Encounters with Data: Thinking Critically about Context and Presentation in Statistics and Visualizations

Steelberg, Tierney; Stuit, Martha

http://hdl.handle.net/2027.42/146733
Encounters with Data: Thinking Critically about Context and Presentation in Statistics and Visualizations

Tierney Steelberg & Martha Stuit
University of Michigan School of Information

QuasiCon, February 6, 2016

Image source:
Creating Data Literate Students

http://dataliteracy.si.umich.edu/
What’s wrong with this picture?

The pie chart shows the support for candidates in the 2012 presidential run, but the numbers and percentages do not add up to 100%. The chart states:

- 70% for BACK PALIN
- 63% for BACK HUCKABEE
- 60% for BACK ROMNEY

The percentages do not total 100%, indicating a potential error in the chart's data.
Numbers often seem like facts...
but it’s okay to question them!
What does it mean to be “data literate?”

Data Literacy

Statistical Literacy

How to Approach Statistics

The

- Who,
- What,
- When,
- Where,
- Why,
- and How of statistics

Who

Who collected the data or made the statistic?

Who presented the statistic?

Who is represented in the statistic?

Sample: the group that was counted, surveyed, polled, or studied (a subset of the population)

Image source: https://commons.wikimedia.org/wiki/File:%22WATCH_YOUR_LOCAL_NEWSPAPER%22_-_NARA_-_535653.jpg
What topic is the statistic illustrating? What problem is the statistic highlighting?

What is represented in the number?

What type of average is the statistic?

What information is missing from the presentation of the statistic?
The Washington Post
"Lower-than-expected D.C. snowfall total raises questions about its measurement"

Variable: what has been counted

Image source:
http://www.freestockphotos.biz/stockphoto/15142
&

WITH A SNOW BOARD, observers are told to take a reading every six hours and then wipe it clean. Then, they should add together the four individual snowfall measurements at the end of the day to cut down on the effects of compaction.
What, continued

What type of average is it?

- **Mean**: all values added together and divided by the number of values
 - sensitive to extremes
- **Median**: middle value when values are ordered from highest to lowest
- **Mode**: most frequently appearing value

Rule of thumb: Present all three types of average.
What, continued

Ten people who make $40,000 a year are in a restaurant. University of Michigan President Mark Schlissel walks in. What is the average income when he joins?

Hint: President Schlissel makes $772,500 a year.

Ten people who make $40,000 a year are in a restaurant. President Mark Schlissel walks in. What is the average income when he joins?

- **Mean:** $106,590.91
- **Median:** $40,000
- **Mode:** $40,000

Rule of thumb: Present all three types of average.
When

When was the data collected?

Image source: http://www.clipartbest.com/cliparts/dir/7px/dir7pxM4T.png
Where

Where was the sample conducted?

Where does the data apply? (a particular population? or location?)

Rule of thumb: Correlation is not causation.
Where

Rule of thumb: Correlation is not causation.

Why

Why is this number significant? Why did someone calculate this statistic?

Americans increasingly use smartphones for more than voice calls, texting

% of U.S. smartphone owners ages 18 and over who have ever used their phone to ...

- Get directions, recommendations, other info related to your location
- Listen to an online radio/music service, e.g. Pandora or Spotify
- Participate in a video call or chat
- Watch movies or TV through a paid subscription service, e.g. Netflix or Hulu Plus

<table>
<thead>
<tr>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>74%</td>
<td>90%</td>
<td>53%</td>
<td>67%</td>
</tr>
<tr>
<td>80%</td>
<td>80%</td>
<td>33%</td>
<td>47%</td>
</tr>
<tr>
<td>60%</td>
<td>60%</td>
<td>15%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Note: In 2012, the survey question was asked of cellphone owners who use the internet or email on their cellphone or download apps to their cellphone. In 2013, item wording was “Get directions, recommendations, or other information related to a location where you happen to be.”

Source: Survey conducted June 10-July 12, 2015. Trend data is from previous Pew Research Center surveys.

Pew Research Center

Link: [Pew Research Center](https://www.pewresearch.org)
How

How was this statistic calculated? Is it a prediction, or is it an accurate count?

How big or small is the number? (Does it seem extreme?)

Context of Statistics: Rules of Thumb

1. Correlation does not equal causation.
2. Interrogate the statistics that you encounter by asking:
 - who?
 - what?
 - when?
 - where?
 - why?
 - and how?

General Rules of Thumb for Presenting Your Data

Clarity and simplicity are key.
Clarity and simplicity are key.

What do you think of the way this data is presented?

Clarity and simplicity are key.

- Keep it simple: avoid unnecessary ornamentation.
- Split things up into multiple charts if the display starts getting crowded.

Make it easy to read and interpret.
Make it easy to read and interpret.

What's wrong with this picture?

Image source: http://flowingdata.com/2009/06/15/6-easy-steps-to-make-your-graph-really-ugly/
Make it easy to read and interpret.

Organize values in a meaningful order.

Image source: http://flowingdata.com/2009/06/15/6-easy-steps-to-make-your-graph-really-ugly/
Make it easy to read and interpret.

Provide a legend and labels. Clarify units.

Image source: http://flowingdata.com/2009/06/15/6-easy-steps-to-make-your-graph-really-ugly/
Make it easy to read and interpret.

Poll Results: What Data-related Area Are You Most Interested In?

- Statistics: 21% (172 votes)
- Design: 16% (136)
- Business: 16% (135)
- Cartography: 12% (101)
- Info. Science: 10% (80)
- Web Analytics: 8% (68)
- Programming: 6% (50)
- Engineering: 3% (29)
- Mathematics: 2% (19)
- Other: 5% (41)

Use a simple color scheme. Avoid using color combinations that are difficult to distinguish.

Image source: http://flowingdata.com/2009/06/15/6-easy-steps-to-make-your-graph-really-ugly/
Respect visual and mathematical principles.
Respect visual and mathematical principles.

Size two-dimensional shapes proportionally according to their area.

<table>
<thead>
<tr>
<th>Bubble area</th>
<th>391</th>
<th>1,676</th>
</tr>
</thead>
</table>

Respect visual and mathematical principles.

Keep things in two dimensions.

Image source:
Respect visual and mathematical principles.

HE5.1. Nordic and European countries are the tallest
Mean heights for men aged 20 to 49

Do these icons add to the visualization?

Respect visual and mathematical principles.

In general, forego icons in the data visualization itself.

Play around with your data!
Play around with your data!

Try out different charts and graphs, using software readily at your disposal: it’s as easy as the click of a button.

Microsoft Excel

Google Sheets

Image source:
https://commons.wikimedia.org/wiki/File:Microsoft_Excel_2013_logo.svg

Image source:
http://eci511-emarsh-blog.blogspot.com/
Cite your sources (or even provide your dataset).
Cite your sources.

Source is missing: what would context provide?

Data Presentation: Rules of Thumb

1. Clarity and simplicity are key.
2. Make it easy to read and interpret.
3. Respect visual and mathematical principles.
4. Play around with your data!
5. Cite your sources or provide your dataset.

Image source: https://commons.wikimedia.org/wiki/File:Symbol_thumbs_upzel.svg (edited for color)
WORLD
The average life expectancy in the world in 2009 was 69 years.
Movie Genres by Year, 1908-2008

Percentage of films made in each genre

Sci-fi Adventure Horror Western Crime Action Animation Romance Porn Documentary Comedy Drama Short

Link: http://blog.undr.com/2012/10/movie-genres-by-year-infographic.png
See also: article on Slate

WORLD
The average life expectancy in the world in 2009 was 69 years.

Source: The World Bank; Graphic by: Nathan Yau
Play around with Google Public Data Explorer!

https://www.google.com/publicdata/directory

Check out its data from a variety of sources and create some charts of your own! While you work, think about:

- the data itself and its potential context
- the presentation of the data
- things you wish you could see or do with this tool
Google Public Data Explorer: Share Your Findings

- What are your thoughts on context?
- What are your thoughts on presentation?
- What did you wish you could see or do with this tool?
In summary:

Statistical Context
Correlation ≠ causation • Ask yourself: who? • what? • when? • where • why? • how?

Data Presentation
Keep it simple. • Make it readable. • Respect visual / mathematical principles. • Play around! • Cite sources.

Any questions?

Contact us!
Tierney Steelberg: tierneyyc@umich.edu
Martha Stuit: stuitm@umich.edu

Image source:
https://openclipart.org/image/300px/svg_to_png/192053/remington-typewriter.png (edited for color)