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Abstract

Background: There are significant challenges to the successful conduct of non-inferiority trials because they

require large numbers to demonstrate that an alternative intervention is “not too much worse” than the standard.
In this paper, we present a novel strategy for designing non-inferiority trials using an approach for determining the
appropriate non-inferiority margin (), which explicitly balances the benefits of interventions in the two arms of the
study (e.g. lower recurrence rate or better survival) with the burden of interventions (e.g. toxicity, pain), and early
and late-term morbidity.

Methods: We use a decision analytic approach to simulate a trial using a fixed value for the trial outcome of
interest (e.g. cancer incidence or recurrence) under the standard intervention (ps) and systematically varying the
incidence of the outcome in the alternative intervention (pa). The non-inferiority margin, pa — ps =9, is reached
when the lower event rate of the standard therapy counterbalances the higher event rate but improved morbidity
burden of the alternative. We consider the appropriate non-inferiority margin as the tipping point at which the
quality-adjusted life-years saved in the two arms are equal.

Results: Using the European Polyp Surveillance non-inferiority trial as an example, our decision analytic approach

suggests an appropriate non-inferiority margin, defined here as the difference between the two study arms in the
10-year risk of being diagnosed with colorectal cancer, of 0.42% rather than the 0.50% used to design the trial. The

size of the non-inferiority margin was smaller for higher assumed burden of colonoscopies.

Conclusions: The example demonstrates that applying our proposed method appears feasible in real-world
settings and offers the benefits of more explicit and rigorous quantification of the various considerations relevant
for determining a non-inferiority margin and associated trial sample size.
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Background

Traditionally, trials investigating de-escalation of inter-
ventions have employed a non-inferiority design, requir-
ing large numbers to convincingly demonstrate that an
alternative treatment is “not too much worse” than a
standard treatment with known benefit. This definition
of benefit conventionally focuses on disease control and/
or prevention outcomes alone, without explicit quantifi-
cation or consideration of the differential impact of
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different regimens on toxicity, burden, and early and
late-term morbidity.

Determination of the non-inferiority margin is the most
critical step in non-inferiority testing, as it represents the
point of equipoise where the benefits of the standard ther-
apy compared to the lesser alternative are outweighed by
its risks or perhaps its additional costs [1].

While there are several guidelines available to aid
researchers in the development of non-inferiority margins
in these trial designs [2-9], a recent systematic review of
non-inferiority trials showed that the majority of previ-
ously published trials have either provided ambiguous or
limited information to justify their choice of margin [10].
Lack of robust justifications for setting non-inferiority
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margins in standard practice could lead to inconsistency
in recommendations and guidelines based on non-inferio
rity trials. More importantly, current guidelines do not
provide strict standards for considering risks, morbidity
and costs in the determination of non-inferiority margins,
necessitating large clinical trials to evaluate these sorts of
questions.

In this paper, we introduce a general decision analytic
framework that uses an explicit net-benefit approach for
determination of non-inferiority margins for optimal
design of non-inferiority trials in oncology as well as
other disease settings. In this context, quality-adjusted
life years (QALYs) can be used as a single integrated
measure of health outcomes that represent both the
quality and quantity of life lived [11]. If QALY loss of a
current intervention compared to an alternative are sub-
stantial, a larger cancer-control benefit would be neces-
sary to justify its continued use.

In this paper, we introduce a novel methodology based
on decision-modeling for setting the non-inferiority
margin of trials investigating de-escalation of interven-
tions. Examples of such trials are those that investigate: 1)
omitting (parts of) the treatment regimen, 2) lower
drug-dose regimens, 3) alternative drugs with less side ef-
fects and 4) lower frequency of follow-up exams, In the
next section, we briefly describe the general concepts be-
hind the methodology before illustrating its applicability.

Methods

Non-inferiority trials and the non-inferiority margin

The traditional approach to non-inferiority trials in on-
cology tests whether a new experimental treatment is
not meaningfully worse than an existing treatment in
terms of a disease outcome (e.g. cancer recurrence rate)
[12]. The concept of “meaningfully worse” is formalized
in the definition of a value called the non-inferiority
margin, or more generally the equivalence margin,
denoted by 8. The non-inferiority margin defines the
maximum clinically acceptable difference that one is willing
to accept in return for the lower burden, morbidity and/or
costs of the new therapy [1]. Non-inferiority trials have a
null hypothesis that the alternative treatment is inferior to
the standard treatment by at least the pre-specified
non-inferiority margin (Ho: py — ps >, where ps and py
are event rates of the outcome of interest for standard and
alternative interventions, respectively). The alternative hy-
pothesis is that the alternative treatment is not inferior to
the standard treatment (i.e., is less than the non-inferiority
margin (Ha: py — ps < 9)).

Several methods have been proposed for setting the
non-inferiority margin. Two methods, the 95-95
method and the synthesis method, are prescribed by the
FDA in the evaluation of new interventions to ensure
that the non-inferiority margin does not overlap the
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event rate in a control population [9]. Neither of these
methods account for the difference in morbidity outcomes
between the interventions, so even if the new intervention
is better than the placebo in terms of mortality or event
rates, the margin does not guarantee that the new inter-
vention is truly non-inferior to the current intervention.
Thus, while these methods are useful to ensure that the
new intervention is superior to a control, it does not obvi-
ate the need to still quantify the non-inferiority margin in
terms of the harms and benefits of the standard and new
intervention. The methods can therefore be considered
additional constraints.

The Delphic method does take morbidity into account,
as it asks physicians or patients to subjectively assess how
much benefit they might forgo to avoid the potential
incremental harms of the standard therapy [12]. However,
it may not do so in a reproducible, systematic way, espe-
cially with respect to the long-term implications of the
interventions being compared. Setting a framework for an
evidence-based quantification of the non-inferiority
margin is therefore the focus of this paper.

Proposed decision analytic approach

Our proposed framework utilizes a decision analytic
approach to simulate a trial using a fixed value for can-
cer incidence or recurrence rates under the standard
intervention (ps) and systematically varying cancer inci-
dence\recurrence under the alternative intervention
(pa)- The non-inferiority margin, py — ps =9, is reached
when the lower cancer incidence or recurrence rate of
the standard therapy is counterbalanced by the higher
disease rate but improved morbidity burden of the alter-
native. This is quantified in a decision model as the level
of incidence/recurrence (p,) at which the QALYs in the
two arms are equal. Therefore, true non-inferiority, as
operationalized in this paper, is established when the
potential loss in life-years due to lower efficacy in the al-
ternative intervention is offset by an increase in quality of
life from lower burden and/or side effects relative to the
standard intervention. While some trials have used out-
come measures of net benefit, this paper advances the
literature by using decision analytic models and measures
of net benefit to explicitly quantify the non-inferiority
margin, and, by extension, formally size the trial.

Our proposed framework consists of four steps (Fig. 1),
which are illustrated with an example in the next section.
In Step 1, a decision model is formulated as a framework
for quantifying the lifelong impacts of outcomes by inte-
grating the probabilities of specific outcomes and their
sequalae with their disutilities. An existing decision model
can be used, or one can be developed de novo. Disutilities
can be obtained from previous studies or literature. A
model can be simple, including only the relevant types of
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Fig. 1 Overview of four steps of proposed methodology to determine evidence-based non-inferiority margin in non-inferiority trials. “s”
represents the standard intervention and “a” represents the alternative scaled back intervention

adverse events and their associated disutilities post cancer
diagnosis over the remaining life course.

In Step 2 we use the decision model to estimate how
the alternative intervention would improve the quality of
life of the patient, if it would have the same effectiveness
as the current intervention.

In Step 3, the model is used to estimate quality of life
under the assumption that the alternative intervention is
slightly less effective than the standard intervention, and
therefore may result in either more deaths or earlier
death with an associated decrease in length of life. A less
effective alternative intervention may also result in add-
itional incident or recurrent cases of the disease and
thus a loss in quality of life on top of the loss in average
length of life. By iteratively evaluating the effectiveness
of the alternative intervention, we can find the point at
which the QALYs lost from the lower effectiveness is
equal to the QALYs gained from the lower burden and/
or side effect of the alternative intervention. Finally, in
Step 4, the difference in effectiveness between the
current intervention and the derived effectiveness level
for the alternative intervention can then be used as the
non-inferiority margin for evidence-based sizing of
non-inferiority trials.

Alternative measures for non-inferiority

Using disutilities from literature for determining equal
QALYs implies that a current intervention may be
replaced by an alternative when it is non-inferior for those
whose utility weights do not diverge dramatically from the
average member of the population. A more conservative

approach would be to extend the trial applicability to a
larger fraction of the population, which would require
down weighting the disutility associated with the toxicity
or burden of the intervention relative to the average popu-
lation, leading to a smaller non-inferiority margin and
therefore a larger sample size. Analyses along these lines
are possible and would be similar to the one described
above, but instead of using average disutilities, they might
consider utility weights derived from a different cut-point
of the population distribution (e.g., the 25th percentile).

Alternative interventions or omission of an interven-
tion may not just be less harmful but may also be less
expensive for the target population. As such, a
non-inferiority margin could also be designed if lower
costs could make up for a certain reduction in effective-
ness. The decision analytic method is largely the same as
above, except that the margin is determined based on
cost-effectiveness (costs per QALY) rather than QALY.
The non-inferiority margin is established based on the
level of effectiveness such that the reduction in costs no
longer compensates enough for the reduction in QALYs
given a willingness-to-pay threshold (e.g., the ratio is at
or above a threshold).

Uncertainty analysis

Some parameters assumed to be known in the model, in
fact are not known with certainty. To account for this
uncertainty, one can repeat the proposed approach for
different parameter values. This way, insights are ob-
tained on the sensitivity of the power calculation to
different model assumptions. To ensure sufficient power,
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one could consider using a sample size in the upper
ranges of the uncertainty analysis.

Results

We chose the European Polyp Surveillance (EPoS) study
[13] as an example of a non-inferiority trial to illustrate
how this decision-analytic approach can help inform the
non-inferiority margin and design of non-inferiority trials.
We used the MISCAN-Colon microsimulation model as
the decision analytic model to estimate QALYs and costs
for this example [14]. We first briefly describe the trial
and the model before presenting results with respect to
applying the framework to establishing an evidence-based
non-inferiority margin.

EPoS trial

The EPoS study consists of two ongoing randomized
controlled trials and a planned cohort follow-up study.
A detailed description of the design of the trial was re-
cently published [13]. In this example, we focus on the
EPoS I randomized controlled trial. In brief, in EPoS I,
low-risk adenoma patients (i.e., patients with 1-2 small
tubular adenomas without high-grade dysplasia or vil-
lousness) were randomized to receive surveillance colon-
oscopy at both years 5 and 10 (standard intervention) vs.
surveillance colonoscopy at 10 years only (suggested al-
ternative scaled-back intervention).

The study was powered as a non-inferiority trial, since
the investigators wanted to determine if the 10-year
colorectal cancer (CRC) incidence for the scaled-back
intervention fell within a specified margin of that previ-
ously observed for the standard intervention. The ex-
pected 10-year CRC incidence under the standard
intervention is approximately 1%. For the power calcula-
tion, it was felt that a 10-year CRC incidence rate of up
to 1.5% could be tolerated to gain the advantages of hav-
ing surveillance colonoscopies half as frequently. Thus, a
non-inferiority margin of 0.5% was used. Based on 90%
power and a one-sided alpha of 0.05, it was estimated
that a total of 13,766 individuals needed to be included
in EPoS L.

MISCAN-Colon

MISCAN-Colon is a well-established microsimulation
model for CRC developed at the Department of Public
Health of the Erasmus University Medical Center (Rot-
terdam, the Netherlands) [15, 16]. It is one of the models
participating in the National Cancer Institute’s Cancer
Intervention and Surveillance Modeling Network (CIS-
NET) [17-19]. The model’s structure, underlying as-
sumptions, and calibration are described in previous
publications [15, 20]. Briefly, the model simulates the life
histories of individuals from birth to death. CRC arises
in the population according to the adenoma-carcinoma
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sequence. Screening and surveillance may alter these life
histories through possible removal of adenomas and
detection of cancers. In this way CRC mortality can be
reduced. The life years gained by screening are calcu-
lated as the difference in model-predicted life years lived
in the population with and without CRC screening.

We used MISCAN-Colon to simulate the EPoS I study
population of individuals diagnosed with low-risk aden-
omas and undergoing subsequent surveillance. We sim-
ulated two colonoscopy surveillance strategies, one with
surveillance every 5years, and one with surveillance
every 10years. Surveillance was assumed to continue
until age 75. We followed individuals for their lifetimes.
The model was used to predict lifetime QALYs and costs
of the standard and alternative surveillance interven-
tions. Assumptions for natural history and costs were
based on previous work [21].

Disutilities from surveillance colonoscopy and CRC

The potential gain in QALYs from the less intensive sur-
veillance interval compared to the more intensive inter-
val stems from the reduction in colonoscopies required,
as colonoscopies are associated with patient burden and
complications. For this analysis, disutilities were chosen
by assumption. We assumed a population-average
disutility of 3.1 days for every colonoscopy performed to
account for 3 weeks of anxiety prior to colonoscopy at a
disutility of 0.1, and 2 days of preparation and procedure
at a disutility of 0.5. In addition, we modeled
age-specific risks for gastrointestinal and cardiovascular
complications of colonoscopy. The overall risk associ-
ated with colonoscopies with polypectomy increased
exponentially with age: from 2 complications per 1000
colonoscopies at age 40 to 38 per 1000 at age 85 [15].
Colonoscopies without polypectomy were not associated
with a risk for complications. We assumed a utility loss
of two weeks of life per complication from colonoscopy.
We assumed that one out of every 30,000 colonoscopies
involving polypectomy resulted in death.

On the other hand, treatment for CRC is also associ-
ated with a loss in quality of life, and higher rates of
recurrence may therefore have a negative impact on
QALYs. Disutilities for life-years with CRC were there-
fore also incorporated, based on findings by Ness et al
[22].

Determining the non-inferiority margin

Estimate QALYs with less intensive surveillance assuming
equal effectiveness

Assuming a 1.0% risk of CRC incidence with the standard
intervention of 5-yearly surveillance, the model predicted
22,424 life-years per 1000 50-year old adenoma patients.
Per 1000 adenoma patients, 26.3 QALYs would be lost
due to surveillance colonoscopies and another 0.3 QALYs
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Table 1 Comparison of QALY outcomes across various scenarios of surveillance for adenoma patients and CRC risk

Strategy 10y Life-years QALYs lost due to QALYs lost due to QALYs lost due to QALYs Difference in
cumulative (per 1000 surveillance (per 1000 complications (per 1000  treatment (per 1000 (per 1000 QALYs (per 1000
incidence pt) pt) pt) pt) pt) pt)

5-yearly 1.0% 22,424 263 03 54.1 22,3432 Reference

surveillance Strategy

10-yearly 1.0% 22424 180 0.2 54.1 22,3515 83

surveillance

10-yearly 1.5% 22412 18.1 02 55.8 22,3381 =51

surveillance

10-yearly 1.3% 22419 180 0.2 49.8° 223510 81

surveillance

10-yearly 1.42% 22415 18.1 02 535% 22,3431 0.0

surveillance

10y: 10-year; QALYs: Quality-adjusted life-years; pt.: patients

@ QALY lost to treatment are not necessarily higher with higher CRC incidence, because they also depend on the stage distribution of CRC cases and time spent in
each CRC state. Higher CRC incidence may lead to fewer life-years with CRC treatment because of higher mortality from CRC

due to complications of surveillance (Table 1). In addition,
54.1 QALYs per 1000 would be lost due to diagnosis and
treatment of CRC. Together, this resulted in total of
22,343 QALYs per 1000 adenoma patients (Table 1).
Under an initial assumption of equal effectiveness (a
1.0% risk of CRC incidence) for both 10-yearly and
5-yearly surveillance, life-years with the alternative sur-
veillance schedule of 10-yearly surveillance were the
same as with 5-yearly surveillance, i.e., 22,424 years per
1000 adenoma patients. However, because of a reduction
in colonoscopies performed, the QALYs lost to surveil-
lance are lower (i.e., 18.1 and 0.2 for colonoscopies and
complications, respectively). Consequently, QALYs for
the alternative intervention were higher at 22,352 years.
This amounts to an improvement in QALYs of 8.3 per

1000 adenoma patients compared to the standard
intervention.

Iteratively determine level of effectiveness for equal QALYs

For a 1.5% risk of CRC incidence at 10years under
10-yearly surveillance, which was used to design EPoS I,
QALYs would be 22,338 years per 1000 adenoma pa-
tients. This is slightly lower than the QALYs from the
current intervention (Fig. 2). If 10-yearly surveillance
would lead to a 10-year risk of CRC incidence of 1.3%,
total QALYs would be 22,351 years, for a gain in QALYs
of 7.8years per 1000 adenoma patients (Table 1).
Through iterative running of the MISCAN-Colon model
for different levels of 10-year risks of CRC incidence in
adenoma patients with 10-yearly surveillance, we found

22.355
- 22.352 22.351
2 2235 —
S Equipoise
3 A=8
Q. QALYgalned QALYgained
o 22.345 per 1000 per 1000 22.343
£ 22343 = - — = -
o
2 2234 QALYlost 22.338
=3 per 1000
ie)
®©
£ 22335
©
S
e}
22.33
5-yearly 10y surv, 10y surv, 10y surv, 10y surv,
surveillance 1.0% risk 1.5% risk 1.3% risk 1.42% risk
Fig. 2 Quality-adjusted life-expectancy in low-risk adenoma patients for the current intervention and the alternative intervention at different
levels of effectiveness. Current intervention is 5-yearly surveillance; Alternative intervention is 10-yearly surveillance. Different levels of effectiveness
represent difference levels of CRC risk after the alternative intervention
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Table 2 Non-inferiority margins and sample size requirements for 5-yearly surveillance (vs. 10-yearly surveillance) of low-risk

adenoma patients

Strategy 10y Life-years QALYs lost to QALYs lost to surveillance QALYs lost to CRC QALYs Required
cumulative (per 1000 surveillance (per complications (per 1000 pt)  treatment (per 1000 (per 1000 sample size
incidence pt) 1000 pt) pt) pt)

Non-inferiority based on effectiveness and average disutilities (base case) — 3.1 days lost per colonoscopy

S-yearly 1.0% 22,424 26.3 03 54.1 22,343 19,234
surveillance

10-yearly 1.42% 22415 18.1 0.2 535 22,343

surveillance

Non-inferiority based on cost-effectiveness using threshold of €20,000 per QALY gained and base case disutilities (3.1 days lost per colonoscopy)

S-yearly 1.0% 22424 26.3 03
surveillance
10-yearly 1.62% 22,408 18.2 0.2
surveillance

Non-inferiority based on 80% of base disutilities (2.5 days lost per colonoscopy)

S-yearly 1.0% 22424 210 03
surveillance
10-yearly 1.40% 22416 14.5 0.2
surveillance

Non-inferiority based on 120% of base disutilties (3.7 days lost per colonoscopy)

S-yearly 1.0% 22424 315 03
surveillance
10-yearly 1.45% 22414 21.7 0.2
surveillance

54.1 22,343 8826
59.2 22,331
541 22,348 21,206
528 22,348
54.1 22,338 16,754
54.2 22,338

that at a risk of CRC incidence of 1.42%, QALYs from
5-yearly surveillance and 10-yearly surveillance would be
equal (Table 2).

Calculate the non-inferiority margin

To demonstrate non-inferiority of 10-yearly surveil-
lance compared to 5-yearly surveillance in low-risk
adenoma patients, a non-inferiority margin of 0.42%
(1.42-1%) should be used in the power calculations.
Assuming this non-inferiority margin and an expected
CRC risk of 1.0% with the standard intervention,
9617 individuals need to be included in each arm of
the trial for a total sample size of 19,234 adenoma
patients (Table 2).

Alternative non-inferiority margins

Assuming a lower disutility for being in colonoscopy
surveillance (disutility of 2.5days or 80% of base-case
value) to correspond with a larger fraction of the popula-
tion, QALYs were equal at a lower 10-year CRC risk for
the 10-yearly surveillance arm of 1.4% (Table 2). The
associated sample size with this non-inferiority margin
of 0.4% would be 21,206 adenoma patients. Alternatively,
assuming a higher disutility for being in colonoscopy
surveillance (disutility of 3.7 days or 120% of base-case
value) vyields a non-inferiority margin of 0.45% and

a corresponding sample size of 16,754 adenoma patients
(Table 22).

Basing the non-inferiority margin for EPoS I on
cost-benefit with a standard Dutch threshold of €20,000
per life year gained, rather than net benefit alone, would
lead to a higher CRC incidence risk of 1.62% allowed in
the non-standard arm for non-inferiority (Table 2). With
this non-inferiority margin of 0.62%, the required sample
size for 90% power would be 8826 adenoma patients
(4413 per arm).

Uncertainty analysis on disutility and colonoscopy
sensitivity

Figure 3 shows the line of equipoise as a function of the
self-perceived disutiities of colonoscopy. The figure
shows the translation between disutility of colonoscopy
and the resulting QALY gained from 5-yearly surveil-
lance, as well as the associated non-inferiority margin
and required sample size to demonstrate non-inferiority.
In general, lower assumptions for disutilities associated
with colonoscopy resulted in proportionally lower levels
of CRC incidence risk allowable in the non-standard
arm for equal QALYs for 5- and 10-yearly surveillance.
Figure 4 shows the same results in addition to results
when assuming 5% higher and 5% lower estimates for
colonoscopy sensitivity. Figure 4 clearly demonstrates
the sensitivity of required sample sizes for assumptions
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about colonoscopy sensitivity and disutility One could
consider using a sample size of around 30,000 to err on
the conservative side in the power calculation in case
colonoscopy disutility was lower and sensitivity higher
than expected.

Discussion

This study illustrates the application of a formal method
to transform the overall harms and benefits of compet-
ing interventions into a measure of the non-inferiority
margin. This method offers the benefits of allowing for
more explicit and rigorous quantification of various con-
siderations for determining that an intervention is
non-inferior. It is applicable to all non-inferiority trials
investigating an intervention that is expected slightly less
effective as the standard intervention but is associated
with less burden and side effects, either because of a
de-escalation of the intervention or because of an alter-
native less invasive treatment regimen. The method may
also be used for interventions that are slightly less effect-
ive but have (considerably) lower costs.

Our suggested approach for setting the non-inferiority
margin is not substantially different from the Delphic
method or the approach currently used by trialists who
focus on disease outcomes alone. Both aim to set the
margin such that the lower effectiveness is compensated
by the lower burden, adverse effects, or resource require-
ments. The important difference between those
approaches and the approach in this paper is the explica-
tion of all assumptions in our approach, and the consider-
ation of lifetime effects. Using a decision model to
estimate QALYs for the standard and alternative interven-
tions ensures that the assumed trade-off between harms
and benefits can be reproduced and the enduring impact
of differences in interventions on quality of life can be
incorporated.

There are several examples of successfully implemented
Quality of Life (QoL) clinical trials, where non-inferiority
margins are given in QALYs [23-27]. Our approach differs
fundamentally from these trials in three ways. First, our
approach uses QALYs to actually derive the non-inferiority
margin, rather than just defining the non-inferiority margin
in terms of QALYs. Second, these studies lack strict stan-
dards and a reproducible methodological framework.
Finally, and most importantly, these studies suggest the
establishment of a non-inferiority margin based on an
acceptable loss in QALYs, whereas we suggest that the very
definition of a non-inferiority margin requires equipoise in
QALYs between the standard and the alternative treatment
when the end-points are measured in terms of incidence or
mortality outcomes.

This paper suggests an approach for setting a
non-inferiority margin for non-inferiority trials, such that
appropriate sample size can be estimated in a robust and
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reproducible way. These considerations for trial design
should not be confused with Value of Information analyses
which also use decision models [28]. These approaches,
such as Expected Value of Sample Information, have been
suggested to evaluate whether the resources needed to con-
duct a trial weigh up against the expected benefits of the
additional information to be gained to advance medical
decision making.

The impact of our proposed framework on the
required sample size for non-inferiority trials depends
on the trade-off between lower LY because of lower ef-
fectiveness and increase in quality-of-life because of
reduced burden of the alternative intervention. In our
example, we balance the small QALY gains by forgoing
one colonoscopy for everyone versus the large QALY
loss for the very few extra people diagnosed with CRC.
This resulted in a relatively modest non-inferiority mar-
gin and a higher required sample size than currently
used in the EPoS trial. However, for other examples of
non-inferiority trials where the tradeoffs are much
starker, such as a trial for local/regional HPV associated
oropharynx cancer [29], the trade-offs may be much
more pronounced. Here, the standard therapy is radio-
therapy with cisplatin, while the alternative is radiother-
apy with cetuximab. The primary end point is overall
survival, under the assumption that a cetuximab-based
radiotherapy will lead to less morbidity and better qual-
ity of life without a significant difference in overall
survival or locoregional control. In this case, the increase
in quality-of-life from the alternative intervention is very
substantial and non-inferiority margin can be consider-
ably wider. Accordingly, this will result in smaller
required sample sizes.

In our example, we saw that a large reduction in the
necessary sample size of the trial resulted from the
incorporation of monetary costs in addition to adverse
effects on health-related quality of life as the criterion
for determining the non-inferiority margin. Boyd et al.
[30] previously demonstrated the use of economic con-
siderations to guide non-inferiority margins. Using
cost-utility as an outcome requires defining an accept-
able threshold for the cost of a loss in QALYs from the
standard to the alternative intervention. Securing con-
sensus on an appropriate cost-per-QALY threshold is
fraught with difficulty, especially in the United States.
Moreover, empiric data suggest that the threshold cost
for forgoing health benefits, such as in the context of a
non-inferiority trial, may in fact be higher than the price
for gaining health benefits [31, 32]. However, it is im-
portant to recognize that medical interventions are not
cost-neutral to society nor to patients themselves, who
may experience direct financial toxicity from medical
expenses, non-medical expenses, co-pays, loss of
income, and other mechanisms. Therefore, it may be
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appropriate to consider whether such costs (at the soci-
etal or at least individual patient level) may be relevant
to incorporate into clinical trial design.

The EPoS I example with the MISCAN-Colon model
illustrates the feasibility of our suggested approach. It
does not include establishment of effectiveness com-
pared to a placebo control, as the FDA 95-95 and syn-
thesis methods. However, the issue of ensuring that the
non-inferiority margin does not overlap with the relapse
rate of a placebo control can be an additional constraint
after the size of the margin is determined by weighing
the lower benefits of the alternative therapy against its
putative lower morbidity burden.

In our case, we used an established sophisticated deci-
sion model which was accessible to us. While this model
cannot be directly generalized to other situations, our pro-
posed framework can be readily applied to other decision
models and diseases. One could develop simpler decision
models using Excel, R, or TreeAge, especially for treat-
ment interventions, or use previously developed models
and apply these within this framework [19, 33-35]. The
most important requirements are case-by-case parameters
on effectiveness and disutility of the standard intervention
and on disutility of the alternative intervention. In these
instances, there is value in trialists and modelers collabor-
ating to formally apply this framework.

While some may argue that disutilities are inherently
subjective, difficult to measure, and may have wide
variability across the population, they are, by definition,
an integral contributor to the size of the non-inferiority
margin. The decision analytic framework approach
proposed in this paper will allow trial designers to
break down and understand the sensitivity of the
non-inferiority margin to its component contributors
(i.e. the chance of various events occurring and their
associated disutilities), rather than using clinical ad
hoc judgment to conjecture an estimate of this entire
complex quantity at once.

Unfortunately, disutility estimates are often lacking
like in our example. However, this framework would still
allow postulation of a range of utilities and relate these
to the non-inferiority margin and the associated trial
sample size. Such an approach would make the implied
disutilities of the alternative intervention explicit in the
choice for the non-inferiority margin.

In the meantime, inclusion of patient-reported outcome
measures that can be expressed and interpreted as a utility
in early phase trials can provide pivotal data to help size
later trials. However, there are a number of research chal-
lenges to be surmounted before population-level utility es-
timates required for a decision-analytic approach are
available to justify sample size in non-inferiority trials.
First, disutilities associated with acute effects of cancer
screening or treatment have not been well studied, and
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this is particularly true of serious late treatment effects
(e.g. cardiopulmonary toxicity and second malignancies)
[36, 37]. Second, point estimates represent the average
utility for a population [38, 39], yet equally important is
the variability in those utilities across the population and
within specific subgroups [40-42], as well as at specific
points in the treatment trajectory [43]. Third, although a
growing number of health-related quality of life measures
can be summarized and interpreted as both a score and a
utility [44, 45], most measures of other constructs relevant
to gauging the value of a cancer therapy (e.g. cost, treat-
ment burden/complexity) [46, 47] do not yet have estab-
lished utilities. Work to expand the range of
patient-reported outcome measures [48—50] with associ-
ated utilities is warranted. Lastly, utilities are often seen as
a corollary, rather than an essential component of a
non-inferiority trial [51-55].

Conclusions

In sum, to maximize the rigor and efficiency of future
clinical trials seeking to evaluate outcomes after
de-escalation of (cancer) interventions, explicit quantifi-
cation of benefits and harms of an intervention and its
omission, along with the impact of each on quality of
life, can be a particularly helpful approach. For example,
interest has grown in recent years regarding the poten-
tial to omit adjuvant radiation therapy after breast con-
serving surgery for patients with early-stage breast
cancer with favorable biologic features [56, 57]. Indeed,
it was this particular issue that initially motivated the
current exercise—as a means by which to refine the
approach towards developing a feasible and sensible trial
design in this context. In a trial evaluating such an
option, the acceptable increase in breast cancer recur-
rence risk from omission of therapy can be estimated by
weighing the disutility of excess cancer recurrence
against the improvements in quality of life from avoid-
ance of the intervention and its side effects. For such
evaluations, it is important that trials are not censored at
first events but continue to collect information on health
outcomes, especially patient-reported quality of life mea-
sures and information on other events, after that.

In conclusion, we feel that those considering develop-
ing non-inferiority trials could consider innovative
approaches to non-inferiority trial design such as the
one we outline here, to design research that is simultan-
eously efficient, rigorous, and meaningful for patients
facing complex cancer surveillance, prevention, and
management decisions.
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