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Abstract 

 

Fixed-route ride-sharing services are becoming increasing popular among major 

metropolitan areas, e.g., Chariot, OurBus, Boxcar. Effective routing design and pricing and 

operational planning of these services are undeniably crucial in their profitability and survival. 

However, the effectiveness of existing approaches have been hindered by the accuracy in demand 

estimation. In this paper, we develop a demand model using the multinomial logit model. We also 

construct a nonlinear optimization model based on this demand model to jointly optimize price 

and operational decisions. Moreover, we develop a mixed integer linear optimization model to the 

routing design decision. And a genetic algorithm based approach is proposed to solve the 

optimization model. Two case studies based on a real world fixed-route ride-sharing service are 

presented to demonstrate how the proposed models are used to improve the profitability of the 

service respectively. We also show how this model can apply in settings where only limited public 

data are available to obtain effective estimation of demand and profit.  
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Chapter 1: Introduction 

 

The rapid growth of the sharing economy has been witnessed around the world in recent 

years. That is, the economy is undergoing a paradigm shift away from single ownership and 

towards shared ownership of goods and services. Successes have been seen, for example, in 

businesses that share habitation (e.g., Airbnb), financial services (e.g., CrowdFunding), vehicles 

(e.g., Car2go, ZipCar), and other mobility solutions (e.g., Uber, Chariot). Among these sharing 

services, ride-sharing is a particularly popular category, as evidenced by the popularity of Uber 

Pool and Lyft Line. Ride-sharing refers to the sharing of partial or whole trips among multiple 

riders using the same vehicle. By having more people using one vehicle, the traveling cost of each 

person can be reduced while vehicle capacity utilization can be significantly improved. Moreover, 

reduction in air pollution and traffic congestion may also result due to a reduction in the number 

of vehicles per trip demand. There are number of ride sharing companies operating different modes 

of sharing. Large cities have seen the most successful implementations of such ride-sharing 

services due to the immense opportunities of common trip segments. Among ride-sharing services, 

the specific business models take several forms, including the door-to-door model (e.g., Uberpool 

and Lyft Line), the corner-to-corner model (e.g., Via) and the fixed-route model (e.g., OurBus, 

Chariot, Boxcar). Both door-to-door service and corner-to-corner service are using real- time 

demand dynamically designing the route for every single ride. On the contrary, the fixed-route 

service is using the predicted demand and the predefined route for all rides.  
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The focus of this thesis is on fixed-route ride-sharing services, in which shuttles operate on 

fixed routes with predetermined stations. Customers of the service send request in advance to 

reserve a seat and then walk to and wait at a station by the scheduled time for their pick-up. 

Customers are charged a lower price than door-to-door ride-sharing service, while incurring longer 

travel times due to walking and waiting. Fixed-route ride-sharing services predominantly aim at 

serving commuters for completing trips to and from work. Comparing to traditional public transit, 

the fixed-route ride-sharing services have higher flexibility in route selection, provide better 

service (e.g., guaranteed seat and the on-board WIFI) and smart capabilities (e.g., real-time 

tracking of vehicles). Another critical difference between these fixed-route ride-sharing services 

and public transit is that these services are often provided by privately owned companies to whom 

profitability is a main concern. As a result, pricing is clearly a crucial decision for these services. 

In addition to price, how the service is operated can also have a significant effect on its profitability 

and market share. Moreover, the routing design based on the predicted travel demand also plays 

an important role by attracting more demands. For example, for a given customer, an affordable 

service with stations within close proximity would be most attractive, whereas an expensive 

service whose stations are far away would unlikely be a good choice. Therefore, paying more 

attention on the pricing and operation decisions as well as the routing design are more vital to the 

private ride-sharing company.   
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Chapter 2: Joint Pricing and Operational Planning  

 

This chapter is organized as follows. Section 1 is the introduction to the joint price and 

operational planning for a ride-sharing service. Section 2 offers a review of related literature. 

Section 3 describes the model setup and formulates the joint pricing and operational planning 

problem as a nonlinear optimization problem. And section 4 provides a case study based on a real 

world fixed-route ride-sharing service, in which NYC commuter mode-choice are fitted using real 

data and the joint optimization problem proposed in Section 3 is solved. Section 5 offers 

concluding remarks.  

 

2.1 Introduction  

Pricing and operational planning are influenced by the potential demand of the ride-sharing service. 

There are two different aspects affect the potential demand of a service: internal and external. The 

internal factors are related to the ride-sharing service itself, such as: route design, station selection. 

External factors are related to the outside environment, for example, competitors and the 

demographic information of the service area. To reduce the effect of the internal factors, 

predetermined route and demand are used for the analysis of price and operation. On the other 

hand, to reduce the effect of external factors, a set of alternative competitors are predefined in the 

market. Different combinations of the pricing and operational policies can result to different profit. 

By maximizing the daily profit of the service, the optimal combination is obtained. Despite the 

importance of pricing and operational decisions, they have not been 
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adequately address primarily due to the difficulty to predict demand. This is due to several reasons. 

First, there is a lack of demand data of fixed-route ride-sharing and similar services. Most fixed-

route ride-sharing services are relatively recent startups where systematic data collection have not 

been developed. Traditional transit services rarely vary their prices, resulting in particularly limited 

data points. In addition, customers may be reluctant to provide personal information due to privacy 

concerns. Second, as transportation systems become growing complex, there are many alternatives 

that compete for the demand of commuters. Third, the demand is affected by complex factors such 

as personal preference. For example, the attractiveness of an affordable service that requires 

significant amount of walking largely depends on the sensitivity of the customer towards cost 

versus time. In pricing and operational planning section, we develop a method using multinomial 

logit regression for the optimal pricing and operational planning of a fixed-route ride-sharing 

service that addresses the above challenges. Our contributions are as follows. First, we develop a 

demand model that incorporates concerns about cost, time, customer heterogeneity, and competing 

transportation alternatives. Using publicly available data, we show that this demand model is able 

to effectively predict customer mode choice and hence demand. Second, we develop an 

optimization model for jointly optimizing profit, fleet size and shuttle frequency based on the 

proposed demand model. Third, a case study of a real world fixed-route ride-sharing service is 

provided to demonstrate how the proposed models are used to improve the profitability of this 

service. Fourth, using the case study, we derive several interesting insights pertaining to the fixed-

route ride-sharing service in New York City (NYC). For example, we find that introducing a per-

distance rate has limited effect on the profitability of the service, and that the introduction of this 

service is predicted to be predominately divert customers from those who either take transit or 

walk to commute.  



4 

 

2.2 Literature Review  

This work is related to the literature on the pricing of transportation services. As public 

transportation usually employs a flat rate, the majority of this literature has focused to the pricing 

of taxi services. Douglas (1972) develops an aggregate model with a constant fare per unit time 

and per unit travel distance to optimize the vacancy rate for the taxicab industry. However, Douglas 

(1972) does account for spatial effect on demand. This aggregate pricing model is widely used in 

later papers such as De Vany (1975), Arnott (1996) and Chang & Chu (2009). Arnott (1996) 

provides a dispatching model for taxis to reduce the subsidization for the taxicab industry, where 

he considers a space (a 2 dimensional city) within which taxies are randomly and uniformly 

distributed for implementation. Chang & Chu (2009) solve for the welfare-maximizing price for 

cruising taxi market, where the demand is assumed to be a log-linear function of price and average 

waiting time. Our work contributes to this literature by developing a new approach for estimating 

demand and an optimization program based on this demand model for jointly optimizing price as 

well as operational policies. Unlike the above literature, the demand estimation method in this 

work is based on real mode-choice decisions rather than a stylized demand function form. We also 

account for the effect of accessibility of the route in the demand function, which is not considered 

in taxi pricing since taxis provide door-to-door service. Moreover, our objective is to maximize 

the total operational profit, which differs from the typical objective of taxi fare optimization of 

maximizing the social willingness-to-pay.  

The operational decisions considered in this paper include shuttle frequency, which has 

been studied in the literature on transit route configuration. This literature considers decisions 

include selection/improvement of routes as well as the optimal transit frequency, see for example 

Lampkin & Saalmans (1967), Silman et al. (1974), Marwah et al. (1984), Soehodho & Nahry (1998) 
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and Lee & Vuchic (2005). Within this literature, few have considered the joint optimization of 

both price and frequency of transit services, with Delle Site & Filippi (1998) and Chien & Spacovic 

(2001) being exceptions. However, they assume constant elasticity demand functions and do not 

provide methods for the calibration demand elasticity.  

A key element of this work is the modeling of demand of the ridesharing service based on 

travel mode-choice decisions of customers. The literature on travel mode choice is extensive and 

we review some of the most relevant ones below. Deneubourg et al. (1979) develop a dynamic 

model to study the effect of behavioral fluctuations on the competing modes of automobile and 

public transportation. However, they do not consider the cost or service region of the transportation 

modes, or model the specific choice process. Much of the later literature use multinomial logit 

(MNL) model to model the decision making process, see for example Swait & Ben-Akiva (1987); 

Cervero & Kockelman (1997); Cervero (2002); Miller et al. (2005); Frank et al. (2008). Cervero 

& Kockelman (1997) introduce 3Ds: density, diversity and the design into the MNL model, and 

found them to be significant in mode-choice decisions. Cervero (2002) performs a model 

comparison between the original model and an expanded model with land-use and socio-economic 

variables based on a dataset based in Montgomery County, Maryland. Koppelman & Bhat (2006) 

introduce mode-choice modeling using multinomial and nested logit models in a report to the U.S 

Department of Transportation. They also carry out a micro-simulation on the SF bay area to 

validate the mode- choice model. Using a public transportation survey in Chicago, Javanmardi et 

al. (2015) conclude that individual and household socio-demographic, transit availability and 

vehicle availability play an important role in the modeling process. Consistent with this literature, 

we use the MNL model for mode-choice decisions, and consider all factors mentioned in the above 

paper including land- use, socio-economy and demographic factors. Using NYC RHTS and other 



6 

 

data, we fit a MNL model that can be used to predict NYC commuters’ mode-choice decisions 

using only information of their origins and destinations. In contrast to the above literature which 

focuses on fitting the mode-choice model, we utilize the fitted model to simulate the demand of a 

fixed-route ridesharing service for inputting in pricing optimization.  

Finally, this research is also related to the increasing literature on operational decisions in 

the sharing economy. For example, He et al. (2017) study the service region design problem for a 

one-way electric vehicle sharing system. They develop an adoption rate model and compute the 

profit using queueing theory. Furthermore, as the customers’ requirements of real-time share 

increasing, the dynamic matching between vehicles and customers has received increasing 

attention from the operations management community, e.g., Agatz et al. (2012). This work 

contributes to this literature by studying the joint pricing and operational decisions of a fixed-route 

ride sharing system. 

 

2.3 Model Formulation 

Without loss of generality, we consider a fixed-route ride-sharing service provider who 

operates a one-way route, which we denote as RS. However, this assumption can be easily 

extended to two-way service, which is omitted for notational brevity. The set of stations is denoted 

as 𝑆 =  {1, 2, . . . , 𝑠}. For any 𝑘 ∈  {1, 2, . . . , 𝑠}, service zone centered at station 𝑘 is the region in 

which each point is located more than 𝛾 (in Manhattan distance) away from station 𝑘, denoted as 

𝐴(𝑘). For example, the maximum distance that residents are willing to walk is considered as the 

radius of the service region of the service provider’s stations. We denote the origin of a customer 

𝑖 as 𝑜𝑖  and his/her destination as 𝑑𝑖 . The origin station for customer 𝑖 is denoted as 𝑜𝑖  and the 

destination station is denoted as 𝑑𝑖. For simplicity, we discretize each service region into evenly 
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spaced (in Manhattan distance) 𝑄 points, and assume that the origins and destinations of customers 

are uniformly distributed among these 𝑄 points. Figure 3.1 illustrates this discretization in an 

example with 𝑄 =  25, where the star and dots represent the locations of the station and possible 

origin/destination of customers respectively and the grid represent the road directions. That is, if 

𝑜𝑖 = 𝑘 (𝑑𝑖 = 𝑘), the customer 𝑖’s origin (destination) locates at any point within the service region 

𝐴(𝑘) with equal probability of 1. In addition to origin and destination, other characteristics of 

customer 𝑖 (e.g., demographics, Q income) is summarized in an additional variable 𝑥𝑖. We define 

potential customers of RS as travelers whose origin is covered by the service region of a station of 

RS and whose destination is covered by the service region of a subsequent station of RS. We 

denote the probability density function of potential customers in service region 𝐴(𝑘) as 𝑓𝑘(. ) and 

the set of possible values of 𝑥𝑖 in 𝐴(𝑘) as 𝑋𝑘.  

 

Figure 2.1 Discretization of possible origin/destination locations in a service region 
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2.3.1 The Raw Adoption Rate 

The raw adoption rate of the ride-sharing service refers to the proportion of potential 

customers who prefer the service over other competing options. Note that the raw adoption rate 

differs from actual adoption rate of the service (see definition in Section 2.4) in that raw adoption 

rate does not factor in the capacity constraint of the service, and hence reflect solely customer 

preference. We estimate the raw adoption rate by modeling the travel mode-choice process for 

each potential customer whose origin and destination fall in the route’s service regions using the 

classic Multinomial Logit (MNL) model. We define 𝛷 as a set of all available travel modes and 

𝑅𝑆 ∈  𝛷. The utility a customer 𝑖 derives from choosing mode 𝜑 ∈  𝛷  

𝑈φ(𝑥𝑖, 𝑐𝑖
φ

, 𝑡𝑖
φ

) = 𝑉φ(𝑥𝑖, 𝑐𝑖
φ

, 𝑡𝑖
φ

) + 𝜀𝑖
φ

, (2.1) 

 

where 𝑐𝑖
φ

 is customer 𝑖’s cost of travel associated with model φ, and 𝑡𝑖
φ

 is customer 𝑖’s 

time of travel associated with model φ. 𝑉φ(𝑥𝑖, 𝑐𝑖
φ

, 𝑡𝑖
φ

) is the deterministic part of the customer’s 

utility, which depends on cost of travel, time of travel, as well as customer 𝑖 ’s personal 

characteristics. 𝜀𝑖
φ

 represents the random component of the utility function and is assumed to 

follow an extremely value distribution. We note that 𝑐𝑖
φ

 is a known fixed number once the origin 

and destination of the customer is known. It is also important to highlight that 𝑡𝑖
φ

 consists of not 

only the time of travel spent on the vehicle (denoted as 𝑡𝑖
φ,IV

), but also walking time to and from 

the corresponding travel 𝑖 mode for its access, denoted as 𝑡𝑖
φ,WT

and 𝑡𝑖
φ,WF

 respectively. That is,  

𝑡𝑖
φ

= 𝑡𝑖
φ,WT

+ 𝑡𝑖
φ,IV

+ 𝑡𝑖
φ,WF

. (2.2) 
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As a result, customer 𝑖  chooses RS as his/her mode of travel if and only if 

𝑈𝑅𝑆(𝑥𝑖, 𝑐𝑖
RS, 𝑡𝑖

RS) ≥ max
𝜑 ∈ 𝛷{𝑅𝑆} 

{ 𝑈φ(𝑥𝑖, 𝑐𝑖
φ

, 𝑡𝑖
φ

)}. Note that this formulation applies to scenarios 

where one or more travel modes that are unavailable to the customer, in which case high values 

may be assigned to 𝑐𝑖
φ

 or 𝑡𝑖
φ

, or both. Let δi be a binary decision variable indicating whether 

customer 𝑖 chooses to ride with RS (i.e., δi = 1) or not (i.e., δi = 0). Therefore, the probability of 

customer choosing RS as his/her mode of travel (given the origin, destination and personal 

characteristics of the customer) is  

P(δi = 1|𝑜𝑖, 𝑑𝑖 , 𝑥𝑖) =
exp (𝑉𝑅𝑆(𝑥𝑖, 𝑐𝑖

RS, 𝑡𝑖
RS))  

∑ exp (𝑉𝜑(𝑥𝑖, 𝑐𝑖
𝜑

, 𝑡𝑖
𝜑

)) 𝜑 ∈ 𝛷

, (2.3) 

 

where 𝑐𝑖
𝜑

 and 𝑡𝑖
𝜑

 (𝜑 ∈  𝛷) are known constants corresponding respectively to the costs 

and times determined by the origin and destination of the customer.  

From the perspective of the service provider, 𝑥𝑖, 𝑜𝑖 and 𝑑𝑖 are often not directly observable. 

To address this issue, we propose the following steps for estimating the raw adoption rate. It is 

worthwhile to note that δi depends on the cost and time of travel associated with each mode, which 

is in turn affected by the locations of the customer’s origin and destination. For example, a 

customer is more likely to choose to ride with RS if the other travel modes between his/her origin 

and destination are costly, time-consuming, or inaccessible. Therefore, it is important to 

differentiate between the raw adoption rates between different origin-destination pairs. The 

probability of customer 𝑖 who travels from region 𝐴(𝑘) to region 𝐴(𝑗) requesting a ride with RS 

can be derived as follows:  
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𝑃(δi = 1|𝑂𝑖 = 𝑘, 𝐷𝑖 = 𝑗)

= ∑ ∑ ∫ 𝑃𝑖(δi = 1|𝑜𝑖, 𝑑𝑖 , 𝑥𝑖)𝑃(
 

𝑋𝑘𝑑𝑖∈𝐴(𝑗)𝑜𝑖∈𝐴(𝑘)

𝑜𝑖|𝑂𝑖 = 𝑘)P(𝑑𝑖|𝐷𝑖

= 𝑗)𝑓𝑘(𝑥𝑖)𝑑𝑥𝑖

= ∑ ∑ ∫
exp (𝑉𝑅𝑆(𝑥𝑖, 𝑐𝑖

RS, 𝑡𝑖
RS))

∑ exp (𝑉𝜑(𝑥𝑖, 𝑐𝑖
𝜑

, 𝑡𝑖
𝜑

)) 𝜑 ∈ 𝛷

 

𝑋𝑘

1

𝑄2
𝑓𝑘(𝑥𝑖)𝑑𝑥𝑖

𝑑𝑖∈𝐴(𝑗)𝑜𝑖∈𝐴(𝑘)

; 

(2.4) 

 

where 𝑃(𝑜𝑖|𝑂𝑖 = 𝑘)  (𝑃(𝑑𝑖|𝐷𝑖 = 𝑗)) is the probability that customer 𝑖’s trip starts from 

(ends at) 𝑜𝑖 (𝑑𝑖) given that the pick-up (drop-off) station is station 𝑘 (𝑗), and recall that 𝑓𝑘(. ) is the 

probability density function of potential customers in service region A(k) and Xk is the set of 

possible values of 𝑥𝑖  in 𝐴(𝑘). This value can be seen as the raw adoption rate of RS among 

customers who travel from region 𝐴(𝑘) to region 𝐴(𝑗) . In what follows, we denote 𝐴𝑅𝑘𝑗 =

𝑃(δi = 1|𝑂𝑖 = 𝑘, 𝐷𝑖 = 𝑗) for notational convenience.  

Finally, let 𝑝𝑘
𝑗
 denote the probability that the pick-up station of potential customer is station 

𝑘 and the drop-off station is station 𝑗, then the overall raw adoption rate of RS among all customers 

covered by its service regions can be calculated as  

P(δi = 1) = ∑ ∑ 𝑃(δi = 1|𝑂𝑖 = 𝑘, 𝐷𝑖 = 𝑗)𝑝𝑘
𝑗

𝑠

𝑗=𝑘+1

𝑠

𝑘=1

. (2.5) 

 

2.3.2 Planning for the Price and Operations 

A well-designed pricing and operating policy allows the service provider to balance the 

desire to increase demand and revenue with the associated cost. On the one hand, it benefits the 

customers and increases demand if the service provider either increases the shuttle departure 

frequency on each route or lowers the price. On the other hand, a higher frequency or a lower price 



11 

 

may lead to lower profit margin. Therefore, it is important to assess whether increasing revenue or 

profit margin is more effective, and whether either objective should be achieved through changing 

price or operations, or both.  

In this section, we develop an optimization model for jointly optimizing the price and 

operations, i.e., shuttle departure frequency, of the ride-sharing service. For ease of exposition, we 

consider a linear pricing rule  

𝑐𝑖
𝑅𝑆 = 𝑐1𝑑𝑂𝑖𝐷𝑖

+ 𝑐2, (2.6) 

 

where 𝑐1 is rate per unit of distance traveled with RS (𝑑𝑥𝑦 represents the distance between 

𝑥 and y), and 𝑐2 is the flat rate charged per ride. Linear pricing is common in practice among 

various transportation modes used for commuting, e.g., public transit, taxi.  

The operating cost consists of two components: a fixed cost per day per vehicle, denoted 

as 𝐹𝑓, and a variable cost dependent on the number of times each vehicle drives through the route, 

denoted as 𝐹𝑣. Examples of the fixed cost include vehicle rental, driver wage, insurance, parking, 

cleaning and maintenance and data fee. The variable cost includes for example fuel cost and hourly 

payments to drivers. Total operating time per day is denoted as 𝑇, and the total time for completing 

a trip and back to the starting station is 𝑇𝑅. The fleet size is 𝑛. Shuttles depart every 𝛽 minutes 

and the capacity of each shuttle is 𝑁. Overall customer travel demand (including all transportation 

modes) from service region of station 𝑘 to station 𝑗 per unit time is denoted as 𝐷𝑘𝑗. The walking 

and driving speed are assumed to be constant and denoted as 𝑠𝑤 and 𝑠𝑑, respectively. 𝑑𝑘𝑗 denotes 

the distances between stations 𝑘 and 𝑗 for simplification.  
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The service provider RS simultaneously chooses 𝑐1, 𝑐2, 𝛽 and 𝑛 to maximize its profit. 

Note that not all customer travel requests are guaranteed to be satisfied by RS due to its capacity 

limitation. To capture this consideration, we also introduce an intermediate decision variable 𝑦𝑘𝑗 

to represent the expected number of requests from station 𝑘 to station 𝑗 that are fulfilled by RS. 

Hence, the optimization problem of RS can be formulated as  

  

          max
𝑐1,𝑐2,𝛽,𝑦𝑘𝑗,𝑛

𝑇

𝛽
(∑ ∑ (𝑐1𝑑𝑘

𝑗
+ 𝑐2)

𝑠

𝑗=𝑘+1

𝑠

𝑘=1

× 𝑦𝑘𝑗 − 𝐹𝑣) − 𝑛𝐹𝑓 (2.7) 

              𝑠. 𝑡.        𝑦𝑘𝑗 ≤ 𝛽𝐷𝑘𝑗𝐴𝑅𝑘𝑗 ,    𝑓𝑜𝑟 𝑘 = 1, … , 𝑠 − 1, 𝑗 = 𝑘 + 1, … , 𝑠 (2.8) 

                         ∑ 𝑦𝑘𝑗

𝑘≤𝑙,𝑗>𝑙

≤ 𝑁,   𝑓𝑜𝑟 𝑘, 𝑙 = 1, … , 𝑠 − 1, 𝑗 = 𝑘 + 1, … , 𝑠 (2.9) 

                       𝐴𝑅𝑘𝑗 = ∑ ∑ ∫

exp (𝑉𝑅𝑆 (𝑥𝑖 , 𝑐1𝑑𝑘
𝑗

+ 𝑐2,
𝑑𝑂𝑖𝑘 + 𝑑𝑗

𝑠𝑤
+

𝑑𝑘
𝑗

𝑠𝑑
))

∑ exp (𝑉𝜑(𝑥𝑖, 𝑐𝑖
𝜑

, 𝑡𝑖
𝜑

)) 𝜑 ∈ 𝛷

 

𝑋𝑘

1

𝑄2
𝑓𝑘(𝑥𝑖)𝑑𝑥𝑖

𝑑𝑖∈𝐴(𝑗)𝑜𝑖∈𝐴(𝑘)

, 

                        𝑓𝑜𝑟 𝑘 = 1, … , 𝑠 − 1, 𝑗 = 𝑘 + 1, … , 𝑠 (2.10) 

                        𝛽 ≥
𝑇𝑅

𝑛
, (2.11) 

                        𝑐1, 𝑐2 ≥ 0 (2.12) 

 

The first constraint guarantees that the number of fulfilled trips between stations k and j 

does not exceed the total number of trips requested by customers. The second constraint ensures 

that the capacity constraint of each shuttle is not violated at each station. The third constraint is 

derived from the adoption rate model illustrated in Section 3.1, relating the price of service to the 

adoption rate of the service among potential customers traveling from A(k) to A(j). The fourth 
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constraint assures that the shuttle departure interval is feasible given the shuttle fleet size, i.e., the 

shuttles have sufficient time to return to the starting station after completing the route in order to 

follow the schedule.  

 

2.4 Case Study 

In this section, we present a case study based on a real world fixed-route ride-sharing 

service to demonstrate how the model from Section 3 can be applied. We continue to refer to this 

service as RS. The route analyzed in the following operates in New York City (NYC) and has 18 

stations; see Figure 4.1 for an illustration. Customers can book a ride by specifying pick-up and 

drop-off stations 10 minutes before departure time during the operating hours of 7:00 AM - 10:30 

AM and 4:00 PM - 7:30 PM on weekdays. Shuttles depart every 10-15 minutes on this route. The 

current pricing policy is a flat rate of $4/ride.  

 

2.4.1 Datasets 

Several datasets are used in this case study. First, the 2010/2011 Regional Household 

Travel Survey (RHTS) data is used to model the consumer mode-choice model. RHTS data is 

collected by the New York Metropolitan transportation council and provides travel statistics from 

fall of 2010 to fall of 2011 in New York, New Jersey and Connecticut. Nearly 19,000 households 

across 28 counties participated in the survey. Travel information including trip purpose, trip time 

and distance, and activities during the trip. Other geographic information and demographic 

information are also recorded using self-reported data and GPS data. For majority of our analysis 

(except for estimating average speed of transportation), RHTS data related to commuter trips 

within and between Manhattan and Brooklyn were selected because the target customers of RS are 
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commuters fitting this description. In total, 3020 records of such trip provided information on trip 

duration, distance, modes, activities, etc. Three travel modes considered include auto, walk and 

transit, while other modes, i.e., bike, taxi and auto.passenger are excluded from consideration due 

to the scarcity of their records (we also found that the performance of the mode-choice model 

improves as a result of excluding these modes).  

 

 

Figure 2.1: Route of RS 

 

The CTPP 2006-2010 Census Tract Flows data is used to estimate the total commuter trip 

travel demand. This data records total worker counts and its associated margins of error for all 

tract pairs countrywide including Puerto Rico. Moreover, the FIPS codes are also provided for 
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residence and workplace State, County and Census Tract. The 2010 American Census Data and 

the MTA New York City Travel Survey Data are used to estimate the distribution of the 

demographic and socioeconomic factors of potential customers. The research team is also provided 

with the operational cost data of RS.  

The authors have also collected from various other data sources to supplement the above 

datasets, such as using the Google Maps API, the details of which will be discussed in the 

following subsections.  

 

2.4.2 Parameter Estimation 

In this section, we estimated the input parameters for the model described in Section 3 for 

optimizing the price and operations of RS.  

 

2.4.2.1 Travel Cost and Time 

In order to estimate customer’s adoption rate using the model described in Section 3.1, we 

need to estimate the cost and time associated with all modes considered. For the chosen mode of 

each trip, this information is readily available in the RHTS data. However, the cost and time 

associated with other (not chosen) modes have to be estimated. We explain the methods for their 

estimation below.  

We first compute the average speed for the three travel modes considered, by directly 

dividing trip distance used by a given mode recorded in RHTS data by its corresponding trip 

duration; see Table 4.1. All recorded trips are used to ensure a sufficient sample size and result 

reliability.  
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Table 2.1: Average Speed of Travel Modes 

Alternatives Transit Auto Walk 

Avg. Speed (mi/min)  0.098 0.117 0.0325 

 

Walk Time  

Travel time using mode walk (Walk Time) is estimated directly using average walking 

speed:  

𝑊𝑎𝑙𝑘 𝑇𝑖𝑚𝑒 =
𝑇𝑟𝑖𝑝 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.0325𝑚𝑖/𝑚𝑖𝑛
 

Auto Time  

Travel time using the auto mode is estimated as:  

𝐴𝑢𝑡𝑜 𝑇𝑖𝑚𝑒 =
𝑇𝑟𝑖𝑝 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.117𝑚𝑖/𝑚𝑖𝑛
+ 𝑂𝑢𝑡 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 

where the Out of Vehicle Travel Time consists of the walking time to the parking lot and 

to the workplace, and is assumed to average 5 minutes.  

 

Transit Time  

Travel time using mode transit (Transit Time) is more variable and may be affected by 

number of factors, such as travel distance, time of the day, accessibility of transit stations and 

transit frequency. We postulate that the population and income level (of both origin and destination) 

are key indicators of socioeconomic characteristics of an area. For example, the higher the 

population, the more congestion there may be, while the more accessible transit may be. As a result, 

transit time may vary from census tract to census tract. To capture this feature, we use census tract 

as our lowest resolution for population and income, and then uniformly generate large number of 

possible origins or destinations using the Geographic package in R (points that fall in areas where 
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residence is impossible, e.g. central park, river, are eliminated). We note that only locations in 

Manhattan are considered for the purposed of estimating Transit Time, due to the lack of transit 

time data for trips originating/terminating in Brooklyn. Figure 2.2 illustrates Manhattan census 

tracts and uniformly generated origins or destinations considered.  

  

         (a). Manhattan census tracts                                                   (b). Uniformly generated origin and destinations  

Figure 2.2: Census tracts and origins/destinations considered for Manhattan 

 

The Google Map Direction API is used to obtain the real transit travel times between any 

2 points in Figure 2.2b. We collected times for trips during both rush hours and non-rush hours on 

weekdays. Weekend trips are not considered because RS does not operate on weekends. We also 

find the average income and population for the corresponding census tract of each point in Figure 

2.2b. Some example data points are provided in Table 2.2.  
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Table 2.2: Sample input data for transit time model 

time distance ini_inc des_inc rush 

1597 1.523440818 221457 285447 1 

1257 1.277037684 221457 225338 1 

717 0.791910883 221457 251818 1 

540 0.559881348 221457 251818 1 

647 0.353942159 221457 160140 1 

462 0.250093244 221457 160140 1 

… … … … … 

 

The transit travel time is fitted using multiple linear regression in R software. The output 

is summarized in Figures 2.3. We can see that the coefficients for all four independent variables, 

i.e., 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (trip distance), 𝑖𝑛𝑖_𝑖𝑛𝑐 (average income of the origin census tract), 𝑑𝑒𝑠_𝑖𝑛𝑐 

(average income of the destination census tract) and 𝑟𝑢𝑠ℎ (a dummy variable indicating whether 

the trip is taken during rush hours), are significant. The R-squared value of the model is 0.909, 

which indicates a good fit. The regression results therefore suggest a transit time model given as 

follows  

𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑇𝑖𝑚𝑒 = 322.1 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 1.702 × 10−3 × 𝑖𝑛𝑖𝑖𝑛𝑐 + 1.896 × 10−3

× 𝑑𝑒𝑠𝑖𝑛𝑐 + 176.2 × 𝑟𝑢𝑠ℎ, 
(2.13) 

 



19 

 

 

Figure 2.3: Summary of regression output for Transit Time model 

 

Travel Cost  

The monetary cost of each travel mode considered is estimated as follows. The cost for 

walk is zero. For transit, we estimate the cost using the fare for a subway or local bus ride, which 

is a fixed flat rate of $ 2.75/ride. For the auto mode, the cost estimate consists of three components: 

gas fee, parking fee, as well as a toll fee (source: NYC DOT) for passing the bridge if a customer 

traveling from Manhattan to Brooklyn or vise versa. The value of each auto mode cost component 

is provided in Table 4.3. For example, the cost of a trip from Manhattan to Brooklyn, is estimated 

as 0.15 ×  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +  9.5 ×  𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 +  5.76. Here, the parking time is estimated as the 

full-time working hours per day, i.e., 8 hours.  

 

Table 2.3: Auto Mode Travel Cost 

 Manhattan-Manhattan Brooklyn- Brooklyn Intra-Borough 

Gas Fee ($/mi) 0.15 0.15 0.15 

Parking Fee ($/day) 10 9 9.5 

Toll Fee ($/time) 0 0 5.76 
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2.4.2.2 Total Travel Demand 

We first estimate the overall inter-census-tract travel demand based on the CTPP 2006-

2010 Census Tract Flows (CTF) data of commuter trips. We use the flow between census tracts 

provided by CTF data to represent the total travel demand along RS’s Route. For travel between 

census tract pairs missing in CTF data and intra-census-tract travel, we supplement the input with 

travel flow estimates using the gravity model (Anderson (2011)) as detailed below.  

Based on the gravity model, we estimate the total travel demand between census tract 𝑖 and 

census tract 𝑗 to be:  

𝑇𝑖𝑗 = 𝛽1

𝑃𝑜𝑝𝑖𝑃𝑜𝑝𝑗𝐼𝑛𝑐𝑖
𝛽2𝐼𝑛𝑐𝑗

𝛽3

𝑑𝑖𝑠𝑡𝑖𝑗
𝛽4

 (2.14) 

 

where 𝑃𝑜𝑝𝑖 (𝑃𝑜𝑝𝑗) is the population of census tract 𝑖 (j), 𝐼𝑛𝑐𝑖 (𝐼𝑛𝑐𝑗) is the average income 

in census tract 𝑖 (𝑗), and 𝑑𝑖𝑠𝑡𝑖𝑗 is the distance between the geometric centers of census tracts 𝑖 and 

𝑗. We then fit the above gravity model using the CTF data. Figure 2.4 summarizes the model fit 

output in R.  

 
Figure 2.4: Gravity Model Log-linear Regression 
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Using the methods described above, we estimate the total potential travel demand for RS 

by assuming demand is evenly split between either direction in both mornings and afternoons. 

Final estimates of total demand between service regions along the Manhattan-to-Brooklyn and 

Brooklyn-to-Manhattan directions are provided in Figure 2.5a and Figure 2.5b, respectively. We 

can see that a significant portion of travel demand are for intra-census-tract travels, which is 

consistent with the observation of high proportion of walk mode in the RHTS survey.  

 

 

(a). Manhattan-to-Brooklyn Direction 

 
(a). Brooklyn-to-Manhattan Direction 

Figure 2.5: Total travel demand estimates between service regions (S1 to S18 represent the 

stations along the route) 

 

We assume that potential origins and destinations are uniformly distributed among 25 

points within the service region of each station (see Figure 2.1 for an illustration). The radius of 

the service region of each station is assumed to be the maximum distance NYC residents are 

willing to walk, that is, 0.25 miles (Yang & Diez-Roux (2012)). Origins and destinations in areas 
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where two or more service regions overlap are assigned to the service region of their closest 

respective station. This is to ensure that no customer gets counted twice and that everyone takes 

the shuttle from the nearest station. Using the above method, we generate all potential origins and 

destinations for customers.  

 

2.4.2.3 Other Parameters 

Based on the station coordinates, the Manhattan distances between pairs of stations are 

calculated to represent the distances of travel between RS’s stations. The RS shuttle travel time 

are estimated using the Google Maps API by treating the automobile travel time from one station 

to another as the corresponding RS shuttle travel time. Finally, we also recognize that a large 

portion of NYC residence do not own a car (77% according to StatsBee), making the auto mode 

infeasible for them. To factor in this consideration, we randomly select 77% of the potential trips 

and assign a very large cost to the auto mode for them, effectively excluding the auto mode from 

the available modes for these trips.  

 

2.4.3 The Mode-Choice Model 

We consider several demographic and socio-economic factors suggested by Javanmardi et 

al. (2015) in the initial model, which include age, income, gender, access to transit, vehicle 

ownership, employment, gross population density, land-use diversity. We also introduce dummy 

variables for whether the origin/destination is in Brooklyn or not. These factors are estimated based 

on the American Fact Finder Census 2010 (AFC) and the NYC Travel Survey Data (NTS). After 

initial model fit, we find that 6 out of 12 factors are insignificant and hence are dropped from the 

model. Table 2.4 summarizes the above results.  



23 

 

Table 2.4: Characteristics Selection 

Demographics  Data Source Significant? (Y/N) 

Age NTS Y 

Income NTS Y 

Gender NTS Y 

Origin Brooklyn AFC Y 

Destination Brooklyn AFC Y 

Access to Transit AFC N 

Vehicle Ownership  AFC Y 

Full-time Employed  AFC N 

gross density of origin census tract  AFC N 

land-use diversity of origin census tract  AFC N 

gross density of destination census tract  AFC N 

land-use diversity of destination census tract  AFC N 
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Figure 2.6: Mode-choice model regression output 

 

After eliminating the insignificant characteristics, we consider trip-specific variables 

including time and cost, and personal characteristics including, age, income, gender, origin from 

Brooklyn, destination in Brooklyn and vehicle ownership when fitting the MNL model. Figure 2.6 

summarizes the regression output in R. We find that cost and time are both highly significant in 

mode-choice decisions for all travel modes. As the cost and/or time of a mode increases, the 

probability of customers choosing the mode decreases. Number of vehicles in the household 

(VEHNO) is significant for both walk and transit. If the number of vehicles per household 

increases, a person in that house- hold is more likely to choose auto rather than walk or transit. 

The origin and/or destination being in Brooklyn has a significant impact on mode choice, however, 
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it is more significant for choosing transit than choosing walk. Income is significant for choosing 

transit but not for choosing walk. Age and gender are not significant in all modes. The likelihood 

ratio test is significant at 99.9% confidence level, suggesting a reliable model.  

We performed a 10-fold cross validation (randomly selecting 90% of the data as training 

data and using the rest 10% as the test data) to examine the prediction accuracy of the fitted mode-

choice model. Table 2.5 summarizes the result. We can see that the prediction accuracy is 

reasonable overall (59.64-81.45%), and higher for Transit (66.67-91.86%) and Walk (65.79-80%) 

modes. Pre- diction accuracy for auto mode is less reliable, varying from 6.98% to 60.71%. This 

is a result of the small sample size of the auto mode (566 records out of 3020 in total). However, 

the target customer group of RS is commuters in NYC, whose main competition comes from 

traditional or new forms of public transit and walking. Therefore, the prediction accuracy of auto 

mode is expected to have limited effect on the analysis.  

Table 2.5: 10-fold cross validation of mode-choice model 

Predict Accuracy Transit Auto Walk Overall 

1 84.48% 28.26% 80.00% 74.18% 

2 84.15% 33.33% 74.47% 74.18% 

3 88.65% 13.16% 69.23% 74.55% 

4 84.21% 6.98% 67.21% 68.36% 

5 84.12% 20.93% 79.03% 73.09% 

6 66.67% 39.13% 65.79% 59.64% 

7 89.36% 44.23% 78.05% 77.54% 

8 91.86% 42.11% 76.92% 81.45% 

9 82.35% 38.37% 75.34% 72.73% 
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10 83.22% 60.71% 68.75% 73.82% 

 

2.5 Optimal Policy 

In this section, we discuss the optimal pricing and operational policy for RS. Several 

competing travel modes are considered, including transit, auto, walk. In addition, we also consider 

another major competitor of RS — Via, which is another ride-sharing service provider offering 

corner-to-corner service for $5 flat fee in NYC. Note that because the RHTS data does not contain 

ride-sharing modes, the utility function of the transit mode is used for both RS and Via due to the 

similarity between their services. We study three cases: (i) when RS chooses optimal prices only 

given the current operation policy of 10-minute departure intervals and fleet size of 7 (i.e., the 

smallest fleet size that enables 10-minute departure interval), (ii) when RS simultaneously chooses 

optimal prices and operational decisions; and (iii) when RS simultaneously chooses optimal prices 

and operational decisions and prices are flat rates only. For each case, we examine the performance 

of the optimal policy in terms of profit and average adoption rate (percentage of customers 

adopting RS’s service among those who know of RS) under varying customer knowledge levels, 

i.e., percentage of people who know about RS, of 10%, 20%, 50% and 100%.  

Tables 2.6 - 2.8 present the optimal policy and performance for the three cases mentioned 

above. For example, in case (ii), when the knowledge level is 5%, the optimal price is a flat rate 

of $4.7659 and a distance-based rate of $ 1.5268 mi/min under the current departure interval. We 

can also see that the optimal prices do not vary in case (i). This is because in case (i) the shuttles 

depart so frequently that there are always excessive capacity.  
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Table 2.6: Optimal pricing under current operational policy 

Knowledge 𝑐1 ($/mi) 𝑐2 ($) 𝛽 (min) 𝑛 Average Adoption Rate Profit ($) 

0.1 0.1661 5.2668 10 7 1.35% -1322.1 

0.2 0.1661 5.2668 10 7 2.71% -977.1184 

0.5 0.1661 5.2668 10 7 6.77% 57.7013 

1 0.1661 5.2668 10 7 13.54% 1782.4 

 

Table 2.7: Jointly optimal pricing (linear price) and operational policy 

Knowledge 𝑐1 ($/mi) 𝑐2 ($) 𝛽 (min) 𝑛 Average Adoption Rate Profit ($) 

0.1 0.1887 5.2589 194.1266 1 1.45% 110.1669 

0.2 0.1887 5.2589 97.0633 1 2.90% 453.1939 

0.5 1.5268 4.7659 65 1 5.72% 1382.2 

1 1.5268 4.7659 32.5 2 11.45% 2764.5 
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Figure 2.7: Comparing profits 

 

Table 2.8: Jointly optimal pricing (flat rate only) and operational policy 

Knowledge 𝑐1 ($/mi) 𝑐2 ($) 𝛽 (min) 𝑛 Average Adoption Rate Profit ($) 

0.1 0 5.5707 187.8345 1 1.44% 109.8949 

0.2 0 5.5407 93.9173 1 2.89% 452.6498 

0.5 0 8.5292 65 1 4.11% 1269.3 

1 0 6.3472 21.6667 3 11.34% 2689.4 
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Figure 2.8: Comparing adoption rates 

 

Figure 2.7 illustrates the comparison between optimal profits in the three cases considered 

under different knowledge rates. As expected, in each case, the profit increases with knowledge 

rate. The current operational policy can not profit unless the knowledge rate is higher than around 

0.5. Both case (ii) and (iii) significantly improve profitability of the service compared to the current 

operational policy, suggesting that the current operational policy provides excessive capacity. The 

improvement in profit from including distance based price is relatively moderate, varying from 

less than 1% to 8.9%. This perhaps surprising result is a result of existing competition, that is, the 

competing modes’ pricing policy are predominantly flat-rate only. As a result, the benefit of 

charging a per-distance price is limited by the reduced competitive advantage. This is further 

reflected in the phenomenon that the optimal per-distance rate is increasing in the knowledge level 

as increased knowledge level enhances RS’s competitiveness. These results highlights the 



30 

 

advantage of incorporating competing mode choices in the demand model compared to traditional 

demand function forms.  

 

 

(a). Varying per-distance price 𝑐1 (fixing 𝑐2 at $4.7659) 
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(b). Varying flat rate 𝑐2 (fixing 𝑐1 at $1.5268/mi)   

Figure 2.9: Trade-off between profit and adoption rate (at knowledge level 1) 

 

Figure 2.8 illustrates the comparison between adoption rates of RS in the three cases 

considered under different knowledge rates, where adoption rate of a travel mode is defined as the 

trips served by the mode divided by the total travel demand that can be served by this mode. Clearly, 

current policy obtains the highest adoption rate due to the excessive capacity the service provides. 

The adoption rates under linear pricing policy are higher than those under flat-rate only policy, 

especially for intermediate knowledge levels.  

It is not difficult to see that there existing a tradeoff between profit and adoption rate. 

Figures 2.9a and 2.9b illustrate this tradeoff by varying the per-distance rate and flat rate, 

respectively. We can see that in reducing price from optimality, adoption rate is improved at the 

expense of profitability. However, interestingly, we observe that the profit decreases at a lower 

rate than the adoption rate increases in the neighborhood of the optimal price. This effect is 
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particularly strong when varying the flat rate. For example, reducing the flat rare from $4.8 to $4.6 

leads to a 3.5% increase in adoption rate with only 0.4% decrease in profit. This effect suggests an 

opportunity to significantly increase adoption rate with little compromise on profit, which has 

important implications as customer adoption is critical to the success of a startup in a competitive 

environment. 

In addition, we study the shift of adoption rates of travel modes before and after RS enters 

the market. In particular, we aim to answer the question “what modes are most affected by RS’s 

market entry in NYC?”. Table 2.9 summarizes the estimates of the market shares of the travel 

modes with and without RS2. Comparing the results from Tables 2.9a and 2.9b suggests that RS 

mainly attracts customers who originally chose transit or walk modes for their commuting trips.  

 

Table 2.9: Estimate adoption rate of travel modes 

Mode Adoption Rate 

Auto  1.53% 

Transit 37.12% 

Via 14.37% 

Walk 46.98% 

(a). Without RS 

Mode Adoption Rate 

Auto  1.34% 

Transit 32.66% 

Via 12.55% 

Walk 40.89% 
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RS 12.56% 

(b). With RS 

 

2.6 Conclusion 

In this chapter, we investigated the pricing and operational policy design problem for a 

fixed-route ride-sharing service. To solve the challenge of estimating the demand of the service, 

we developed a choice model based on multinomial logit mode-choice model. Using publicly 

available travel survey data, we showed that this model is effective in predicting customer mode-

choices and therefore demand of the service. Using this model, we then constructed an 

optimization model for the joint planning of price, fleet size and shuttle frequency.  

In a case study of a real-world fixed-route ride-sharing service in NYC, we calculated the 

optimal prices and operational policies for varying levels of commuter knowledge of RS. Our 

results suggest that jointly optimizing price and operational policy significantly improves 

profitability of the service compared to optimizing only price under the current operational policy, 

and that the optimal departure interval is substantially larger than the current value. We also find 

that having a distance-based price only moderately affect the profitability of the service, and its 

effect on the adoption rate may be more notable. In addition, we illustrated the tradeoff between 

profit and adoption rate, and highlighted the opportunity for significantly increasing the adoption 

rate with little compromise of profit by reducing the flat rate from its optimal value. Moreover, our 

results suggest that RS’s customers are predicted to be predominately diverted from those who 

either took transit or walk to commute in the absence of RS.  
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Chapter 3: Fixed Route Design  

 

3.1 Introduction 

One of the most commonly used ridesharing services is public transit, e.g., buses. It offers 

shared rides along fixed routes with predetermined stations, usually at a fixed fee and operating 

according to a prearranged timetable. In recent years, more and more privately owned fixed route 

ride-sharing companies, such as Chariot, Boxcar Transit, and OurBus, have entered the market. 

Ridesharing services are generally regarded as having higher energy efficiency than other 

comparable modes of travel through combining common trip segments among passengers. Fixed-

route ridesharing services may either be profit driven or funded by governmental subsidies. No 

matter the type of service, a key objective of these services is to increase their ridership. This has 

multiple benefits: first, it allows these services to increase their revenue; second, it permit high 

utilization of their capacity and therefore enhance their energy efficiency; third, increasing 

ridership of the service allows it to serve more travel needs; fourth, more travel demand served 

through ridesharing reduces single-occupancy vehicles and thus reduce congestion. In this chapter, 

we investigate the design of a ridesharing system in order to maximize ridership/demand of the 

service. Specifically, we determine the number of routes within the service area, stations on each 

route and the order of visiting each station. 

Transit network design (TND) is one of the most crucial decision to the sustainable urban 

development (Ibarra-Rojas et al. (2015)). A well-designed transit network can impact the travel 
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time, road congestion, city pollution and road accident. As rapid development of urban area 

worldwide, TND is attracting increasing research interests. TND specifies designs including line 

layout, stop spacing and vehicle headways to meet the requirement of the objective function. 

Researchers have investigated the optimal design for achieving different objectives, e.g., 

minimizing cost, minimizing the number of transfers, maximizing social welfare and maximizing 

direct trips etc. The problem in the chapter can be viewed as a TND problem. However, different 

from the TND literature where demand is predominantly assumed to be fixed and continuous, we 

treat the travel demand as discrete and dependent with the configuration of the routes. For example, 

adding a new station on a route will affect the demands between all existing stations and with the 

new station. As a result, the model developed in this chapter contribute to not only the line layout 

design but also the vehicle headway design.  

The design of a fixed-route ride-sharing service is similar to the vehicle routing problem 

with pickup and delivery (VRPPD). In the VRPPD, a number of routes have to be constructed in 

order to satisfy a set of transportation requests, each of which specifies its origin and destination. 

One or more capacitated vehicles depart from and arrive at a central depot, and operate round trips 

between customers’ locations and depot. The objective of the VRPPD usually is to minimize the 

total cost for satisfying all transportation requests.  The solution of the VRPPD determines the 

assignment of vehicles to customers, as well as each vehicle’s order of visiting its assigned 

customers. Similar to the VRPPD, the routing design problem we consider for the ride-sharing 

service also determines grouping of stations and the order of visiting each station, given a set of 

potential stations and potential travel requests. However, the ridesharing routing design problem 

in this paper differs from the traditional VRPPD in the following sense. First, in the conventional 

VRPPD, all customer nodes are visited exactly once. However, in the ridesharing routing design 
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problem considered in this chapter, a station node can be visited by multiple routes or never visited 

by any route. Second, the objective of the VRPPD is to minimize the total cost of operation, 

whereas the objective of the ridesharing routing design problem is to maximize the total demand 

served. Third, a crucial difference is that the demand of each node in the ridesharing routing design 

problem depends on other nodes on the route. For example, if a new station is added to an existing 

route, then the total demand on this route is increased by the demand covered between the new 

station and all the existing stations on the route. In contrast, the demand is fixed independent of 

the route configuration in the VRPPD. Lastly, the VRPPD considers the capacity of the vehicles 

while the shuttle’s capacity is not considered as a constraint in the ride-sharing routing design 

problem. This is because when the capacity of each route can be easily adjusted by changing the 

shuttle departure frequency. 

In this chapter, we formulate the ridesharing routing design problem as a mixed integer 

linear programming (MILP) optimization problem. Because the problem is NP-hard, we then 

propose a heuristic based on Genetic Algorithm (GA) for improving the solution efficiency. Using 

a number of test instances, we find that the proposed algorithm leads to solutions that have close 

performance compared to the MILP optimal solutions (with objective values of less than 10% 

higher than the MILP optimal objective value). We also apply the model and algorithm in a case 

study with a large number of potential stations (288 in total), in which we find the optimal routes 

in Manhattan to maximize ridership of the service. 

The rest of this chapter is organized as follows. Section 2 offers a review of related 

literature. Section 3 describes the model setup and formulates the ridesharing routing design 

problem as a MILP. Section 4 proposes a GA based heuristic approach to solve the problem. 

Section 5 provides a case study based on real-world data from New York City (NYC), in which 
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optimal routes are selected to satisfy the demand of NYC commuters. Finally, Section 6 offers 

concluding remarks. 

 

3.2 Literature Review 

The fixed-route ride-sharing routing design problem presented in this chapter is closely 

related to the vehicle routing problem with pickup and delivery (VRPPD). Dantzig et al. (1954) 

introduce the vehicle routing problem as an extension of the traveling salesman problem and 

proposed several solutions to the problem. Dantzig & Ramser (1959) construct a capacitated 

vehicle routing problem to find the optimal route to deliver goods to various customers. In this 

problem, each customer has a demand for goods and vehicle have a limited capacity. A number of 

papers studied the VRP extension with time window constraints (VRPTW), e.g., Golden & Assad 

(1986), Assad (1988) and Lenstraet al. (1988). The pickup and delivery problem with time 

windows (PDPTW) (Cordeau et al. (1997), Ropke & Pisinger (2006)) is considered as the 

generalization of VRPTW. In this problem, customers’ request is associated with 2 locations: an 

origin where customer should be picked up and a destination where customer should be dropped 

off. For each route, the origin must precede the destination and both locations are on the same 

route. However, the classic PDPTW differ from the ridesharing routing design problem 

investigated in this chapter in that the total demand served by the routes in this chapter depends on 

the routing design. In addition, the objective of our problem is to maximize the total demand served 

by the routes, which also differs from the PDPTW literature which typically focuses on minimizing 

the total cost or minimizing the total travel time.   

The design of fixed-route ride-sharing systems is also discussed the transit network design 

(TND). TND determines the number and locations of transit stops, the headway, and the general 
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line layout in a predefined service region. Generally, the service zone for a public transit can be 

described based on a network 𝑁(𝑉, 𝐴). 𝑉 represent a set of geographic stops that can be connected 

by arcs (𝑖, 𝑗) ∈ 𝐴, where 𝐴 is a set of arcs and 𝑖, 𝑗 ∈ 𝑉. Decisions for TND include the transit stops 

location, the visit sequence for the stops and the average spaces between two stops.  There’re 

multiple objectives for TND such as minimize the total users’ and operator’s cost, minimize the 

number of transfers, minimize the number of unsatisfied passengers, maximize the direct trips etc. 

As a result, many researchers combine multiple objectives as the final objective function. The 

TND problem is traditionally solved using one of two approaches: continuous approximation and 

discrete optimization. The continuous approximation approach analytically models the passengers’ 

demands as a continuous function over a geographic space. For example, Chien & Spasovic (2002) 

consider an elastic demand dependent on the level of service of the transit with the objective of 

maximizing the social welfare, i.e., sum of customer surplus and operator’s profit. Daganzo (2010) 

assumes uniform demand in a square service region and solves for the transit network structure 

that minimizes the total cost. However, the relationship between demand and geographic factors 

is dynamic and unpredictable, and the performances of demand models are also difficult to validate. 

As a result, most authors have modeled the TND problem as discrete optimization problems. For 

example, Fan & Machemehl (2006b) assume fixed demand and minimize the weighted sum of 

operator cost, user cost, and unsatisfied demand cost. Nayeem et al. (2014) solve the TND with 

static demand to minimize the weighted sum of total number of unsatisfied passengers, the total 

number of transfers and the total travel time of all served passengers. Nikolic´ and Teodorovic´ 

(2013) also solve the static demand by minimizing the number of transfers and the total travel time. 

In this chapter, we also model the fixed-route ride-sharing design problem as a discrete 
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optimization. However, differing from the TND literature, the objective our model is to maximize 

the total demand served by the routes while the demand is endogenous to the routing design.  

Solving the TND discrete optimization problem is challenging as the problem is often NP-

hard (Lenstra & Kan 1981). Several papers have applied exact algorithms such as the branch-and-

cut algorithm (Carpaneto et al. 1989) or the column generation algorithm (Desrochers et al. 1992) 

to solving the problem. However, exact algorithms are only tractable for restricted size problems, 

e.g., small instances (Wan and Lo 2003) or design of a single line (Guan et al. 2003). As a result, 

meta-heuristic methods have been introduced. Existing meta-heuristic approaches for the TND 

problem include: Tabu Search (Fan & Machemehl 2008), Simulated Annealing (Fan & 

Machemehl 2006b) and population-based algorithms like genetic algorithm (Fan & Machemehl 

2006a) and artificial bee colony algorithm (Szeto & Jiang 2012). Among these methods, the 

genetic algorithm (GA) has gained increasing popularity as it can be naturally embedded into the 

TND problem (Chakroborty 2003), where line generation can be iteratively obtained through a 

similar process to chromosome crossover and mutation. Some recent examples of applying GA to 

solving TND problems include Fan & Machemehl (2006a), Chakroborty (2003) and Amiripour et 

al. (2014). The use of GA has been proven to significantly shorten the computational time 

compared to other heuristics while generating relatively good approximations to the exact optimal 

solutions. In this chapter, we also propose a GA based approach for solving the ride-sharing routing 

design problem, with more details described in Chapter 3. 

 

3.3 Model Formulation 

We consider a set of potential stations Φ. A pseudo origin β and a pseudo destination β̅ are 

introduced in addition to the set of stations to represent the start or the end of all routes, respectively. 
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We denote the set of potential stations including origin β as Φβ , and denote the set of potential 

stations including destination β̅ as Φβ̅. Let ℛ denotes the set of routes to be generated for the 

service. 𝑝𝑖𝑗 denotes the total potential demand with origin in the service region of station 𝑖 and 

destination in the service region of station 𝑗. 𝑑𝑖𝑗  represents the direct travel distance between 

station 𝑖 and station 𝑗. 𝐿 is the maximum allowed route length, and 𝑊𝐷 is the minimum distance 

between two adjacent stations on any route. 𝑥𝑖𝑗𝑎  is a binary decision variable, with 𝑥𝑖𝑗𝑎 = 1 

indicating that station 𝑖 is immediately followed by station 𝑗 on route 𝑎, and 𝑥𝑖𝑗𝑎 = 0 otherwise. 

𝑦𝑖𝑎 is another binary decision variable, with 𝑦𝑖𝑎 = 1 indicating that station 𝑖 is visited by route 𝑎, 

and 𝑦𝑖𝑎 = 0 otherwise. 𝑠𝑖𝑗𝑎 and 𝑧𝑖𝑗 are variables that represent the sequences of stations. 𝑠𝑖𝑗𝑎 = 1 

indicates that station 𝑖 is visited before station 𝑗 on route 𝑎, and 𝑠𝑖𝑗𝑎 = 0 otherwise. 𝑧𝑖𝑗 is a similar 

variable with 𝑧𝑖𝑗 = 1 indicating that station 𝑖 is visited before station 𝑗 on at least one of the routes, 

and 𝑧𝑖𝑗 = 0 otherwise.  𝐷𝑗𝑎 defines the position of station 𝑗 on route 𝑎, i.e., 𝐷𝑗𝑎 is the distance of 

travel between route 𝑎 ’s origin and station 𝑗  following route 𝑎 . Table 3.1 summarizes the 

parameter definitions in the model.  

 

Table 3.1: Parameters Definition 

Parameter Definition 

Φ A set of potential stations. 

β A pseudo origin. 

β̅ A pseudo destination. 

Φβ  A set of potential stations including pseudo origin β. 

Φβ̅ A set of potential stations including pseudo destination β̅. 
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𝑝𝑖𝑗 Total potential demand from station 𝑖 to station 𝑗, 𝑖, 𝑗 ∈ Φ. 

𝑑𝑖𝑗 Direct travel distance between station 𝑖 and station 𝑗, 𝑖, 𝑗 ∈ Φ. 

𝐿 Maximum length of a route. 

𝑊𝐷 Minimum distance between two adjacent stations on a route. 

𝑀 A large number. 

𝑥𝑖𝑗𝑎 Binary decision variable that indicates whether station 𝑖  immediately before 

station 𝑗 on route 𝑎. 

𝑦𝑖𝑎 Binary decision variable that indicates whether route 𝑎 serves station 𝑖. 

𝑠𝑖𝑗𝑎 Binary decision variable that indicates whether station 𝑖 is visited before station 𝑗 

on route 𝑎. 

𝑧𝑖𝑗 Binary decision variable that indicates whether station 𝑖 is visited before station 𝑗 

on at least one route. 

𝐷𝑗𝑎 Travel distance between station 𝑗 and station β on route 𝑎, 𝐷β𝑎 = 0. 

𝑤𝑖𝑗𝑎 A variable introduced to linearize the model, 𝑤𝑖𝑗𝑎 = 𝐷𝑖𝑎 × 𝑥𝑖𝑗𝑎.  

 

We build the mixed integer programming (MIP) model to solve the routing design problem 

for the fixed-route ride-sharing service as follows: 

 

                      𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑖𝑗𝑧𝑖𝑗

𝑖,𝑗∈Φ

， (3.1) 

 

                                    𝑠. 𝑡. ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑎 ≤ 𝐿, ∀𝑎 ∈ ℛ

𝑖,𝑗∈Φ

 

 

(3.2) 

                                             𝑑𝑖𝑗 ≥ 2 × 𝑊𝐷 × 𝑥𝑖𝑗𝑎 , ∀𝑖, 𝑗 ∈ Φ, 𝑎 ∈ ℛ 

 
(3.3) 
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                                             𝑦𝛽𝑎 = 1,  𝑦𝛽̅𝑎 = 1, ∀𝑎 ∈ ℛ 

 
(3.4) 

  ∑ 𝑥𝑖𝑗𝑎 = 𝑦𝑗𝑎

𝑖≠𝑗,𝑖∈Φβ 

,    ∀ 𝑗 ∈ Φβ̅ , 𝑎 ∈ ℛ 

 

(3.5) 

   ∑ 𝑥𝑖𝑗𝑎 = 𝑦𝑖𝑎

𝑖≠𝑗,𝑗∈Φβ̅ 

,    ∀ 𝑖 ∈ Φβ , 𝑎 ∈ ℛ 

 

(3.6) 

                                               ∑ 𝑥β̅𝑗𝑎 = 0,   

𝑗∈Φ

∀𝑎 ∈ ℛ 

 

(3.7) 

                                               ∑ 𝑥iβ𝑎 = 0,   

𝑖∈Φ

∀𝑎 ∈ ℛ 

 

(3.8) 

                            𝐷𝑗𝑎 = ∑ (𝐷𝑖𝑎 + 𝑑𝑖𝑗 × 𝑥𝑖𝑗𝑎)

𝑖∈Φβ 

,    ∀ 𝑗 ∈ Φβ̅ , 𝑎 ∈ ℛ 

 

(3.9) 

                                            𝐷𝑖𝑎 + 𝑑𝑖𝑗 ≤ 𝐷𝑗𝑎 + 𝑀 × (1 − 𝑠𝑖𝑗𝑎),

∀𝑖, 𝑗 ≠ 𝑖 ∈ Φ, 𝑎 ∈ ℛ 

 

(3.10) 

                                             𝑧𝑖𝑗 ≤ ∑ 𝑠𝑖𝑗𝑎

𝑎∈ℛ

,     ∀𝑖, 𝑗 ∈ Φ, 𝑎 ∈ ℛ 

 

(3.11) 

                                             𝑥𝑖𝑗𝑎, 𝑦𝑖𝑎, 𝑠𝑖𝑗𝑎, 𝑧𝑖𝑗  ∈ {0,1}      ∀𝑖, 𝑗 ∈ Φ, 𝑎 ∈ ℛ 

 
(3.12) 

The objective of the MIP is to maximize the total direct travel served by the routes. 

Constraint (3.2) imposes the maximum route length limit. Constraint (3.3) specifies the minimum 

distance restriction between adjacent stations on any route. Constraint (3.4) ensures that every 

route starts from β or ends at β̅. Constraints (3.5)-(3.6) guarantees that there are no circles in the 

routes, i.e., each station is visited once and only once on a route. Constraints (3.7)-(3.8) specifies 

that β  does not have any upstream stations, and β̅  does not have any downstream stations. 

Constraint (3.9) follows the definition of 𝐷𝑖𝑎 and make sure that the value of 𝐷𝑖𝑎 is consistent with 

the value of 𝑥𝑖𝑗𝑎. That is, if station 𝑖 is visited before station 𝑗 on route 𝑎, 𝐷𝑗𝑎 should be greater 

than 𝐷𝑖𝑎 . Constraint (3.10) ensures that the values of 𝐷𝑗𝑎  and 𝑠𝑖𝑗𝑎  are consistent. That is, the 
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distance of a station 𝑖 is farther from the origin on route 𝑎 than station 𝑗 if and only if station 𝑖 it is 

visited before station 𝑗 on route 𝑎. Constraint (3.11) guarantees consistency between 𝑠𝑖𝑗𝑎 and 𝑧𝑖𝑗, 

that is, if station 𝑖  is not visited before station 𝑗  on any route 𝑎  then 𝑧𝑖𝑗 = 0 . Finally, (3.12) 

specifies binary constraints. 

Constraint (3.9) is not a linear constraint. To linearize the model, we introduce an additional 

decision variable 𝑤𝑖𝑗𝑎 = 𝐷𝑖𝑎𝑥𝑖𝑗𝑎 and a sufficient large number 𝑀. Model (3.1)-(3.12) can thus be 

linearized as follows: 

                      𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑖𝑗𝑧𝑖𝑗

𝑖,𝑗∈Φ

， (3.1) 

 

                                  𝑠. 𝑡.    𝐷𝑗𝑎 = ∑ (𝑤𝑖𝑗𝑎 + 𝑑𝑖𝑗 × 𝑥𝑖𝑗𝑎)

𝑖∈Φβ 

,    ∀ 𝑗 ∈ Φβ̅ , 𝑎 ∈ ℛ 

 

(3.13) 

                                             𝑤𝑖𝑗𝑎 ≤ 𝐷𝑖𝑎, ∀𝑖, 𝑗 ∈ Φ, 𝑎 ∈ ℛ 

 

(3.14) 

    𝑤𝑖𝑗𝑎 ≤ 𝑀 × 𝑥𝑖𝑗𝑎 , ∀𝑖, 𝑗 ∈ Φ, 𝑎 ∈ ℛ 

 

(3.15) 

                            𝑤𝑖𝑗𝑎 ≥ 𝐷𝑖𝑎 − (1 − 𝑥𝑖𝑗𝑎) × 𝑀, ∀𝑖, 𝑗 ∈ Φ, 𝑎 ∈ ℛ 

 

(3.16) 

                                             𝑤𝑖𝑗𝑎 ≥ 0,      ∀𝑖, 𝑗 ∈ Φ, 𝑎 ∈ ℛ 

 

(3.17) 

                                       (3.2)-(3.8), (3.10)-(3.12)   

 

 

 

 The above MILP model is similar to the VRPPD with no capacity constraints, and can be 

proven to be NP-hard (Lenstra, J. K., & Kan, A. R. (1981)) as the problem can be stated as a 

spanning tree which is exponentially grow with the number of iterations. As a result, a heuristic 

algorithm is needed to solve the problem within reasonable time. In the next section, we propose 

a genetic algorithm based approach for solving the MILP.   
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3.4 Genetic Algorithm Based Approach  

In this section, a GA-based approach is developed to solve the routing design problem 

presented in Section 3.4. The basic steps of genetic algorithm are: first, initializing the population; 

second, decoding chromosome; third, selecting individuals from the population for breeding the 

new generation; fourth, breed the new generation through GA operators (crossover and mutation); 

finally, survivals are realized based on fitness evaluation (Tasan & Gen 2012). These steps are 

illustrated in Figure 3.1. 

 

 

 

Figure 3.1: General Procedure of Genetic Algorithm  

(figure adapted from Tasan, & Gen 2012) 
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Table 3.2: Procedure for the Proposed GA Approach 

Procedure: GA for Ride-sharing Routing Design 

Input: location data for potential stations, commuter traveling demand, GA parameters 

Output: The optimal routes (routes with the largest total demand served) 

Initialize: 𝑡 ← 0; 

Initialize 𝑃(𝑡) by using random permutation; 

Evaluate 𝑃(𝑡) by calculating the fitness value; 

 While the stopping criterion not satisfied    do 

           For each iteration 𝑖 

                  Parents 𝑃𝑖1(𝑡), 𝑃𝑖2(𝑡) are selected from 𝑃(𝑡) 

                  𝑃𝑖1(𝑡) and  𝑃𝑖2(𝑡) crossover to produce offspring 𝑂𝑖1  

                  Offspring 𝑂𝑖1 mutate with a probability to generate offspring 𝑂𝑖2 

                  𝑂𝑖1, 𝑂𝑖2 constitute child 𝐶𝑖(𝑡) 

           End 

           All 𝐶𝑖(𝑡) compose child generation 𝐶(𝑡) 

           Evaluate the fitness value of 𝐶(𝑡) and 𝑃(𝑡), respectively 

           Select the next generation 𝑃(𝑡 + 1) from 𝑃(𝑡) and 𝐶(𝑡) 

           𝑡 + 1 ← 𝑡 

 End  

Output the best routes 

End  

 

Table 3.2 presents the procedures of the proposed GA algorithm. Parameter 𝑡 denotes the 

number of generations. 𝑃(𝑡) refers to the whole population at generation 𝑡. In our problem, 𝑃(𝑡) 
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corresponds to a set of different routing solutions.  𝑃𝑖1(𝑡) and 𝑃𝑖2(𝑡) denote 2 parents selected 

from the whole population 𝑃(𝑡) in iteration 𝑖. Through crossover and mutation operations, the 

parents produce the next generation 𝐶(𝑡). We detail the steps in the procedure below. 

 

3.4.1 Genetic Representation and Encoding 

The genes in this problem represent the potential stations with unique geo-locations, which 

we can illustrate using the permutation representation for the genetic representation; see Figure 

3.2. In biology, genes constitute a chromosome and chromosomes define an individual. 

Analogously, in our problem, various stations in different orders constitute a route and a collection 

of routes form a preliminary solution. Therefore, a potential station can be considered a “gene” in 

the GA, a route corresponds to a “chromosome”, a solution becomes an “individual”, and the set 

of solutions is a “population”.   

 

 

Figure 3.2: Genetic representation of the routing design problem 
 

 

3.4.2 Initialization 

The population size is a GA parameter that is predefined. Moreover, the initial population 

should be generated in advance to further produce the offspring. We use random permutation to 

construct the initial population. Specifically, the stations are randomly chosen and assigned to a 

route as long as the route length and station distance constraints are not violated.  
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3.4.3 Fitness value  

The fitness value of an individual determined by the fitness function (3.19) directly 

determines the probability that an individual is selected for survival. The individuals with higher 

fitness values are more likely to survive while those with lower fitness values have a higher 

probability to be removed from the population. Therefore, a feasible solution should have a higher 

fitness value than an infeasible solution. To avoid infeasible routes, high penalties are added to the 

fitness function for when the route length exceeds the length constraint and/or the distance between 

stations is less than the minimum allowable station distance. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 = ∑ 𝑝𝑖𝑗𝑧𝑖𝑗

𝑖,𝑗∈Φ

− 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑅𝑜𝑢𝑡𝑒 𝐿𝑒𝑛𝑔𝑡ℎ) − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) (3.19) 

 

3.4.4 Selection   

The idea behind selection is to identify the fittest individuals and let them pass their genes 

to the next generation. The roulette wheel selection method is used in the approach in this chapter. 

To make sure that the sum of fitness values of all individuals is 1, we scale all the values to be 

within (0,1). The probability of being selected for an individual is directly proportional to its fitness 

value. For instance, in Figure 3.3, the individual P1 has the highest fitness value (F1 = 0.34), so 

the probability for P1 to be selected is also the highest.  
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Figure 3.3: Roulette Wheel Selection  

 

3.4.5 Crossover 

Crossover is a genetic operator that simulates the reproduction of the next generation 

between two parents. It works on a pair of solutions by recombining them in a certain way to 

generate offspring. The offspring shares some similar characteristics with its parents, and does not 

create any new characteristics that are different from those of the parents. The probability of 

crossover is a predetermined GA parameter. We use simple random crossover in this chapter. The 

procedure for this method is shown in Table 3.3.  

 

Table 3.3: Simple random crossover procedure 

Procedure Simple Random Crossover (SRC) 

Input Two Parents (𝑃1, 𝑃2), crossover probability 𝑝𝑐 

Begins: Do while 𝑝𝑐 ≥ 𝑟𝑎𝑛𝑑() 
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      Copy individual 𝑃1 into offspring 𝑂1 

      Randomly select a sub-route 𝑠1 from 𝑃2 

      Delete the corresponding genes in 𝑠1 from the offspring 𝑂1 

      Randomly select a position on 𝑂1  

      Insert the 𝑠1 at the selected position to generate new 𝑂1 

End  

Output  Offspring 𝑂1 

End  

 

 

3.4.6 Mutation 

Different from the crossover operator, the mutation operator is applied to a single solution 

and it can generate new characteristics that are distinct from those of its parents. The mutation 

operator makes small random changes in the solution with a relatively low probability. We use the 

simple random mutation method (SRM) to simulate the process of mutation. The detailed 

procedure of SRM is described in Table 3.4. 

 

Table 3.4: Simple random mutation procedure 

Procedure Simple Random Mutation (SRM) 

Input A single Parent 𝑃1, mutation probability 𝑝𝑚 

Begins: If 𝑝𝑚 ≥ 𝑟𝑎𝑛𝑑() 

Randomly select a route 𝑟1 from 𝑃1 

Randomly select a station 𝑠1 from 𝑃1 
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If 𝑠1 ∈ 𝑟1 

Delete the station 𝑠1 from the route 𝑟1 

Else  

Randomly select a position to insert the 𝑠1 using best insertion method1 

Insert 𝑠1 into 𝑟1 at the selected position 

End  

Output  Offspring  

End  

 

3.5 Case Study  

In this section, we discuss the application of the proposed model and algorithm using a 

case study. First, a brief overview of the case study problem is provided. Second, parameters 

estimates in the case study are discussed. Third, the solution and performance of the proposed GA 

algorithm under different parameters are presented. Finally, a comparison between the 

performance of the proposed GA based approach and the exact algorithm is conducted for 

validation purpose.  

3.5.1 Problem Statement  

This case study is based on Manhattan, NYC. We assume that the center of each census 

tract is a potential station to be served. This treatment is selected as the sizes of census tracts are 

sufficiently small (consisting of roughly 39 blocks). There are total of 288 census tracts in 

Manhattan area. Therefore, we have 288 potential stations as shown in Figure 2.2a. The objective 

                                                 

 
1 Best insertion method: The sub-route is inserted into the route with the biggest improve to the objective value.  
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of this case study is to select 3 routes that directly serve the most commuter travel demand in 

Manhattan. The proposed GA based approach described in section 3.2 is used to solve the case 

problem. Different combinations of GA parameters are tested to find the optimal routes in the next 

section. The solution provides new route suggestions for a fixed route ride-sharing service 

operating in Manhattan.   

 

3.5.2 Parameter Estimation   

In this section, we provide estimates for the input parameters of the model. The distance 

between station 𝑖  and station 𝑗 , 𝑑𝑖𝑗 , is estimated as the Manhattan distance between the geo-

locations of stations i and j. A sample of the estimates is shown in Figure 3.4 below. The potential 

travel demand between station 𝑖 and station 𝑗, 𝑝𝑖𝑗, is estimated as the commuter travel demand 

provided in the CTPP 2006-2010 Census Tract Flows (CTF) data. Figure 3.5 shows a sample of 

potential demand within Manhattan.  

 

 

Figure 3.4: Station distance 
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Figure 3.5: Potential demand in Manhattan 

 

The probabilities of crossover and mutation are also defined in advance for the GA based 

approach. As state in Section 3.4,  𝑝𝑐 is much higher than 𝑝𝑚. Therefore, 𝑝𝑐 is set as 0.9 and 𝑝𝑚 

is set as 0.02.  

 

3.5.3 Result 

To determine the appropriate population size and the number of generations for the GA, an initial 

test on different parameter combinations is conducted, including 9 combinations of population size 

and number of generations. For each combination, we run the GA 10 times and record the solutions 

after running each run using MATLAB 2017b. In Table 3.5, the best solution (column I, the best 

objective value obtained within the specified number of generations among the 10 runs), average 

of the GA solutions (column II, average objective value over number of generations over the 10 

runs), worst of the GA solutions (column III, the worst value obtained within number of 

generations over 10 runs) and the average computation time in seconds (column IV, the CPU time) 

are provided.  

Table 3.5: Computational results for parameter settings 

Population Size Number of Generations I II III IV 

500 500 5738 5302 1245 353.69 

500 1000 6248 5604.3 1478 938.24 
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500 1500 6357 5569.5 1406 1821.3 

1000 500 7522 6111.4 1394 1411.5 

1000 1000 8328 7121.8 1797 2058.5 

1000 1500 7143 6542.5 1209 2169.6 

1500 500 7460 6272.8 1432 1949.6 

1500 1000 7502 6470.4 1643 2291.3 

1500 1500 9818 8750.5 1851 4269.1 

2000 2000 9905 8826.7 1546 6432.9 

 

From Table 3.5, we can see that the objective value for combination (2000, 2000) is the 

highest. However, the objective values are only moderately improved from combination (1500, 

1500), while the computational time is much higher than combination (1500, 1500). Therefore, we 

conclude that population size of 1500 and number of generation of 1500 is the most desirable. The 

best routes generated under this parameter setting are as follows:  

 

Route 1: {171, 228, 252, 216, 217, 40, 61, 4, 101, 110} 

Route 2: {37, 85, 32, 278, 166, 100, 58, 3, 136} 

Route 3: {112, 107, 1, 75, 120, 286, 287, 284} 

Figure 3.6 visualizes the resulting fixed routing design. The total demand served on the 

three routes is 9818, and the demands on each route are 3767, 3042 and 3009, respectively. Figure 

3.7 illustrates the improvement of the objective value as the number of iterations increases. We 

can see that the objective value is always increasing in the number of iterations. The slope of the 
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plot is higher in first 500 iterations and become lower and lower after that. The routing design 

results of other parameter settings are provided in the appendix.  

 

Figure 3.6: Best routing design generated by GA 

 

 

Figure 3.7: GA convergence plot 
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3.5.4 Validation 

In this section, a validation is conducted to compare the results between the exact algorithm 

(MILP) and the proposed GA based algorithm. Due to the long computation time of the exact 

algorithm, the validation is performed on sample data of restricted sample sizes. We use MATLAB 

2017b running the GA based algorithm and the MILP is solved in IBM CPLEX optimization studio.  

 

Table 3.6: Results of validation on sample size of 20 

Instances GA-Best MILP-Best Differences 

1 1934 2057 6.05% 

2 2351 2547 8.34% 

3 1904 2153 6.83% 

4 1868 2023 8.30% 

5 3678 3790 3.05% 

6 2833 3055 7.84% 

7 2693 2957 9.80% 

8 1647 1758 6.74% 

9 2112 2304 9.09% 

10 1459 1540 5.55% 

 

 

In the first set of validations, we compare the two approaches for problems with sample 

size 20 with the objective of selecting a single best route to maximize directly served travel demand. 

10 problems are tested to cover most stations. Table 3.6 summarizes the validation results with 

objective values under the GA based algorithm (GA-Best) and the exact algorithm (MILP-Best). 

Figure 3.8 shows the scatterplot of GA-Best and MILP-Best. From the comparison results, we can 

find that the differences between GA-Best and MILP-Best are under 10% and 7.16% on average, 

indicating good performance for the proposed GA based method. Clearly, in such a small sized 
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problem, the computation time advantage of the GA based algorithm is not exhibited, while the 

exact algorithm can arrive at the optimal solution in a short time. 

 

 
Figure 3.8: Comparison plot between GA and MILP on 20 sample size 

 

In the second set of validations, we compare the two approaches for problems with sample 

size 30 and the objective of selecting the best two routes to maximize directly served travel demand. 

Due to long computation time of the exaction algorithm, we limit the computation time to 1 hour 

(3600 seconds) and supplement the results with the optimality gaps between the results obtained 

and the estimated optimal results. Table 3.7 summarizes the comparison results. We observe that 

the GA based algorithm objective values are only 4% higher than the exact algorithm on average, 

and may outperform the exact algorithm in some cases. The advantage of the GA over exact 

algorithm in terms of computation time also become evident in this set of results. 
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Table 3.7: Results of validation on sample size of 30 for 2 routes 

Instances MILP-Best CPU Time Optimality Gap GA-Best CPU Time Differences 

1 4620 3600 38.58% 4234 1232.52 9.12% 

2 4547 3600 40.64% 4325 1124.67 5.23% 

3 4980 3600 39.62% 4603 1197.54 8.19% 

4 4128 3600 42.58% 4025 1256.95 2.56% 

5 5745 3600 40.15% 5516 1203.68 4.15% 

6 5439 3600 44.81% 5502 1297.49 -1.15% 

7 4748 3600 42.17% 4423 1177.85 7.35% 

8 4621 3600 38.96% 4410 1236.91 4.78% 

9 6494 3600 41.38% 6285 1196.54 3.33% 

10 4822 3600 43.89% 5007 1098.73 -3.69% 

 

Comparing the results in Tables 3.6 and 3.7 we can see that as the problem size increases, 

the advantage of the GA based algorithm improves, in terms of both objective value and 

computation time. In general, we find the GA-based approach performs well in approximating the 

optimal solution of the fixed route ridesharing routing design problem.  
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Figure 3.9: Comparison plot between GA and MILP on 30 sample size for 2 routes 

 

3.6 Conclusion 

In this chapter, we develop a mixed integer linear programming (MILP) model for solving 

the routing design problem for a fixed routed ridesharing service with the objective of maximizing 

travel demand directly served by the service. Due to the computational complexity of the MILP, a 

genetic algorithm based heuristic algorithm is developed to solve the problem. A case study is 

provided to demonstrate how the model and algorithm can be applied to generate best routes in the 

Manhattan area in New York City. The robustness of proposed approach is tested using a number 

of numerical experiments, where its performance is compared with that of the exact algorithm 

using CPLEX. We find that the GA based approach yields less than 10% inflation in the objective 

value, and that its advantage increases as the problem size increases.  
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Chapter 4: Conclusion and Discussion 

  

This thesis deals with the optimal planning of fixed route ridesharing services. The first 

part of this thesis propose an approach for improving the profit of the service by jointly making 

pricing and operational (i.e., shuttle frequency) decisions. We provided an approach for estimating 

the demand function using publicly available data and the multinomial logit model, whose 

prediction accuracy of mode-choice decisions is validated using cross validation results. We then 

develop a nonlinear optimization model to find the optimal pricing and operating policy with the 

objective of maximizing expected profit. In a real-world case study of a New York City based 

fixed-route ridesharing service, we offer the optimal joint pricing and operational policies under 

varying customer awareness levels, which is expected to significantly improve the profit compared 

to current policy. We also find that introducing a distance-based price has only moderate influence 

on the total profit. Furthermore, we observe that there is an opportunity to significantly increase 

adoption rate of the service with little impact on profitability by adjusting the flat rate.  

The second part of this paper discusses the routing design problem of the fixed-route ride-

sharing service. A mixed integer linear programming optimization (MILP) model is developed for 

generating the best routes that maximizes travel demand directly served. As the MILP is an NP-

hard problem, a genetic algorithm based approach is proposed to generate near optimal solutions. 

In a Manhattan based case study, demonstrate how the model and algorithm can be applied to 

generate best routes. The robustness of proposed approach is tested using a 



60 

 

number of numerical experiments, where its performance is compared with that of the exact 

algorithm using CPLEX. We find that the GA based approach yields less than 10% inflation in the 

objective value, and that its advantage increases as the problem size increases.  

This work can be extended in several directions. First, demand of the fixed route 

ridesharing service is assumed to be static over time. However, in reality, the demand changes 

with various factors over time. The dynamic routing design and dynamic pricing can be studied if 

real-time demand data is available in the future. Second, there is an opportunity to combine the 

decisions in Chapters 2 and 3 in real world decision making. For example, decisions can be made 

in two stages. In the first stage, one can generate the optimal routing design. In the second stage, 

one can apply the pricing and operational planning model on the selected routes to maximize 

profitability of the service. Second stage decisions can be used as input to the first stage decision 

to further improve profitability. However, this is expected to substantially increase the complexity 

of the problem. 
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Appendix: Final Results of Other GA Parameter Setting 

Population size: 500 

Number of generations: 500 

 
A1: Best routing design generated by GA for parameter (500, 500) 
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A2: GA Convergence Plot for parameter (500, 500) 
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Population size: 500 

Number of generations: 1000 

 

A3: Best routing design generated by GA for parameter (500, 1000) 

 

A4: GA convergence plot for parameter (500, 1000) 

 

 

  



64 

 

Population size: 500 

Number of generations: 1500 

 
A5: Best routing design generated by GA for parameter (500, 1500) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

A6: GA convergence plot for parameter (500, 1500) 
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Population size: 1000 

Number of generations: 500 

 

A7: Best routing design generated by GA for parameter (1000, 500) 

 

A8: GA convergence plot for parameter (1000, 500) 
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Population size: 1000 

Number of generations: 1000 

 

A9: Best routing design generated by GA for parameter (1000, 1000) 

 

A10: GA convergence plot for parameter (1000, 1000) 
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Population size: 1000 

Number of generations: 1500 

 

A11: Best routing design generated by GA for parameter (1000, 1500) 

 

A12: GA convergence plot for parameter (1000, 1500) 
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Population size: 1500 

Number of generations: 500 

 

A13: Best routing design generated by GA for parameter (1500, 500) 

 

A14: GA convergence plot for parameter (1500, 500) 
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Population size: 1500 

Number of generations: 1000 

 

A15: Best routing design generated by GA for parameter (1500, 1000) 

 

A16: GA convergence plot for parameter (1500, 1000) 
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