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Abstract 
 
 This paper presents a neural network developed for predicting the path of a remote 

vehicle using post facto created vehicle-to-vehicle (V2V) data and uses that prediction to 

determine whether it is safe for the host vehicle to change lanes. The data was collected in a 

2013 experiment involving various drivers traveling on public roads in Ann Arbor, MI.  The trips 

were on suburban roads, city roads and divided highways over a two-day period.  The vehicular 

satellite global positioning system (GPS) data from movement over this period was gathered and 

post-processed to find vehicle paths within 10 meters of one another.  The path traces of the two 

vehicles were combined to simulate what a V2V network would have provided to properly 

equipped vehicles if such a network and vehicles existed on real road networks demonstrating 

natural driving behavior.  

 This research harnesses this data to determine the increased effectiveness of a neural 

network predicting the future path of remote vehicles and lane change safety when a V2V 

network is available.  The most studied maneuver is overtaking.  To a lesser extent, this paper 

also provides a view into how a neural network predicts remote vehicle behaviors using a host 

vehicle equipped with only perceptive hardware and no given information from the remote 

vehicle. 
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Chapter 1 Introduction 
 

Globally, there are 1.25 million deaths related to vehicular transportation every year. [1] 

In the United States alone in 2015, the National Highway Traffic Safety Administration 

(NHTSA) [2] tallied 32,166 traffic deaths and estimated 1,715,000 injuries.  Those 6.9 million 

crashes in 2015 incurred approximately $242 billion in economic costs.  The NHTSA survey of 

the National Motor Vehicle Crash Causation Survey conducted from 2005-2007 (the most recent 

of this labor intensive and detailed type of study) attributed the critical cause of 94% of accidents 

to human driver error. [3] In order to improve the safety of vehicular transport, autonomous 

vehicles are expected to be trained better than humans and correct for most of these human driver 

errors.  And for safety reasons among others, autonomous vehicles have made great strides in 

commercial investment [4] and technical capability [5].  However, likely due to well publicized 

accidents including autonomous vehicles, polls in 2018 show a downturn in consumer trust in 

autonomous vehicles from the prior two years [6].  As consumers recognize the difficulty for a 

computer to understand and navigate the ambiguous situations of the roads, computer scientists 

and automotive engineers grapple with the shortcomings of autonomous vehicles.  These 

shortcomings include difficulty in recognizing and giving right of way to human vehicles in 

merge situations [7], recognizing and avoiding pedestrians and other legged creatures [8], and 

locating and avoiding stationary objects [9].  So despite how advanced they are currently, 

autonomous vehicles have weak spots operating in real world scenarios.  

A study of autonomous vehicle accident reports to the State of California Department of 

Motor Vehicles [10] through November 2018 reveals that seventy-three of seventy-six collisions 
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where an autonomous vehicle was controlling the vehicle were a result of the remote, human 

driven vehicle’s behavior.  The collisions are generally minor and occur at estimated speeds of 

ten miles per hour or less on average.  The autonomous vehicle collisions occur at a higher rate 

than for human drivers [11]. This higher accident rate for computer drivers who perfectly follow 

the rules of the road indicates that the autonomous vehicle may be obeying the rules, but is still 

acting differently from what the human drivers are used to and potentially contributing to human 

driver errors.  This increased accident rate demonstrates the continued importance of studying 

human behavior in vehicles nearby the host vehicle.  Figure 1 shows selected contributing factors 

to the collisions.  The figure shows that the collisions involved the autonomous vehicle changing 

lanes six times and the remote vehicle drifting or changing lanes twenty-nine times.  Fifty-two of 

the seventy-six collisions occurred at an intersection.  Appendix 1 contains a complete collection 

graphs and charts of collision data.   

 

Figure 1: Collision contributing factors to autonomous vehicle crashes California Department of Motor Vehicles. 
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Continuing to develop an interdisciplinary and multifaceted approach to autonomous 

vehicle driver systems will be necessary to achieve consumer acceptance of autonomous 

vehicles. [12]  Part of this multidisciplinary approach will be to harness a future vehicle-to-

vehicle communication network to enhance situational awareness for all traffic participants.  

While the primary object avoidance systems for autonomous vehicle are based on LIDAR, 

cameras, and radar systems, a vehicle-to-vehicle system would add another layer of redundancy 

and may prove crucial in blind scenarios where line of sight object location is impeded or 

impossible.  Possible impaired scenarios include blind curves, parked vehicles, and buildings 

encroaching on intersections. Promise of a future vehicle-to-vehicle network is fueled by the 

increasing prevalence of in-vehicle navigation systems, integrated vehicle modems, and 

smartphone connectivity.  Audi has introduced a vehicle-to-infrastructure system in Las Vegas 

with certain 2017 model year vehicles. [13]  This paper hopes to improve the utilization of 

vehicle-to-vehicle data when it becomes available in the near future. 
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Chapter 2 Related Technology 
 

Hidden Markov Models (HMM) have been a common and useful path prediction 

technique. Streubel and Hoffmann [14] used an HMM to predict driver intent at a four way 

intersection. HMM is a stochastic model which describes a dynamic process through two random 

processes (Markov Chains). One process is hidden and represents the state transition of the 

system. The other process produces observations during each step. The Markov attribute 

represents the uncertainty of the process. The system contains a defined number of degrees of 

freedom. Model parameters must be determined. The system needs to learn the optimal model 

parameters that maximizes the probability for existing observation sequences. The system also 

needs to learn the representation or probability for an existing observation sequence being 

created by the HMM. The latter is solvable by a forward algorithm. Learning has no known 

algorithm and is found by an Expectation-Maximization-algorithm. 

Sreubal and Hoffman analyzed intersection approaches from 100 meters away from the 

center of the intersection to the center of the intersection. GPS data was used to determine 

position. The data features were velocity, acceleration, yaw rate, and distance to intersection. 

They clustered the data based on a Gaussian mixture approach and a k-means clustering. There 

was high variation in the straight data because of the sheer number of data points and 

comparatively less variation with turning left because there were less data points. The HMM 

model recognized turning left and right sequences better because of the low fluctuation between 

the sequences. The acceleration in some sequences deviates strongly from zero. Variations in the 

HMM used are number of hidden states, symbols and sequences. Left turning sequences 100% 
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had a 100 percent correct prediction rate. All types of turning prediction had a correct prediction 

rate of 68-82 percent. For all types of sequences, they claim 90 percent prediction rate up to 

seven seconds in advance. Mean prediction times were 8.3, 4.7, and 8.3 for left, right, and 

straight respectively.  

Hubmann et al. [15] use a partially observable Markov decision process (POMDP) to 

continuously manage the longitudinal speed of a simulated vehicle through a simulated 

intersection.  The process is able to update every second to safely and interactively navigate the 

vehicle through an intersection by incorporating more information as the situation evolves.  The 

process examines many possible trajectories of the vehicles involved and intelligently expands 

upon the most promising possibilities. 

The technique hopes to account for the uncertainties of other road users’ trajectories 

including: the unknown intention of other drivers, their future travel, the effects of the host 

vehicle on their routes, and the noise of sensors and the interpretation of the sensors.  The 

technique assumes that information about the situation will improve over time and incorporates 

this improved information in the host vehicle path planning.  To simplify their path planning, 

they assume a pre-planned trajectory and only control the longitudinal velocity. 

Wen, Zhang, et al. [16] found that for lane change maneuvers Hidden Conditional 

Random Fields (HCRF) improved prediction of driver intent versus HMM and support vector 

machines (SVM).  The input features are steering wheel angle, lateral position, and driver’s gaze. 

HCRF is an undirected graph useful for sequence labeling. HCRF assumes that there is a hidden 

label associated with each labeled sequence. Each label is given a probability function given a 

sequence. A potential function describes the relationship between the hidden variable and the 

sequence label. For training, marginal probabilities of hidden variables calculate gradients.
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 Recurrent neural networks (RNNs) are a more recent phenomenon to predict the paths of 

vehicles.  As Zyner, Worrall, et al. show in [17], Long Term Short Term RNNs hold promise for 

predicting future vehicle trajectories especially through the finite number of trajectories of an 

intersection. RNNs are most effective with order dependent data, such as position versus time 

data of vehicle tracks.  Using a many into one type of RNN, the paper uses entire segments of 

Kalman filter fused vehicle speed, inertia, and position relative to the intersection using 

odometry and a GPS. The use of a Long Term Short Term memory allows the retention of data 

for an arbitrary length of time.  The Long Short Term Memory variation allows the model to 

consider short periods of time instead of a single time step of data.  Further, using maneuver 

based modeling, which assumes that a finite number of moves can be executed through the 

intersection, the paper shows a variety of ability to predict the subject vehicle’s path through the 

intersection from three different approaches to a T-junction intersection.  

For vehicle path detection within the context of intelligent vehicles, computer vision 

based technologies have been explored extensively.  Deo, Rangsh, and Trivedi [18] show real 

time processing of remote vehicles can be achieved using a mobile computer.  Their system 

processed data from eight cameras on a California highway at six frames per second, which they 

claim is sufficient for real world applications.  The system consists of a  hidden Markov model 

based maneuver recognition model, a trajectory prediction module based on the amalgamation of 

interacting multiple model and maneuver specific variational Gaussian mixture models, and a 

vehicle interaction module that considers the global context of remote vehicles and assigns final 

predictions by minimizing an energy function based on the outputs of the other modules. 

This dissertation bases its approach and analysis primarily on a Murphey, et al. paper 

[19].  That paper shows improvement in the prediction of the path of a pedestrian carrying GPS 
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with a trained neural network compared to constant velocity and constant acceleration 

approaches, particularly at longer prediction times (greater than one second).  The goal of the 

neural network was to provide a host vehicle with the future location of a pedestrian in sufficient 

time to avoid a collision.  Predicting the position of a remote person or object at a predictive 

length greater than one second is useful for helping a host vehicle gain confidence in its 

navigation ability and should help the adoption of autonomous vehicles. 
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Chapter 3 System Overview 

A. Purpose 
This paper offers a unique approach by mining human driver data recorded on real roads 

with natural driving behavior. It uses the present and past positions of the two vehicles to 

determine the future relative position of the remote vehicle relative to the host vehicle and 

predicts whether or not it is safe for the host vehicle to change lanes given the future remote 

vehicle relative position.  The total system can be thought of as an enhanced version of the 

currently available blind spot warning systems with the ability to predict whether the remote 

vehicle will be in the path of the host vehicle instead of only informing the driver whether or not 

the remote vehicle is at present in an unsafe relative position.  

B. Components  
 The system consists of two main components, the path predicting neural network and the 

lane change “safe” or “unsafe” classification system.  Figure 2 provides a schematic of the 

system flow. The left column shows the path predicting neural network training and the right 

column shows the path prediction of each vehicle’s future path, determination of a relative 

location, and classification that relative location as “safe” or “unsafe” for the host vehicle to 

change lanes. 
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Figure 2: Predictive and classification system schematic 

 The path predicting neural network was trained with varying windows sizes, predictive 

lengths, filters, features, and hidden units on a set of vehicle trips.  After training on a set of 100 

vehicle tracks, the path prediction neural network was applied to an exclusive and distinct set of 

ten situations where two vehicles were recorded traveling within ten meters of one another.  The 

effectiveness of the path predicting neural network is assessed with a four-fold cross-validated 

mean squared error of position.  

 After receiving predicted and actual positions, the classification system first changes both 

the predicted and actual GPS location of the remote and host vehicles position into relative 

position, velocity, and direction to a domain based on the host vehicle.  Then the classification 

system classifies the predicted and actual relative GPS positions in the data sets as “safe” or 

“unsafe.”  Once the predicted relative position of the remote vehicle is classified as “safe” and 
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“unsafe,” the predicted relative position set of classifications is compared to the actual relative 

GPS position set of classifications at each time stamp. The performance of the classification 

portion of the system is assessed by truth table.  A dead reckoning path prediction system based 

on the relative position and velocity of the remote vehicle to the host vehicle was added to the 

classification system to provide a relative measure of classification success. 

C. Data Sets 
In order to study vehicle-to-vehicle behavior, a 5,873 trip dataset of vehicles traveling in 

the Ann Arbor, Michigan area is used as a repository from which to select interesting data sets.  

From this data set two groups of trips are selected. Both sets of data consist of trips with high 

confidence of GPS signal accuracy.  The first data set is used to train the neural network to 

predict the future position of any vehicle from the data set.  From the large set of trips with a 

high confidence GPS location, a smaller set of data is created to make an ad-hoc data set of 

vehicle-to-vehicle interactions in a post facto vehicle-to-vehicle network.  Using a Matlab tool, 

the locations in the dataset are compared to one another to find trips that interact within a ten 

meters of another vehicle.  Then the trips which pass within ten meters of each other are clipped 

to the period of time during which they are within thirty meters of each other to provide a 

focused set of data.  Given the prevalence of autonomous vehicle accidents at intersections and 

during lane changes, this paper will select from the metadata set 10 examples of vehicle 

interaction within ten meters near intersections and with lane changes.  

 After selection, the trip data was broken into segments to fill the sample window for 

each predictive time step.  Each segment’s location data was normalized to the first data sample 

in the segment.  That is, the first sample is considered the origin of all subsequent location data 

for the segment.  In order to provide coordinates which could be converted into normalized 
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segments, the data was converted from degrees of latitude and longitude into the Universal 

Transverse Mercator (UTM) coordinate system via Matlab program by F. Beauducel.  The UTM 

coordinate system represents the Earth in a 60 zone grid.  Each zone covers 6° of longitude and 

ranges from 80°S to 84°N latitude.  The UTM coordinates of a point at time  are denoted as 

and . In order to make the path segments insensitive to the trip starting point, 

the system uses the initial segment point and a scaling factor. Therefore, 

   

and  

where . 

Figure 3: Example Training Trip 



 12 

 Figure 3 shows an example of a training trip and figure 4 shows what the each segment 

input into the neural network looks like after each segment has been normalized to a common 

origin.  

  

Figure 4: Example training trip segmentation and normalization 

D. Data Source 
Data was collected by volunteer drivers over a two day period in 2013.  The vehicle GPS 

location at a rate of 10 Hz was then analyzed for trip sequences in which one vehicle came 

within ten meters of another vehicle to create post facto vehicle-to-vehicle network.  From the 

data set, 100 trips were chosen of individual vehicle paths on Ann Arbor roads for training the 

neural network with the following filtering criteria: 

● Maximum velocity of 21 m/s 
● Trip duration between 600 and 900 seconds 
● Distance traveled between 4 and 15 km 
● District name (Google geo address api) Ann Arbor 

In order to remove the noise prevalent in raw GPS location data, the raw data was 

processed by applying median and mean filters in order to smooth the data before being used to 

train the neural network.  GPS speed and heading from the vehicles was extracted from the 
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filtered position data was therefore input into the neural network unfiltered after the positions 

were already filtered. 

E. Predictive method 

The future positions of the host and remote vehicles were independently predicted by a 

neural network, and its performance was compared to a dead reckoning system.  The Matlab 

neural network tool trained the multilayer perceptron neural networks and test their efficacy with 

5, 10, 15, or 20 hidden units and 2 output layers. The hidden units feature tan-sigmoid transfer 

functions and the two output layers of each network use a linear transfer function.  The training 

was conducted with the Levenberg-Marquardt training technique with four-fold cross-validation. 

The performance was assessed with mean squared error of location in meters. A layout of the 

fifteen hidden unit neural network is shown in figure 5 with a two-second window of four 

features of ten Hertz data.  

 

Figure 5: Neural network layout 

The neural network was trained with a variety of settings including varied window size, 

predictive length, and number of hidden units.  Figure 6 shows a diagram of the progression of a 

sliding ten event window across the four feature matrix of the vehicle position and velocity at 

each sample.  The transverse (x-position) and longitudinal (y-position) of the vehicle positions 

are derived from the recorded GPS positions of the two vehicles.  The velocity of the two 
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vehicles and headings are extracted features from the GPS position data. 

 

Figure 6: Progression of sliding window of input data to a neural network. 

F. Design of Experiment 
In order to provide a challenging test environment for the classification portion of the 

system, short segments of up to 30 seconds with portions with a vehicle nearby were cut from the 

meta-dataset with no overlap between the training set and the test set.  Segments were chosen 

due to the presence of a vehicle-overtaking maneuver, preferably with at an intersection.  The 

segments featured a mix of samples with the remote vehicle in a position safe and unsafe for a 

host vehicle lane-change maneuver. 

 

Figure 7: Remote vehicle unsafe positions  

 Figure 7 shows the relative remote vehicle position classification zone diagram. The 

“Speed Dependent Cushion” is defined in the next section based on an assumed acceleration rate 

Next prediction Window slides one sample 
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of the host vehicle and the speed at which the remote vehicle is approaching the host vehicle to 

allow sufficient time for the host vehicle to maneuver in front of the remote vehicle and maintain 

a safe distance in front of the remote vehicle.  Figure 8 illustrates the initial and final host and 

remote vehicle positions in order to define the variables used in the equations below.  

 

Figure 8: Initial and final positions of vehicle to determine if host vehicle is sufficiently ahead of remote vehicle to 
change lanes. 

The speed dependent cushion is determined by solving two kinematic equations.  The 

first is based on the assumed average acceleration of the host, which is 2 m/s2 in this case based 

on a conservative rate of acceleration. Given that in order to execute a lane change without 

impeding the vehicle approaching from the rear, the final velocity of both vehicles will be the 

same. 
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(1) 

 
 

(2) 

 
 

(3) 

After solving for the time to accelerate up to the remote vehicle’s constant velocity, the 

kinematic equation describing the future position of both vehicles yields equations four and five. 

 
 

(4) 

 
 

(5) 

Subtracting equation five from equation four and assuming that the remote vehicle has no 

acceleration yields equation six. 

 
 

(6) 

It is desired that the relative positions of the two vehicles provides space for half the 

length l of each vehicle assuming that the GPS location is at the geometric center of the two 

vehicles and that there is a safety cushion of three seconds between them, so the final relative 

position should be as shown in equation seven.  
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 +  (7) 

Substituting the right hand side of equation seven for the left hand side of equation six 

gives equation eight. 

  (8) 

This yields that the relative initial position of the two vehicles must be as described in 

equation nine in order to have a safe final distance between them. 

 
 

(9) 

The other variable which changes in equation nine is the time cushion based on the 

predictive length being used.  If the predictive length is longer, then the host vehicle needs less 

cushion to execute the maneuver because the predicted location is taking into consideration the 

future location of the remote vehicle.  The time cushion is three seconds less the predictive 

length of the predictive method to account for the fact that the prediction will account for the 

other vehicle’s future position. 

A Matlab program categorized the predicted results as “safe” and “unsafe” and compared 

them to the known future vehicle positions categorization as “safe” or “unsafe.”  An example of 

the graphical output of the system is shown in figure 9 with a full set of images available upon 

request.  The ‘x’s and ‘o’s show the host vehicle traveling onto and on ramp while the remote 

vehicle passes one and then two lanes to the driver’s side of the host vehicle.  ‘x’ signifies an 

incorrect classification and ‘o’ signifies a correct classification by the neural network system 
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versus the actual GPS position.  The lines emanating from the host vehicle’s ‘x’s and ‘o’s show 

the direction and distance of the remote vehicle relative to the host vehicle.  The color of the 

lines emanating from the host vehicle to the predicted remote vehicle position indicate the 

predicted position classification. Yellow lines indicate that the remote vehicle was in the 

“unsafe” zone for the host vehicle to change lanes.  Red lines (not shown) indicate that the 

remote vehicles predicted position was behind the “unsafe” zone.  Blue lines (not shown) 

indicate that the remote vehicle was ahead of the unsafe zone.  The magenta lines indicate that 

the remote vehicle’s predicted position was more than one lane away from the host vehicle.  

Finally, a green line indicates that the remote vehicle’s predicted position is in the same lane as 

the host vehicle.   

Figure 9 shows how precise the future vehicle position must be to have a consistently 

correct classification of the remote vehicle’s future position.  The “unsafe” prediction is very 

difficult to earn a high classification accuracy on because of how few “unsafe” data samples 

there were and how small deviation from the noisy GPS “truth” values the prediction values can 

lead to misclassification.  Figure 9 also gives a good idea of how difficult and subtle the 

situations examined are.  In figure 9, the host vehicle makes a slight maneuver to its passenger 

side, which gradually increases the lateral distance to the passing remote vehicle such that the 

remote vehicle no longer is within the “unsafe” zone of the host vehicle.   
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Figure 9: Neural network prediction categorization   
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Chapter 4 Experimental Results 
 

 This section compares many different approaches to improving the predicted relative 

position of the remote vehicle to the host vehicle with a neural network.  The experimentation 

included comparing the four-fold cross validation mean squared error of various window sizes, 

predictive lengths, features, and hidden units in the single hidden layer.  The outputted predicted 

position was smoothed by both a median filter and in an unsuccessful attempt, clipped by a 

kinematic rationalization of the future remote vehicles position based on extracted relative 

velocity and different acceleration limits.  The effect of these changes was measured both by a 

comparison of the mean squared error of the predicted position and a comparison of the truth 

tables for the classification of the predicted relative position of the remote vehicle to the host 

vehicle.  

As figure 10 shows, the output of a neural network location prediction system is noisy 

compared to the actual GPS tracked position of the remote vehicle relative to the host vehicle.   
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Figure 10: Neural network relative location prediction and actual 

 A variety of median filters was applied to the output. The median filters had the 

following equations where n is the order of the filter and k is the time stamp of the data: 

● When n is odd, y(k) is the median of 
. 

● When n is even, y(k) is the median of 
  

 
In case that n is even, medfilt1 sorts the numbers and takes the average of the two middle 
elements of the sorted list. 

 Figure 11 shows the improvement that the tenth order median filter made on a sample of 

predicted position from the output of the neural network in red versus the blue mean and median 

filtered actual GPS position compared to the unfiltered predicted position shown in figure 10. 
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Figure 11: Tenth order filter relative position prediction and actual 

No Median Filter Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.8452 0.1548 
Unsafe   0.3905 0.6095 

 

Table 1: No median filter truth table 

Median 5 Filter Truth Table 
Actual Predicted Safe Unsafe 
Safe   0.8452 0.1548 
Unsafe   0.2 0.8 

 

Table 2: Median 5 filter truth table 

Median 10 Filter Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.8579 0.1421 
Unsafe   0.0857 0.9143 

 

Table 3: Median 10 filter truth table 

Median 20 Filter Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.8706 0.1294 
Unsafe   0.0952 0.9048 

 

Table 4: Median 20 filter truth table 
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Comparing tables one through four, the tenth order median filter offered the best overall 

results with over 80 percent correct classification of both the “safe” and “unsafe” situations.  The 

twentieth order median filter had similar results to the tenth order filter, but to be conservative, 

the less filtered data is preferred.  

Another process to smooth the output of the neural network data is a rationalization 

process derived from the physical realities governing the kinematics of vehicle dynamics. The 

output of the neural network was limited to an area defined by a dead reckoning calculation of 

the next vehicle location expanded by a ring determined by maximum acceleration limited by tire 

grip.  Most non-sports cars in automotive skid pad testing exhibit grip less than 9.8 m/s^2. Most 

non-emergency vehicle acceleration is less than 4 m/s^2.  As the limit for acceleration decreases, 

the prediction becomes smoother, more similar to a dead-reckoning approach, and non-

conservative due to expecting only a limited amount of acceleration.  Results from limitations on 

the location of neural network predictions are in tables 5-7 with limits of acceleration ranging 

from 0.2 to 0.6 times the acceleration due to gravity on Earth’s surface. 

  

Figure 12: Rationalization of future vehicle position based on kinematics. 
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0.2 G Limit Truth Table Percent 
Actual Predicted Safe Unsafe 
Safe   0.8452 0.1548 
Unsafe   0.3905 0.6095 

 

Table 5: 0.2G limit truth table 

0.4 G Limit Truth Table Percent 
Actual Predicted Safe Unsafe 
Safe   0.8452 0.1548 
Unsafe   0.3905 0.6095 

 

Table 6: 0.4G limit truth table 

0.6 G Limit Truth Table Percent 
Actual Predicted Safe Unsafe 
Safe   0.8452 0.1548 
Unsafe   0.3905 0.6095 

 

Table 7: 0.6G limit truth table 

 Changing the limit of acceleration had no effect on the classification of “safe” and 

“unsafe” maneuvers versus the no filter results shown in table 1.  The predicted position results 

from the kinematic limited method were discarded because the method had no advantage over 

the median filter and adds complexity. 

 Figure 13 shows that the number of hidden layer units did not improve the mean squared 

error of the location prediction significantly or consistently beyond ten hidden layers.  Therefore, 

to improve simplicity, the experimentation with prediction lengths and window sizes will occur 

with ten hidden units in the neural network.  
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Figure 13: Mean squared error with 5, 10, 15, and 20 hidden layer units 

 Figure 14 shows that the mean squared error of the position increases with predictive 

time. 

 

Figure 14: Mean squared error at 1-3 second prediction 

 Figure 15 shows that changing the window does not have a significant effect on the 

predictive ability of the neural network. The twenty sample window size has the lowest peak of 

mean squared error and will be used for the other neural network classification attempts.  



 26 

 

Figure 15: Mean squared error at 1-3 second window 

  The experimentation between predictive lengths and window sizes was conducted with a 

tenth order median filter. The predictive length classifications with varying predictive lengths 

have ten hidden units and two second windows. 

1 second prediction Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.97 0.3 
Unsafe   0.0036 0.9964 

 

Table 8: 1 second prediction neural network truth table 

2 second prediction Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.8579 0.1421 
Unsafe   0.0857 0.9143 

 

Table 9: 2 second prediction neural network truth table 

3 second prediction Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.9397 0.0603 
Unsafe   0.375 0.625 

 

Table 10: 3 second prediction neural network truth table 
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 Tables 8 -10 show the prediction classification rate for various predictive lengths.  The 

correct classification rate was very high and near perfect for the one second predictive length.  

Accuracy decreased at the longer predictive lengths but the two second predictive length had 

eighty-six and ninety-one percent accuracy for the “safe” and “unsafe” categorizations, 

respectively.  The three second predictive length had a big reduction in “unsafe” prediction 

classification rate, and this may be due to a bias towards predicting safe as the “safe” 

classification rate increased for both the “safe” and “unsafe” actual data samples.   

 The next experiment compared window sizes from one to three seconds. Every neural 

network had a two second predictive length and ten hidden units.  The position output of the 

neural network was filtered with a tenth order filter. 

1 second window Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.9752 0.0248 
Unsafe   0.6952 0.3048 

 

Table 11: 1 second window neural network truth table 

2 second window Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.8579 0.1421 
Unsafe   0.0857 0.9143 

 

Table 12: 2 second window neural network truth table 

3 second window Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.8906 0.1094 
Unsafe   0.2286 0.7714 

 

Table 13: 3 second window neural network truth table 

 Table 11 shows that the one second window is perhaps too short as it has poor prediction 

of the “unsafe” cases. Comparing tables 12 and 13 shows the two second window to be 
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preferable because it requires less data and has a more conservative prediction with fourteen 

percentage point advantage in “unsafe” classification rate.  

1 second DR Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.9835 0.0165 
Unsafe   0.0145 0.9855 

 

Table 14: 1 second prediction dead reckoning truth table 

2 second DR Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.8094 0.1906 
Unsafe   0.5619 0.4381 

 

Table 15: 2 second prediction dead reckoning truth table 

3 second DR Truth Table  
Actual Predicted Safe Unsafe 
Safe   0.9267 0.0733 
Unsafe   1 0 

 

Table 16: 3 second prediction dead reckoning truth table 

 The dead reckoning results were similar to the neural network results at times, however 

there were some significant gains for the neural network correct classification rate.  Comparing 

tables 14 for the dead reckoning approach and table 8 for the neural network path prediction 

approach shows a very similar and high prediction rates for both the dead reckoning approach 

and the neural network approach at the one second predictive length.  The results are more 

divergent when comparing table fifteen for the dead reckoning approach and table nine for the 

neural network approach.  The two approaches were within five percentage points correct 

classification for the “safe” condition, but the neural network had a forty-seven percentage point 

advantage for the unsafe classification.  The stark advantage on the “unsafe” classification may 

be due to the small number of instances of “unsafe” instances versus “safe” instances.  Finally, 

the three second prediction length shows a similar advantage for the neural network approach 
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over the dead reckoning approach with nearly the same “safe” correct classification rate but a 

sixty-three percentage point advantage for the neural network approach for the classification of 

“unsafe” situations.  Overall, the neural network is the same or significantly better than the dead 

reckoning approach to classifying the future relative position of the remote vehicle as “safe” or 

“unsafe” at varying predictive lengths, which are advantageous to the current blind spot warning 

systems on automobiles.  
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Chapter 5 Conclusions 
 
Accurate, timely, and robust prediction of the path of remote vehicles is critical for the 

safe travel of an autonomous vehicle. For the foreseeable future, remote vehicles will 

predominantly be human driven.  Bansal and Kockelman [20] expect between twenty-five to 

eighty-seven percent prevalence of autonomous vehicles in the U.S. vehicle fleet by 2045.  

Based on deployment and adoption of previous vehicle technologies (like automatic 

transmission, airbags, vehicle navigation systems, and hybrid-electric drive), Litman [21] 

forecasts that AVs will constitute around 50% of vehicle fleet, 90% of vehicle sales, and 65% of 

all vehicle travel by 2050.  Both estimates show that well into the future there will be a mix of 

autonomous and human driven vehicles on the road. 

Sharing the roadways with fellow human drivers means that the traffic around 

autonomous vehicles will be unpredictable when humans fail to obey the rules of the road or fail 

to maintain control of their vehicle. As autonomous vehicles driving on California roads have 

found out, remote vehicles driven by humans are the predominant cause of autonomous vehicle 

collisions. In seventy-three of seventy-six traffic collisions reported to the State of California 

Department of Motor Vehicles, [10] the remote human driven vehicle was the cause of the 

collision. In such an uncertain environment, the virtual driver system of the autonomous vehicle 

must possess strong, robust predictive abilities in order to help the autonomous vehicle avoid 

collisions, even if the other driver would have been at fault had the collision occurred.  

Strong predictive ability will improve adoption and acceptance of autonomous vehicles.  

A 2017 Gartner survey [22] reveals that fifty-five percent of 1519 respondents in the United 
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States and Germany will not ride in a fully autonomous vehicle.  Autonomous vehicles will be 

deployed to a skeptical audience, so as seamless as possible a deployment will be key to their 

adoption. Specifically, “fear of autonomous vehicles getting confused by unexpected situations” 

was a concern of respondents.  Improving all types of autonomous accident avoidance, including 

for situations where the accident is caused not by the inability of the autonomous vehicle to 

follow the rules of the road, will increase autonomous vehicle adoption. 

The neural network approach to predicting whether the remote vehicle will be in an 

unsafe position for the host vehicle to make a lane change maneuver improved the classification 

rate as recorded by the truth tables by one to sixty-three percentage points.  This advantage for 

the neural network was achieved with ten hidden nodes in the single hidden layer within the 

network, a two-second window, four feature vectors, and with a median filter smoothing the 

predicted position of the remote vehicle’s relative position to the host vehicle.  

This paper provides a unique perspective on the prediction of remote vehicle behavior 

because it analyzes data created by nearly unsuspecting remote vehicles and simulates a future 

traffic scheme with vehicles communicating with a vehicle-to-vehicle network.  

The results of this paper compare various neural network characteristics to predict remote 

vehicle behavior.  Future improvements will include harnessing recurrent neural networks, which 

stress the most recent data in the predictive data set. Also, maneuver recognition may be possible 

if there are sufficient examples of a maneuver type.  However, there were only a few examples 

of each maneuver type collected over two days of vehicles driving examined in this study, so 

more data will need to be collected to accomplish maneuver recognition.  

 The GPS data has not only noise but discontinuities as well.  The discontinuities are 

caused by drops in the GPS signal caused by hardware deficiencies and obstacles such as bridges 
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and buildings.  Park, Lee, and Seo [23] found that the accuracy and availability of the position, 

navigation, and timing information from a global navigation satellite system can be interfered 

with by the ionosphere, multipath signals, and radio frequency interference (RFI).  The 

discontinuities were eliminated from the data sets in this experiment manually in order to 

simplify the analysis and make the prediction results more consistent between runs with and 

without interruptions in the data.  The interruptions in the signal caused the predictions of next 

vehicle position to be wildly inaccurate.  However, this simplification is not as easy to 

implement in a real car.  A signal quality metric will be needed to determine the validity of the 

GPS data or the quality of the transmitted vehicle-to-vehicle transmitted network position.  

Perhaps, the position data will be augmented by more reliable locally derived position, direction, 

and vehicle speed measurements fed into a Kalman filter. The difficulty of maintaining a 

continuous stream of data for the system both from the initial determination of remote vehicle 

location and the transmission of the data is an important area of consideration.  

 Furthermore regarding remote vehicle data collection and transmission, future study 

regarding vehicle-to-vehicle communication should include consideration for the time to collect, 

communicate, and process the data necessary to make future vehicle position predictions.  This 

study assumes that the collection, transmission, and processing of data occurs instantly.  The 

simplification helps to compensate for the lack of readily available and useful car area network 

(CAN) signals.  Ideally, the data passed from one vehicle to another should include accelerator 

and brake pedal positions and steering wheel angle to help predict future positions.  The addition 

of these basic vehicle signals would greatly improve the certainty of the remote vehicle position 

by the implementation of a more sophisticated Kalman filter than this paper features by including 

these highly predictive signals to vehicle movement. 
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 Another limitation of this paper is that the data collected for this experiment contain no 

crashes, which is an important set of data to analyze for system robustness.  Data with crashes 

within it are not totally necessary given that the real world implementation of this system would 

be to create an enhanced blind spot monitoring system.  Simply having situations where the host 

vehicle would have crashed if it changed lanes and cases where it would not have if the host 

vehicle were to change lanes into it is sufficient to show the range of situations.  However, a 

future study which contains data where the host vehicle crashes into the remote vehicle either by 

sheer volume of trip collection or some kind of simulation would be helpful to rigorously test the 

system and show the helpfulness of the system.  
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Appendix 1: California Department of Motor Vehicle Autonomous Crash Data 

 

 

Figure 16: Collision factors 
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Figure 17: Collision locations 

 

Figure 18: Collision time of day 
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Figure 19: Collision speeds 

 

Figure 20: Vehicle damage locations 
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Figure 21: Vehicle operator 
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Appendix 2: Experimental Trips 

Pink – host vehicle, correct remote position prediction 

Red – host vehicle, incorrect remote position prediction 

Blue – true remote vehicle position 

White – predicted remote vehicle position 

Green – line connecting host and predicted remote vehicle prediction 

 

 

Figure 22: Situation 1 
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Figure 23: Situation 2 

 

Figure 24: Situation 3 
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Figure 25: Situation 4 

 

Figure 26: Situation 5 
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Figure 27: Situation 6 

 

Figure 28: Situation 7 
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Figure 29: Situation 8 

 

Figure 30: Situation 9 
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Figure 31: Situation 10 
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