seen, by increasing 

the distance d1 from 1 mm to 6.5 mm, ENA (and thus resolution) is enhanced linearly at the 

cost of WD. For example, at d1 of 3.6 mm, ENA can be 0.21 with very short WD of 1.7 mm. 

On the other hand, to enable long WD, ENA is sacrificed. One representative result is that 
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when d1 is 1.14 mm, the ENA reduces to only 0.058 (corresponding to theoretical resolution 

of 4.7 µm [= 0.51×0.532/0.058]) at WD of ~5.5 mm. As a matter of fact, a high-NA SMF can 

enhance ENA (and thus resolution) while keeping almost the same WD. To illustrate this, we 

further perform simulation by increasing the NA of SMF from 0.05 to 0.43 at a fixed d1 of 

1.14 mm. The result is shown in Fig. 1(c). As can be seen, ENA can be enhanced from 0.024 

to 0.21, corresponding to theoretical resolutions from 11.3 µm to 1.3 µm. Note that the long 

WD of ~5.5 mm is kept, as shown in Fig. 1(c). As a comparison, at WD of ~5.5 mm, ENA 

and theoretical resolution are improved by ~3.6 times (ENA: from 0.058 to 0.21; theoretical 

resolution: from 4.7 µm to 1.3 µm) when changing the NA of SMF from 0.12 to 0.43. 

 

To our knowledge, high-NA SMFs at visible wavelengths are not commercially available. 

Fortunately, high-NA (or wide-angle) emitted light can be equivalently realized by using the 

common low-NA SMF and GL1, which is illustrated in the following. As shown in the case 

of double GRIN lenses in Fig. 1(a), the laser emitted from the SMF is focused by GL1 and is 

then diverged after passing the focus. By increasing d2, the divergence angle (θ1) can be 

enlarged compared with that right after the SMF. That is, the NA of the SMF is equivalently 

enlarged by the introduction of GL1. Then, the laser after GL1 is further focused by GL2. 

Thus, as simulated in Fig. 1(c), high resolution with long WD can be enjoyed compared with 

the case of a single GRIN lens. 

 

To find out the optimized design of DGL-PAM, we perform the simulation of ENA of GL2, 

which is directly related to resolution, as a function of d2 at different desired WD, as shown in 
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Fig. 1(d). In this simulation, for a certain WD, d4 is almost fixed, and d3 is determined 

according to d2. That is, d3 and d4 are determined according to d2 and desired WD and thus are 

not variables. Note that the maximum value of d2 for each desired WD is determined due to 

light leakage at GL2. Specifically, as mentioned, d4 is almost fixed for a desired WD. As d2 

increases, θ1 will increase and start to cause partial light leakage from the edge of GL2. Thus, 

the maximum value of d2 is determined by the maximum θ1 without light leakage at GL2. The 

results show that ENA of GL2 (and resolution) will be enhanced as increasing d2 at a certain 

WD. That is, the optimal ENA of GL2 (and resolution) can be achieved by using the 

maximum d2, corresponding to the rightest points for each WD in Fig. 1(d). As can be seen in 

Fig. 1(d), although the trade-off between optimal resolution and WD still exists in the case of 

double GRIN lenses, one can have higher resolution while keeping the same longer WD. For 

example, considering WD of ~5.5 mm, the optimal ENA of GL2 by using double GRIN 

lenses is 0.21 from this simulation (not shown in Fig. 1(d)), and thus, theoretical resolution 

can be improved by ~3.6 times (ENA of GL2: from 0.058 to 0.21 by using a single GRIN lens 

and double GRIN lenses, respectively). 

 

We made 3 different DGL-PAM probes (details described later), measured the ENA and WD, 

and compared the experimental results with the simulation, which is shown in Table 1 and Fig. 

1(d). Here, we chose different d2 and d3+d4 in order to obtain the probes with WD ranging 

from ~4 mm to ~7 mm. Note that d2 and d3+d4 in the simulation are chosen the same as those 

measured in experiments. As shown in Table 1 and Fig. 1(d), both the ENA and WD show 

excellent consistency between the simulation and experimental results. 
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3. Probe Fabrication 

 

3.1. DGL-PAM Probe 

A schematic of the DGL-PAM probe is shown in Fig. 2(a). In this probe, an SMF (S405-XP, 

Nufern), denoted as SMF1, for wavelengths of 400−680 nm with an NA of 0.12 was used to 

deliver 532-nm laser pulses. Then, GL1 (GT-LFRL-050-025-50-CC (532), GRINTECH) with 

a diameter of 0.5 mm was placed after the SMF1. The SMF1 and GL1 were fixed by a glass 

tube. The distance between SMF1 and GL1 (d2) was ~1.6 mm. The divergence angle (θ1) up 

to ~26° (NA: ~0.44) was measured. GL2 (GT-LFRL-200-023-50-CC (532), GRINTECH) 

with a diameter of 2 mm as an objective lens was further utilized to focus the laser beam for 

photoacoustic excitation. GL2 and the glass tube consisting of SMF1 and GL1 were fixed by 

a metal ferrule with an outer diameter (OD) of 2.5 mm. Aided by GL1, ENA of GL2 was 

measured to be ~0.21 and a long WD (f) of 5.5 mm was obtained. For photoacoustic detection, 

a home-made fiber FP ultrasound sensor was used and attached adjacent to the metal ferrule. 

The fiber FP sensor is an optical resonant cavity, consisting of a polymer film in thickness 

sandwiched between a pair of gold mirrors, on the tip of a standard SMF (SMF-28e+), 

denoted as SMF2. Figure 2(b) shows the picture of the fabricated DGL-PAM probe with size 

of 2.7 mm.  

 

3.2. FP Ultrasound Sensor 

As mentioned above, to detect the excited photoacoustic waves, the fiber FP ultrasound sensor 

was used. The fabrication, working system, and ultrasound detection characteristics of the 

home-made FP sensor have been introduced and detailed in our previous work [29]. Briefly, 
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the FP cavity was made of a polymer film sandwiched between a pair of gold mirrors. First, 

the gold mirror was deposited on the tip of a standard SMF (SMF-28e+) by sputter coating. 

Then, the polymer of ~38 µm was dip coated to form a plano-convex spacer. Finally, the 

second gold mirror was deposited using the same process as the first mirror. A parylene-C 

film with a thickness of ~5 µm was coated for protection of the fiber-tip FP structure. The 

diameter of the FP sensor was ~130 µm. 

 

3.3. Assembly of DGL-PAM Probe 

The procedure of assembling the DGL-PAM probe is shown in Fig. 3. We performed the 

assembly under a modified microscope system, as shown in Fig. 3. We used 3D stages and 

kinematic mounts (GCM100302M, Daheng Optics, China) for precise adjustment of the 

components.  

 

First, an SMF1 was mounted on Part 2 in Fig. 3(a). The center of the output beam from the 

SMF1 was aligned to the center of a target, as shown in Step 1 in Fig. 3(b).  

 

Second, optical adhesive (NOA61, Thorlabs) was used to fix a glass tube (inner diameter (ID): 

0.55 mm, OD: 0.85 mm) and GL1. Then, the part consisting the glass tube and GL1 was 

mounted on Part 3 in Fig. 3(a). Next, d2 was adjusted to the designed value. The center of the 

output beam after GL1 was aligned to the center of the target, as shown in Step 2 in Fig. 3(b). 

After that, the optical adhesive was used to fix the SMF1 and the glass tube. 
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Third, the optical adhesive was used to fix a steel ferrule (ID: 2.05 mm, OD: 2.5 mm) and 

GL2. Then, the part consisting the steel ferrule and GL2 was mounted on Part 3 in Fig. 3(a). 

Next, ENA of GL2 was adjusted to the designed value, and d3+d4 was decided accordingly. 

The focus after GL2 was aligned to the center of the target, as shown in Step 3 in Fig. 3(b). 

After that, the optical adhesive was used to fix the glass tube and the steel ferrule. It is 

important that the SMF1, GL1, GL2, and the target should be placed coaxially in the above 

three procedures. 

 

Fourth, the FP sensor (SMF2) was attached adjacent to the steel ferrule, as shown in Step 4 in 

Fig. 3(b).  

 
4. Results 

 

4.1. Experimental Setup 

The experimental setup for the DGL-PAM probe is shown in Fig. 4. A 532 nm pulsed laser 

(FDSS532-Q3, CryLas) with a repetition rate of 1 kHz was used for photoacoustic excitation. 

The laser was attenuated, spatially filtered, and coupled into the SMF1. As for the detection 

system, the FP sensor was probed using a continuous wave tunable laser (HP 8168F, Agilent) 

with a wavelength range of 1450−1590 nm. A fiber circulator was used to access the input 

and output ports of the FP sensor via SMF2. The output port collecting the reflected light was 

further connected to a 1 × 2 fiber coupler with a power ratio of 10:90. The 10% reflected 

power was measured by a power meter (2832-C, Newport) to obtain the FP cavity’s reflection 

spectrum, and the 90% reflected power was detected using a photodetector (1811-FC-AC, 
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New Focus) with an output gain of 40 V/mA and electrical bandwidth of 25 kHz−125 MHz to 

capture the short modulated optical pulses induced by the incoming photoacoustic pulses. 

During the FP operation, we first scanned the wavelengths of the tunable laser to get the 

interferometer transfer function (ITF). A fixed wavelength was then chosen at the highest 

slope of the ITF, which consequently translated into high intensities of the ultrasound-

modulated optical pulses. Therefore, a sharp slope provided by high-quality FP sensor enables 

high-sensitivity ultrasound detection. The device has an NEP of ~0.33 kPa over bandwidth of 

15 MHz at −10 dB. Note that a very low NEP of 8 Pa over a bandwidth of 20 MHz has been 

reported [26], which means that the sensitivity of our DGL-PAM probe can be further 

improved by more than 40 times in the future. The photoacoustic signals were sampled by a 

high-speed digitizer (CSE1422, Gage) with a sampling rate of 200 MS/s and 14-bit resolution. 

The DGL-PAM probe was mounted on a two-dimensional (2D) motorized stage [M-404, 

Physik Instrumente (PI)] for scanning during image acquisition. 

 

4.2. Resolution and Imaging Depth 

Lateral resolution of the DGL-PAM probe is determined by the focal spot size after GL2. A 

sharp edge of a razor blade in water was imaged to calibrate the lateral resolution. A step size 

of 0.5 µm was used in scanning across the sharp edge. A one-dimensional (1D) photoacoustic 

amplitude profile was obtained and fitted by a sigmoidal-shaped curve as the fitted edge 

spread function (ESF) [37]. The line spread function (LSF) can be calculated by taking the 

spatial derivative of the ESF. The 1D photoacoustic profile, the fitted ESF, and the calculated 

LSF are shown in Fig. 5(a). The FWHM of the LSF was used to determine the lateral 
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resolution, which was estimated as 3.7 µm. Meanwhile, the WD was measured as ~5.5 mm. 

As mentioned above, the ENA was ~0.21, which results in theoretical diffraction-limited 

lateral resolution of 1.3 µm [= 0.51×(0.532 µm)/0.21]. As a comparison, the measured value 

is much worse than the theoretical one, which is probably due to optical aberration of the 

GRIN lenses. The exact reason is under investigation. We also made a probe consisting of 

SMF1 and a single GRIN lens GL2, and lateral resolution of 9.5 µm at WD of ~5.5 mm was 

measured (results not shown), which experimentally confirms the advantage of using double 

GRIN lenses over a single GRIN lens. The axial resolution of the DGL-PAM probe was 

determined by imaging a 6-µm carbon fiber. A photoacoustic temporal signal and its Hilbert 

transform (envelope detection) are shown in Fig. 5(b). The axial resolution was measured as 

68 µm by taking the FWHM of the envelope. To measure the imaging depth of our DGL-

PAM probe, a needle with a diameter of 250 μm obliquely inserted into chicken breast was 

imaged. Another same needle placed on the surface of the chicken breast was used as a 

reference. A photograph of the sample is shown in Fig. 5(c). The pulse energy used in this 

calibration was measured as ~510 nJ. As shown in Fig. 5(d), the DGL-PAM probe can clearly 

visualize the needle down to 0.38 mm (determined by signal-to-noise ratios (SNRs) >10 dB) 

beneath the reference surface. Therefore, the imaging depth is determined to be better than 

0.38 mm in biological tissue. Penetration depth can be further enhanced by using the FP 

sensor with higher sensitivity. 

 

4.3. Imaging of a Leaf 
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To assess the imaging performance of the system, a phantom of a leaf skeleton dyed with 

black ink was imaged. The phantom was covered by a layer of epoxy to protect the ink from 

leaking out of the leaf skeleton. Figure 6(a) is a photograph of the leaf phantom. A region of 

3.8 mm × 4 mm (red dashed box in Fig. 6(a)) was imaged, and the 2D maximum amplitude 

projection (MAP) image is shown in Fig. 6(b). As can be seen, veins with different diameters 

(~30−250 µm) were clearly imaged. Besides, the PAM image and the photograph have high 

resemblance. 

 

4.4. In vivo Imaging of a Mouse Ear 

The 6~8 weeks old mouse (BALB/c, Jiesijie, Shanghai, China) was anesthetized with 

pentobarbital and placed on a home-made animal platform. Before the experiment, the hair on 

the ear of the mouse was gently removed using a human-hair removing cream. All 

experimental animal procedures were carried out in conformity with the laboratory animal 

protocol approved by Laboratory Animal Care Committee of Shanghai Jiao Tong University. 

 

To demonstrate the in vivo imaging capability of the DGL-PAM probe, a mouse ear was 

imaged. The laser pulse energy at the surface of the sample was ~510 nJ. By adjusting the 

optical focus at ~0.1 mm below the skin surface, the surface laser fluence can be estimated as 

63 mJ/cm2 [= (510 nJ)/(π×((0.1 mm)×0.16)2)], which is higher than the American National 

Standards Institute safety limit (20 mJ/cm2 for the visible wavelengths), but still below the 

damage threshold (200 mJ/cm2) [17]. An area of 1.25 mm × 1.25 mm of the mouse ear was 

imaged with scanning step size of 5 µm (i.e., 250 × 250 scanning points). Signal averaging of 

16 times was used to enhance the SNR of images. The 2D MAP image of the 
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microvasculature is shown in Fig. 7(a), where the morphology of the microvasculature can be 

clearly observed. Using smaller step size of 3 μm, Fig. 7(b) shows a zoom MAP image in the 

area indicated by the white dashed box in Fig. 7(a), and more details of the microvasculature 

are visualized. After image acquisition, no obvious damage of the mouse ear was found by 

naked-eye inspection. Figure 7(c) shows the depth-encoded MAP image on the scanning 

plane of Fig. 7(b), demonstrating the three-dimensional (3D) imaging ability of the DGL-

PAM probe. Further, single capillaries (e.g., indicated by the two white arrows) at superficial 

layers (colored in blue) overlaying deeper lying vessels (colored in yellow or orange) can be 

clearly identified. Three representative layers at different depths with separation of 100 µm 

are shown in Fig. 7(d). 

 
5. Discussion and Conclusion 

In our design of the DGL-PAM probe, we used two GRIN lenses, GL1 and GL2. GL1 was 

used to increase the divergence angle (θ1) before entering GL2 (serving as the objective lens), 

which enables high resolution with long WD compared with using single GL2 alone. As 

mentioned above, this is earned by equivalently having a high-NA SMF for the wavelength of 

532 nm. To our knowledge, currently the NA of commercially available SMFs for visible 

wavelengths is low (0.10−0.14), which manifests the value of our design using double GRIN 

lenses.  

 

Although the FP sensor for photoacoustic imaging has been reported in our previous work 

[29], simple light illumination (without light focusing) was employed. Thus, resolution of 

~100 µm over a large depth range of >4 mm was obtained, which is not suitable for high-
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resolution imaging applications. By contrast, in this work, major efforts were made on the 

design and optimization of the double GRIN lenses (as detailed in Section 2.1), which is 

critical to achieving high-resolution and long-WD light focusing via a miniature part. 

 

Although the resolution and WD are upgraded by the design of double GRIN lenses, the 

DGL-PAM probe and system should be further improved to facilitate in vivo and clinical 

applications. First, the sensitivity and bandwidth of the fiber FP ultrasound sensor should be 

improved for better imaging depth, imaging speed, and axial resolution. The NEP of 2.1 mPa 

per √Hz of the fiber FP ultrasound sensor has been demonstrated [25]. That is, highly 

sensitive FP sensors with broad bandwidth are technically feasible. In addition, for longer WD, 

the photoacoustic signal amplitude detected by the FP sensor is reduced due to longer acoustic 

propagation distance, which causes more attenuation of ultrasound waves. That is, imaging 

sensitivity will be degraded. The highly sensitive FP sensor also facilitates longer WD with 

satisfactory imaging sensitivity. Second, imaging speed can also be improved by using a 

pulsed laser with high repetition rate [11]. Third, the potential design of a side-viewing probe 

is discussed. As shown in Fig. S1 in Supporting Information, a rod mirror and a micromotor 

for rotary scan can be employed to steer both the light beam from the exit of GL2 to the tissue 

and the photoacoustic wave from the tissue to the FP sensor.  

 

We developed a novel DGL-PAM probe with a compact size of 2.7 mm in diameter by 

employing double GRIN lenses and the fiber FP ultrasound sensor. By the proposed design 

and optimization of the double GRIN lenses for laser focusing, lateral resolution of 3.7 µm 
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with long WD of 5.5 mm was experimentally demonstrated. The imaging ability of the DGL-

PAM was showcased by imaging of the leaf and mouse ear in vivo. To elaborate the 

advantages of the DGL-PAM probe, Table 2 shows the comparison of reflection-mode OR-

PAM imaging heads. As can be seen, both high resolution and long WD were achieved in a 

miniature imaging probe. As shown in Table 2, the WD in several OR-PAM imaging heads is 

designed to be from 4.4 mm to <7 mm. For a fair comparison, WD of 5.5 mm was chosen for 

the DGL-PAM probe and its imaging demonstrations. Furthermore, the implementation of the 

DGL-PAM probe is relatively simple. Functional imaging by the DGL-PAM probe will be of 

great interest for future work. It is worth mentioning that the proposed double GRIN lenses 

for high resolution and long WD can also be used in other endoscopic modalities, such as 

optical coherence tomography and confocal fluorescence microscopy. 

 
Supporting Information 

Additional supporting information may be found in the online version of this article at the 

publisher’s website. 

Figure S1: Potential design of a side-viewing DGL-PAM probe. 
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Figure 1. DGL-PAM Design and Optimization. (a) Schematic of the two cases of a single 
GRIN lens and double GRIN lenses. (b) ENA of GL2 and WD as a function of d1 (the case of 
a single GRIN lens). (c) ENA of GL2 and WD as a function of the NA of SMF. (d) ENA of 
GL2 as a function of d2 (the case of double GRIN lenses). 
 

 
 
Figure 2. (a) Schematic of DGL-PAM probe. (b) Photograph of DGL-PAM probe. 
 

This article is protected by copyright. All rights reserved.



  

 
 
Figure 3. Assembly of the DGL-PAM probe. (a) Modified microscope system. (b) Illustration 
of the four steps for assembling DGL-PAM probe. 
 

 
 
Figure 4. Experimental setup for DGL-PAM probe. ND, neutral density; PC, personal 
computer; PD, photodetector; PM, power meter. 
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Figure 5. (a) Calibration of lateral resolution. (b) Calibration of axial resolution. (c) 
Photograph of the sample of the black needle obliquely inserted into chicken breast (Needle1) 
and the needle on the surface of the chicken breast as a reference (Needle2). (d) OR-PAM of 
(c) for calibration of imaging depth. 
 

 
 
Figure 6. Photograph (a) and OR-PAM (b) of leaf phantom. 
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Figure 7. (a) In vivo OR-PAM (MAP) of mouse ear. (b) OR-PAM (MAP) of the zoom region 
in the white dashed box in (a). (c) Depth-encoded OR-PAM (MAP) image of (b). (d) Three 
representative layers at different depths of (b). 
 
Table 1. Comparison of simulation and experimental results of DGL-PAM probe. 
Probes  d2 (mm) d3+d4 (mm) ENA WD (mm) 

1 Simulation 1.28 1.63 0.23 4.08 

Experiment 0.23 3.96 

2 Simulation 1.56 1.34 0.23 5.05 

Experiment 0.23 5.15 

3 Simulation 1.69 1.05 0.18 6.7 

Experiment 0.17 6.65 

 
Table 2. Comparison of reflection-mode OR-PAM imaging heads. 
Methods Resolution 

(µm)a) 
WD (mm) Size (mm)b) Alignment of 

optical-acoustic 
beams 

Refs. 

Optical-acoustic 
combiner 

2.56 ~6 Large Demanding [4,11,12] 

Off-axis 7.8 N/Ac) Large Simple [13,14] 

Hollow focused 
transducer 

0.7 [15] <7 [15] N/Ac) [15] Demanding 
 

[15−17] 

9.2 [17] 4.4 [17] 3.8 [17] 

Reflective objective 1.2 6 Large Demanding [18,19] 
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Double GRIN lenses 
and FP sensor 

3.7 5.5 2.7 Simple This work 

a)The best resolution is quoted. For the others (columns 3−5), the Ref. cited in Resolution 
(column 2) is referred to; b)Large for those >10 mm; c)Not available.  
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Short descriptive and popular text (<70 words): 
 
Optical-resolution photoacoustic microscopy and endoscopy are powerful tools for medical imaging. 
However, implementation of the imaging heads or miniature probes with high resolution and long 
working distance has been technically challenging. The novel design of using double gradient-index 
lenses for light focusing and a fiber Fabry-Perot ultrasound sensor for sound detection provides a 
simple approach to implement such a miniature imaging probe. 
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Supporting Information  
 
Title Miniature probe for all-optical double gradient-index lenses photoacoustic microscopy 
 
Zhendong Guo, Guangyao Li, and Sung-Liang Chen  
 
 

 
 
Figure S1. Potential design of a side-viewing DGL-PAM probe.  
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