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1 | INTRODUCTION

Individuals with psychiatric disorders have elevated rates of autoimmune comorbidity and altered
immune signaling. It is unclear whether these altered immunological states have a shared genetic
basis with those psychiatric disorders. The present study sought to use existing summary-level
data from previous genome-wide association studies to determine if commonly varying single
nucleotide polymorphisms are shared between psychiatric and immune-related phenotypes. We
estimated heritability and examined pair-wise genetic correlations using the linkage disequilibrium
score regression (LDSC) and heritability estimation from summary statistics methods. Using
LDSC, we observed significant genetic correlations between immune-related disorders and sev-
eral psychiatric disorders, including anorexia nervosa, attention deficit-hyperactivity disorder,
bipolar disorder, major depression, obsessive compulsive disorder, schizophrenia, smoking behav-
ior, and Tourette syndrome. Loci significantly mediating genetic correlations were identified for
schizophrenia when analytically paired with Crohn’s disease, primary biliary cirrhosis, systemic
lupus erythematosus, and ulcerative colitis. We report significantly correlated loci and highlight
those containing genome-wide associations and candidate genes for respective disorders. We
also used the LDSC method to characterize genetic correlations among the immune-related phe-
notypes. We discuss our findings in the context of relevant genetic and epidemiological literature,

as well as the limitations and caveats of the study.
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Miller, Haroon, Raison, & Felger, 2013; Oskvig et al., 2012; Sekar
et al.,, 2016; Shatz, 2009; Smith, Li, Garbett, Mirnics, & Patterson,

The biological bases of major psychiatric disorders have been studied
for decades, yet they remain largely unresolved. Evidence from both
clinical and biomedical literature has demonstrated that individuals
with these conditions show differences in circulating immunologic
markers, functional capacities of isolated immune cells, and atypical
prevalence of clinical immune-related phenotypes compared to indi-
viduals not affected by psychiatric or neurodevelopmental disorders
(Dowlati, 2010; Eaton et al., 2006; Fineberg & Ellman, 2013; Gesund-
heit et al., 2013; Gibney & Drexhage, 2013; Hess et al., 2016; Jones &
Thomsen, 2013; Masi et al., 2015; Modabbernia, Taslimi, Brietzke, &
Ashrafi, 2013; Rege & Hodgkinson, 2013). It remains unclear what
roles (if any) altered immunologic functions may play in the major
psychiatric phenotypes, though plausible mechanisms linking altered
immune functions with neurobiological changes during early brain
development and in fully developed adults have been identified
(Deverman & Patterson, 2009; Felger & Lotrich, 2013; Meyer, 2014;

2007). While some studies have already suggested potential genetic
bases for the immune dysregulation observed in a subset of psychiat-
ric patients (Jung, Kohane, & Wall, 2011; Stringer, Kahn, de Witte,
Ophoff, & Derks, 2014; The Network & Pathway Analysis Subgroup
of the Psychiatric Genomics Consortium, 2015; Wang, Yang, Gelern-
ter, & Zhao, 2015), the extent to which co-occurrence or segregation
of clinical phenotypes may be influenced by similarities in genome-
wide genetic risk signals warrants further examination. Genome-wide
association studies (GWASs) and meta-analyses can shed light on the
regions of the genome that tend to associate with a clinical pheno-
type, quantitative trait, or biomarker; this is accomplished through
tagging and association-testing of single nucleotide polymorphisms
(SNPs) that vary within the population. Recently developed methods
like linkage disequilibrium (LD) score regression (LDSC; Bulik-Sullivan,
Finucane, et al., 2015a) and heritability estimation from summary sta-
tistics (HESS; Shi, Mancuso, Spendlove, & Pasaniuc, 2017) allow for
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direct comparison of GWAS summary statistics for two different phe-
notypes for quantitative assessment of genetic correlation.

In the present study, we leveraged existing data to explore the
genetic associations of a set of medical phenotypes that are enriched
with immune and inflammatory processes; these included allergic
conditions, classic autoimmune diseases, other inflammatory dis-
eases, and vulnerability to infectious disease. We sought to cross-
correlate the genetic associations of these phenotypes with the asso-
ciations obtained from studies of a set of psychiatric and behavioral
phenotypes. We hypothesized that some phenotype-pairs with evi-
dence for increased clinical comorbidity might also share similarities
in their genome-wide association profile, which would be reflected in
our analyses as significant positive correlations. Additionally, in light
of literature suggesting shared genetic risk among some immune and
inflammatory disorders, we assessed genetic correlations within this
set of phenotypes using the LDSC method; these findings are
reported within the Supporting Information. Genetic correlations
within the set of psychiatric phenotypes have been reported previ-
ously (Anttila, 2016; Bulik-Sullivan, Finucane, et al., 2015a; Zheng

et al., 2016) and are not examined in the present study.

2 | MATERIALS AND METHODS

2.1 | Literature search

We searched the published literature (Pubmed, SCOPUS), data repos-
itories (dbGaP and immunobase.org), and the downloads page of the
Psychiatric Genomics Consortium (PGC) website (https://www.med.
unc.edu/pgc/downloads) to identify phenotypes with potentially
usable GWAS and GWAS meta-analysis summary statistics. For stud-
ies identified in the published literature, we contacted corresponding
authors to request summary statistics. In order to facilitate cross-
study comparison, we utilized studies that reported samples of
European ancestry, broadly defined to include Central, Southern and
Eastern Europe, Scandinavia, and Western Russia. Our initial search
yielded a large number of datasets reflecting a wide range of behav-
joral and immune-related phenotypes (Supporting Information
Table S1); the set of phenotypes ultimately retained for final analyses
was selected based on criteria described below. When multiple stud-
ies were identified for a given phenotype, we pursued the studies
with the largest effective sample sizes and ultimately used the avail-
able study with the largest heritability z-score. In several instances,
data from the largest existing studies could not be shared or reflected
a mixed-ancestry meta-analysis; in these cases, we deferred to the
next largest European-ancestry study. We chose to retain datasets
with an effective sample size greater than 5,000 individuals and with
estimated SNP heritability z-score 23, in keeping with previous rec-
ommendations (Bulik-Sullivan, Finucane, et al., 2015a). This filter
resulted in the exclusion of many relevant immune-related pheno-
types, including eosinophilic esophagitis (Sleiman et al., 2014), granu-
lomatosis with polyangiitis (Xie et al., 2013), IgA nephropathy (Kiryluk
et al., 2014), HIV-related neurocognitive phenotypes (Levine et al,,
2012), morning cortisol levels (Bolton, 2014), myeloid leukemias
(Tapper et al., 2015), psoriatic arthritis (Ellinghaus et al., 2012),
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sarcoidosis (Fischer et al., 2012), and systemic sclerosis (Radstake
et al., 2010). This also resulted in exclusion of several psychiatric and
behavior phenotypes, including adolescent alcohol abuse (Edwards
et al., 2015), anxiety-spectrum disorders (Otowa et al., 2016), border-
line personality disorder (Lubke et al., 2014), language impairment
(Jernigan et al.,, 2016), personality domains (five factor model; de
Moor et al., 2012), post-traumatic stress disorder (Duncan, 2017a),
and reading disability (Eicher et al., 2013). We also ultimately
excluded data from studies of ethanol, opiate, and cocaine depen-
dence (Gelernter, Kranzler, Sherva, Almasy, et al., 2014a; Gelernter,
Kranzler, Sherva, Koesterer, et al., 2014b; Gelernter, Sherva, et al.,
2014c), as genetic correlations involving these phenotypes were fre-
quently outside the boundaries tolerated by the LDSC software, mak-
ing them difficult to interpret; this may have been related to the
ordinal-ranked phenotypes used in the GWASs. Finally, while rela-
tionships between tobacco-smoking behavior and other psychiatric
phenotypes have been examined previously (Bulik-Sullivan, Finucane,
et al., 2015a; Zheng et al., 2016), we chose to retain smoking data in
order to assess relationships with a more complete set of immune-
related phenotypes. The full list of phenotypes identified in the
search and retained for analyses is shown in Supporting Information
Table S1, along with identification of the study cohorts and consortia
that generated these data, full citations of the respective publica-
tions, and indications of sample size, information regarding genomic
inflation, and estimated SNP heritability.

2.2 | GWAS phenotypes retained for genetic
correlation

For our psychiatric and behavior-related phenotypes, we ultimately
retained GWAS summary data reflecting studies of Alzheimer’s dis-
ease (Lambert et al., 2013), angry temperament (Mick et al., 2014),
anorexia nervosa (Duncan et al, 2017b), attention deficit-
hyperactivity disorder (ADHD; Demontis, 2017), autism (Anney,
2017), bipolar disorder (BD; Hou et al., 2016; Sklar et al., 2011), ciga-
rette smoking (ever-smoked status; The Tobacco & Genetics Consor-
tium, 2010), major depressive disorder (Ripke et al., 2013), trait
neuroticism (Turley et al., 2018), obsessive-compulsive disorder
(OCD; Arnold, 2017), Parkinson's disease (Pickrell et al., 2016),
schizophrenia (SZ; Ripke, 2014), and Tourette Syndrome (personal
communication from PGC Working Group). Collectively, these phe-
notypes were treated as a set. For phenotypes that are known or sus-
pected to involve alterations to immune cells and/or inflammatory
signaling, we ultimately retained GWAS data reflecting allergy (any,
self-reported; Hinds et al., 2013; Pickrell et al., 2016), asthma (self-
reported; Pickrell et al., 2016), atopic dermatitis (EArly Genetics and
Lifecourse Epidemiology (EAGLE) Eczema Consortium, 2015), child-
hood ear infection (self-reported; Pickrell et al., 2016), celiac disease
(Dubois, 2010), serum C-reactive protein (CRP; Dehghan, 2011),
Crohn'’s disease (CD; Franke et al., 2010; Liu et al., 2015), hypothy-
roidism (self-reported; Pickrell et al., 2016), primary biliary cirrhosis
(PBC; Cordell, 2015), psoriasis (Tsoi et al., 2015), rheumatoid arthritis
(Okada et al., 2014), systemic lupus erythematosus (SLE; Bentham
et al., 2015), susceptibility to pulmonary tuberculosis (Curtis et al.,
2015), type 1 diabetes (Bradfield et al., 2011), and ulcerative colitis
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(UC; Anderson, 2011; Liu et al., 2015) These phenotypes were trea-
ted as a set in subsequent analyses.

2.3 | Data pre-processing and analysis

Our primary analyses were performed using the LDSC software
(https://github.com/bulik/Idsc; Finucane, et al,
2015a). Briefly, this set of tools can be used with existing GWAS
summary data in order to distinguish polygenicity from confounding

Bulik-Sullivan,

caused by uncontrolled population stratification or cryptic related-
ness among samples (Bulik-Sullivan, Loh, et al., 2015b), to estimate
the heritability of a given phenotype (Bulik-Sullivan, Finucane, et al.,
2015a), and to estimate the genetic correlation between two pheno-
types based on two separate or related sets of summary statistics
(Bulik-Sullivan, Finucane, et al., 2015a). In the latter application, the
minimal requirements for each set of summary statistics include col-
umns of data indicating SNP ID, the identities of reference and non-
reference alleles, association p-value, effect size, test statistic
(e.g., odds ratio, regression p, or Z-score), and sample size (per SNP or
for all SNPs). For each pair of phenotypes, this tool compares the
strength and direction of association signal at each locus while cor-
recting for the correlation that would be expected based on genetic
linkage alone, and it provides an estimate of the genetic correlation
between phenotypes. This method relies on adjustment for the link-
age between SNPs (i.e., covariance caused by genomic proximity); for
our analyses, we used the set of LD scores provided by the software’s
creators, based on the 1000 Genomes Project’s European sample (file
= eur_w_ld_chr, URL = https://data.broadinstitute.org/alkesgroup/
LDSCORE). Because minor allele frequencies (MAFs) and imputation
quality scores were not available for all the obtained sets of GWAS
results, we filtered the GWAS results to retain only SNPs that were
included within the HapMap3 panel and had a MAF 2= 5% within the
1000 Genomes Project Phase 3 European samples (Bulik-Sullivan,
Finucane, et al., 2015a); this decision resulted in the exclusion of a siz-
able proportion of SNPs, but ensured equitable treatment of all data-
sets. The extended major histocompatibility complex (MHC) region
contains high amounts of long-range LD, making it challenging to accu-
rately map association signals in this region. For this reason, and fol-
lowing the work of others (Bulik-Sullivan, Finucane, et al., 2015a;
Zheng et al., 2016), we excluded this region from our analyses (chro-
mosome 6, base positions 25 x 10° to 35 x 10%). Additional SNP qual-
ity control (QC) routines followed those implemented by the GWAS
authors and the defaults employed with the LDSC munge_sumstats.py
function; this function checks alleles to ensure that the supplied alleles
match those in the HapMap3 reference panel. For each dataset, we
estimated the phenotype’s heritability. The results of this analysis,
along with features of each GWAS dataset (sample size, number of
QC-positive SNPs, genomic inflation factor, etc.), are shown for all
phenotypes in Supporting Information Table S1. All phenotypes with
sample size 25,000 and estimated SNP heritability z-score >3 were
retained for correlation analysis (indicated in Supporting Information
Table S1 in green highlight). Pair-wise genetic correlations were
assessed between retained phenotypes based on the intersection of
QC-positive SNPs, and heatmaps were constructed to depict these

relationships. For correlation coefficients returned within the bounds

of the LDSC software, p-values were corrected using the Benjamini-
Hochberg (BH) method for the total number of unique tests depicted
in each correlation matrix. Within the main text, we describe only cor-
relations that survived family-wise multiple-test correction. Correla-
tions are reported as the coefficient 4+ standard error. For phenotype-
pairs showing statistically significant genetic correlations, we re-
evaluated the genetic correlations and estimated heritability using the
HESS method (https://github.com/huwenboshi/hess; Shi et al., 2017)

2.4 | Characterization of genetically correlated loci
and associated genes

For psychiatric-immune phenotype-pairs showing significant
genetic correlations after BH correction for multiple testing, we
used the HESS software to estimate partitioned heritability and
genetic correlations based on smaller LD-based segments of the
genome (average size = 1.5 Mb). We report the number and identity
of genomic partitions (based on HG19 reference) displaying signifi-
cant local genetic correlations and apply correction for the total
number of partitions (~1,694, after MHC removal). Because pres-
ently available methods are poorly suited for fine-mapping the loci
mediating a genetic correlation, we prioritized reporting correlated
loci that also contain genome-wide significant associations for the
relevant phenotypes (i.e., associations with p < 5 x 10°%; subse-
quently called GW hits). We report GW hits contained within the
present datasets, but also cross-reference these findings with those
contained in immunobase.org, in order to identify loci associated
with multiple immune-related disorders. We report the HGNC sym-
bols for candidate genes proposed to mediate those associations.
The full list of genes contained within each correlated loci is pro-
vided in Supporting Information Table S3. Additionally, we used
HESS to examine patterns of local genetic correlation in relationship
to GWAS hits to make inferences about putative causal directional-
ity between the phenotype-pairs. For all HESS analyses, we used
the 1000 Genomes Project Phase 3 European reference panel and
the LD-independent genome partitions recommended by the soft-
ware developers (Berisa & Pickrell, 2015). Following the developers’
practices, we assumed no sample overlap for comparisons of data

generated by different consortia (Shi et al., 2017).

3 | RESULTS

3.1 | Genome-wide correlations between psychiatric
and immune-inflammatory phenotypes

All pair-wise LDSC genetic correlations between psychiatric and
immune-related phenotypes are depicted in Figure 1. Notably, 21 cor-
relations survived BH correction for multiple testing (denoted with
**) and 6 survived a more stringent Bonferroni correction (denoted
with *#*). Full results for these analyses are provided in Supporting
Information Table S2. Significant positive relationships were
observed between ADHD and each of: CRP (rg = 0.23 £ 0.06, p = 2.0
x 1074, childhood ear infections (rg = 0.20 £ 0.05, p = 2.0 x 1079,
psoriasis (rg = 0.23 + 0.07, p = 1.0 x 1073), rheumatoid arthritis (rg =
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FIGURE1 A heatmap depicting LDSC genome-wide genetic correlations between psychiatric and immune-related conditions such that red
reflects more positive correlation coefficients while blue reflects more negative coefficients. Correlation coefficients are provided within each
cell, with full details provided in Supporting Information Table S2. Correlations reaching trend-level significance (.05 < uncorrected p < .10) are
depicted as colored panels, while relationships surpassing uncorrected p < .05 are additionally denoted with *, and relationships surpassing
BH-p < .05 (for the total number of tests depicted in the figure) are denoted with **. The rows and columns of the heatmap are hierarchically
clustered based on correlation coefficients. ADHD = attention deficit-hyperactivity disorder; OCD = obsessive-compulsive disorder [Color

figure can be viewed at wileyonlinelibrary.com]

0.16 + 0.05, p = 9.0 x 10™%), and tuberculosis susceptibility (rg =
0.36 + 0.11, p = 1.6 x 1073). Anorexia nervosa showed a negative
genetic correlation with CRP (rg = -0.30 + 0.08, p = 1.0 x 107%). BD
was positively correlated with each of: celiac disease (rg = 0.31 +
0.09,p =4.0x 107, CD (rg = 0.21 &+ 0.05, p = 3.7 x 107°), psoriasis
(rg = 0.25 + 0.08, p = 3.8 x 107%), and UC (rg = 0.23 + 0.06, p = 2.0
x 107%). Major depressive disorder was positively correlated with
hypothyroidism (0.33 & 0.09, p = 5.0 x 10™%). Similarly, neuroticism
was positively correlated with hypothyroidism (rg = 0.25 4+ 0.06, p =
7.2 x 107%), in addition to childhood ear infection (rg = 0.13 + 0.04,
p = 8.0 x 107%). OCD was negatively correlated with type 1 diabetes
(rg = -0.32 £ 0.11, p = 5.4 x 1073). Smoking behavior was positively
correlated with CRP (rg = 0.31 + 0.07, p = 3.6 x 107°) and with
rheumatoid arthritis (rg = 0.17 & 0.05, p = 2.3 x 107%). SZ showed
positive genetic correlations with CD (rg = 0.12 + 0.03, p = 2.0 x
107, PBC (rg = 0.14 + 0.05, p = 2.0 x 107%), SLE (rg = 0.15 + 0.04,
p =20 x 10", and UC (rg = 0.14 + 0.04, p = 2.0 x 10™%). Finally,
we observed a positive genetic correlation between Tourette syn-
drome and allergy (rg = 0.24 + 0.06, uncorrected p = 2.7 x 107°).
Additionally, several large-magnitude correlations attained a nomi-
nal threshold of statistical significance (e.g., autism-allergy and
OCD-celiac); these correlations tended to have a higher standard

error and were generated using relatively smaller GWAS sample

sizes. As such, they may be more likely to reflect false positives and
should be regarded with appropriate skepticism.

For phenotypes involved in correlations that survived multiple
test correction, estimated SNP heritability is shown in Table 2. For
these phenotypes, we reassessed SNP heritability and the magnitude
of genome-wide genetic correlations using the HESS method
(Tables 1 and 2). Correlation coefficients were not correlated between
the two methods (Pearson r = 0.25, p = 0.25; Supporting Information
Figure S1) and the absolute value of the difference was negatively
related to sample size (r = -0.45, p = 0.035; Supporting Information
Figure S2), which is consistent with the software developer’s guide-
lines (Shi et al., 2017). LDSC-based correlations among the immune-
related phenotypes are reported in the Supporting Information Text
and Table S5.

3.2 | Characterization of loci contributing to
psychiatric-immune genetic correlations

For psychiatric-immune phenotype-pairs that demonstrated a signifi-
cant genome-wide correlation with the LDSC method (i.e., those in
Table 1), we used the HESS software to examine the genetic correla-
tion within the ~1,694 partitioned genomic loci. The number of cor-

related loci before and after BH multiple test correction are depicted
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TABLE 1 Significant genome-wide psychiatric-immune genetic correlations

Psychiatric Immune-related
phenotype phenotype
ADHD CRP

ADHD Childhood ear infection
ADHD Psoriasis

ADHD Rheumatoid arthritis
ADHD Tuberculosis susceptibility
Anorexia nervosa CRP

BD Celiac disease

BD CD

BD Psoriasis

BD uc

Cigarettes (ever-smoked) CRP

Cigarettes (ever-smoked) Rheumatoid arthritis

Major depression Hypothyroidism

Neuroticism Childhood ear infection
Neuroticism Hypothyroidism

OCD Type 1 diabetes

SZ CD

Sz PBC

SZ SLE

SZ uc

Tourette’s syndrome Allergy (any)

LDSC correlation + error,

uncorrected p-value HESS correlation + error

0.23 +0.06,p=2.0x 10" 0.21 +0.04
0.20 +0.05,p=2.0x 107 0.14 +0.03
0.23+0.07,p=10x 1072 1.99 +0.20
0.16 £0.05,p = 9.0 x 107 0.29 £ 0.04
0.36 +£0.11,p=1.6x 1072 0.87 £0.25
-0.30 + 0.08,p = 1.0 x 107* -0.53 + 0.12
0.34 +0.08,p=4.5x10"° 1.91+0.12
0.22 +0.06,p=5.0x 107 1.31 + 0.07
0.29 +£0.07,p=2.7x107° 5.76 + 0.58
0.23+0.07,p=1.5x107° 1.59 + 0.08
0.31+0.07,p=3.6x107 2.24 4+ 0.73
0.17 +£0.05,p=2.3x 102 0.51 £ 0.22
0.33+0.09,p=50x10"* 0.45 + 0.09
0.13+0.04,p=8.0x 10™* 0.06 £ 0.01
0.25+0.06,p=7.2x107° 0.03 +0.01
-0.32+0.11,p=54x%x10° 0.98 £ 0.18
0.12+0.03,p=20x 107 0.31+0.03
0.14 +0.05,p=2.0x 1072 0.88 + 0.05
0.15+0.05,p=12x 1073 0.12 £ 0.02
0.14 +0.04,p=2.0x 10™* 0.56 + 0.03
0.24 +0.06,p =27 x 107> 0.29 +0.07

Note. This table displays psychiatric-immune phenotype-pairs showing genome-wide genetic correlation with the linkage disequilibrium score regression
(LDSC) method after correction for the total number of genetic correlations depicted in Figure 1 using the Benjamini-Hochberg (BH) method. We also
report the genome-wide correlation estimates produced by the heritability estimation from summary statistics (HESS) method. ADHD = attention
deficit-hyperactivity disorder; BD = bipolar disorder; CD = Crohn’s disease; CRP = C-reactive protein; OCD = obsessive compulsive disorder; PBC = pri-
mary biliary cirrhosis; SLE = systemic lupus erythematosus; SZ = schizophrenia; UC = ulcerative colitis.

in Table 3; detailed results for these analyses, including local herita-
bility, correlation strength, and the lists of gene symbols within each
loci are provided in Supporting Information Table S3. Only SZ dis-
played robust local genetic correlations with immune-related pheno-
types, including thirty-two loci with CD, 37 loci with PBC, 20 loci
with SLE, and 8 with UC (Table 3, depicted in Figure 2). Upon closer
examination of the loci implicated between SZ and CD, we noticed
that five of these loci contained GW hits, including one locus on
chromosome 4q24 (4:100678360-103221356; highlighted green in
Figure 2) that contained GW hits for both SZ and CD within the pre-
sent data, and with four other autoimmune diseases (immunobase.
org); these signals are near autoimmunity candidate genes NFKB1
and MANBA, as well as proposed SZ candidate gene SLC39A8, among
others contained within the locus (see Supporting Information
Table S3). The locus on 10p12.3 (10:18725659-18816236,
highlighted green) contains a GW hit for SZ attributed to calcium
channel gene CACNB2. Another locus mediating a significantly corre-
lated locus on 12q12 (12:39227169-40816185, highlighted green)
contains a GW hit for CD attributed to LRRK2. When examining the
loci implicated between SZ and PBC, we observed three harboring
GW hits for the former and three harboring signals for the latter,
including loci within 3p24.3 (3:16282442-17891118, highlighted
orange) containing PLCL2 and within 11g23.3 (11:117747110--
119215476, highlighted orange), containing candidate genes CXCR5,
DDX6é, and TREH. Among the loci implicated between SZ and SLE, we

observed two harboring GW hits for the former and three harboring
hits for the latter. One such locus within 1g21 (1:148361253--
151538881, highlighted yellow) contains a SZ association signal
localizing near candidate gene APH1A. Another locus within 1923
(1:159913048-162346721, highlighted yellow) contains a GW hit
for SLE, as well as several other autoimmune diseases, associated
with candidate gene FCGR2A. Similarly, a locus within 22q11.21
(22:19912358-22357325, highlighted yellow) containing multi-
disease association signal is associated with MAPK1 and UBE2L3.
Among the loci implicated between SZ and UC, one within 11g13.1
(11:63804569-65898631) harbored GW hits for multiple autoim-
mune disorders.

We also sought to examine whether the specific loci might be
implicated across multiple psychiatric-immune disorder pairs
(Figure 2). An analysis limited to only those surviving BH correction
for multiple testing yielded only two loci shared by multiple disease
pairs. The first locus (within 3p24.3; 3:21643707-22204244) was
identified in correlations of SZ with PBC and with CD; it contained
no GWS hits and two genes of unclear consequence ZNF385D and
ZNF385D-AS2. The second locus within 8p32.1 (8:11278998-
13491775, highlighted brown) was identified in correlations of SZ
with PBC and with SLE; this locus contained numerous genes and is
adjacent to a GWS hit for SLE associated with candidate gene BLK.
When we broadened the scope to examine all loci implicated in nomi-
nally significant correlations (uncorrected p < 0.05), we find several

that are common to multiple psychiatric-immune disorder pairs
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TABLE 2 Sample characteristics for phenotypes involved in significant correlations

Phenotype

ADHD

Allergy (any, self-report)
Anorexia nervosa

BP

Childhood ear infection
Celiac disease

Cigarettes (ever-smoked)
CD

CRP

Hypothyroidism (self-report)
Major depression
Neuroticism

(e]eln}

PBC

Psoriasis

Rheumatoid arthritis

SZ

SLE

Tourette syndrome
Tuberculosis susceptibility
Type 1 diabetes

uc

Data source
Demontis (2017)
The 23andMe Research Team
Duncan et al. (2017b)
Hou et al. (2016)
The 23andMe Research Team
Dubois (2010)
Tobacco and Genetics Consortium
Liu et al. (2015)
Dehghan (2011)
The 23andMe Research Team
PGC Depression Working Group
Social Science Genetics Consortium
PGC OCD/TS Working Group
Cordell (2015)
Tsoi et al. (2015)
Okada et al. (2014)
PGC Schizophrenia Working Group
Bentham et al. (2015)
PGC OCD/TS Working Group
Curtis et al. (2015)
Bradfield et al. (2011)
Liu et al. (2015)

Estimated genome-wide SNP
heritability + error
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QC-Positive SNPS

(LDSC/HESS) GWAS N (MHC Excluded)
0.24 + 0.02/0.26 + 0.02 53,293 1,004,958
0.08 + 0.01/0.15 + 0.01 181,000 1,060,611
0.26 + 0.04/0.09 + 0.04 14,477 1,054,719
0.20 + 0.02/0.14 + 0.02 40,225 1,052,397
0.07 +£0.01/0.10 + 0.01 122,000 1,060,612
0.30 £+ 0.05/0.13 + 0.04 15,283 271,764
0.07 £ 0.01/0.01 + 0.02 74,035 963,355
0.47 £+ 0.06/0.33 + 0.03 21,389 1,062, 075
0.13 + 0.02/0.11 + 0.02 66,185 965,855
0.05 + 0.01/0.08 + 0.01 135,000 1,060,612
0.14 + 0.03/0.07 + 0.04 18,759 967,534
0.09 £+ 0.01/0.44 + 0.01 168,105 1,053,712
0.29 £+ 0.05/0.09 + 0.04 10,215% 1,054,746
0.37 + 0.06/0.17 + 0.04 13,239 940,715
0.82 £+ 0.13/0.09 + 0.04 5,116* 1,037,355
0.14 + 0.02/0.10 + 0.01 58,284 1,051,805
0.47 +0.02/0.62 + 0.01 77,096 1,061,529
0.27 £+ 0.05/0.27 + 0.03 23,210 1,056,783
0.35 4+ 0.04/0.08 + 0.05 13,341* 1,041, 689
0.18 + 0.05/0.02 + 0.05 11,936 819,917
0.18 + 0.03/0.15 + 0.03 26,890 854,164
0.25 + 0.03/0.23 + 0.03 27,432 1,062,094

Note. This table displays phenotype names, data sources, and estimated SNP heritability using the linkage disequilibrium score regression (LDSC) and heri-
tability estimation from summary statistics (HESS) methods, as well as the GWAS sample size and number of SNPs surviving quality control. Full publica-
tion references, consortia names, links to web resources, and additional details on the original studies are provided in Supporting Information Table S1.
GWAS N denoted with * indicates the median N for all SNPs. ADHD = attention deficit-hyperactivity disorder; BD = bipolar disorder; CD = Crohn'’s dis-
ease; CRP = C-reactive protein; OCD = obsessive compulsive disorder; PBC = primary biliary cirrhosis; PGC = Psychiatric Genomics Consortium; QC =
quality control; SNP = single nucleotide polymorphism; SLE = systemic lupus erythematosus; SZ = schizophrenia; UC = ulcerative colitis.

(Table 4). The most widely implicated locus was shared among the
five pairs of psychotic and inflammatory bowel disorders (within
17q12; 17:36809344-38877404, highlighted purple) and contains a
GW hit for BD ascribed to candidate gene ERBB2. There were
another eight loci that were implicated in four disorder pairs. Among
located within 1g32.1 (1:200137649-201589975,

highlighted purple) contains GW hits for multiple autoimmune disor-

these, one

ders (including celiac disorder, CD, multiple sclerosis, and UC) and is
near candidate genes CACNA1S and KIF21B. The full list of loci impli-
cated across multiple disorder pairs is available in Supporting Infor-
mation Table S3. The results of the HESS analysis of putative causal
directionality (Table 5) indicated that local genetic correlations were
stronger in the loci containing GW hits for SZ (rg ~ 0.41 4+ 0.12) as
compared with those containing hits for the paired autoimmune dis-
eases (rg ~ 0.17 4 0.13).

4 | DISCUSSION

In contrast to previous studies examining large sets of medical, anthro-
pomorphic, metabolic, and behavioral phenotypes (Anttila, 2016;
Bulik-Sullivan, Finucane, et al., 2015a; Ohn, 2017; Shi et al., 2017;
Zheng et al., 2016), the present study performed a focused comparison

of psychiatric and immune-related phenotypes using two methods to

estimate genetic correlation from summary statistics. We used
updated versions of psychiatric GWASs (Anney, 2017; Arnold, 2017;
Demontis, 2017; Psychiatric GWAS Consortium Bipolar Disorder
Working Group, 2011), and compiled a more comprehensive set of
immune-related phenotypes, while simultaneously reducing the bur-
den imposed by multiple testing. Additionally, this analysis reflects the
first application of the LDSC and HESS method for some of these
phenotype-pairs. We identified several genome-wide correlations that
were robust to multiple testing. Furthermore, we used the HESS
method to validate genome-wide correlations and to conduct a quanti-
tative analysis that localizes correlations to regions of the genome. We
prioritized the reporting of findings based on co-localization with GW
hits. As such, this study provides a quantitative map of genetic rela-
tionships between psychiatric and immune-related disorders and
serves, along with previous work (Wang et al., 2015), as a starting
point for identifying and characterizing potentially pleiotropic loci.
Prominent among the LDSC genome-wide significant findings was
a cluster of modest positive correlations involving BD (rgs ranging 0.25
to 0.33) and SZ (rgs ranging 0.12 to 0.15) in conjunction with immune-
related disorders involving the gastrointestinal tract (i.e., CD, PBC, UC).
These findings are consistent with available epidemiological evidence
indicating that the presence of one set of disorders portends increased
risk for a diagnosis from the other class of disorders, though the
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TABLE 3 Significant local genetic correlations based on HESS analysis

No. of correlated loci (BH p < .05/p < .05) with GWS hits and

Phenotype pair

associated genes contained within correlated loci (BH p < 0.05)

SZ 4:102921704-103198082** (ACTR3BD4, BDH2, CENPE, SLC39A8, SLC9B1, SLC9B2)

CD 12:40337163-40815560 (CNTN1, LRRK2, MUC19, RNU6-713P);

SZ 10:18725659-18816236 (AIFM1P1, CACNB2)

PBC 11:118579747-118743772** (ARCN1, CXCR5, DDX6, MIR6716, PHLDB1, RNU6-1157P,

PBC 22:39670851-39747780 (CACNA1I, ENTHD1)

SZ 1:149999764-150507233 (ANP32E, APH1A, Clorf54, CA14, CIART, MIR6878, MRPS21,
OTUD7B, PLEKHO1, PRPF3, RN75L480P, RNU2-17P, RPRD2, TARS2, VPS45)

SLE 7:128562446-128771234 (CALU, CICP14, FAM71F1, FAM71F2, IMP3P2, RN7SL81P,

SLE 8:11332026-11394233 (FAM167A-AS1, RN75L293P, RNU6-1084P, SLC35G5, TDH)
SLE 22:21910280-21999229** (MAPK1, PPM1F, PRAMENP, TOP3B, UBE2L3)

UC 11:63804569-65898631** (CCDC88B, RPS6KA4, TRPT1, FLRT1)

ADHD-CRP 0/7

ADHD-CEA 0/3

ADHD-psoriasis 0/5

ADHD-RA 0/5

ADHD-tuberculosis susceptibility 0/0

Anorexia nervosa-CRP 0/0

BD-celiac disease 0/30

BD -CD 0/12

BD -psoriasis 0/3

BD -UC 0/5

Cigarettes (ever-smoked)-CRP 0/0

Cigarettes (ever-smoked)-RA 0/0

Major depression-HPT 0/0

Neuroticism-CEA 0/14

Neuroticism-HPT 0/15

OCD-type 1 diabetes 0/1

SZ-CD 32/251
CD 4:103188709-103198082** (CENPE)
CD 8:126529074-126568355 (FAM84B)
CD 10:64301873-64588424 (No Genes)
CD 21:16790941-16841303 (No Genes)

SZ-PBC 37/256
SZ 1:30427639-30437268 (No Genes)
PBC 3:16955259-16955259+* (PLCL2)

RNU6-376P, TREH, TREHP)

SZ-SLE 20/200
SZ 2:58377014-58383820 (FANCL, VRK2)
SLE 1:161444369-161501904 ** (FCGR2A)

RNA55P242, RNA55P243, RNU6-177P)
SZ-UcC 8/205
Tourette’s syndrome-allergy 0/0

Note. This table summarizes findings of local genetic correlation analysis, including the number of significantly correlated loci before and after Benjamini-
Hochberg (BH) correction for multiple testing (shown in bold). Loci that showed robust correlations were interrogated for co-localization with significant
genome-wide associations (GWS hits, with p < 5 x 1078). The chromosomal coordinates containing GWS signal are provided, along with associated genes.
Proposed candidate genes are highlighted with bold text. ADHD = attention deficit-hyperactivity disorder; BD = bipolar disorder; BH = Benjamini-Hoch-
berg; CD = Crohn’s disease; CEA = childhood ear infection; HPT = hypothyroidism; NC-H = comparison; OCD = obsessive compulsive disorder; PBC = pri-
mary biliary cirrhosis; RA = rheumatoid arthritis; SLE = systemic lupus erythematosus; SZ = schizophrenia; UC = ulcerative colitis.

causality and temporality of these relationships is not clearly estab-
lished (Benros, 2013; Cucino & Sonnenberg, 2001; Dickerson et al.,
2011; Eaton, Pedersen, Nielsen, & Mortensen, 2010; Marrie et al.,
2017a, Marrie et al., 2017b; Sidhom et al., 2012). Positive genetic
inter-correlations among these phenotypes are also consistent with
recent work demonstrating that the positive correlation between BD
and SZ are significantly mediated by both CNS and immunologic tis-
sues (Lu et al., 2017). Our local genetic correlation analyses were inad-
equately powered to detect loci relevant to most of the psychiatric-

immune disorder pairs, including BD. However, comparisons with SZ

yielded 97 loci that were robust to multiple test correction, 18 of
which also were shown to harbor GW hits in previous studies. In sev-
eral instances, these GW hits localize near genes with functions that
are pleiotropic and relevant to both brain and immune system pheno-
types. For example, we identified a SZ-CD correlated locus at 4q24
(4:100678360-103221356) that contained GW hits for both SZ (puta-
tively attributed to SLC39A8) and several autoimmune diseases (puta-
tively attributed to NFKB1 and MANBA); others have proposed that
associations at this locus may exert pleiotropic effects on a wide range

of phenotypes (additionally including body mass index, serum levels of
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FIGURE 2 This figure depicts the HESS local genetic correlation data with respect to the genome and previously reported genome-wide
association signals for respective disorders. A model genome using HG19 coordinates is depicted in gray. Moving outward from the center of
the plot, the first track containing a red histogram depicts loci significantly associated with SZ (GWAS p < 5 x 1078), with larger peaks indicating
more significance (plotted as -log(p-value)). The second track (labeled SZ-CD) depicts regions of genetic correlation between SZ and CD, such
that blue reflects uncorrected p < .05 and red reflects BH-corrected p < .05. The next track (labeled CD Hits) contains a histogram depicting CD
GWAS signal as described previously. The next pair of tracks depict genetic correlations for SZ-PBC and PBC GWAS signal, respectively. The
third pair of tracks depicts this information for SZ-SLE (with SLE GWAS signal). The fourth pair of tracks depicts this information for SZ-UC and
UC GWAS signal, respectively. In the center of the plot, we identify several GWAS candidate genes using colored text and arrows to indicate
the pertinent locus; colored text and arrows are used to indicate the relevant phenotype-pairs, such that green = SZ-CD, orange = SZ-PBC,
yellow = SZ-SLE, brown = SZ-PBC/SLE, and purple = SZ/BD-CD/PBC/UC [Color figure can be viewed at wileyonlinelibrary.com]

manganese, N-terminal pro-B-type natriuretic peptide, and HDL-cho-
lesterol) through a functional variant found in European populations
affecting the SLC39A8 cation transporter (Costas, 2017; Li et al,
2016). A locus within 11g23.3 (11:117747110-119215476) was sig-
nificantly correlated between SZ and PBC and harbors a region of GW
hits for multiple autoimmune disorders attributed to PLCL2, a catalyti-
cally inactive phospholipase-like protein thought to influence intracel-
lular signaling, calcium homeostasis, and GABA-ergic receptor
trafficking in immune and neuronal cell types, among others
(Murakami, Matsuda, Harada, & Hirata, 2017; Takenaka et al., 2003;
Toyoda et al., 2015). A de novo missense mutation affecting this gene
was identified in an exome sequencing study of SZ affected individ-
uals, though no replication appears to have been reported (Xu et al.,
2011). Similarly, a correlated locus within 22q13.1 (22:39307894--
40545797, highlighted yellow in Figure 2) contains GW hits for PBC,

which overlaps with voltage-gated calcium channel gene CACNA1I;

this gene has been implicated by both GWAS and rare-variant studies
of SZ (Andrade et al., 2016; Ripke, 2014). Another correlated locus
within 11923 (11:118579747-118743772) contained GW hits for
multiple autoimmune disorders and is suspected to exert pleiotropic
effects through several genes, whose functions include repression of
aberrant interferon signaling (DDX6; Lumb et al., 2017), chemokine sig-
naling between T-helper and B-cells (CXCR5; Papp, Szabo, Szekanecz, &
Zeher, 2014; Vaeth et al., 2014), and enzymatic break down of micro-
bial disaccharides (TREH; Muller et al., 2013). Notably, functional geno-
mic studies have identified DDX6 as a gene that is perturbed during
neuronal differentiation of samples derived from individuals with
schizophrenia (Maschietto et al., 2015), and as a peripheral blood
marker of cerebrospinal fluid serotonin metabolite levels (Luykx et al.,
2016), supporting its relevance to psychiatric phenotypes.

We also examined loci that showed a nominal genetic correlation

across multiple disorder pairs, and found these loci also harbored GW
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TABLE4 Loci implicated across multiple phenotype-pairs at uncorrected p < .05

GWS associations and nearby genes

BP 17:37839493-37893484 (ERBB2)/CD 17:37912377-38064876/SLE 17:38007190-38007319/

Phenotype pairs
BD-CD, BD-UC, SZ-CD, SZ-PBC, SZ-UC

No. of pairs

5

Locus

17:36809344-38877404

PBC 17:37912377-38080865/UC 17: 37903731-38089717 (RNU6-489P, TBC1D3C,

TBC1D3D, TBC1D3K, TBC1D3L)
CD 1:200599616-201069559**/UC 1: 200864267-201024059** (C1orf106, CACNA1S, GPR25, KIF21B)

None

BD-CD, BD-UC, SZ-PBC, SZ-UC
BD-CD, SZ-CD, SZ-SLE, SZ-UC

4

1:200137649-201589975
2:69139564-70755198

None

Neuroticism-HPT, SZ-PBC, SZ-SLE, SZ-UC

SZ-CD, SZ-PBC, SZ-SLE, SZ-UC

4

3:38356116-40221298

None

6:17386405-19207487

Neuroticism 8:11281273-11895516/SLE 8:11426026-11546260** (BLK, C8orf49, CTSB, FAM167A,

Neuroticism-HPT, SZ-CD, SZ-PBC, SZ-SLE

4

8:11278998-13491775

SN

FAM167A-AS1, FDFT1, GATA4, LINC00208, MTMRY, NEIL2, RN75L293P, RNU6-1084P, SLC35G5, SUB1P1, TDH)

Neuroticism 8:9793601-10459000 (LINC00599, MIR124-1, MSRA)

None

Neuroticism-HPT, SZ-PBC, SZ-SLE, SZ-UC

SZ-CD, SZ-PBC, SZ-SLE, SZ-UC

8:9640787-10463197

4
4

11:27020461-28481593

Neuropsychlatric
G?nﬂi:s

CD 22:21916166-21985094+*/SLE 22:21910280-21999229+* (CCDC116, MAPK1, RIMBP3, UBE2L3, YDJC)

SZ-CD, SZ-PBC, SZ-SLE, SZ-UC

22:19912358-22357325

Note. This table depicts the loci that showed significant (uncorrected p < .05) correlations across multiple pairs of phenotypes. Bold font denotes phenotype-pairs for which the locus survived BH multiple test correc-
tion. The ** symbol denotes loci at which multiple autoimmune disorders show an association reaching genome-wide significance (per immunobase.org). Bold font is also used to indicate proposed candidate genes.

primary biliary cirrhosis; SLE = systemic lupus erythematosus; UC = ulcerative

hypothyroidism; PBC

genome-wide significance defined as p < 5 x 1078, HPT

= Crohn'’s disease; GWS =

bipolar disorder; CD

colitis.

BD
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hits for respective phenotypes. The locus at 17q12 shared among
multiple disorders contains a GW hit for BD (17:36809344-
38877404) ascribed to candidate gene ERBB2 (Hou et al., 2016). This
gene and its relatives encode receptor tyrosine kinases that interact
with a family of growth factors called neuregulins to regulate the
assembly of neural circuitry, myelination, neurotransmission and syn-
aptic plasticity. A large body of evidence implicates both ligands and
receptors from these families as susceptibility genes for SZ and BD
(Mei & Nave, 2014). Notably, ERBB2 overlaps with GW hits for multi-
ple autoimmune disorders, though these have been attributed to
different genes in the region. 1g32.1
(1:200137649-201589975) contains GW hits for multiple autoim-
mune disorders (including celiac disease, CD, multiple sclerosis, and
UC) and is near candidate genes Clorf106, CACNA1S, GPR25, and
KIF21B. Genetic disruptions of voltage-gated calcium channels,

Another locus at

including CACNA1S, are well-established susceptibility factors in psy-
chiatric and neurological disorders (Heyes et al., 2015; Schmunk &
Gargus, 2013). KIF21B encodes a neuronal motor protein implicated
in GABA, receptor trafficking (Labonte, Thies, & Kneussel, 2014), in
addition to having a suspected role in regulating inflammatory signal-
ing in several lymphocyte subtypes (Goris, Boonen, D'hooghe, &
Dubois, 2010).

While it is tempting to speculate about these observations, we
must acknowledge limitations and caveats of the present approach.
Current methods for assessing genetic correlations are not well
suited for fine-mapping shared liability across disorders; other
methods are better suited for this task, including extensions of
GWAS that model multiple phenotypes simultaneously (Cotsapas,
2011; Porter & O'Reilly, 2017; Turley et al., 2018; Wang et al., 2015).
With respect to local genetic correlations, we have prioritized report-
ing of loci that co-localize with GW hits. However, this implies that
the presence of the GW hit is contributing to the observed correla-
tion, which we have not demonstrated presently. As such, our discus-
sion of potentially pleiotropic loci and candidate genes should be
considered anecdotal at this time. One indirect approach to assessing
the role of GW hits in a local genetic correlation might be to re-
estimate the local correlation after the removal of the smaller region
of GW signal from the original datasets. When we conducted this
analysis for the SZ-CD pair, we found that the number of significant
loci (BH p < 0.05) was reduced from 32 to 8, suggesting that GW hits
likely play an important role in many of the local genetic correlations.
Future studies will be able to combine larger GWAS sample sizes
with new methods aimed at stratifying genetic correlations by biolog-
ical annotations (e.g., tissue type or signaling pathways) in order to
more precisely define the parts of the genome that mediate a genetic
correlation (Lu et al., 2017).

Several methods have now been used to examine quantitative
SNP-based genetic relationships between psychiatric and immune-
related phenotypes, including restricted maximum likelihood (REML)
co-heritability, polygenic risk scores, genetic analysis incorporating
pleiotropy and annotations, and other permutation-based methods
(Cross-Disorder Group of the Psychiatric Genomics Consortium,
2013; Lee et al.,, 2013; Pouget et al., 2016; Wang et al., 2015). Differ-
ent approaches rest on unique assumptions, test different sets of

hypotheses, and appear prone to generating sometimes conflicting


http://immunobase.org

TYLEE ET AL

TABLE5 HESS analysis of putative causal directionality

Local Genetic correlation + error

Phenotype 1, at loci reaching GWS only
phenotype 2 for phenotype 1

SZ-CD 0.37 +£0.09

SZ-PBCs 0.58 +0.18

SZ-SLE 0.26 £0.13

SZ-Uc 0.43 +0.09

WILEY RREFT s

Local genetic correlation + error
at loci reaching GWS only

for phenotype 2 Suggested direction

0.11 +0.08 SZ — CD
0.26 £ 0.17 SZ — PBC
0.16 £0.16 SZ — SLE
0.16 +£0.10 SZ — UC

Note. Depicts the results of HESS analysis of putative causal directionality. Within this analysis, local genetic correlations are examined within loci contain-
ing GWS associations for each phenotype. The phenotype for which GWS loci produce the larger local correlations suggests that genetic liability for this
phenotype may contribute to genetic risk for the other, especially when the correlation error bounds of the second phenotype overlap with zero. When
both phenotypes show correlations overlapping with zero, no directionality is supported. CD = Crohn'’s disease; GWS = genome-wide significance defined
as p <5 x 1078 PBC = primary biliary cirrhosis; SLE = systemic lupus erythematosus; UC = ulcerative colitis.

results. Using several approaches that were not dependent on the
directionality of a given SNP’s effect, Wang and colleagues concluded
that many (24 of 35) pairs of psychiatric and immune-related pheno-
types shared a statistically significant proportion of risk-associated
loci; among these findings was a significant genetic overlap between
BD (as well as SZ) and UC (Wang et al., 2015). However, many of the
other relationships identified in that study were not significant in the
present study. Another recent study demonstrated that polygenic
risk scores reflecting additive risk for several autoimmune diseases
can explain a small proportion of variance in SZ case-control status,
yet the genome-wide significant SNPs from the autoimmune GWASs
were not over-represented among SZ’s genome-wide significant hits
when permutation-based analysis was performed (Pouget et al,
2016). The apparent disagreement between different approaches for
assessing shared genetic liability thus underscores the value of exam-
ining the consensus across studies and methods (Pouget et al., 2016).

The LDSC approach featured here attempts to quantitate similar-
ities and differences in association signals across the entire genome.
Some of our phenotype-pairs have been examined previously using
genome-wide assessment methods, yielding apparently contradictory
findings (Anttila, 2016; Bulik-Sullivan, Loh, et al., 2015b; Zheng et al.,
2016). For example, a previous study implementing a REML-based
approach did not find significant SNP-based co-heritabilities between
CD and the major psychiatric phenotypes (Lee et al., 2013). Addition-
ally, the first study implementing the LDSC method found no signifi-
cant correlation (rg = 0.08 4 0.08, uncorrected p = 0.33) between BD
and UC (Bulik-Sullivan, Finucane, et al., 2015a); this study used a
smaller dataset for BD (Sklar et al., 2011; N = 16,731) and a different
version of the UC dataset (reported as Jostins et al, 2012; N =
27,432). A similar non-correlation is also reported in LD-Hub (http://
Idsc.broadinstitute.org/), using what appears to be the same datasets,
although referencing a related article (Liu et al., 2015; N = 27,432).
The analyses portrayed in our main text utilized a larger BD dataset
(Hou et al., 2016; N = 40,225), the same dataset for UC (Liu et al.,
2015; N = 27,432), and uniform criteria for SNP retention based on
inclusion in the HapMap3 panel and MAF = 5% within the 1000
Genomes Project Phase 3 European samples. In order to resolve
apparent discrepancies, we obtained additional versions of the avail-
able data for BD, SZ, CD, and UC and pre-filtered under both inclu-
sive (imputation INFO score = 0.9 or all SNPs, when INFO score
unavailable) or exclusive criteria (MAF > 5% within the 1000

Genomes Project Phase 3 European samples). We found that

correlations between SZ and each of CD, PBC, and UC tended to be
more positive and more significant (i.e., reaching a BH-corrected
threshold) when using the SZ data filtered at MAF > 5% (Supporting
Information Figure S3). A similar pattern held true for inclusive vs.
exclusive pre-filtering for the BD dataset generated by Sklar et al.,
but this was not the case for the larger Hou et al., dataset. A side-by-
side comparison of the effects of different pre-filtering decisions for
the BD, SZ, CD, and UC datasets in relation to the other phenotypes
is provided in Supporting Information Figure S4. These observations
indicate that decisions pertaining to SNP inclusion can have a consid-
erable effect on the result of the LDSC analysis; this idea is further
supported by the observation that stratified genetic correlation ana-
lyses based on MAF thresholds can produce different levels of statis-
tical significance and opposite patterns of correlation directionality
(Lu et al., 2017). Thus, our study suggests that genetic correlations
between psychiatric and immune-related disorders may be more sig-
nificant when analyses are restricted to common variation. Reassur-
ingly, the developers of the HESS method use the same datasets
examined presently, and also report positive genetic correlations
between SZ and the inflammatory bowel disorders (Shi et al., 2017).
The results of the HESS analysis of putative causal directionality indi-
cate that the local genetic correlations are higher in loci occupied by
SZ GW hits, as compared to the loci harboring hits for the paired
autoimmune disorders (Shi et al., 2017). This pattern is consistent
with the hypothesis that genetic liability toward SZ tends to impart a
greater genetic risk for the corresponding paired disorder, rather than
the opposite directional hypothesis. A related interpretation may be
there is an unobserved intermediate phenotype (e.g., a shared biolog-
ical pathways/mechanism) that is pleiotropic for both measured phe-
notypes, but more strongly influences the SZ phenotype. This pattern
of findings could also be caused by the presence of a confounding
factor (e.g., smoking, socioeconomic status) that portends risk for
both phenotypes (Shi et al.,, 2017). Thus, we caution against over-
interpretation of these findings. Extensions of Mendelian randomiza-
tion methods to incorporate two GWAS samples using multi-allelic
risk stratifying instruments will be better suited to address these
hypotheses (Hartwig, Davies, Hemani, & Davey Smith, 2016), espe-
cially as future GWASs provide well-powered genetic estimates of
potentially relevant intermediate phenotypes (e.g., brain structure
morphometry, circulating immune cell phenotypes, and serum cyto-
kine levels (Ahola-Olli, 2017; Astle et al., 2016; Hibar et al., 2015).

Other limitations of the HESS method, including assumptions related
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to sample overlap and ancestry stratification, are discussed exten-
sively by the method’s developers (Shi et al., 2017).

Our study also identified many phenotype-pairs that demon-
strated significant genome-wide correlations using the LDSC method,
but for which HESS-based genome-wide and local genetic correla-
tions could not be identified. This is unsurprising, given that the sam-
ple sizes for these phenotypes were generally below the
recommended sample size for HESS analyses (N = 50,000; Shi et al.,
2017) Nonetheless, some of these relationships are supported by evi-
dence from clinical and epidemiological studies, and thus may war-
rant follow-up using larger sample sizes and alternative methods for
assessing genetic relationships. For example, we observed a modest
positive correlation between self-reported hypothyroidism and major
depression (rg = 0.33 + 0.09, p = 5.0 x 10™%), as well as trait neuroti-
cism (rg = 0.25 + 0.06, p = 7.2 x 107°). This could be consistent with
two different sets of clinical observations. The first is that symptoms
of depression are common in individuals with hypothyroidism, and
that subclinical hypothyroidism could play a role in a subset of per-
sons diagnosed with major depression; thus cross-contamination of
GWAS samples could lead to a biased positive correlation. However,
the second observation is that there is an increased incidence of
major depression and depressive symptomatology in persons with
autoimmune thyroiditis receiving hormone replacement therapy
(Dayan & Panicker, 2013; Giynas Ayhan, Uguz, Askin, & Gonen,
2014). It is worth noting that GWAS data for allergy, asthma, hypo-
thyroidism, childhood ear infection, and Parkinson’s disease were
obtained through 23andMe, Inc. These data are based on self-report,
and thus could be more susceptible to bias stemming from misdiag-
nosis or misreporting, though previous work supports their validity
(Tung et al., 2011). None the less, the samples sizes are an order of
magnitude larger than many other datasets, resulting in smaller stan-
dardized errors and better power for the detection of weak genetic
correlations. It is yet unclear whether small magnitude genetic corre-
lations like these might be clinically meaningful. The LDSC correla-
tions observed presently were relatively weak magnitude (rgs ~ 0.12
to 0.30) and of modest statistical significance (1 x 107° < uncorrected
p < 5 x 107%), when compared to the strongest genetic correlations
observed within each group of datasets (e.g., SZ-BD rg = 0.87 with
p=7.4x%10"%% CD-UC rg = 0.71 with p = 3.5 x 107%¢).

Several other significant genetic correlations are supported in
the clinical and epidemiological literature. For example, we found a
positive correlation between ADHD and rheumatoid arthritis (rg =
0.16 + 0.05, p = 9.0 x 10™); this finds support in large registry-based
studies indicating an increase in ADHD diagnosis in individuals with
autoimmune disease (Nielsen, Benros, & Dalsgaard, 2017), children
with mother’s affected by autoimmune disease (Nielsen et al., 2017),
and children of mothers with rheumatoid arthritis (Instanes et al.,
2017). Registry-based studies also provide support for increased inci-
dence of ear infections (rg = 0.20 + 0.05, p = 2.0 x 10™*) and psoriasis
(rg = 0.23 + 0.07, p = 1.0 x 1079 among individuals with ADHD
(Adesman, 1990; Hegvik, Instanes, Haavik, Klungsgyr, & Engeland,
2017; Nielsen et al, 2017; Silva, Colvin, Hagemann, Stanley, &
Bower, 2014). On the other hand, ADHD was positively correlated
with CRP (rg = 0.23 + 0.06, p = 2.0 x 10™%), though a relatively large

epidemiological study finds no association in affected individuals

(Vogel et al., 2017). The negative correlation between anorexia ner-
vosa and CRP (rg = -0.30 + 0.08, p = 1.0 x 107 is borne out in a
recent meta-analysis of relevant studies (Solmi et al., 2015). Another
negative correlation between OCD and type 1 diabetes (rg = -0.32 +
0.11, p = 5.4 x 1073 finds no support within a limited body of litera-
ture (Sivertsen, Petrie, Wilhelmsen-Langeland, & Hysing, 2014). How-
ever, the positive correlation between Tourette syndrome and allergy
(rg = 0.24 + 0.06, p = 2.7 x 107°) is consistent with evidence of
increased comorbidity between these phenotypes (Chang, 2011;
Yuce et al., 2014). There is a paucity of clinical studies directly asses-
sing the relationship between SZ and PBC (rg = 0.14 4+ 0.05, p = 2.0
x 107%). On the other hand, the correlation between SZ and SLE (rg =
0.15 + 0.04, p = 2.0 x 107 appears to be supported by both epide-
miological evidence of increased comorbidity (Tiosano et al., 2016)
and the well-documented (although rare) phenomenon of CNS lupus
presenting with SZ-like symptoms (Pego-Reigosa & Isenberg, 2008),
which may contribute to misdiagnosis. Finally, positive correlations
involving cigarette smoking behavior and CRP (rg = 0.31 = 0.07, p =
3.6 x 10'5), as well as rheumatoid arthritis (rg = 0.17 &+ 0.05, p = 2.3
x 1073), are perhaps unsurprising given considerable evidence of ele-
vated CRP in persons who smoke (Ohsawa et al, 2005), and
increased incidence of smoking behavior among individuals diag-
nosed with rheumatoid arthritis (Di Giuseppe, Discacciati, Orsini, &
Wolk, 2014). These findings may indicate a need for more adequate
statistical treatment of smoking behavior in GWAS studies.

The present study identified a number of intriguing and previ-
ously unreported genetic correlations, some of which appear to local-
ize near established risk factors for complex disease. On the whole,
these findings are consistent with the idea that similar signatures of
common genetic variation may increase risk for both psychiatric and
immune-related disorders. However, it is important to keep in mind
that these findings do not necessarily imply causality or even shared
genetic etiology. SNP-based genetic correlations could arise from a
wide variety of underlying factors, including the possibility that the
relationship between phenotypes is mediated by behavioral or cul-
tural factors, or influenced by a heritable but unexamined underlying
trait that confers risk to both phenotypes (Anttila, 2016; Bulik-Sulli-
van, Finucane, et al., 2015a). Other factors that could contribute to
genetic correlations include effects mediated by parental genotypes
and their influence on parental behaviors that impact the offspring
(Coop & Pickrell, 2016). Additionally, GWAS studies of psychiatric
phenotypes typically do not screen affected cases on the presence of
other medical conditions (and vice versa), thus over-representation of
a given phenotype in the sample of another phenotype could bias the
data toward the detection of a genetic correlation. Finally, estimates
of genetic similarities could be influenced by misdiagnosed cases
(Wray, Lee, & Kendler, 2012). Other general limitations of this
method (in comparison with other approaches) have been discussed
previously elsewhere (Anttila, 2016; Bulik-Sullivan, Finucane, et al.,
2015a). In light of the exploratory nature of the present study,
another critique pertains to the lack of clearly identified positive and
negative control comparisons. Additionally, the clinical significance of
weak or modest genetic correlations is yet unclear. Future work
could shed light on this topic by comparing the strength of reported
estimates of effect size from

genetic correlations  with
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epidemiological associations, in order to create an atlas of concor-
dance and shed light on the sensitivity and specificity of these
genetic methods. One final critique of this approach is that it falls
short of identifying plausible genetic and biological mechanisms that
mediate potentially pleiotropic loci. Future work incorporating
expression quantitative trait loci, differentially expressed or methyl-
ated genes, or enriched ontological and functional terms may provide
a clearer context for assessing biological similarities between pheno-
types. Despite these limitations, the present study indicates that
shared aspects of common genetic variation may underlie long-
recognized epidemiological links between psychiatric and immune-
related disorders and serves as a start point for the identification and

characterization of potentially pleiotropic loci.
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