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1. Web Appendix A

Further Details on the Statistical Methods for Gaussian B

Standard Bayes

Analogous to direct linear regression, we can perform standard Bayesian linear regression

with flat conjugate priors for parameters in model (3) (in main text). For model (2) (in

main text), we can perform standard Bayesian logistic regression. Posterior distributions

for Bayesian analysis of a logistic regression model are not available as closed-form

expressions based on a conjugate prior and instead standard Bayes can be implemented

by a Metropolis-Hasting sampling technique with either flat priors or Jeffrey’s priors.

Gelman et al. (2008) suggested weakly informative Cauchy distributions as priors for

the regression coefficients in logistic regression to reduce the separability issue. With an

approximate EM algorithm, this non-informative Bayes method can be implemented in

a fast and easy way to obtain posterior draws. We will use this method with weakly
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informative Cauchy priors throughout this paper. The implementation of standard Bayes

was done in R using the package ’arm’ with the function ’bayesglm’.

Constrained Maximum Likelihood

The constrained maximum likelihood (constrained ML) estimation optimizes the joint

log-likelihood under the set of constraints generated based on the approximate relation-

ship equations in (6) (in main text). As we have the point estimates and the standard

errors of β from the established model, we require the parameter estimates for γ and

θ to result in the derived estimated β to be within d standard errors of the old point

estimates:

min
γ,θ

{ n∑
i=1

[−Yi(

p∑
j=0

γjXij + γp+1Bi) + log(1 + exp(

p∑
j=0

γjXij + γp+1Bi))]

+
n∑

i=1

(Bi −
∑p

j=0 θjXij)
2

2σ̂2
2

}
s.t.

γj + γp+1θj

(1 + γ2
p+1σ

2
2/1.7

2)
1

2

∈ [β̄j − dS̄j , β̄j + dS̄j ], j = 0, . . . , p

(1)

In this optimization problem, σ̂2
2 is a plug-in estimator and is the OLS residual variance

from fitting E(B|X) and d is a scale parameter representing the strength of external

information. A value of d approaching zero would correspond to assuming that the

β’s are known precisely. Intuitively a value of d in the range of 1 to 2 would capture

much of the uncertainty regarding the β’s, and a large value of d would correspond to

ignoring the established model. From simulations, we find that fixing d as d = 1 leads

to decent properties of the estimates of γ. To solve this optimization problem, we use

function solnp in R package Rsolnp, a function that efficiently solves a general nonlinear

optimization problem using Lagrange multipliers. For computational convenience, we

further specify wide lower and upper bounds for each of these parameters: γj ∈ [γ̂j −

5ŜE(γj), γ̂j +5ŜE(γj)], j = 0, · · · , p+1, θj ∈ [θ̂j−5ŜE(θj), θ̂j +5ŜE(θj)], j = 0, · · · ,p where

γ̂j , j = 0, · · · , p + 1 and θ̂j , j = 0, · · · , p are the MLEs and ŜE(γj), j = 0, · · · ,p + 1 and

ŜE(θj), j = 0, · · · , p are the corresponding standard errors.

We also consider a modification to the constrained ML solution above by adding a
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Firth penalty term to the objective function:

min
γ,θ

{ n∑
i=1

[−Yi(

p∑
j=0

γjXij + γp+1Bi) + log(1 + exp(

p∑
j=0

γjXij + γp+1Bi))]

+
n∑

i=1

(Bi −
∑p

j=0 θjXij)
2

2σ̂2
2

− 0.5log|I(γ)|
}

s.t.
γj + γp+1θj

(1 + γ2
p+1σ

2
2/1.7

2)
1

2

∈ [β̄j − dS̄j , β̄j + dS̄j ], j = 0, . . . , p

(2)

where |I(γ)| is the determinant of the Fisher information matrix of the likelihood function

L(Y|X,B).

Informative Full Bayes

In informative full Bayes, starting with the joint likelihood L(Y|X,B)L(B|X) we trans-

late the constraints in (6) (in main text) to prior information. The first step is to write

down the joint likelihood function with priors on γ,θ, σ2
2:

p(γ,θ, σ2
2|data) ∝ L(Y|X,B,γ) · L(B|X,θ, σ2

2) · π(γ,θ, σ2
2)

=
{ n∏

i=1

exp((
∑p

j=0 γjXij + γp+1Bi)Yi)

1 + exp(
∑p

j=0 γjXij + γp+1Bi)
· 1√

2πσ2
2

exp
(
− 1

2σ2
2

(Bi −
p∑

j=0

θjXij)
2
)}
· π(γ,θ, σ2

2)

(3)

The logistic regression approximation result (6) (in the main manuscript) suggests that

θj = 1
γp+1

(βj

√
1 +

γ2
p+1σ

2
2

1.72 − γj), j = 0, . . . , p. We can re-parametrize (3) in terms of γ,

β and σ2
2, and include a Jacobian transformation matrix denoted by J, where |J| =

1
|γp+1
p+1 |

(1 +
γ2
p+1σ

2
2

1.72 )
p+1

2 . Now the likelihood is represented in terms of γ, β and σ2
2.

We specify a non-informative prior inverse-gamma(0.01, 0.01) for σ2
2 and independent

weakly informative Cauchy priors for γ (Gelman et al., 2008). For γ0 we specify a Cauchy

prior with location parameter 0, scale parameter 10. For γj , j = 1, . . . , p+1 we specify a

Cauchy prior with location parameter 0, scale parameter 2.5. This is achieved through

the hierarchical representation:

γ0 ∼ N(0, k2
0), γ1 ∼ N(0, k2

1), . . . , γp+1 ∼ N(0, k2
p+1)

k2
0 ∼ Inv − χ2(1, 102), k2

1 ∼ Inv − χ2(1, 2.52), . . . , k2
p+1 ∼ Inv − χ2(1, 2.52)

(4)
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As a result, the prior distribution for the coefficient γj , j = 0, . . . , p + 1 is a mixture of

normals with unknown scale parameter kj that follow an inverse chi-square distribution.

For parameters β, we use the constraints directly as priors:

βj =
γj + γp+1θj

(1 + γ2
p+1σ

2
2/1.7

2)
1

2

∼ N(β̄j, S̄
2
j ), j = 0, . . . ,p (5)

Then we can rewrite the joint distribution in terms of γ,β, σ2
2,k

2 as p(γ,β, σ2
2,k

2|Y,X,B) ∝{∏n
i=1

exp((
∑p
j=0 γjXij+γp+1Bi)Yi)

1+exp(
∑p
j=0 γjXij+γp+1Bi)

}
·
{∏n

i=1
1√

2πσ2
2

exp(− 1
2σ2

2
(Bi−

β0

√
1+

γ2
p+1

σ2
2

1.72 −γ0

γp+1
−
∑p

j=1

βj

√
1+

γ2
p+1

σ2
2

1.72 −γj

γp+1
Xij)

2)
}
·

π(β) ·
{∏p+1

j=0
1√

2πk2
j

exp(− γ2
j

2k2
j
)
}
·
{∏p+1

j=0 π(k2
j )
}
· π(σ2

2) · |J|

After some algebraic calculations, the full conditional distributions of β0, . . . , βp turn

out to be normal, each with distribution function N(µβj,n, σ
2
βj,n

), j = 0, . . . ,p. The full

conditional distributions of k2
0, k

2
1, . . . , k

2
p+1 are inverse chi-square, each with distribution

function Inv− χ2(2, 1
2(s2

j + γ2
j )), s0 = 10, s1 = · · · = sp+1 = 2.5, j = 0, . . . ,p + 1. The full

conditional distributions of γ0, . . . , γp+1 and the full conditional distribution of σ2
2 do

not have closed form expressions. A Metropolis-Hastings sampling algorithm is needed.

2. Web Appendix B

Logistic Regression Approximation in Main Text, Equations (6) and (13)

The logistic-normal integral of the form G(η, τ) =
∫ +∞
−∞ H(z)τ−1φ( z−η

τ )dz often appears

in the studies of logistic regression model calibration where a subset of predicting vari-

ables are measured with errors. Monahan and Stefanski (1992) demonstrated a normal

scale mixture representation of the logistic cumulative distribution function H(z), show-

ing that H(z) can be approximated by a finite location-scale mixture of normal distri-

bution functions: H(z) ≈ Hk(z) =
∑k

i=1 pk,iΦ(z× sk,i), k = 1, 2, . . . , where pk,i is a fixed

value and can be considered the weight of each normal CDF. sk,i is also a fixed value and

can be considered as the corresponding scale parameter. All values of pk,i and sk,i can be

found in their Least Maximum Approximants Table. Numerically studies show that this

approximation is remarkably good for k as small as 3. In logistic regression calibration

it is generally acceptable to take k = 1. Based on the Least Maximum Approximants

Table, the corresponding values of pk,i, sk,i are p1,1 = 1 and s1,1 ≈ 0.59. Then we have
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the following conclusion:

H(z) ≈ Φ(z× s1,1) ≈ Φ(0.59z) ≈ Φ(z/1.7) (6)

Sketch of Proof for Logistic Regression Approximation Equation (6)

Assume that B|X is univariate normal with mean mB = Xθ and variance σ2
2.

Pr(Y = 1|X) =
∫

H(Xγx + BγB) 1√
2πσ2

2

e
− (B−Xθ)2

2σ2
2 dB

=
∫

H(z) 1√
2πσ2

2γ
2
B

e
−

(
z−Xγx
γB

−Xθ)2

2σ2
2 dz by changing Xγx + BγB to z

≈
∫

Φ(z× s1,1) 1√
2πσ2

2γ
2
B

e
−

(
z−Xγx
γB

−Xθ)2

2σ2
2 dz

=
∫

Φ[(Xγx + (Xθ)γB + CγBσ2)s1,1] 1√
2π

e−
C2

2 dC

= Φ
( (Xγx+(Xθ)γB)s1,1√

1+γ2
Bσ

2
2s

2
1,1

)
≈ H

( (Xγx+(Xθ)γB)√
1+γ2

Bσ
2
2s

2
1,1

)
≈ H

( (Xγx+(Xθ)γB)√
1+γ2

Bσ
2
2/1.7

2

)
Note that the above derivation is based on calculating the integral of product of a nor-

mal CDF and a standard normal PDF. In most cases the above is a good approximation,

unless γ2
p+1σ

2
2 is too large (Carroll et al., 2006).

Sketch of Proof for Logistic Regression Approximation Equation (13)

For the case that B|X is multivariate normal with L dimensions with mean Xθ and

covariance matrix VL×L, the derivation will be slightly different:

Pr(Y = 1|X = x) =
∫

Pr(Y = 1|X = x,B = b) 1
(2π)L/2|V|1/2 e−

1

2
(b−xθ)TV−1(b−xθ)db

=
∫

H(xγx + bγB) 1
(2π)L/2|V|1/2 e−

1

2
(b−xθ)TV−1(b−xθ)db

≈
∫

Φ(s1,1(xγx + bγB)) 1
(2π)L/2|V|1/2 e−

1

2
(b−xθ)TV−1(b−xθ)db

=
∫

Φ(s1,1(xγx + (xθ + Σc)γB))φ(c)dc by changing b to xθ + Σc where ΣTΣ = V

=
∫

Pr(W ≤ s1,1(Xγx +(Xθ+ΣC)γB)|X = x,C = c)φ(c)dc where W is a standard

normal random variable and is independent of C

= Pr(W ≤ s1,1(Xγx + (Xθ + ΣC)γB)|X = x) by the law of total probability

= Pr(−s1,1(XγX + XθγB) ≤ s1,1ΣCγB −W|X = x)

Let Z = s1,1ΣCγB −W. Then Z ∼ N(0, s2
1,1γ

T
BVγB + 1) by Delta method
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Then line seven = Pr(−s1,1(Xγx + XθγB) ≤ Z|X = x)

= Pr(− s1,1(Xγx+XθγB)√
s2
1,1γ

T
BVγB+1

≤ Z√
s2
1,1γ

T
BVγB+1

|X = x)

= Φ( s1,1(Xγx+XθγB)√
s2
1,1γ

T
BVγB+1

|X = x)

≈ H( (Xγx+XθγB)√
s2
1,1γ

T
BVγB+1

|X = x)

3. Web Appendix C

Relationship Equations for Binary B

When B is a binary variable, based on the Bayes theorem, there is a relationship equation

connecting Pr(Y = 1|X),Pr(Y = 1|X,B) and f(B|X,Y), regardless of the type of variable

B is (Grill et al., 2015; Satten and Kupper, 1993).

Pr(Y = 1|X,B)

Pr(Y = 0|X,B)
=

f(B|X,Y = 1)

f(B|X,Y = 0)
· Pr(Y = 1|X)

Pr(Y = 0|X)
(7)

Re-arranging (7) and take the log on both sides, we have:

log

{
Pr(Y = 1|X)

Pr(Y = 0|X)

}
= log

{
Pr(Y = 1|X,B)

Pr(Y = 0|X,B)

}
+ log

{
f(B|X,Y = 0)

f(B|X,Y = 1)

}
(8)

Equation (8) indicates that when B is binary, we need to define a model for B|X,Y

instead of a model for B|X. Assume logit(Pr(B = 1|X,Y)) =
∑p

j=0 φjXj + φp+1Y. So

f(B|X,Y) = e
(
∑p

j=0
φjXj+φp+1Y)B

1+e
∑p

j=0
φjXj+φp+1Y

. By looking at the log odds ratio in equation (8), we find

that the left hand side is
∑p

j=0 βjXj, a linear combination of βs. So equation (8) can be

written as:

β0+β1X1+...+βpXp = γ0+γ1X1+...+γpXp+γp+1B+log

{
e(

∑p
j=0 φjXj)B

1 + e
∑p

j=0 φjXj
· 1 + e

∑p
j=0 φjXj+φp+1

e(
∑p

j=0 φjXj+φp+1)B

}
(9)

The right hand side of this expression can be rewritten as

γ0 + ...+ γpXp + γp+1B + log

{
1+e

∑p
j=0

φjXj+φp+1

1+e
∑p

j=0
φjXj

· 1
eφp+1B

}
= γ0 + ...+ γpXp + γp+1B− φp+1B + log

{
1 + e

∑p
j=0 φjXj+φp+1

}
− log

{
1 + e

∑p
j=0 φjXj

}
This expression can be approximated using Taylor series expansions to obtain an

expression which is linear in the Xj ’s. A number of different ways of approximating it are

possible. Below we write out the expressions for expansion about φ0 = φ1 = ... = φp+1 =

0. Other expansions about φ1 = ... = φp+1 = 0 and about the unconstrained MLE’s
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were also considered. The second approximation did lead to slightly improved results in

some cases. The third approximation did not lead to a satisfactory linearization. Using

the expansion about φ0 = φ1 = ... = φp+1 = 0 we obtain

γ0 + ...+ γpXp + γp+1B− φp+1B + log
{

1 + e
∑p

j=0 φjXj+φp+1

}
− log

{
1 + e

∑p
j=0 φjXj

}
= γ0 + ...+ γpXp + γp+1B + log

{
1+e

∑p
j=0

φjXj+φp+1

1+e
∑p

j=0
φjXj

· 1
eφp+1B

}
= γ0 + ...+ γpXp + γp+1B− φp+1B + log

{
1 + e

∑p
j=0 φjXj+φp+1

}
− log

{
1 + e

∑p
j=0 φjXj

}
≈ γ0+...+γpXp+γp+1B−φp+1B+[log2+ 1

2(
∑p

j=0 φjXj+φp+1)+ 1
8(
∑p

j=0 φjXj+φp+1)2

+O((
∑p

j=0 φjXj +φp+1)3)]− [log2+ 1
2(
∑p

j=0 φjXj)+ 1
8(
∑p

j=0 φjXj)
2 +O((

∑p
j=0 φjXj)

3)]

≈ γ0 + ...+ γpXp + γp+1B− φp+1B + 1
2φp+1 + 1

8(
∑p

j=0 φjXj + φp+1)2− 1
8(
∑p

j=0 φjXj)
2

= γ0 + 1
2φp+1 + 1

4φ0φp+1 + 1
8φ

2
p+1 +

∑p
j=1(γj + 1

4φjφp+1)Xj + (γp+1 − φp+1)B

The third last equation is by Taylor series expansions of log
{

1 + e
∑p

j=0 φjXj+φp+1

}
and

log
{

1 + e
∑p

j=0 φjXj

}
at point 0, respectively. By matching the coefficient of each variable

on the left hand side and the right hand side of the equation, we find an approximate

relationship between γ,φ and β, when B is a binary variable:
β0 ≈ γ0 + 1

2φp+1 + 1
4φ0φp+1 + 1

8φ
2
p+1

βj ≈ γj + 1
4φjφp+1, j = 1, ..., p

γp+1 = φp+1

(10)

Further Details of the Statistical Method for Informative Full Bayes for Binary B

The likelihood is first reparametrized in terms of γ, β, and includes the Jacobian ma-

trix M . We specify independent weakly informative Cauchy priors for γ by introducing

latent variables k and use the constraints directly as priors for β. Then we can rewrite the

joint distribution in terms of γ,β,k2 as p(γ,β,k2|Y,X,B) ∝

{∏n
i=1

exp((
∑p

j=0 γjXij+γp+1Bi)Yi)

1+exp(
∑p

j=0 γjXij+γp+1Bi)
·[

wi,β̄

1+exp
(
−(

4β0−4γ0−2γp+1− 1
2
γ2
p+1

γp+1
+
∑p
j=1 Xij

4(βj−γj)

γp+1
)
)+

1−wi,β̄
1+exp

(
−(

4β0−4γ0−2γp+1− 1
2
γ2
p+1

γp+1
+
∑p
j=1 Xij

4(βj−γj)

γp+1
+γp+1)

)]Bi ·[
wi,β̄

1+exp
(

4β0−4γ0−2γp+1− 1
2
γ2
p+1

γp+1
+
∑p
j=1 Xij

4(βj−γj)

γp+1

)+
1−wi,β̄

1+exp
(

4β0−4γ0−2γp+1− 1
2
γ2
p+1

γp+1
+
∑p
j=1 Xij

4(βj−γj)

γp+1
+γp+1

)](1−Bi)
}
·

π(β) ·
{∏p+1

j=0
1√

2πk2
j

exp(− γ2
j

2k2
j
)
}
·
{∏p+1

j=0 π(k2
j )
}
· |M|
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After some algebraic calculations, the full conditional distributions of k2
0, k

2
1, . . . , k

2
p+1

are inverse chi-square, each with distribution function Inv−χ2(2, 1
2(s2

j +γ2
j )), s0 = 10, s1 =

· · · = sp+1 = 2.5, j = 0, . . . ,p + 1. The full conditional distributions of γ0, . . . , γp+1 and

the full conditional distribution of β0, . . . , βp do not have closed form expressions. A

Metropolis-Hastings sampling algorithm is needed.

4. Web Appendix D

Standard Error Calculations

Bootstrap Estimate of the Standard Error for the Constrained ML Estimate When B Is

Normal

We would like to obtain a bootstrap estimate of the constrained ML estimator’s standard

error. In our study, we implement a parametric bootstrap as follows:

• Estimate the regression coefficients γ0, . . . , γp+1 and θ0, . . . , θp by the constrained

ML method for the original sample

• Calculate the fitted outcome B̂i and residual Ei,B for each observation: B̂i = θ̂0 +

θ̂1Xi1 + · · ·+ θ̂pXip and Ei,B = Bi − B̂i

• Take bootstrap samples of the residual (sample with replacement), ẽb = [Ẽb,1,B, . . . , Ẽb,n,B]T,b =

1, . . . ,S, calculate bootstrapped B values B̃b = [B̃b1, . . . , B̃bn]T, where B̃bi =

B̂i + Ẽb,i,B

• Calculate bootstrap Y values: Ỹbi ∼ Bernoulli(P̃bi) where P̃bi = Pr(Y = 1|Xi, B̃bi, γ̂)

• Regress Ỹb on the fixed X design matrix and bootstrap samples B̃b to obtain boot-

strap estimates of regression coefficients by the constrained ML method: γ̃b,0, . . . , γ̃b,p+1

• The γ̃b can be used to construct bootstrap standard error: σ̃.,j = (
∑S
b=1(γ̂b,j−¯̃γ.,j)2

S−1 )1/2,

j = 0, . . . , p+1, in the usual bootstrap manner as described in Efron and Tibshirani

(1986).
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Bootstrap Estimate of the Standard Error for the Constrained ML Estimate When B Is

Binary

• Estimate γ0, . . . , γp+1 and φ0, . . . , φp+1 by the constrained ML method for the orig-

inal sample

• Calculate bootstrap B values: B̃bi ∼ Bernoulli(P̂Bi
),b = 1, . . . ,S, where P̂Bi

=

Pr(B = 1|Xi,Yi, φ̂, β̄)

• Calculate bootstrap Y values: Ỹbi ∼ Bernoulli(P̃bi) where P̃bi = Pr(Y = 1|Xi, B̃bi, γ̂)

• Regress Ỹb on the fixed X and bootstrap samples B̃b to obtain bootstrap estimates

of regression coefficients by the constrained ML method: γ̃b,0, . . . , γ̃b,p+1

• Construct bootstrap standard error: σ̃.,j = (
∑S

b=1(γ̂b,j−¯̃γ.,j)2

S−1 )1/2,

j = 0, . . . ,p + 1.

Comparison of the average bootstrap point estimates and standard errors to the Monte

Carlo average and standard deviation are provided in Table S3. The bootstrap mean and

the Monte Carlo mean appear to be quite similar. The bootstrap estimated standard

error is too large in the first scenario for the constrained ML method. However, with

the Firth correction the standard errors from the bootstrap method match the empirical

standard deviations, in both scenarios.

Standard Error Calculations for other Estimators

For the direct regression and direct regression plus Firth correction the standard errors

are based on the asymptotic formulas. For the non-informative Bayes, the informative

Bayes and the transformation approach the standard deviation of the posterior draws

are used as the standard errors. For the Chatterjee et al. (2016) method the standard

errors are based on bootstrap estimates as described above.
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5. Web Appendix D

Simulation Results for Binary B

Similar to the study presented in Table 1 in the main paper we conducted a simulation

study for binary B. This simulation scenario has three predicting variables X1,X2,B

where B is binary. There are 75 observations in each dataset. 500 datasets are generated.

Yi is Bernoulli distributed with logit(Pr(Yi = 1|Xi1,Xi2,Bi)) = 2 + 4Xi1 + 4Xi2 + 2Bi.

Xi1,Xi2 are independently and identically distributed on U(−0.75, 0.25) and Bi is sim-

ulated from logit(Pr(Bi = 1|Xi1,Xi2) = 1 + Xi1 + Xi2. A logistic regression based on

a large dataset of 10000 subjects gives estimates for the model logit(Pr(Y = 1|X)) =

β0 + β1X1 + β2X2. The estimates and standard errors are β̄0 = 2.97, S̄0 = 0.06, β̄1 =

3.87, S̄1 = 0.10, β̄2 = 3.68, S̄2 = 0.10.

Table S4a. summarizes the simulation results for this simulation scenario, where B is

binary. The constrained methods in this simulation scenario exhibit greater improvement

in estimating efficiency for the coefficients of X than in the simulation scenarios with

Gaussian B. The constrained ML with Firth penalty and transformation approach can

improve the relative efficiency of parameters γ1 and γ2 by more than 600%. For Brier

score and AUC all the methods that use the external information are similar. They are

slightly better than the methods that don’t use the external information, and almost as

good as the best possible value. They are all better than not using B. In this simulation

scenario, the informative full Bayes method is more computationally intensive since

both the conditional distributions of γ and the conditional distributions of β do not

have closed form expressions. Drawing samples based on a Metropolis-Hasting sampling

algorithm in this case is computationally demanding.

Additional Simulation Results for Gaussian B

Additional simulations were conducted to investigate a broader range of scenarios in

which models may be misspecified, or covariates may not be necessary, or where covari-

ates are highly correlated, or where there is a larger number of covariates. The scenarios

considered are adaptations of the scenario in Table 1 (in main text) in which B is Gaus-

sian. All the datasets are of size 55, and the results are based on 500 simulated datasets.
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For each scenario the intercepts in the data generating model were chosen to give the

proportion of observations with Y = 1 as close to 0.5. The scenarios are described below.

The results are consistent with those in Table 1 (in main text), for the estimates of γ’s

the methods that use the external information have less variability. For the measures of

predictive ability the methods are able to demonstrate some gain through using B com-

pared to the established model, that the more sophisticated methods are slightly better

than the simple methods (direct regression and simple logistic(p̄)). Overall there is no

clear best method amongst the sophisticated methods although the constrained MLE +

Firth and the transformation approach appear to perform well. The Chatterjee et al.

(2016) method gives as good a performance as any other method that uses external in-

formation as measured by AUC, but does tend to give very slightly worse performance as

measured by the Brier score, and does tend to give more variable predicted probabilities

than the other methods.

Additional Simulation Results: X1 not associated with B

Yi is Bernoulli distributed with logit(Pr(Yi = 1|Xi1,Xi2,Bi)) = 1.75 + 3Xi1 + 3Xi2 +

2Bi. Xi1,Xi2 are independently and identically distributed on U(−0.75, 0.25) and Bi is

simulated as Bi = 0.5Xi2 + N(0, 0.752). The results are shown in Table S4b.

Additional Simulation Results: B and X1 are highly correlated

Yi is Bernoulli distributed with logit(Pr(Yi = 1|Xi1,Xi2,Bi)) = 2.75 + 3Xi1 + 3Xi2 +

2Bi. Xi1,Xi2 are independently and identically distributed on U(−0.75, 0.25) and Bi is

simulated as Bi = 2Xi1 + 0.5Xi2 + N(0, 0.752). The correlation between B and X1 is 0.6.

The results are shown in Table S4c.

Additional Simulation Results: Model for B|X is misspecified

Yi is Bernoulli distributed with logit(Pr(Yi = 1|Xi1,Xi2,Bi)) = 0.14 + 3Xi1 + 3Xi2 +

2Bi. Xi1,Xi2 are independently and identically distributed on U(−0.75, 0.25) and Bi is

simulated as Bi = 1.0 + Xi1 − 0.5X2
i2 + N(0, 0.752). The results are shown in Table S4d.
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Additional Simulation Results: Larger number of X variables

Yi is Bernoulli distributed with logit(Pr(Yi = 1|Xi1,Xi2,Xi3,Xi4,Bi)) = 1.55 + Xi1 +

Xi2 + Xi3 + Xi2 + 2Bi. Xi1,Xi2,Xi3,Xi4, are independently and identically distributed on

U(−0.75, 0.25) and Bi is simulated as Bi = 0.01Xi1+0.05Xi2+0.5Xi3+0.5Xi4+N(0, 0.752).

The results are shown in Table S4e.

6. Web Appendix F

The Impact of Varying the Tuning Parameter d in Constrained Maximum Likelihood

Method for the Prostate Cancer Example

Table S5. show the results for four different values of d for the constrained ML method,

and how they compare with direct regression and the Chatterjee et al. (2016) method.

As expected large d gives very similar results to direct regression, and very small d gives

similar results to the Chatterjee et al. (2016) method.

7. Web Appendix G

Details of Computational Implementation, Algorithms, Software and R Functions Used

Table S6. provides summary information on how the different methods were imple-

mented. Time refers to computation time for 500 simulated datasets in Table 1 in main

text.
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Table S3. Simulation results of parametric bootstrap: we report the ratio of av-

erage bootstrap mean and Monte Carlo mean ( 1
500

∑500
m=1

¯̃γm,j)/(
1

500

∑500
m=1 γ̂m,j) and

the ratio of average bootstrap standard error and Monte Carlo standard deviation

( 1
500

∑500
m=1 σ̃m,j)/

√
V (γ̂j) of each regression coefficient

Method Ratio γ̂1 γ̂2 γ̂3

First simulation scenario. B Gaussian

Constrained ML Avg.Boot.Mean/MC.Mean 1.10 1.10 1.23

Avg.Boot.SE/MC.SD 1.74 1.81 1.89

Constrained ML + Firth Avg.Boot.Mean/MC.Mean 0.98 0.99 0.99

Avg.Boot.SE/MC.SD 1.03 1.05 1.10

Second simulation scenario. B binary

Constrained ML Avg.Boot.Mean/MC.Mean 1.13 1.12 1.03

Avg.Boot.SE/MC.SD 1.13 1.00 0.96

Constrained ML + Firth Avg.Boot.Mean/MC.Mean 1.07 1.06 0.89

Avg.Boot.SE/MC.SD 0.95 0.94 0.97
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Table S4a.Simulation results for binary B: for each method, we report mean (relative

efficiency w.r.t. direct regression), MSE, average Brier score, average AUC, average p̂

(SD) and computing time for 500 datasets of size 75

Method γ̂1 γ̂2 γ̂3 Scaled Brier Score AUC p̂ mean(SD) Time

True value 4 4 2 0.621 0.871 0.69 (0.300) -

Established model - - - 0.763 0.800 0.68 (0.256) -

using known β̄

Direct regression 4.49 (1) 4.40 (1) 2.22 (1) 0.667 0.861 0.69 (0.309) 1.2

MSE 3.48 3.22 0.82

Direct regression + Firth 3.98 (1.49) 3.90 (1.50) 2.00 (1.46) 0.660 0.862 0.68 (0.297) 3.3

MSE 2.18 2.05 0.53

Non-informative Bayes 3.78 (1.75) 3.70 (1.78) 1.92 (1.66) 0.657 0.861 0.68 (0.279) 4.4

MSE 1.90 1.81 0.47

Constrained ML 4.08 (5.15) 3.94 (3.90) 2.13 (1.03) 0.646 0.868 0.67 (0.315) 43.9

MSE 0.64 0.82 0.79

Constrained ML + Firth 3.93 (12.14) 3.77 (11.27) 1.80 (1.96) 0.641 0.867 0.67 (0.306) 77.2

MSE 0.27 0.32 0.44

Informative full Bayes 3.91 (9.03) 3.75 (8.62) 1.95 (1.57) 0.636 0.866 0.69 (0.290) 30939.1

MSE 0.39 0.36 0.61

Transformation 3.91(8.92) 3.76(9.43) 1.96(1.63) 0.636 0.866 0.69 (0.278) 550.03

MSE 0.35 0.38 0.48

Chatterjee et al. 4.21 (5.55) 4.03 (4.79) 2.21 (1.06) 0.637 0.867 0.69 (0.305) 59.5

MSE 0.81 0.69 1.09

Simple logistic (p̄, B) 4.47 (1.4) 4.25 (1.46) 2.16 (1.11) 0.653 0.866 0.69 (0.305) 1.2

MSE 2.85 2.28 1.01
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Table S4b. Same setting as main text Table 1, continuous B with X1 not associated

with B: for each method, we report mean (relative efficiency w.r.t. direct regression),

MSE, average Brier score, average AUC, average p̂ (SD) and computing time for 500

datasets of size 55

Method γ̂1 γ̂2 γ̂3 Scaled Brier Score AUC p̂ mean(SD) Time

True value 3 3 2 0.589 0.871 0.48 (0.331) -

Established model - - - 0.785 0.768 0.49 (0.229) -

using known β̄

Direct regression 4.53 (1) 5.37 (1) 2.64 (1) 0.643 0.859 0.48 (0.342) 1.4

MSE 528.27 1741.87 60.29

Direct regression + Firth 3.02 (211.71) 3.07 (592.87) 1.96 (117.56) 0.636 0.859 0.48 (0.323) 3.5

MSE 2.48 2.93 0.51

Non-informative Bayes 2.83 (257.37) 2.9 (787.48) 1.97 (143.42) 0.635 0.859 0.48 (0.305) 3.8

MSE 2.07 2.22 0.42

Constrained ML 3.11 (456.97) 2.99 (1922.70) 2,25 (80.54) 0.613 0.866 0.48 (0.333) 90.7

MSE 1.16 0.90 0.80

Constrained ML + Firth 2.83 (780.41) 2.78 (3448.79) 1.91 (143.32) 0.607 0.866 0.49 (0.318) 81.2

MSE 0.70 0.55 0.43

Informative full Bayes 2.84 (715.76) 2.77 (2810.88) 2.17 (114.75) 0.611 0.865 0.48 (0.319) 7349.5

MSE 0.76 0.67 0.55

Transformation 2.84 (817.69) 2.84 (3411.74) 1.92 (111.34) 0.608 0.866 0.49 (0.307) 1096.2

MSE 0.67 0.53 0.54

Chatterjee et al. 3.19 (375.1) 3.09 (1213.92) 2.29 (66.98) 0.615 0.866 0.48 (0.335) 52.2

MSE 1.44 1.44 0.98

Simple logistic (p̄, B) 2.89 (230.41) 3.80 (440.16) 2.17 (80.91) 0.636 0.862 0.48 (0.340) 1.2

MSE 2.29 4.59 0.77
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Table S4c. Same setting as main text Table 1, continuous B, B and X1 are highly

correlated: for each method, we report mean (relative efficiency w.r.t. direct regression),

MSE, average Brier score, average AUC, average p̂ (SD) and computing time for 500

datasets of size 55

Method γ̂1 γ̂2 γ̂3 Scaled Brier Score AUC p̂ mean(SD) Time

True value 3 3 2 0.454 0.923 0.49 (0.369) -

Established model - - - 0.634 0.851 0.50 (0.305) -

using known β̄

Direct regression 5.23 (1) 6.93 (1) 4.39 (1) 0.509 0.912 0.49 (0.380) 1.9

MSE 793.88 2448.72 895.3

Direct regression + Firth 3.00 (237.26) 3.00 (701.62) 1.99 (1004.13) 0.502 0.913 0.49 (0.361) 2.9

MSE 3.33 3.47 0.89

Non-informative Bayes 2.79 (286.73) 2.73 (922.46) 2.12 (986.41) 0.497 0.914 0.49 (0.346) 4.1

MSE 2.80 2.71 0.92

Constrained ML 2.86 (560.26) 3.24 (1480.73) 2.39 (275.80) 0.476 0.919 0.49 (0.372) 67.5

MSE 1.43 1.70 3.37

Constrained ML + Firth 2.91 (967.56) 2.98 (3843.37) 1.92 (1199.52) 0.472 0.919 0.49 (0.36) 102.2

MSE 0.82 0.63 0.75

Informative full Bayes 2.52 (749.66) 2.99 (2645.46) 2.50 (1046.34) 0.472 0.919 0.49 (0.369) 10850.3

MSE 1.26 0.90 1.09

Transformation 2.97 (914.56) 3.04 (3340.43) 2.05 (972.02) 0.472 0.918 0.49 (0.356) 1647.3

MSE 0.86 0.73 0.92

*Chatterjee et al. 2.91 (353.35) 3.37 (924.68) 2.47 (545.14) 0.479 0.918 0.49 (0.376) 57.9

MSE 2.24 2.77 1.86

Simple logistic (p̄, B) 4.74 (3.46) 2.76 (31.32) 3.36 (1.22) 0.503 0.913 0.50 (0.370) 1.4

MSE 231.05 77.74 733.51

* The method of Chatterjee et al. did not converge for 59 of the 500 datasets. The results shown for Chatterjee et al. method were

calculated from estimates based on the 441 datasets in which the Chatterjee et al. method does converge
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Table S4d. Same setting as main text Table 1, continuous B, model for B|X is mis-

specified: for each method, we report mean (relative efficiency w.r.t. direct regression),

MSE, average Brier score, average AUC, average p̂ (SD) and computing time for 500

datasets of size 55

Method γ̂1 γ̂2 γ̂3 Scaled Brier Score AUC p̂ mean(SD) Time

True value 3 3 2 0.529 0.893 0.49 (0.344) -

Established model - - - 0.747 0.792 0.50 (0.260) -

using known β̄

Direct regression 3.61 (1) 3.51 (1) 2.34 (1) 0.585 0.882 0.49 (0.355) 1.6

MSE 4.07 4.09 1.22

Direct regression + Firth 3.08 (1.62) 2.97 (1.73) 1.95 (1.89) 0.579 0.882 0.49 (0.336) 4.0

MSE 2.29 2.21 0.59

Non-informative Bayes 2.93 (1.84) 2.77 (2.08) 2.01 (2.00) 0.576 0.883 0.49 (0.319) 3.8

MSE 2.01 1.89 0.55

Constrained ML 2.97 (4.48) 3.06 (3.94) 2.27 (1.20) 0.551 0.889 0.48 (0.346) 66.0

MSE 0.82 0.97 0.99

Constrained ML + Firth 2.84 (7.18) 2.82 (6.82) 1.91 (2.17) 0.549 0.888 0.48 (0.332) 85.8

MSE 0.54 0.59 0.52

Informative full Bayes 2.80 (5.20) 2.89 (5.04) 2.30 (1.43) 0.548 0.889 0.48 (0.337) 10238.4

MSE 0.75 0.77 0.86

Transformation 2.90 (7.12) 2.83 (6.95) 1.95 (1.89) 0.552 0.887 0.49 (0.324) 969.2

MSE 0.53 0.58 0.59

Chatterjee et al. 3.09 (3.35) 3.16 (2.30) 2.33 (1.02) 0.554 0.888 0.48 (0.349) 41.1

MSE 1.11 1.69 1.18

Simple logistic (p̄, B) 3.91 (1.43) 2.71 (3.09) 2.17 (1.37) 0.576 0.885 0.49 (0.350) 0.9

MSE 3.39 1.32 0.83
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Table S4e. Same setting as main text Table 1, continuous B, larger number of X

variables: for each method, we report mean (relative efficiency w.r.t. direct regression),

MSE, average Brier score, average AUC, average p̂ (SD) and computing time for 500

datasets of size 55

Method γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 Scaled Brier Score AUC p̂ mean(SD) Time

True value 1 1 1 1 2 0.692 0.823 0.51 (0.299) -

Established model - - - - - 0.937 0.652 0.49 (0.154) -

using known β̄

Direct regression 1.21 (1) 1.17 (1) 1.15 (1) 1.20 (1) 2.48 (1) 0.787 0.797 0.51 (0.325) 2.1

MSE 2.31 2.77 3.04 2.58 1.34

Direct regression + Firth 1.00 (1.58) 0.96 (1.62) 0.95 (1.73) 1.00 (1.62) 2.00 (2.14) 0.768 0.797 0.50 (0.299) 5.8

MSE 1.43 1.70 1.75 1.56 0.52

Non-informative Bayes 0.97 (1.76) 0.92 (1.81) 0.94 (1.95) 1.00 (1.79) 2.16 (1.96) 0.755 0.800 0.50 (0.284) 4.0

MSE 1.29 1.52 1.55 1.42 0.59

Constrained ML 1.15 (1.95) 1.04 (1.63) 1.05 (1.36) 1.08 (1.10) 2.49 (0.91) 0.755 0.809 0.50 (0.319) 845.2

MSE 1.18 1.69 2.22 2.30 1.46

Constrained ML + Firth 0.97 (3.57) 0.96 (3.90) 0.92 (4.03) 0.93 (1.96) 2.00 (2.01) 0.745 0.807 0.50 (0.294) 535.2

MSE 0.63 0.71 0.76 1.30 0.55

Informative full Bayes 1.04 (3.74) 0.97 (4.08) 0.92 (5.11) 0.81 (3.76) 2.69 (1.47) 0.725 0.816 0.50 (0.317) 11249.8

MSE 0.61 0.67 0.60 0.71 1.23

Transformation 0.86 (5.45) 0.81 (6.00) 0.76 (6.68) 0.75 (5.08) 2.03 (1.86) 0.721 0.814 0.50 (0.273) 700.5

MSE 0.43 0.49 0.51 0.56 0.60

Chatterjee et al. 1.13 (2.56) 1.10 (2.78) 1.09 (3.11) 0.95 (2.62) 2.46 (1.03) 0.735 0.814 0.50 (0.317) 51.7

MSE 0.90 1.00 0.98 1.77 1.31

Simple logistic (p̄, B) 0.71 (8.98) 0.71 (10.9) 1.33 (3.41) 1.24 (3.29) 2.21 (1.73) 0.734 0.816 0.50 (0.300) 1.8

MSE 0.34 0.34 1.00 0.83 0.69
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Table S5. The impact of varying the scaling quantity d in constrained maximum

likelihood method for the prostate cancer example, and the comparison with direct

regression and the Chatterjee et al. method

Model PSA Age DRE Prior biopsy Race AUC Brier Score

findings history

Original PCPThg 1.29 (0.09) 0.031 (0.012) 1.00 (0.17) -0.36 (0.18) 0.96 (0.27) - 0.707 0.933

Estimated PCPThg 1.06 (0.18) 0.033 (0.012) 1.15 (0.26) -1.44 (0.27) 0.44 (0.29) - 0.716 0.975

Expanded model PCA3

with PCA3 score

Direct regression 1.00 (0.19) 0.009 (0.013) 1.07 (0.27) -1.30 (0.28) 0.04 (0.31) 0.56 (0.08) 0.767 0.950

Constrained ML d=1 1.20 (0.09) 0.010 (0.005) 1.08 (0.17) -0.55 (0.13) 0.30 (0.12) 0.59 (0.08) 0.766 0.953

d=2 1.11 (0.10) 0.003 (0.005) 1.13 (0.24) -0.73 (0.14) 0.041 (0.12) 0.58 (0.08) 0.767 0.951

d=10 1.00 (0.18) 0.009 (0.012) 1.07 (0.27) -1.30 (0.28) 0.038 (0.31) 0.57 (0.08) 0.767 0.950

d=0.1 1.33 (0.07) 0.009 (0.004) 0.94 (0.10) -0.40 (0.08) 0.61 (0.10) 0.59 (0.09) 0.761 0.888

Chatterjee et al. method 1.22 (0.08) 0.007 (0.005) 0.86 (0.10) -0.20 (0.08) 0.58 (0.11) 0.56 (0.097) 0.759 0.888

Expanded model T2: ERG

with binary T2: ERG

Direct regression 1.01 (0.18) 0.032 (0.012) 1.03 (0.26) -1.44 (0.28) 0.57 (0.29) 0.77 (0.20) 0.745 0.929

Constrained ML d=1 1.14 (0.07) 0.032 (0.004) 1.06 (0.15) -0.52 (0.11) 0.81 (0.19) 0.74 (0.22) 0.742 0.928

d=2 1.04 (0.09) 0.02 (0.01) 1.09 (0.21) -0.69 (0.12) 0.55 (0.21) 0.73 (0.21) 0.744 0.924

d=10 1.01 (0.19) 0.03 (0.01) 1.04 (0.27) -1.44 (0.27) 0.56 (0.29) 0.75 (0.21) 0.744 0.929

d=0.1 1.24 (0.03) 0.03 (0.004) 0.92 (0.05) -0.36 (0.04) 1.10 (0.05) 0.72 (0.24) 0.735 0.902

Chatterjee et al. method 1.25 (0.03) 0.029 (0.002) 0.85 (0.05) -0.37 (0.04) 1.06 (0.05) 0.77 (0.27) 0.736 0.911
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Table S6. Details of computational implementation, algorithms, software and functions

used

Method Numerical Algorithm Software/Code Time

Direct regression Maximum likelihood estimation R build-in package stats function glm 1.3

Direct regression + Firth Implement Firth’s penalized likelihood R package logistf function logistif [1] 2.4

on the basis of direct regression

Non-informative Bayes The regression of Y on X and B is based R package arm function bayesglm [2] 3.6

on Bayesian logistic regression with

weakly informative Cauchy prior. The

posterior draws are obtained based

on an approximate EM algorithm

Constrained ML Use Lagrange multipliers to optimize the R package Rsolnp function solnp [3] 44.9

joint log-likelihood under a set of constraints,

with specified wide bounds for each parameter

Constrained ML + Firth Adding a Firth penalty term to the objective R package Rsolnp function solnp 78.2

function on the basis of constrained ML

Informative full Bayes A full Bayes algorithm that starts with Self-written R code for Jacobian 9097.6

re-parameterize the joint likelihood using transformation, the implementation

a Jacobian transformation and then of full Bayesian inference based on

implements the full Bayesian inference based the joint likelihood and the Metropolis-

on the joint likelihood with the constraints Hastings sampling algorithm

directly used as priors. A random walk

Metropolis-Hastings sampling algorithm is

conducted to obtain draws from the posterior

distribution

Transformation An approximate Bayes approach that starts Self-written R code for constructing the 888.2

with using draws from non-informative Bayes optimization problem, and simplifying the

and standard Bayes. These draws are transformed multi-dimensional optimization problem

into constrained draws by solving an optimization into one-dimensional optimization problem.

problem, which is to minimize the normalized Use R package arm for the non-informative

Euclidean distance of the draws from the constrained Bayes and function optimize in R build-in

space package stats to solve the one-dimensional

optimization problem

Chatterjee et al. method Constrained maximum likelihood estimation Self-written Newton Raphson algorithm 43.2

using Lagrange multipliers

[1] Heinze,G., Ploner, M (2016). logistf: Firth’s Bias-Reduced Logistic Regression. R package version 1.22

[2] Gelman, A., Su, Y., Yajima, M., Hill, J., Pittau, M.G., Kerman, J., Zheng, T., Dorie, V. (2016). arm: Data Analysis Using Regression and

Multilevel/Hierarchical Models. R package version 1.9-3

[3] Ghalanos, A., Theussl, S. Rsolnp (2013). Rsolnp: General Non-Linear Optimization. R package version 1.15
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