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Summary. We consider a situation where rich historical data are available for the coefficients
and their standard errors in an established regression model describing the association between
a binary outcome variable Y and a set of predicting factors X, from a large study. We would like
to utilize this summary information for improving estimation and prediction in an expanded model
of interest, Y jX, B. The additional variable B is a new biomarker, measured on a small number
of subjects in a new data set. We develop and evaluate several approaches for translating the
external information into constraints on regression coefficients in a logistic regression model
of Y jX, B. Borrowing from the measurement error literature we establish an approximate re-
lationship between the regression coefficients in the models Pr.Y D 1jX, β/, Pr.Y D 1jX, B, γ/
and E.BjX, θ/ for a Gaussian distribution of B. For binary B we propose an alternative expres-
sion. The simulation results comparing these methods indicate that historical information on
Pr.Y D1jX, β/ can improve the efficiency of estimation and enhance the predictive power in the
regression model of interest Pr.Y D 1jX, B, γ/. We illustrate our methodology by enhancing the
high grade prostate cancer prevention trial risk calculator, with two new biomarkers: prostate
cancer antigen 3 and TMPRSS2:ERG.
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1. Introduction

Risk prediction models for different binary disease end points are abundant in the clinical and
epidemiological literature. Examples of established models are the breast cancer risk calculator
(Gail et al., 1989) and the Framingham risk score (D’Agostino et al., 2001) which can be used to
assess an individual’s risk of experiencing a future health event and to make decisions concerning
screening and prophylactic prevention. As a motivating example in this paper, the prostate cancer
prevention trial (PCPT) risk calculator (Thompson et al., 2006) is an on-line assessment tool
which provides a personalized risk estimate of detecting prostate cancer based on risk factors
such as age, prostate-specific antigen (PSA) and digital rectal examination (DRE) findings.

Whereas these established models are often based on standard epidemiologic and behavioural
risk factors, wider availability of high throughput data and novel assay technologies are gen-
erating candidate biomarkers for potential inclusion in existing prediction models. It is very
likely that the new biomarkers are assessed only on subjects in a study of moderate size and
cannot be measured on the much larger population that is used for the well-established model.
Investigators could directly estimate the expanded model in the new data set, but results from
this expanded prediction model based solely on a limited number of subjects could be highly
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variable. It is natural to consider using the information from the well-established model to
increase the accuracy of the expanded model.

Substantial research has been done on the problem of enhancing risk prediction models with
supplemental external information. The external information may be used to combine esti-
mates from previous studies with the regression coefficients that are estimated in the new data
set. Steyerberg et al. (2000) described a method to adjust the multivariate logistic regression
model’s coefficients estimated in a data set based on univariate regression models’ coefficients
in the literature. Newcombe et al. (2012) presented two possible approaches incorporating the
effect estimates of a set of predictors: the first was by adding a composite weighted risk score
based on these estimates and the second was by specifying informative priors for the coefficients
of these variables in a Bayesian logistic regression model. Chatterjee et al. (2016) developed
a general method for incorporating external coefficients, derived from constrained estimating
equations. Other related approaches used constrained maximum likelihood and empirical like-
lihood (Imbens and Lancaster, 1994; Qin, 2000; Qin et al., 2015). Cheng et al. (2018) developed
and compared various approaches for the situation when the outcome variable is continuous.
They established exact relationships between the parameters in the model of interest that in-
cludes the new biomarker and the parameters in the established model, and then proposed both
frequentist and Bayesian approaches. In the current paper we adapt and extend the approaches
to the situation when the outcome variable is binary.

There are also some simple approaches. For the Gail model, Mealiffe et al. (2010) com-
puted a multiplicative risk score based on previously published odds ratios of newly discovered
biomarkers. They then multiplied the Gail risk estimate and the multiplicative risk score to
give a combined risk score. Grill et al. (2015) proposed a simple method of incorporating new
markers via Bayes theorem. They updated the posterior odds of developing cancer based on
both standard risk factors and new markers by using the likelihood ratio incorporating depen-
dence between the two sets of risk factors to adjust the prior odds of developing cancer based
on standard risk alone. Grill et al. (2017) assessed the performance of a set of likelihood ratio
approaches as well as the approach that was proposed in Chatterjee et al. (2016).

We consider a situation where the outcome is a binary indicator of disease and the well-
established model is described in a published paper, in which the estimated regression coefficients
and their standard errors are presented. The expanded model includes one additional biomarker
as a potential predictor. To introduce notation, let Y denote the binary outcome, X is a set of p

standard risk factors and B is a new biomarker. The association between Y and X is described
through the following logistic model:

logit{Pr.Y =1|X/}=Xβ=β0 +β1X1 +: : :+βpXp: .1/

We assume that we have available summary level information on the estimated regression co-
efficients β̄ and their standard errors S̄ in model (1). On the basis of the work that went into
establishing this model, we shall assume that all the Xs are deemed to be important and need to
be included in any model, and further that the above form provides at least a good approximation
to the distribution of Y given X.

The model of primary interest is a model that describes the joint effect of X and B on Y :

logit{Pr.Y =1|X, B/}=XγX +BγB =γ0 +γ1X1 +: : :+γpXp +γp+1B: .2/

Our goal is to obtain the best estimate we can of the γs in a model of this form, making use of
all the available information from the established model and the small data set.

Another model that can be estimated from the current small data set is
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E.B|X/=g−1.Xθ/=g−1.θ0 +θ1X1 +: : :+θpXp/ .3/

where g is the link function, which is the identity function g.y/ = y for Gaussian B and the
logit function g.y/ = log{y=.1 − y/} for binary B. We propose to formulate the problem in an
inferential framework where the historical information is translated in terms of non-linear con-
straints on the regression parameters. The distribution of B will greatly affect how we translate
the historical information into constraints on the regression parameters. We consider the cases
that B is either Gaussian or binary.

The following description is the structure of the remainder of this paper: in Section 2 we
describe the PCPT risk calculator and the available data including the new biomarkers that
might be able to enhance this calculator. In Section 3, we establish a relationship equation
between the regression coefficients of models (1)–(3) when B is Gaussian. In Section 4, we
consider the situation when B is binary and derive the corresponding constrained solutions. We
present a simulation study in Section 5. In Section 6 we demonstrate the proposed approaches
for the high grade PCPT risk calculator. Concluding remarks are presented in Section 7.

Two simulated data sets and the programs that were used to analyse them can be obtained
from

http://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets

2. A motivating example: prostate cancer risk prediction

The PCPT was a phase III randomized placebo-controlled trial of drug finasteride for the
prevention of carcinoma of the prostate. The PCPT randomly assigned 18882 men who were at
least 55 years old and did not have prostate cancer with either finasteride or placebo for 7 years.
At the end of the 7 years of the study, all men who had not been diagnosed with prostate cancer
during the trial were asked to undergo an end-of-study prostate biopsy. The biopsy result could
be no cancer, low grade cancer or high grade cancer, which was defined as a Gleason score of 7
or higher. Variables that were collected in this trial included family history of prostate cancer,
age, race, previous biopsy result, PSA and DRE.

The use of PSA to screen for prostate cancer had been controversial because the test has
low specificity and can lead to overtreatment. Therefore, improved tests that use additional
information are needed. The PCPT risk calculator for prostate cancer, PCPTrc, and a separate
calculator for high grade prostate cancer, PCPThg (Thompson et al., 2006), were the first on-
line prostate cancer risk assessment tools to allow an individual to assess his risk of prostate
cancer. These calculators are well established and are frequently used. These calculators were
developed from 5519 men in the placebo group of the PCPT who underwent prostate biopsy.
The calculator PCPThg (version 1.0) predicts the chance of high grade prostate cancer based
on PSA level, age, DRE findings, prior biopsy result and race:

log
(

pi

1−pi

)
=−6:25+0:03 agei +0:96 racei +1:29 log.PSAi/+1:00 DREi −0:36 biopsyi .4/

where pi is the probability of observing high grade prostate cancer for subject i. If we plug in
a person’s age, race, PSA level, DRE result and previous biopsy information, we can estimate
the probability of detecting high grade prostate cancer. The estimated logistic model’s coeffi-
cients and the 95% confidence intervals are available in Thompson et al. (2006). The estimated
coefficients and covariance–variance matrices were also accessible as an R code document at
http://deb.uthscsa.edu/URORiskCalc/Pages/calcs.jsp.
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The PCPT risk calculators are based on standard clinical, demographic and epidemiologic
variables. None of the variables are related to the molecular mechanisms of carcinogenesis or
prostate cancer disease progression. It is plausible to think that including other variables that are
more related to the biology of cancer would lead to improved ability to detect prostate cancer.
Prostate cancer antigen 3 (PCA 3) and TMPRSS2:ERG gene fusions are two prostate cancer
biomarkers which have been shown to have better specificity for early detection of prostate
cancer than PSA (Truong et al., 2013; Tomlins et al., 2015). Their transcripts are detectable and
quantifiable in urine collected after DRE. To investigate whether PCA 3 and TMPRSS2:ERG
could be combined with the PCPThg-calculator to give more accurate risk prediction, Tomlins
et al. (2015) undertook a study in 679 men, in whom all the PCPThg-calculator variables and
both a PCA 3 score and a TMPRSS2:ERG score were measured. In this data set the proportion
with high grade prostate cancer is 26.4%. An independent validation study of 1218 men was
also available. In this data set the proportion with high grade prostate cancer is 18.3%.

Tomlins et al. (2015) expanded the PCPThg-model by incorporating PCA 3 as an additional
risk factor. They used the predicted risk score from PCPThg (i.e. P̂r.Yi =1|Xi, β̄PCPThg/×100)
directly as a predicting variable and estimated the joint effect of the PCPThg risk score and the
PCA 3 value on the probability of high grade prostate cancer. They estimated the new model in
the training data set and found that when applied to the validation data set the area under the
curve (AUC) increased from 0.707 for the PCPThg-model to 0.752 for their model. They also
constructed another expanded PCPThg-model by incorporating TMPRSS2:ERG and showed
that the AUC increased from 0.707 to 0.754. We would like to propose more sophisticated
statistical approaches that could potentially provide further improvement compared with these
results.

3. Statistical approaches

3.1. Logistic regression approximation of the marginal Pr(YD1jX)
A difficulty in translating the summary information from modelling Pr.Y = 1|X/ to modelling
Pr.Y =1|X, B/ is that a logistic model logit{Pr.Y =1|X, B/} does not reduce to a logistic model
logit{Pr.Y = 1|X/} when marginalized over the distribution of B. To connect the regression
coefficients in models (1)–(3), we need to approximate logit{Pr.Y = 1|X/} written in terms of
parameters γ and θ and variables X, and to equate that to logit{Pr.Y =1|X/}=Xβ. To achieve
this, we consider the following integral:

Pr.Y =1|X/=
∫

Pr.Y =1|X, B/ P.B|X/ dB

= 1
.2π/1=2σ2

∫
H.Xγx +Bγp+1/ exp

{
− .B−Xθ/T.B−Xθ/

2σ2
2

}
dB .5/

where H.v/={1+exp.−v/}−1, and B|X follows a Gaussian distribution N.Xθ, σ2
2/. The integral

in equation (5) does not have a closed form solution and approximations are necessary.
By a normal scale mixture representation of the logistic distribution function and computation

of the logistic–normal integral (Monahan and Stefanski, 1992), we can find an approximated
equation:

Pr.Y =1|X/≈H

{
Xγx + .Xθ/γp+1

.1+γ2
p+1σ

2
2=1:72/1=2

}
:
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The derivation of the approximation is given in the on-line supplementary material appendix B.
Using this approximation, we find an approximate relationship between γ, θ and β:

βj ≈ γj +γp+1θj

.1+γ2
p+1σ

2
2=1:72/1=2

, j =0, : : : , p: .6/

3.2. Firth correction in logistic regression
The Firth correction (Firth, 1993) is a general approach to reduce bias in maximum likelihood
estimation by maximizing a penalized log-likelihood function, where the penalty is 1

2 |I| and I
is the information matrix. In logistic regression, standard maximum likelihood estimates often
experience serious bias or even non-existence due to separability and multicollinearity, and the
Firth correction is suggested (Heinze and Schemper, 2002) as a way to improve the maximum
likelihood estimates. In our constrained solution, we add the Firth correction to stabilize the
estimates from standard logistic regression.

3.3. Unconstrained solutions
3.3.1. Direct regression
Without constraints, the unknown parameters γ in model (2) can be estimated by maximizing
the likelihood. Specifically, the estimate solves

max
γ

(
n∑

i=1

[
Yi

(
p∑

j=0
γjXij +γp+1Bi

)
− log

{
1+ exp

(
p∑

j=0
γjXij +γp+1Bi

)}])
: .7/

In addition, we implement Firth’s penalized likelihood approach by using R package logistf
(Heinze et al., 2013). We use least squares to estimate θ in model (3).

3.3.2. Standard Bayes method
Draws for the posterior distributions of γ and θ are obtained by using flat conjugate priors
for θ and weakly informative Cauchy distribution priors for γ, as described in the on-line
supplementary materials appendix A.

3.4. Constrained solutions
3.4.1. Constrained maximum likelihood
The constrained maximum likelihood estimation maximizes the joint log-likelihood under the
set of constraints generated on the basis of the approximate relationship equations (6). We shall
require the parameter estimates for γ and θ to result in the derived value of β being within d

standard errors of the old point estimates:

min
γ,θ

(
n∑

i=1

[
−Yi

(
p∑

j=0
γjXij +γp+1Bi

)
+ log

{
1+ exp

(
p∑

j=0
γjXij +γp+1Bi

)}]

+
n∑

i=1

(
Bi −

p∑
j=0

θjXij

)2

2σ̂2
2

)
subject to

γj +γp+1θj

.1+γ2
p+1σ

2
2=1:72/1=2

∈ [β̄j −dS̄j, β̄j +dS̄j], j =0, : : : , p: .8/

In this optimization problem, σ̂2
2 is a plug-in estimator and is the ordinary least squares residual
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variance from fitting E.B|X/ and d is a scale parameter representing the strength of external
information. From simulations, we find that fixing d as d = 1 leads to decent properties of the
estimates of γ. A modified version that includes the Firth correction is also considered. Fur-
ther details of these methods are provided in the on-line supplementary materials appendix A.
We use the bootstrap as described in supplementary material appendix D to estimate the stan-
dard errors.

3.4.2. Informative full Bayes method
In informative full Bayes methods, starting with the joint likelihood L.Y |X, B/ L.B|X/ we trans-
late the constraints in approximation (6) to prior information. The first step is to write down
the joint likelihood function with priors on γ, θ and σ2

2:

p.γ, θ, σ2
2 |data/∝L.Y |X, B, γ/ L.B|X, θ, σ2

2/π.γ, θ, σ2
2/

=

[
n∏

i=1

exp
{(

p∑
j=0

γjXij +γp+1Bi

)
Yi

}
1+ exp

(
p∑

j=0
γjXij +γp+1Bi

) 1√
.2πσ2

2/
exp
{
− 1

2σ2
2

(
Bi −

p∑
j=0

θjXij

)2}]
×π.γ, θ, σ2

2/ .9/

The logistic regression approximation result (6) suggests that θj = .1=γp+1/{βj
√

.1+
γ2

p+1σ
2
2=1:72/ − γj}, j = 0, : : : , p. We reparameterize equation (9) in terms of γ, β and σ2

2,
and include a Jacobian transformation matrix denoted by J, where |J| = .1=|γp+1

p+1 |/.1 +
γ2

p+1σ
2
2=1:72/.p+1/=2. We use a non-informative inverse gamma prior for σ2

2 and independent
weakly informative Cauchy priors for γ (Gelman et al., 2008). For parameters β, we use the
constraints as priors:

βj = γj +γp+1θj

.1+γ2
p+1σ

2
2=1:72/1=2

∼N.β̄j, S̄
2
j /, j =0, : : : , p: .10/

Then we can rewrite the joint distribution in terms of γ, β and σ2
2 as

p.γ, β, σ2
2 |Y, X, B/∝

[
n∏

i=1

exp
{(

p∑
j=0

γjXij +γp+1Bi

)
Yi

}
1+ exp

(
p∑

j=0
γjXij +γp+1Bi

)
]

×
(

n∏
i=1

1√
.2πσ2

2/
exp
[

− 1

2σ2
2

{
Bi −

β0
√

.1+γ2
p+1σ

2
2=1:72/−γ0

γp+1

−
p∑

j=1

βj
√

.1+γ2
p+1σ

2
2=1:72/−γj

γp+1
Xij

}2])
π.β/π.γ/π.σ2

2/ |J|:

Further details of the priors and the implementation of a Metropolis–Hastings algorithm
are given in the on-line supplementary materials appendix B. We note that in the algorithm the
full conditional distributions of γ0, : : : , γp+1 and σ2

2 do not have closed form expressions and,
because of the non-linear relationship between the parameters, the Metropolis–Hasting algo-
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rithm cannot be performed efficiently and thus it is computationally slow to obtain uncorrelated
draws from the posterior distributions.

3.4.3. Transformation approach
As the informative full Bayes method is computationally intensive, we propose an approximate
Bayesian approach that can produce draws that fall into the constrained space but reduces the
computational burden of the informative Bayes method. The motivation for this stems from
the Bayesian transformation approach incorporating monotone or unimodal constraints in
posterior inference as proposed in Gunn and Dunson (2005), which we modify to the scenario
of a regression model with external coefficient information.

Suppose that the draws from the non-informative standard Bayes method as described in
Section 3.3.2 are γ and θ. The corresponding posterior covariance matrices are Σγ and Σθ. We
extract the posterior variances from Σγ and Σθ and denote them by s2

γ0
, : : : , s2

γp
, s2

γp+1
, s2

θ0
, : : : ,

s2
θp

. The ordinary least squares residual variance from fitting E.B|X/ is σ̂2
2. Then a constrained

draw γÅ and θÅ is obtained from an unconstrained draw by solving the optimization problem

min
γÅ,θÅ

{
d2

NED.γ, γÅ/+d2
NED.θ, θÅ/

}=
p+1∑
j=0

.γj −γÅ
j /2

s2
γj

+
p∑

k=0

.θk −θÅ
k /2

s2
θk

subject to
γÅ

j +γÅ
p+1θ

Å
j

.1+γÅ2
p+1σ̂

2
2=1:72/1=2

∈ [β̄j −dS̄j, β̄j +dS̄j], j =0, : : : , p, .11/

where dNED stands for normalized Euclidean distance. For the transformation of a single draw,
we generate d from a half-normal distribution: d ∼|N.0, 1/|. The intuition behind this transfor-
mation procedure is that it will produce values γÅ and θÅ subject to the box constraints that
are closest in normalized distance to the unconstrained values γ and θ.

The transformation is computationally efficient since we have a fast algorithm to solve the
optimization problem (11). We fix γÅ

p+1 and divide the minimization function (11) into p + 1
two-dimensional constrained minimization problems in which the solutions can be re-expressed
as functions of γÅ

p+1. After that, the whole minimization problem is reduced to an easy-to-solve
one-dimensional optimization problem in γÅ

p+1. The constrained draws that are produced by
the transformation approach are not draws from the true posterior distribution; however, we
found in a limited number of simulations that they are reasonable approximations that can be
generated much faster.

3.4.4. Constrained approach of Chatterjee et al. (2016)
For comparison we include a constrained maximum likelihood method that uses the integrated
score equations (Chatterjee et al., 2016). The method assumes that the model for Y |X, B is
correct; it does not make any explicit assumptions about the distribution of B|X, but it does
require the distribution of X to be the same in the current sample as in the data that were used
to develop the model for Y |X. The method uses only the point estimates β̄ and does not take
into account the standard errors of those estimates.

3.4.5. Logistic regression plug-in method
We also included a simple method which consists of obtaining predicted probabilities by fitting a
logistic regression model with two covariates: B and log{p̄i=.1− p̄i/}, where p̄i is the prediction
from the established model for Y |X. It is easy to show that this method does give a final model
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for Y |X, B that has a logistic link function and is linear in X and B, and with some algebra the
estimates of γ can be obtained.

4. Statistical approaches when B is binary

4.1. The approximate relationship equation when B is binary
If B is a binary variable, the logistic regression approximation in Section 3 does not hold and the
approximate relationship in equation (6) is not applicable. However, by Bayes theorem, there is
a relationship equation connecting Pr.Y =1|X/, Pr.Y =1|X, B/ and f.B|X, Y/ (Grill et al., 2015;
Satten and Kupper, 1993):

Pr.Y =1|X, B/

Pr.Y =0|X, B/
= f.B|X, Y =1/

f.B|X, Y =0/

Pr.Y =1|X/

Pr.Y =0|X/
: .12/

Thus, when B is binary, we need to define a model for B|X, Y instead of a model for B|X. Assume
that logit{Pr.B=1|X, Y/}=Σp

j=0φjXj +φp+1Y . Some algebraic simplifications of equation (12)
followed by a Taylor series expansion (as shown in the on-line supplementary material appendix
C) result in an approximate relationship equation:

β0 +β1X1 +: : :+βpXp ≈γ0 + 1
2φp+1 + 1

4φ0φp+1 + 1
8φ2

p+1 +
p∑

j=1

(
γj + 1

4φjφp+1

)
Xj

+ .γp+1 −φp+1/B:

Then the approximate relationship between γ, φ and β is

β0 ≈γ0 + 1
2φp+1 + 1

4φ0φp+1 + 1
8φ2

p+1,

βj ≈γj + 1
4φjφp+1, j =1, : : : , p,

γp+1 =φp+1:

⎫⎪⎬⎪⎭ .13/

4.2. Unconstrained and constrained solutions
The two unconstrained solutions, direct regression and standard Bayes, can be performed in
the same way as described in Section 3 regardless of the distribution of B.

To develop a constrained solution, we need first to define the likelihood function L.B|X/. It can
be shown that Pr.Bi =1|Xi/ is a weighted average of exp.Σp

j=0Xijφj/={1+ exp.Σp
j=0Xijφj/} and

exp.Σp
j=0Xijφj +φp+1/={1+ exp.Σp

j=0Xijφj +φp+1/}. We use estimates of the weights given by
wi, β̄ =1={1+ exp.Xiβ̄/} and 1−wi, β̄ = exp.Xiβ̄/={1+ exp.Xiβ̄/} where β̄ are the values for β
from the established model. Then L.B|X/ can be written as

L.B|X/=
n∏

i=1
L.Bi|Xi, φ/

=
n∏

i=1

{
exp
(

p∑
j=0

Xijφj

)
1+ exp

(
p∑

j=0
Xijφj

) wi,β̄ +
exp
(

p∑
j=0

Xijφj +φp+1

)
1+ exp

(
p∑

j=0
Xijφj +φp+1

) .1−wi,β̄/

}Bi

×
{

1

1+ exp
(

p∑
j=0

Xijφj

) wi,β̄ + 1

1+ exp
(

p∑
j=0

Xijφj +φp+1

) .1−wi,β̄/

}1−Bi

:
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4.2.1. Constrained maximum likelihood
The constrained maximum likelihood estimation optimizes the following joint log-likelihood
L.Y |X, B/ L.B|X/ with a set of constraints on γ and φ, namely

min
γ,φ

(
n∑

i=1

[
−Yi

(
p∑

j=0
γjXij +γp+1Bi

)
+ log

{
1+ exp

(
p∑

j=0
γjXij +γp+1Bi

)}]

−
n∑

i=1

[
Bi log

{
exp
(

p∑
j=0

Xijφj

)
wi, β̄

1+ exp
(

p∑
j=0

Xijφj

) +
exp
(

p∑
j=0

Xijφj +φp+1

)
.1−wi, β̄/

1+ exp
(

p∑
j=0

Xijφj +φp+1

)
}

+ .1−Bi/ log

{
wi, β̄

1+ exp
(

p∑
j=0

Xijφj

) + 1−wi,β̄

1+ exp
(

p∑
j=0

Xijφj +φp+1

)}
])

subject to

⎧⎪⎪⎨⎪⎪⎩
γ0 + 1

2φp+1 + 1
4φ0φp+1 + 1

8φ2
p+1 ∈ [β̄0 −dS̄0, β̄0 +dS̄0],

γj + 1
4φjφp+1 ∈ [β̄j −dS̄j, β̄j +dS̄j], j =1, : : : , p,

γp+1 =φp+1: .14/

We also consider a modification that adds the Firth penalty term.

4.2.2. Informative full Bayes method
Analogously to the derivation of the informative full Bayes solution that was described in
Section 3, we first write down the product of L.Y |X, B/ and L.B|X/ with priors:

p.γ, φ|data/∝

[
n∏

i=1

exp
{(

p∑
j=0

γjXij +γp+1Bi

)
Yi

}
1+ exp

(
p∑

j=0
γjXij +γp+1Bi

)

×

{
exp
(

p∑
j=0

Xijφj

)
wi,β̄

1+ exp
(

p∑
j=0

Xijφj

) +
exp
(

p∑
j=0

Xijφj +φp+1

)
.1−wi,β̄/

1+ exp
(

p∑
j=0

Xijφj +φp+1

)
}Bi

×
{

wi, β̄

1+ exp
(

p∑
j=0

Xijφj

) + 1−wi,β̄

1+ exp
(

p∑
j=0

Xijφj +φp+1

)}1−Bi

]
π.γ, φ/:

.15/
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We can reparameterize expression (15) in terms ofγ andβ, and include a Jacobian corresponding
to this transformation. We denote the Jacobian matrix by M where |M|=|4=γp+1|p+1. We specify
independent weakly informative Cauchy priors for γ and use the constraints directly as priors
for β. Then similarly to Section 3.4.2 we can rewrite the joint distribution in terms of γ and β as

p.γ, β|Y , X, B/∝

{
n∏

i=1

exp
{(

p∑
j=0

γjXij +γp+1Bi

)
Yi

}
1+ exp

(
p∑

j=0
γjXij +γp+1Bi

)

×
(

wi,β̄

1+ exp

[
−

{
4β0 −4γ0 −2γp+1 − 1

2γ2
p+1

γp+1
+

p∑
j=1

Xij
4.βj −γj/

γp+1

}]

+ 1−wi,β̄

1+ exp

[
−

{
4β0 −4γ0 −2γp+1 − 1

2γ2
p+1

γp+1
+

p∑
j=1

Xij
4.βj −γj/

γp+1
+γp+1

}])Bi

×
[

wi, β̄

1+ exp

{
4β0 −4γ0 −2γp+1 − 1

2γ2
p+1

γp+1
+

p∑
j=1

Xij
4.βj −γj/

γp+1

}

+ 1−wi,β̄

1+ exp

{
4β0 −4γ0 −2γp+1 − 1

2γ2
p+1

γp+1
+

p∑
j=1

Xij
4.βj −γj/

γp+1
+γp+1

}]1−Bi
}

π.β/π.γ/ |M|:

The full conditional distributions of γ0, : : : , γp+1 and β0, : : : , βp do not have closed form
expressions and a Metropolis–Hastings algorithm is used.

4.2.3. Transformation approach
Suppose that the raw draws from the non-informative Bayes method for Y |X, B are γ and
the raw draws from non-informative Bayes method for B|X, Y are φ. The posterior variances
are s2

γj
, j = 0, : : : , p+ 1, and s2

φk
, k = 0, : : : , p+ 1. Then γÅ and φÅ are obtained by solving the

optimization problem

min
γÅ,φÅ

{
d2

NED.γ, γÅ/+d2
NED.φ, φÅ/

}=
p+1∑
j=0

.γj −γÅ
j /2

s2
γj

+
p+1∑
k=0

.φk −φÅ
k /2

s2
φk

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γÅ

0 + 1
2φÅ

p+1 + 1
4φÅ

0 φÅ
p+1 + 1

8φÅ2
p+1 ∈ [β̄0 −dS̄0, β̄0 +dS̄0],

γÅ
j + 1

4φÅ
j φÅ

p+1 ∈ [β̄j −dS̄j, β̄j +dS̄j], j =1, : : : , p,

γÅ
p+1 =φÅ

p+1: .16/
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5. Simulation study

To evaluate the performance of the various approaches we conduct a simulation study. The
results for Gaussian B are presented here, and the results for binary B and other scenarios are
presented in the on-line supplementary materials appendix E. The simulation scenario has three
predicting variables, X1, X2 and B, and the sample size of each data set is 55. 500 replicate data
sets are generated. Yi is Bernoulli distributed with logit{Pr.Yi = 1|Xi1, Xi2, Bi/} = 2 + 3Xi1 +
3Xi2 +2Bi. Xi1 and Xi2 are independently and identically distributed on U.−0:75, 0:25/ and Bi

is simulated as Bi = 0:5Xi1 + 0:5Xi2 + N.0, 0:752/. A logistic regression based on a large data
set of 10000 subjects gives estimates for the model logit{Pr.Y =1|X/}=β0 +β1X1 +β2X2. The
estimates and standard errors from this fit are β̄0 = 1:50, S̄0 = 0:04, β̄1 = 2:95, S̄1 = 0:09, β̄2 =
3:01 and S̄2 =0:09.

We report three evaluation metrics that are related to estimation accuracy: the average
of the estimated coefficients, relative efficiency of the estimated coefficient and mean-
squared error (MSE) across 500 replicates. The average of the estimated coefficients is defined
as γ̄j = .1=500/Σ500

m=1γ̂m,j; the relative efficiency of the estimated coefficients is defined as
V.γ̂j,direct/=V.γ̂j,method/ where V.γ̂j,direct/ = .1=500/Σ500

m=1.γ̂m,j − γ̄j/2 estimated by direct
regression; the MSE of the estimated coefficients is defined as .1=500/Σ500

m=1.γ̂m,j − γj/2, j =
1, : : : , p+1.

The predictive ability of logistic prediction models can be assessed by using a variety of meth-
ods and metrics on a validation data set (Steyerberg et al., 2010). In this simulation study,
we assess the predictive ability of the model on a validation data set of size 800 by using
the scaled Brier score (Σn

i=1.Yi − p̂i/
2=Σn

i=1.Yi − Ȳ /2). We assess the variability of the predic-
tions on the validation data set by using the standard deviation of the predicted probabilities,
{.1=799/Σ.p̂i − ¯̂p/2}1=2. The discriminatory performance of the model is assessed by using the
area under the receiver operating characteristic curve, AUC. These three performance measures
are also calculated for the model based on β̄ which does not use B, and for the best achievable
model that uses the true values of the γs.

Table 1 presents the results. In this setting what is achievable with the true model is noticeably
better, as measured by the Brier score and AUC, than using the established model, and the
established model does not give the correct standard deviation of the predicted probabilities.
There is bias in γ̂1, γ̂2 and γ̂3 for the direct regression approach, which is reduced by including
the Firth penalty. We find that the constrained methods greatly improve the estimation efficiency
of the coefficients γ1 and γ2 of X. The constrained methods can reduce the MSE of X1 and X2
by 70% or more, and give four or five times more efficient point estimates of γ1 and γ2. In
contrast, these constrained solutions can only reduce the MSE of γ3 by 10–40% and generally
have similar efficiency to that of direct regression plus the Firth correction. The new methods
give similar variability of the predicted probabilities compared with the true model. All the
methods that use the external information give similar Brier scores and AUCs which are very
similar to the best that can be achieved. They are all better than not using B at all, and slightly
better than the methods that do not use the external information. In terms of computational
efficiency, the informative prior Bayesian approach and the transformation approach require
more time than the other methods; however, the transformation approach takes about 18% the
time of the informative full Bayes approach.

The results for the method of Chatterjee et al. (2016) show some similarities to those of the
other methods that use the external information, but also show some differences. The method
shows a similar amount of bias or even slightly greater bias than do the other methods. The
method does result in some gain in efficiency in the point estimates, and also smaller MSE,
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Table 1. Simulation results for Gaussian B†

Method γ̂1 γ̂2 γ̂3 Scaled Brier AUC p̂ mean Time (s)
score

True value 3 3 2 0.605 0.864 0.49 (0.333) —
Established model using

known β̄
— — — 0.796 0.761 0.51 (0.239) —

Direct regression 3.37 (1) 3.40 (1) 2.35 (1) 0.661 0.852 0.49 (0.344) 1.3
MSE 3.36 3.48 0.96
Direct regression + Firth

correction
2.89 (1.55) 2.92 (1.52) 1.99 (1.69) 0.651 0.852 0.49 (0.324) 2.4

MSE 2.10 2.18 0.49
Non-informative Bayes 2.72 (1.79) 2.75 (1.78) 2.04 (1.77) 0.647 0.852 0.49 (0.307) 3.6
MSE 1.88 1.93 0.47
Constrained maximum

likelihood
3.08 (3.60) 3.17 (3.91) 2.30 (1.11) 0.628 0.857 0.49 (0.313) 44.9

MSE 0.90 0.88 0.84
Constrained maximum

likelihood + Firth
correction

2.88 (6.01) 2.97 (6.32) 1.96 (1.85) 0.622 0.857 0.49 (0.303) 78.2

MSE 0.55 0.53 0.45
Informative full Bayes 2.87 (4.93) 2.98 (5.15) 2.30 (1.33) 0.624 0.857 0.49 (0.301) 9097.6
MSE 0.64 0.67 0.72
Transformation 2.90 (6.80) 3.00 (6.94) 1.93 (1.75) 0.622 0.857 0.49 (0.298) 888.2
MSE 0.48 0.48 0.48
Chatterjee et al. (2016) 3.17 (2.91) 3.29 (3.06) 2.34 (1.01) 0.631 0.859 0.49 (0.342) 43.2
MSE 1.13 1.17 0.94
Simple logistic (p̄, B) 3.27 (1.64) 3.34 (1.62) 2.28 (1.11) 0.644 0.858 0.49 (0.339) 0.9
MSE 2.04 2.16 0.84

†For each method, we report the mean (relative efficiency with respect to direct regression), MSE, average Brier
score, average AUC, average p̂ (with standard deviations in parentheses) and computing time for 500 data sets of
size 55.

compared with direct regression, but not as much gain as for the other new methods. For
γ̂3 there is no gain in efficiency compared with direct regression, and even a loss in efficiency
compared with the direct regression with Firth correction. The method does tend to give slightly
more variability to the predicted probabilities than the other methods. The method of Chatterjee
et al. (2016) has comparable values of the AUC and Brier score with those of the other methods
that use external information.

The simple logistic regression plug-in method is found to have better performance than direct
regression, but not as good performance as the more sophisticated approaches for using the
external information. It also can result in biased estimates of the γs.

The other results which are presented in the on-line supplementary materials give similar
conclusions.

6. Application to the prostate cancer data

We demonstrate our methodology by enhancing the PCPT risk calculator for high grade prostate
cancer. Using the data from Tomlins et al. (2015) we shall illustrate the methods that are de-
scribed in this paper to develop a logistic model that includes all the PCPThg-variables and
PCA 3. We estimate the new model from the training data set of 679 men, incorporating the
known coefficients and their standard errors from the PCPThg-calculator. After a transfor-
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mation (log2.PCA3 + 1/) the distribution of PCA 3 is roughly normally distributed in both
cohorts and thus the approximate relationship equations (6) are applicable. The distribution of
TMPRSS2:ERG looks like a truncated normal whose value is bounded below at 0, with many
observations equal to 0. We dichotomized TMPRSS2:ERG by splitting at the median and de-
velop a logistic model that includes PCPThg-variables and dichotomized TMPRSS2:ERG. The
approximate relationship equations (13) would be appropriate in this case.

These two expanded PCPThg-models will be estimated by both the unconstrained methods
and the constrained methods that were described in Section 3 and Section 4. For comparing
coefficient estimation across different methods, we report the estimated coefficients and their
standard errors calculated from the training data set. For comparing prediction power, we
calculate the Brier score and the AUC based on the validation data set. We also present the
original PCPThg-model and the expanded model developed by Tomlins et al. (2015). We give
the calibration plots for the original PCPThg-model, the expanded model by Tomlins et al.
(2015), the expanded PCPThg-model estimated without constraints (direct regression) and the
expanded PCPThg-model estimated with constraints (transformation approach). The calibra-
tion plot contains the predicted and the observed risk of high grade cancer in 10 groups which
are defined by sorting the predicted probabilities from lowest to highest and then separated
into 10 groups of approximately equal size. For each group, the expected numbers of events
is the sum of the predicted probability in the group. Perfect predictions should be on the 45◦
line.

Table 2 presents the expanded PCPThg-model incorporating these two biomarkers fitted to
the training data set. For the expanded PCPThg-model incorporating the PCA 3 score, if we
compare the standard errors across different methods, it is easily seen that the constrained meth-
ods can reduce the standard errors of regression coefficients compared with direct regression.
For example, the informative full Bayes solution can substantially reduce the standard errors
in parameters of variables PSA (0.08 versus 0.19), age (0.008 versus 0.013), DRE findings (0.17
versus 0.27), prior biopsy history (0.16 versus 0.28) and race (0.23 versus 0.31). The constrained
maximum likelihood with Firth penalty can reduce the standard errors of the parameters of
variables PSA, age, prior biopsy history and race by at least 50%.

Among the 1218 validation study patients, the AUC for the PCPThg-model and the expanded
PCPThg-score plus PCA 3 model are 0.707 and 0.752. By incorporating the PCA 3 score in
the PCPThg-model, the AUC increases to 0.767 in direct regression. However, the constrained
methods do not further increase the AUC. All the new methods except for the transformation
approach give predicted probabilities that are on average too high, suggesting that they are not
well calibrated. For calibration, as measured by the Brier score, the original PCPT calculator
performs better than direct regression and of the new methods only the transformation approach
gives an improved Brier score. In Fig. 1 we can see that the expanded PCPThg-model incorporat-
ing PCA 3 tends to overestimate the risk of developing high grade prostate cancer among those
patients with high risk. However, the overall calibration ability of the expanded PCPThg-model
estimated by the transformation approach still outperforms that of the original PCPThg-model,
the expanded PCPThg-score plus PCA 3 model or the expanded PCPThg-model estimated by
direct regression.

The expanded PCPThg-model incorporating binary TMPRSS2:ERG fitted to the training
data set again shows that the constrained methods can reduce the standard errors of regression
coefficients compared with direct regression. In Fig. 1 we can see that the expanded PCPThg-
model incorporating binary TMPRSS2:ERG tends to overestimate the risk of developing high
grade cancer among those patients with high risk. However, the transformation approach pre-
dicts the risk well for the high risk groups.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 1. Calibration plot of the original high grade PCPT risk calculator PCPThg and calibration plots
of the expanded PCPThg-model by incorporating PCA 3 score and dichotomized TMPRSS2:ERG: (a)
PCPThg-model; (b) PCPThg-score + PCA 3, Tomlins et al. (2015); (c) PCPThg-covariates + PCA 3, di-
rect regression; (d) PCPThg-covariates + PCA 3, Bayesian transformation approach; (e) PCPThg-score +
dichotomized TMPRSS2:ERG; (f) PCPThg-covariates + dichotomized TMPRSS2:ERG, direct regression; (g)
PCPThg-covariates + dichotomized TMPRSS2:ERG, Bayesian transformation approach
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For the prostate cancer example with either new biomarker, the method of Chatterjee et al.
(2016) gave parameter estimates and standard errors that are different from those of both of
the methods that do not use the external information and from the other methods that do use
the external information. In general, they tend to be closer to those of the original PCPT calcu-
lator. Also the method gives a much lower predicted population proportion than all the other
methods and lower than the observed prevalence of 18.3% in the validation data set. This is
possibly because the method of Chatterjee et al. (2016) does not take into account the uncer-
tainty in the estimates coefficients. It is notable, in contrast with what was seen in the simulation
studies, that the method of Chatterjee et al. (2016) tends to give smaller standard errors than
do all the other methods for the coefficients of the X-variables, but larger standard errors for
the coefficient of the new biomarker. The method does assume that the X-distribution is the
same in the original data set and the data set with the new biomarkers, but in fact there are
considerable differences between these X-distributions; it is unclear how this is affecting the
estimates and standard errors. The results (as shown in appendix F of the on-line supplemen-
tary materials) for the constrained maximum likelihood estimate, with a range of values for d,
demonstrate that the choice of d can be quite impactful, both on the estimates and on their
standard errors. As expected the results for d = 0:1 are quite close to those of the method of
Chatterjee et al. (2016), because neither method incorporates the uncertainty in the parameter
estimates.

7. Discussion

We propose several strategies for translating the external coefficient information that is obtained
from outside the data set into constraints on regression coefficients in the setting of a logistic
regression model describing Pr.Y =1|X, B/. Simulation studies show that the external coefficient
information from the established model can help to improve the efficiency of estimation and to
enhance the predictive power in the expanded model.

In terms of computational efficiency, in simulation studies the transformation approach
shows advantage over the informative full Bayes method because in the transformation ap-
proach the raw draws are first obtained in a fast way and then transformed into draws that
obey the constraints based on an efficient optimization algorithm, whereas the informative
full Bayes solution produces constrained draws inefficiently. When the dimensionality of the
predictors X increases, the computational cost of the transformation approach solution will
not increase much because the high dimensional optimization problem will always reduce to a
one-dimensional optimization problem based on our algorithm regardless of the dimensional-
ity of the predictor space. Furthermore, the correlation between the samples in the Markov
chain for the informative full Bayes approach is very high and effective samples are more
difficult to obtain when the dimensionality increases (additional simulation results that vali-
date this finding are not shown). As a consequence, the discrepancy of these two constrained
solutions in computational cost will be more apparent in higher dimensions. In general the
Bayesian approaches are much more computationally time consuming than the other ap-
proaches. Although it is conceivable that better algorithms and improved programming could
speed these up considerably, it is very unlikely that they will ever have speed comparable
with that of the constrained maximum likelihood methods or the approach of Chatterjee
et al. (2016). A general overview of the computational and implementation details for all
the methods that are described in this paper are given in on-line supplementary materials
appendix G.

The gain in efficiency in the expanded model of interest depends on the sample size that is
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used to construct the established model and the sample size that is used to estimate the ex-
panded model of interest. In our simulation studies the established models are based on large
data sets with 10000 observations whereas the current data sets are very small. The relative gain
in efficiency in the regression coefficient of variables X by incorporating the external coefficient
information is significant and the predictive power in the validation data set is enhanced. How-
ever, when the sample size in the current data set is sufficiently large to estimate the expanded
model, the constrained methods do not lead to much improvement in the predictive ability
compared with direct regression, as was the case in the prostate cancer example. However, our
numerical results suggest that improved precision of the coefficient estimates, as measured by
standard errors, can be achieved even if the current data set is not small.

A situation that we did not consider in the simulation studies is when the event of interest
is rare and the predicted probabilities are very low. Although there may be other methods that
exploit this assumption, we hypothesize that the relative performance of the methods that we
considered may be similar to those for the small samples sizes that we did evaluate. This is
because both situations have limited information in the data from which to estimate regression
coefficients. However, this hypothesis would need to be investigated.

The approaches that are proposed in this paper are based on establishing a relationship
between the parameters in the Y |X model and the parameters in the Y |X, B model. Depending
on the form of B and the structure of the models these relationships need to be analytically
derived and are approximations. The methods also require an explicit model for B|X. Although
it would be desirable to avoid having to specify a parametric model for B|X, we also note that the
appropriateness of the model for B|X can be checked to some degree from the small data set. The
differences in the distributions of X in the external and internal studies will not have much effect
on the performance of our proposed constrained methods (the simulation results are not shown).
This is because the coefficients’ approximate relationship equations are constructed on the basis
of the conditional distributions Y |X, B and B|X. As long as these two conditional distributions
are correctly specified in the internal study, the approximate relationship equations will hold
regardless of the differences in the distributions of X in these two studies. The approaches also
do have the feature that they can directly incorporate the uncertainty in the parameters of the
Y |X model. An alternative method of using p̄ as a covariate is appealing because of its simplicity
and broad applicability, although it does appear to have slightly worse properties than the more
sophisticated approaches. The approach of Chatterjee et al. (2016) is appealing because it is
applicable to any form of B and it does not require an explicit model for B|X; however, it
does require the same distribution of X in the two populations and it does not incorporate
the uncertainty in the parameters of the Y |X, B model. We also found that it was sometimes
numerically unstable for small sample sizes.

One point of future consideration is the distribution of the new biomarker B. We develop
the approximate relationship equation for the scenarios that B is Gaussian and binary. When
B is multivariate Gaussian, based on the generalization of equation (5), assuming that B|X is
multivariate normal with L dimensions, mean Xθ and covariance matrix VL×L, the approximate
relationship between γ, θ and β is

βj ≈
(

γj +
L∑

l=1
γp+lθlj

)/
.1+γT

BVγB=1:72/1=2, j =0, : : : , p: .17/

Then the strategies to incorporate the external coefficient information that were described
in Section 3 can be easily extended in this case. However, if additional biomarkers follow
other distributions, these approximate relationship equations will fail. Therefore, further
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investigations are needed for the generalization of our proposed constrained solutions to adapt
flexibly to other possible distributions of the new biomarker.
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