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Summary. We consider a situation where there is rich historical data available for the

coefficients and their standard errors in an established regression model describing the

association between a binary outcome variable Y and a set of predicting factors X, from

a large study. We would like to utilize this summary information for improving estimation

and prediction in an expanded model of interest, Y|X, B. The additional variable B is a

new biomarker, measured on a small number of subjects in a new dataset. We develop

and evaluate several approaches for translating the external information into constraints on

regression coefficients in a logistic regression model of Y|X, B. Borrowing from the mea-

surement error literature we establish an approximate relationship between the regression

coefficients in the models Pr(Y = 1|X, β), Pr(Y = 1|X, B, γ) and E(B|X,θ) for a Gaus-

sian distribution of B. For binary B we propose an alternate expression. The simulation

results comparing these methods indicate that historical information on Pr(Y = 1|X, β)

can improve the efficiency of estimation and enhance the predictive power in the regres-

sion model of interest Pr(Y = 1|X, B, γ). We illustrate our methodology by enhancing

the High-grade Prostate Cancer Prevention Trial Risk Calculator, with two new biomarkers

prostate cancer antigen 3 and TMPRSS2:ERG.
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2 Wenting Cheng, Jeremy M. G. Taylor, Tian Gu, Scott A. Tomlins and Bhramar Mukherjee

1. Introduction

Risk prediction models for different binary disease endpoints are abundant in the clinical

and epidemiological literature. Examples of established models are the breast cancer

risk calculator (Gail et al., 1989) and the Framingham risk score (D’Agostino et al.,

2001) which can be used to assess an individual’s risk of experiencing a future health

event and to make decisions concerning screening and prophylactic prevention. As a

motivating example in this paper, the Prostate Cancer Prevention Trial Risk Calculator

(Thompson et al., 2006) is an online assessment tool which provides personalized risk

estimate of detecting prostate cancer based on risk factors such as age, prostate-specific

antigen (PSA) and digital rectal examination (DRE) findings.

While these established models are often based on standard epidemiologic and behav-

ioral risk factors, wider availability of high throughput data and novel assay technologies

are generating candidate biomarkers for potential inclusion in existing prediction mod-

els. It’s very likely that the new biomarkers are assessed only on subjects in a study

of moderate size and cannot be measured on the much larger population used for the

well-established model. Investigators could directly estimate the expanded model in

the new dataset, but results from this expanded prediction model based solely on a

limited number of subjects could be highly variable. It is natural to consider using the

information from the well-established model to increase the accuracy of the expanded

model.

Substantial research has been done on the problem of enhancing risk prediction mod-

els with supplemental external information. The external information may be used to

combine estimates from previous studies with the regression coefficients estimated in

the new dataset. Steyerberg et al. (2000) described a method to adjust the multivari-

ate logistic regression model’s coefficients estimated in a dataset based on univariate

regression models’ coefficients in the literature. Newcombe et al. (2012) presented two

possible approaches incorporating the effect estimates of a set of predictors: the first

one was by adding a composite weighted risk score based on these estimates and the

second one was by specifying informative priors for the coefficients of these variables in a

Bayesian logistic regression model. Chatterjee et al. (2016) developed a general method
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Informing a risk prediction model with coefficient information 3

for incorporating external coefficients, derived from constrained estimating equations.

Other related approaches used constrained maximum likelihood and empirical likelihood

(Imbens and Lancaster, 1994; Qin, 2000; Qin et al., 2015). Cheng et al. (2018) developed

and compared a number of approaches for the situation when the outcome variable is

continuous. They established exact relationships between the parameters in the model

of interest that includes the new biomarker and the parameters in the established model,

then proposed both frequentist and Bayesian approaches. In the current paper we adapt

and extend the approaches to the situation when the outcome variable is binary.

There are also a number of simple approaches. For the Gail model, Mealiffe et al.

(2010) computed a multiplicative risk score based on previously published odds ratios

of newly discovered biomarkers. They then multiplied the Gail risk estimate and the

multiplicative risk score to give a combined risk score. Grill et al. (2015) proposed a

simple method of incorporating new markers via Bayes Theorem. They updated the

posterior odds of getting cancer based on both standard risk factors and new markers

by using the likelihood ratio incorporating dependence between the two sets of risk

factors to adjust the prior odds of getting cancer based on standard risk alone. Grill

et al. (2017) assessed the performance of a set of likelihood ratio approaches as well as

the approach proposed in Chatterjee et al. (2016).

We consider a situation where the outcome is a binary indicator of disease and

the well-established model is described in a published article, in which the estimated

regression coefficients and their standard errors are presented. The expanded model

includes one additional biomarker as a potential predictor. To introduce notation, let

Y denote the binary outcome, X is a set of p standard risk factors and B is a new

biomarker. The association between Y and X is described through the following logistic

model:

logit(Pr(Y = 1|X)) = Xβ = β0 + β1X1 + · · · + βpXp (1)

We assume we have available summary-level information on the estimated regression

coefficients β̄ and their standard errors S̄ in model (1). Based on the work that went

into establishing this model, we will assume that all the X’s are deemed to be important

and need to be included in any model, and further that the above form provides at least
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4 Wenting Cheng, Jeremy M. G. Taylor, Tian Gu, Scott A. Tomlins and Bhramar Mukherjee

a good approximation to the distribution of Y given X.

The model of primary interest is one that describes the joint effect of X, B on Y:

logit(Pr(Y = 1|X, B)) = XγX + BγB = γ0 + γ1X1 + · · · + γpXp + γp+1B (2)

Our goal is to obtain the best estimate we can of the γ’s in a model of this form, making

use of all the available information from the established model and the small dataset.

Another model that can be estimated from the current small dataset is:

E(B|X) = g−1(Xθ) = g−1(θ0 + θ1X1 + · · · + θpXp) (3)

where g is the link function, which is the identity function g(y) = y for Gaussian B

and the logit function g(y) = log(y/(1 − y)) for binary B. We propose to formulate

the problem in an inferential framework where the historical information is translated

in terms of non-linear constraints on the regression parameters. The distribution of B

will greatly affect how we translate the historical information into constraints on the

regression parameters. We consider the cases that B is either Gaussian or binary.

The following is the structure of the remainder of this article: in Section 2 we describe

the Prostate Cancer Prevention Risk Calculator and the available data including the

new biomarkers that might be able to enhance this calculator. In Section 3, we establish

a relationship equation between the regression coefficients of models (1) - (3) when B

is Gaussian. In Section 4, we consider the situation when B is binary and derive the

corresponding constrained solutions. We present a simulation study in Section 5. In

Section 6 we demonstrate the proposed approaches for the High-grade Prostate Cancer

Prevention Trial Risk Calculator. Concluding remarks are presented in Section 7.

2. A Motivating Example: Prostate Cancer Risk Prediction

The Prostate Cancer Prevention Trial (PCPT) was a phase III randomized placebo-

controlled trial of drug finasteride for the prevention of carcinoma of the prostate. The

PCPT randomly assigned about 18882 men who were at least 55 years old and did not

have prostate cancer to either finasteride or placebo for 7 years. At the end of the 7

years of the study, all men who had not been diagnosed with prostate cancer during the
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Informing a risk prediction model with coefficient information 5

trial were asked to undergo an end-of-study prostate biopsy. The biopsy result could be

no cancer, low-grade cancer or high-grade cancer, which was defined as Gleason score of

7 or higher. Variables collected in this trial included family history of prostate cancer,

age, race, previous biopsy result, PSA and digital rectal examination.

The use of PSA to screen for prostate cancer (PCa) had been controversial because

the test has low specificity and can lead to overtreatment. Therefore, improved tests that

use additional information are needed. The Prostate Cancer Prevention Trial Risk Cal-

culator (PCPTrc) for prostate cancer, and a separate calculator for high-grade prostate

cancer (PCPThg) (Thompson et al., 2006) were the first online prostate cancer risk

assessment tools to allow an individual to assess his risk for prostate cancer. These

calculators are well established and are frequently used. These calculators were devel-

oped from 5519 men in the placebo group of the PCPT who underwent prostate biopsy.

The PCPThg calculator (version 1.0) predicts the chance of high-grade prostate cancer

based on PSA level, age, DRE findings, prior biopsy result and race:

log(
pi

1 − pi
) = −6.25+0.03agei+0.96racei+1.29log(PSAi)+1.00DREi−0.36biopsyi (4)

where pi is the probability of observing high grade prostate cancer for subject i. If we

plug in a person’s age, race, PSA level, DRE result and previous biopsy information,

we can estimate the probability of detecting high-grade prostate cancer. The estimated

logistic models coefficients and the 95% confidence intervals are available in Thompson

et al. (2006). The estimated coefficients and covariance-variance matrices were also ac-

cessible as a R code document at (http://deb.uthscsa.edu/URORiskCalc/Pages/calcs.jsp).

The PCPT risk calculators are based on standard clinical, demographic and epi-

demiologic variables. None of the variables are related to the molecular mechanisms

of carcinogenesis or prostate cancer disease progression. It is plausible to think that

including other variables that are more related to the biology of cancer would lead to

improved ability to detect PCa. Prostate cancer antigen 3 (PCA3) and TMPRSS2:ERG

(T2:ERG) gene fusions are two prostate cancer biomarkers which have been shown to

have better specificity for early detection of PCa than PSA (Truong et al., 2013; Tomlins

et al., 2015). Their transcripts are detectable and quantifiable in urine collected after

digital rectal examination. To investigate whether PCA3 and T2:ERG could be com-
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6 Wenting Cheng, Jeremy M. G. Taylor, Tian Gu, Scott A. Tomlins and Bhramar Mukherjee

bined with the PCPThg calculator to give more accurate risk prediction, Tomlins et al.

(2015) undertook a study in 679 men, in whom all the PCPThg calculator variables and

both a PCA3 score and a T2:ERG score were measured. In this dataset the proportion

with high grade PCa is 26.4%. An independent validation study of 1218 men was also

available. In this dataset the proportion with high grade PCa is 18.3%.

Tomlins et al. (2015) expanded the PCPThg model by incorporating PCA3 as an

additional risk factor. They used the predicted risk score from the PCPThg (i.e.,

P̂r(Yi = 1|Xi, β̄PCPThg) × 100) directly as a predicting variable and estimated the joint

effect of the PCPThg risk score and the PCA3 value on the probability of high-grade

PCa. They estimated the new model in the training dataset, and found that when

applied to the validation dataset the AUC increased from 0.707 for the PCPThg model

to 0.752 for their model. They also constructed another expanded PCPThg model by

incorporating T2:ERG and showed that the AUC increased from 0.707 to 0.754. We

would like to propose more sophisticated statistical approaches that could potentially

provide further improvement compared to these results.

3. Statistical Approaches

3.1. Logistic Regression Approximation of the Marginal Pr(Y = 1|X)

A difficulty in translating the summary information from modeling Pr(Y = 1|X) to

modeling Pr(Y = 1|X, B) is that a logistic model logit(Pr(Y = 1|X, B)) does not reduce

to a logistic model logit(Pr(Y = 1|X)) when marginalized over the distribution of B. To

connect the regression coefficients in models (1), (2) and (3), we need to approximate

logit(Pr(Y = 1|X)) written in terms of parameters γ,θ and variables X, and equate

that to logit(Pr(Y = 1|X)) = Xβ. To achieve this, we consider the following integral:

Pr(Y = 1|X) =

∫

Pr(Y = 1|X, B)P(B|X)dB

= ((2π)1/2σ2)
−1

∫

H(Xγx + Bγp+1) exp
(

− (B − Xθ)T(B − Xθ)

2σ2
2

)

dB

(5)

where H(v) = (1+exp(−v))−1, and B|X follows a Gaussian distribution N(Xθ, σ2
2). This

integral in (5) does not have a closed-form solution and approximations are necessary.
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Informing a risk prediction model with coefficient information 7

By a normal scale mixture representation of the logistic distribution function and

computation of the logistic-normal integral (Monahan and Stefanski, 1992), we can find

an approximated equation: Pr(Y = 1|X) ≈ H
(

Xγx+(Xθ)γp+1

(1+γ2
p+1σ2

2/1.72)
1
2

)

. The derivation of the

approximation is given in Supplementary Material Appendix B. Using this approxima-

tion, we find an approximate relationship between γ,θ and β:

βj ≈ (γj + γp+1θj)/((1 + γ2
p+1σ

2
2/1.72)

1
2 ), j = 0, . . . , p. (6)

3.2. Firth Correction in Logistic Regression

The Firth correction (Firth, 1993) is a general approach to reduce bias in maximum like-

lihood estimation by maximizing a penalized log-likelihood function, where the penalty

is 1
2 |I| and I is the information matrix. In logistic regression, standard maximum like-

lihood estimates often experience serious bias or even non-existence due to separability

and multicollinearity, and the Firth correction is suggested (Heinze and Schemper, 2002)

as a way to improve the estimates. In our constrained solution, we add the Firth cor-

rection to stabilize the estimates from standard logistic regression.

3.3. Unconstrained Solutions

3.3.1. Direct Regression

Without constraints, the unknown parameters γ in model (2) can be estimated by

maximizing the likelihood. Specifically, the estimate solves

max
γ







n
∑

i=1

[Yi(

p
∑

j=0

γjXij + γp+1Bi) − log(1 + exp(

p
∑

j=0

γjXij + γp+1Bi))]







(7)

In addition, we implement Firth’s penalized likelihood approach using R package logistf .

We use least squares to estimate θ in model (3).

3.3.2. Standard Bayes

Draws for the posterior distributions of γ and θ are obtained using flat conjugate priors

for θ and weakly informative Cauchy distribution priors for γ, as described in the

Supplementary Materials Appendix A.
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8 Wenting Cheng, Jeremy M. G. Taylor, Tian Gu, Scott A. Tomlins and Bhramar Mukherjee

3.4. Constrained Solutions

3.4.1. Constrained Maximum Likelihood

The constrained maximum likelihood (constrained ML) estimation maximizes the joint

log-likelihood under the set of constraints generated based on the approximate relation-

ship equations in (6). We will require the parameter estimates for γ and θ to result in

the derived value of β being within d standard errors of the old point estimates:

min
γ,θ

{

n
∑

i=1

[−Yi(

p
∑

j=0

γjXij + γp+1Bi) + log(1 + exp(

p
∑

j=0

γjXij + γp+1Bi))]

+
n

∑

i=1

(Bi −
∑p

j=0 θjXij)
2

2σ̂2
2

}

s.t.(γj + γp+1θj)/(1 + γ2
p+1σ

2
2/1.72)

1
2 ∈ [β̄j − dS̄j , β̄j + dS̄j ], j = 0, . . . , p

(8)

In this optimization problem, σ̂2
2 is a plug-in estimator and is the OLS residual variance

from fitting E(B|X) and d is a scale parameter representing the strength of external

information. From simulations, we find that fixing d as d = 1 leads to decent properties

of the estimates of γ. A modified version that includes the Firth correction is also con-

sidered. Further details of these methods are provided in the Supplementary Materials

Appendix A. We use the bootstrap as described in Supplementary Material Appendix

D to estimate the standard errors.

3.4.2. Informative Full Bayes

In informative full Bayes, starting with the joint likelihood L(Y|X,B)L(B|X) we trans-

late the constraints in (6) to prior information. The first step is to write down the joint

likelihood function with priors on γ,θ, σ2
2:

p(γ,θ, σ2
2|data) ∝ L(Y|X, B, γ) · L(B|X, θ, σ2

2) · π(γ,θ, σ2
2)

=
{

n
∏

i=1

exp((
∑p

j=0 γjXij + γp+1Bi)Yi)

1 + exp(
∑p

j=0 γjXij + γp+1Bi)
· 1
√

2πσ2
2

exp
(

− 1

2σ2
2

(Bi −
p

∑

j=0

θjXij)
2
)

}

· π(γ,θ, σ2
2)

(9)

The logistic regression approximation result (6) suggests that θj = 1
γp+1

(βj

√

1 +
γ2

p+1σ2
2

1.72 −
γj), j = 0, . . . , p. We re-parametrize (9) in terms of γ, β and σ2

2, and include a Jacobian
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Informing a risk prediction model with coefficient information 9

transformation matrix denoted by J, where |J| = 1

|γp+1
p+1 |

(1 +
γ2

p+1σ2
2

1.72 )
p+1
2 . We use a non-

informative prior inverse-gamma for σ2
2 and independent weakly informative Cauchy

priors for γ (Gelman et al., 2008). For parameters β, we use the constraints as priors:

βj = (γj + γp+1θj)/(1 + γ2
p+1σ

2
2/1.72)

1
2 ∼ N(β̄j, S̄

2
j ), j = 0, . . . ,p (10)

Then we can rewrite the joint distribution in terms of γ,β, σ2
2 as p(γ,β, σ2

2|Y,X,B) ∝
{

∏n
i=1

exp((
∑p

j=0 γjXij+γp+1Bi)Yi)

1+exp(
∑p

j=0 γjXij+γp+1Bi)

}

·
{

∏n
i=1

1√
2πσ2

2

exp(− 1
2σ2

2
(Bi−

β0

√

1+
γ2

p+1σ2
2

1.72
−γ0

γp+1
−∑p

j=1

βj

√

1+
γ2

p+1σ2
2

1.72
−γj

γp+1
Xij)

2)
}

·
π(β) · π(γ) · π(σ2

2) · |J|
Further details of the priors and the implementation of a Metropolis-Hastings al-

gorithm are given in the Supplementary Materials Appendix B. We note that in the

algorithm the full conditional distributions of γ0, . . . , γp+1 and σ2
2 do not have closed

form expressions, and because of the non-linear relationship between the parameters,

the Metropolis-Hasting algorithm cannot be performed efficiently and thus it is compu-

tationally slow to obtain uncorrelated draws from the posterior distributions.

3.4.3. Transformation Approach

As the informative full Bayes is computationally intensive, we propose an approximate

Bayesian approach that can produce draws that fall into the constrained space but re-

duces the computational burden of the informative Bayes method. The motivation for

this stems from the Bayesian transformation approach incorporating monotone or uni-

modal constraints in posterior inference as proposed in Gunn and Dunson (2005), which

we modify to the scenario of a regression model with external coefficient information.

Suppose the draws from non-informative standard Bayes method as described in Sec-

tion 3.3.2 are γ and θ. The corresponding posterior covariance matrices are Σγ ,Σθ. We

extract the posterior variances from Σγ ,Σθ and denote them by s2
γ0

, . . . , s2
γp

, s2
γp+1

, s2
θ0

, . . . , s2
θp

.

The OLS residual variance from fitting E(B|X) is σ̂2
2. Then a constrained draw γ⋆,θ⋆

is obtained from an unconstrained draw by solving the optimization problem:

min
γ⋆,θ⋆

{

d2
NED(γ,γ⋆) + d2

NED(θ,θ⋆)
}

=

p+1
∑

j=0

(γj − γ⋆
j )2

s2γj

+

p
∑

k=0

(θk − θ⋆
k)

2

s2θk

s.t. (γ⋆
j + γ⋆

p+1θ
⋆
j )/(1 + γ⋆2

p+1σ̂
2
2/1.72)

1
2 ∈ [β̄j − dS̄j , β̄j + dS̄j ], j = 0, . . . , p

(11)
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10 Wenting Cheng, Jeremy M. G. Taylor, Tian Gu, Scott A. Tomlins and Bhramar Mukherjee

where dNED stands for normalized Euclidean distance. For the transformation of a single

draw, we generate d from a half normal distribution: d ∼ |N(0, 1)|. The intuition behind

this transformation procedure is that it will produce values γ⋆,θ⋆ subject to the box

constraints that are closest in normalized distance to the unconstrained values γ,θ.

The transformation is computationally efficient since we have a fast algorithm to solve

the optimization problem in (11). We fix γ⋆
p+1 and divide the minimization function (11)

into p + 1 two-dimensional constrained minimization problems in which the solutions

can be re-expressed as functions of γ⋆
p+1. After that, the whole minimization problem

is reduced to an easy to solve one-dimensional optimization problem in γ⋆
p+1. The

constrained draws produced by the transformation approach are not draws from the

true posterior distribution, however, we found in a limited number of simulations that

they are reasonable approximations that can be generated much faster.

3.4.4. Constrained Approach of Chatterjee et al (2016)

For comparison we include a constrained maximum likelihood method that uses the

integrated score equations (Chatterjee et al., 2016). The method assumes the model for

Y|X, B is correct, it does not make any explicit assumptions about the distribution of

B|X, but it does require the distribution of X to be the same in the current sample as in

the data that was used to develop the model for Y|X. The method uses only the point

estimates β̄ and does not take into account the standard errors of those estimates.

3.4.5. Logistic Regression Plug-in Method

We also included a simple method which consists of obtaining predicted probabilities by

fitting a logistic regression model with two covariates, B and log(p̄i/(1− p̄i), where p̄i is

the prediction from the established model for Y|X. It is easy to show that this method

does give a final model for Y|X, B that has a logistic link function and is linear in X

and B, and with some algebra the estimates of γ can be obtained.
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Informing a risk prediction model with coefficient information 11

4. Statistical Approaches when B is Binary

4.1. The Approximate Relationship Equation When B is Binary

If B is a binary variable, the logistic regression approximation in Section 3 does not hold

and the approximate relationship in equation (6) is not applicable. However, by Bayes

theorem, there is a relationship equation connecting Pr(Y = 1|X), Pr(Y = 1|X, B) and

f(B|X,Y) (Grill et al., 2015; Satten and Kupper, 1993):

Pr(Y = 1|X, B)

Pr(Y = 0|X, B)
=

f(B|X,Y = 1)

f(B|X,Y = 0)
· Pr(Y = 1|X)

Pr(Y = 0|X)
(12)

Thus, when B is binary, we need to define a model for B|X, Y instead of a model for B|X.

Assume logit(Pr(B = 1|X, Y)) =
∑p

j=0 φjXj + φp+1Y. Some algebraic simplifications of

equation (12) followed by a Taylor series expansion (as shown in Supplementary Material

Appendix C) result in an approximate relationship equation: β0 + β1X1 + · · ·+ βpXp ≈
γ0 + 1

2φp+1 + 1
4φ0φp+1 + 1

8φ2
p+1 +

∑p
j=1(γj + 1

4φjφp+1)Xj + (γp+1 − φp+1)B. Then the

approximate relationship between γ,φ and β is:























β0 ≈ γ0 + 1
2φp+1 + 1

4φ0φp+1 + 1
8φ2

p+1

βj ≈ γj + 1
4φjφp+1, j = 1, . . . , p

γp+1 = φp+1

(13)

4.2. Unconstrained and Constrained Solutions

The two unconstrained solutions, direct regression and standard Bayes can be performed

in the same way as described in Section 3 regardless of the distribution of B.

To develop a constrained solution, we need to first define the likelihood function

L(B|X). It can be shown that Pr(Bi = 1|Xi) is a weighted average of
exp(

∑p
j=0 Xijφj)

1+exp(
∑p

j=0 Xijφj)

and
exp(

∑p
j=0 Xijφj+φp+1)

1+exp(
∑p

j=0 Xijφj+φp+1)
. We use estimates of the weights given by wi,β̄ = 1

1+exp(Xiβ̄)

and 1 − wi,β̄ = exp(Xiβ̄)

1+exp(Xiβ̄)
where β̄ are the values for β from the established model.

Then L(B|X) can be written as: L(B|X) =
∏n

i=1 L(Bi|Xi,φ) =
∏n

i=1

( exp(
∑p

j=0 Xijφj)

1+exp(
∑p

j=0 Xijφj)
·

wi,β̄+
exp(

∑p
j=0 Xijφj+φp+1)

1+exp(
∑p

j=0 Xijφj+φp+1)
·(1−wi,β̄)

)Bi ·
(

1
1+exp(

∑p
j=0 Xijφj)

·wi,β̄+ 1
1+exp(

∑p
j=0 Xijφj+φp+1)

·

(1 − wi,β̄)
)(1−Bi)

.
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12 Wenting Cheng, Jeremy M. G. Taylor, Tian Gu, Scott A. Tomlins and Bhramar Mukherjee

4.2.1. Constrained Maximum Likelihood

The constrained ML estimation optimizes the following joint log-likelihood L(Y|X,B)L(B|X)

with a set of constraints on γ,φ, namely:

min
γ,φ

{

n
∑

i=1

[−Yi(

p
∑

j=0

γjXij + γp+1Bi) + log(1 + exp(

p
∑

j=0

γjXij + γp+1Bi))]

−
n

∑

i=1

[

Bilog
(exp(

∑p
j=0 Xijφj)wi,β̄

1 + exp(
∑p

j=0 Xijφj)
+

exp(
∑p

j=0 Xijφj + φp+1)(1 − wi,β̄)

1 + exp(
∑p

j=0 Xijφj + φp+1)

)

+ (1 − Bi)log
( wi,β̄

1 + exp(
∑p

j=0 Xijφj)
+

(1 − wi,β̄)

1 + exp(
∑p

j=0 Xijφj + φp+1)

)]}

s.t.























γ0 + 1
2φp+1 + 1

4φ0φp+1 + 1
8φ2

p+1 ∈ [β̄0 − dS̄0, β̄0 + dS̄0]

γj + 1
4φjφp+1 ∈ [β̄j − dS̄j , β̄j + dS̄j ], j = 1, . . . , p

γp+1 = φp+1

(14)

We also consider a modification that adds the Firth penalty term.

4.2.2. Informative Full Bayes

Analogous to the derivation of the informative full Bayes solution described in Section

3, we first write down the product of L(Y|X, B) and L(B|X) with priors.

p(γ,φ|data) ∝
{

n
∏

i=1

exp((
∑p

j=0 γjXij + γp+1Bi)Yi)

1 + exp(
∑p

j=0 γjXij + γp+1Bi)
·

(exp(
∑p

j=0 Xijφj)wi,β̄

1 + exp(
∑p

j=0 Xijφj)
+

exp(
∑p

j=0 Xijφj + φp+1)(1 − wi,β̄)

1 + exp(
∑p

j=0 Xijφj + φp+1)

)Bi

·

( wi,β̄

1 + exp(
∑p

j=0 Xijφj)
+

(1 − wi,β̄)

1 + exp(
∑p

j=0 Xijφj + φp+1)

)(1−Bi)}

· π(γ,φ)

(15)

We can re-parametrize (15) in terms of γ, β, and include a Jacobian corresponding to

this transformation. We denote the Jacobian matrix by M where |M| = | 4
γp+1

|p+1. We

specify independent weakly informative Cauchy priors for γ and use the constraints di-

rectly as priors for β. Then similar to section 3.4.2 we can rewrite the joint distribution

in terms of γ,β as p(γ,β|Y,X, B) ∝
{

∏n
i=1

exp((
∑p

j=0 γjXij+γp+1Bi)Yi)

1+exp(
∑p

j=0 γjXij+γp+1Bi)
·
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Informing a risk prediction model with coefficient information 13
[

wi,β̄

1+exp
(

−(
4β0−4γ0−2γp+1−

1
2

γ2
p+1

γp+1
+

∑p
j=1 Xij

4(βj−γj)

γp+1
)
)
+

1−wi,β̄

1+exp
(

−(
4β0−4γ0−2γp+1−

1
2

γ2
p+1

γp+1
+

∑p
j=1 Xij

4(βj−γj)

γp+1
+γp+1)

)

]Bi

·
[

wi,β̄

1+exp
(

4β0−4γ0−2γp+1−
1
2

γ2
p+1

γp+1
+

∑p
j=1 Xij

4(βj−γj)

γp+1

)
+

1−wi,β̄

1+exp
(

4β0−4γ0−2γp+1−
1
2

γ2
p+1

γp+1
+

∑p
j=1 Xij

4(βj−γj)

γp+1
+γp+1

)

](1−Bi)
}

·

π(β) · π(γ) · |M|
The full conditional distributions of γ0, . . . , γp+1 and β0, . . . , βp do not have closed

form expressions and a Metropolis-Hastings algorithm is used.

4.2.3. Transformation Approach

Suppose the raw draws from the non-informative Bayes method for Y|X, B are γ and

the raw draws from non-informative Bayes method for B|X, Y are φ. The posterior

variances are s2
γj

, j = 0, . . . , p + 1 and s2
φk

, k = 0, . . . , p + 1. Then γ⋆,φ⋆ are obtained

by solving the following optimization problem:

min
γ⋆,φ⋆

{

d2
NED(γ,γ⋆) + d2

NED(φ,φ⋆)
}

=

p+1
∑

j=0

(γj − γ⋆
j )2

s2γj

+

p+1
∑

k=0

(φk − φ⋆
k)

2

s2φk

s.t.























γ⋆
0 + 1

2φ⋆
p+1 + 1

4φ⋆
0φ

⋆
p+1 + 1

8φ⋆2
p+1 ∈ [β̄0 − dS̄0, β̄0 + dS̄0]

γ⋆
j + 1

4φ⋆
j φ

⋆
p+1 ∈ [β̄j − dS̄j, β̄j + dS̄j], j = 1, . . . ,p

γ⋆
p+1 = φ⋆

p+1

(16)

5. Simulation Study

To evaluate the performance of the various approaches we conduct a simulation study.

The results for Gaussian B are presented here, and the results for binary B and other

scenarios are presented in the Supplementary Materials Appendix E. The simulation

scenario has three predicting variables, X1,X2 and B and the sample size of each

dataset is 55. Five hundred replicate datasets are generated. Yi is Bernoulli dis-

tributed with logit(Pr(Yi = 1|Xi1,Xi2,Bi)) = 2 + 3Xi1 + 3Xi2 + 2Bi. Xi1,Xi2 are

independently and identically distributed on U(−0.75, 0.25) and Bi is simulated as

Bi = 0.5Xi1 + 0.5Xi2 + N(0, 0.752). A logistic regression based on a large dataset of

10000 subjects gives estimates for the model logit(Pr(Y = 1|X)) = β0 + β1X1 + β2X2.
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14 Wenting Cheng, Jeremy M. G. Taylor, Tian Gu, Scott A. Tomlins and Bhramar Mukherjee

The estimates and standard errors from this fit are β̄0 = 1.50, S̄0 = 0.04, β̄1 = 2.95, S̄1 =

0.09, β̄2 = 3.01, S̄2 = 0.09.

We report three evaluation metrics related to estimation accuracy: the average

of estimated coefficient, relative efficiency of estimated coefficient and mean squared

error across 500 replicates. The average of the estimated coefficients is defined as:

γ̄j = 1
500

∑500
m=1 γ̂m,j ; the relative efficiency of the estimated coefficients is defined as:

V(γ̂j,direct)
V(γ̂j,method) where V(γ̂j,direct) = 1

500

∑500
m=1(γ̂m,j− γ̄j)

2 estimated by direct regression; the

MSE of the estimated coefficients is defined as: 1
500

∑500
m=1(γ̂m,j − γj)

2, j = 1, . . . ,p + 1.

The predictive ability of logistic prediction models can be assessed using a variety of

methods and metrics on a validation dataset (Steyerberg et al., 2010). In this simulation

study, we assess the predictive ability of the model on a validation dataset of size 800

using the scaled Brier score (
∑n

i=1(Yi−p̂i)
2

∑n
i=1(Yi−Ȳ)2

). We assess the variability of the predictions

on the validation dataset using the standard deviation of the predicted probabilities,

((1/799)
∑

(p̂i − ¯̂p)2)1/2. The discriminatory performance of the model is assessed using

the area under the ROC curve (AUC). These three performance measures are also

calculated for the model based on β̄ which does not use B, and for the best achievable

model that uses the true values of the γ’s.

Table 1 presents the results. In this setting what is achievable with the true model

is noticeably better, as measured by Brier score and AUC, than using the established

model, and the established model does not give the correct standard deviation of the

predicted probabilities. There is bias in γ̂1, γ̂2 and γ̂3 for the direct regression approach,

which is reduced by including the Firth penalty. We find that the constrained methods

greatly improve the estimation efficiency of the coefficients γ1 and γ2 of X. The con-

strained methods can reduce the MSE of X1,X2 by 70% or more, and give 4 or 5 times

more efficient point estimates of γ1 and γ2. In contrast, these constrained solutions can

only reduce the MSE of γ3 by 10% to 40% and generally have similar efficiency to that

of direct regression plus Firth. The new methods give similar variability of the predicted

probabilities compared to the true model. All the methods that use the external infor-

mation give similar Brier scores and AUCs which are very similar to the best that can

be achieved. They are all better than not using B at all, and slightly better than the
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Informing a risk prediction model with coefficient information 15

methods that don’t use the external information. In terms of computational efficiency,

the informative prior Bayesian approach and the transformation approach require more

time than the other methods, however the transformation approach takes about 18%

the time of the informative full Bayes approach.

The results for the Chatterjee et al. (2016) method show some similarities to the

other methods that use the external information, but also show some differences. The

method shows a similar amount of bias or even slightly greater bias than the other

methods. The method does result in some gain in efficiency in the point estimates,

and also smaller MSE, compared to direct regression, but not as much gain as for the

other new methods. For γ̂3 there is no gain in efficiency compared to direct regression,

and even loss in efficiency compared to the direct regression with Firth correction. The

method does tend to give slightly more variability to the predicted probabilities than

the other methods. The Chatterjee et al. (2016) method has comparable values of AUC

and Brier score as the other methods that use external information.

The simple logistic regression plug-in method is found to have better performance

than direct regression, but not as good performance as the more sophisticated ap-

proaches for using the external information. It also can result in biased estimates of the

γ’s.

The other results presented in the Supplementary Materials give similar conclusions.

6. Application to the Prostate Cancer Data

We demonstrate our methodology by enhancing the Prostate Cancer Prevention Trial

Risk Calculator for high-grade prostate cancer. Using the data from Tomlins et al.

(2015) we will illustrate the methods described in this paper to develop a logistic model

that includes all the PCPThg variables and PCA3. We estimate the new model from

the training dataset of 679 men, incorporating the known coefficients and their stan-

dard errors from the PCPThg calculator. After a transformation (log2(PCA3 + 1)) the

distribution of PCA3 is roughly normally distributed in both cohorts and thus the ap-

proximate relationship equations (6) are applicable. The distribution of T2:ERG looks

like a truncated normal whose value is bounded below at zero, with many observations
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16 Wenting Cheng, Jeremy M. G. Taylor, Tian Gu, Scott A. Tomlins and Bhramar Mukherjee

equal to zero. We dichotomized T2:ERG by splitting at the median and develop a logis-

tic model that includes PCPThg variables and dichotomized T2:ERG. The approximate

relationship equations (13) would be appropriate in this case.

These two expanded PCPThg models will be estimated by both the unconstrained

methods and the constrained methods described in Section 3 and Section 4. For compar-

ing coefficient estimation across different methods, we report the estimated coefficients

and their standard errors calculated from the training dataset. For comparing predic-

tion power, we calculate the Brier Score and the AUC based on the validation dataset.

We also present the original PCPThg model and the expanded model developed by

Tomlins et al. (2015). We give the calibration plots for the original PCPThg model,

the expanded model by Tomlins et al. (2015), the expanded PCPThg model estimated

without constraints (direct regression) and the expanded PCPThg model estimated with

constraints (transformation approach). The calibration plot contains the predicted and

the observed risk of high-grade cancer in 10 groups which are defined by sorting the

predicted probabilities from lowest to highest and then separated into 10 groups of ap-

proximately equal size. For each group, the expected numbers of events is the sum of

the predicted probability in the group. Perfect predictions should be on the 45◦ line.

Table 2 presents the expanded PCPThg model incorporating these two biomarkers

fitted to the training dataset. For the expanded PCPThg model incorporating PCA3

score, if we compare the standard errors across different methods, it is easily seen that the

constrained methods can reduce the standard errors of regression coefficients compared

to direct regression. For example, the informative full Bayes solution can substantially

reduce the standard errors in parameters of variables PSA (0.08 vs 0.19), age (0.008 vs

0.013), DRE findings (0.17 vs 0.27), prior biopsy history (0.16 vs 0.28) and race (0.23

vs 0.31). The constrained ML with Firth penalty can reduce the standard errors of the

parameters of variables PSA, age, prior biopsy history and race by at least 50%.

Among the 1218 validation study patients, AUC for PCPThg model and the ex-

panded PCPThg score plus PCA3 model are 0.707 and 0.752. By incorporating PCA3

score in the PCPThg model, the AUC increases to 0.767 in direct regression. How-

ever, the constrained methods do not further increase the AUC. All the new methods
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Informing a risk prediction model with coefficient information 17

except for the transformation approach give predicted probabilities that are on average

too high, suggesting they are not well calibrated. For calibration, as measured by the

Brier score, the original PCPT calculator performs better than direct regression and of

the new methods only the transformation approach gives an improved Brier score. In

Figure 1 we can see that the expanded PCPThg model incorporating PCA3 tends to

overestimate the risk of getting high-grade PCa among those patients with high risk.

However, the overall calibration ability of the expanded PCPThg model estimated by

the transformation approach still outperforms that of the original PCPThg model, the

expanded PCPThg score plus PCA3 model or the expanded PCPThg model estimated

by direct regression.

The expanded PCPThg model incorporating binary T2:ERG fitted to the training

dataset again shows that the constrained methods can reduce the standard errors of

regression coefficients compared to direct regression. In Figure 1 we can see that the

expanded PCPThg model incorporating binary T2:ERG tends to overestimate the risk

of getting high-grade cancer among those patients with high risk. However, the trans-

formation approach predicts the risk well for the high risk groups.

For the prostate cancer example with either new biomarker, the Chatterjee et al.

(2016) method gave parameter estimates and standard errors that are different from both

the methods that don’t use the external information and from the other methods that do

use the external information. In general, they tend to be closer to those of the original

PCPT calculator. Also the method gives a much lower predicted population proportion

than all the other methods and lower than the observed prevalence of 18.3% in the

validation dataset. This is possibly because the Chatterjee et al. (2016) method does not

take into account the uncertainty in the estimates coefficients. It is notable, in contrast

to what was seen in the simulation studies, that the Chatterjee et al. (2016) method

tends to give smaller standard errors than all the other methods for the coefficients of

the X variables, but larger standard errors for the coefficient of the new biomarker. The

method does assume that the X distribution is the same in the original dataset and the

dataset with the new biomarkers, but in fact there are considerable differences between

these X distributions, it is unclear how this is affecting the estimates and standard
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18 Wenting Cheng, Jeremy M. G. Taylor, Tian Gu, Scott A. Tomlins and Bhramar Mukherjee

errors. The results (as shown in Appendix F of the Supplementary materials) for the

constrained MLE, with a range of values for d demonstrate that the choice of d can

be quite impactful, both on the estimates and on their standard errors. As expected

the results for d = 0.1 are quite close to the Chatterjee et al. (2016) method, because

neither method incorporates the uncertainty in the parameter estimates.

7. Discussion

We propose several strategies for translating the external coefficient information ob-

tained from outside the dataset into constraints on regression coefficients in the setting

of a logistic regression model describing Pr(Y = 1|X,B). Simulation studies show that

the external coefficient information from the established model can help improve the

efficiency of estimation and enhance the predictive power in the expanded model.

In terms of computational efficiency, in simulation studies the transformation ap-

proach shows advantage over the informative full Bayes because in the transformation

approach the raw draws are first obtained in a fast way and then transformed into

draws that obey the constraints based on an efficient optimization algorithm, while

the informative full Bayes solution produces constrained draws inefficiently. When the

dimensionality of the predictors X increases, the computational cost of the transfor-

mation approach solution will not increase much because the high-dimensional opti-

mization problem will always reduce to a one-dimensional optimization problem based

on our algorithm regardless of the dimensionality of the predictor space. Furthermore,

the correlation among the samples in the Markov chain for the informative full Bayes

approach is very high and effective samples are harder to obtain when the dimension-

ality increases (additional simulation results that validate this finding are not shown).

As a consequence, the discrepancy of these two constrained solutions in computational

cost will be more apparent in higher dimensions. In general the Bayesian approaches

are much more computationally time-consuming than the other approaches. While it

is conceivable that better algorithms and improved programming could speed these up

considerably, it is very unlikely that they will ever have comparable speed to the CML

methods or the Chatterjee et al. (2016) approach. A general overview of the computa-
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Informing a risk prediction model with coefficient information 19

tional and implementation details for all the methods described in this paper are given

in Supplementary Materials Appendix G.

The efficiency gain in the expanded model of interest depends on the sample size

used to construct the established model and the sample size used to estimate the ex-

panded model of interest. In our simulation studies the established models are based on

large datasets with 10000 observations while the current datasets are very small. The

relative efficiency gain in the regression coefficient of variables X by incorporating the

external coefficient information is significant and the prediction power in the validation

dataset is enhanced. However, when the sample size in the current dataset is large

enough to estimate the expanded model, the constrained methods do not lead to much

improvement in the predictive ability compared to direct regression, as was the case

in the prostate cancer example. However, our numerical results suggest that improved

precision of the coefficient estimates, as measured by standard errors, can be achieved

even if the current dataset is not small.

A situation we did not consider in the simulation studies is when the event of in-

terest is rare and the predicted probabilities are very low. While there may be other

methods that exploit this assumption, we hypothesize that the relative performance of

the methods we considered may be similar to those for the small samples sizes we did

evaluate. This is because both situations have limited information in the data from

which to estimate regression coefficients. However, this hypothesis would need to be

investigated.

The approaches proposed in this paper are based on establishing a relationship be-

tween the parameters in the Y|X model and the parameters in the Y|X,B model.

Depending on the form of B and the structure of the models these relationships need to

be analytically derived and are approximations. The methods also require an explicit

model for B|X. While it would be desirable to avoid having to specify a parametric

model for B|X, we also note that the appropriateness of the model for B|X can be

checked to some degree from the small dataset. The differences in the distributions of

X in the external and internal studies will not have much effect on the performance

of our proposed constrained methods (simulation results not shown). This is because
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the coefficients’ approximate relationship equations are constructed based on the con-

ditional distributions Y|X, B and B|X. As long as these two conditional distributions

are correctly specified in the internal study, the approximate relationship equations will

hold regardless of the differences in the distributions of X in these two studies. The

approaches also do have the feature that they can directly incorporate the uncertainty

in the parameters of the Y|X model. An alternative method of using p̄ as a covariate is

appealing because of its simplicity and broad applicability, although it does appear to

have slightly worse properties than the more sophisticated approaches. The approach of

Chatterjee et al. (2016) is appealing because it is applicable for any form of B and it does

not require an explicit model for B|X, however it does require the same distribution of

X in the two populations and it does not incorporate the uncertainty in the parameters

of the Y|X, B model. We also found that it was sometimes numerically unstable for

small sample sizes.

One point of future consideration is the distribution of the new biomarker B. We

develop the approximate relationship equation for the scenarios that B is Gaussian

and binary. When B is multivariate Gaussian, based on the generalization of equation

(5), assuming B|X is multivariate normal with L dimensions, mean Xθ and covariance

matrix VL×L, the approximate relationship between γ, θ and β is:

βj ≈ (γj +
L

∑

l=1

γp+lθlj)/(1 + γT
BVγB/1.72)

1
2 , j = 0, . . . , p (17)

Then the strategies to incorporate the external coefficient information described in Sec-

tion 3 can be easily extended in this case. However, if additional biomarkers follow other

distributions, these approximate relationship equations will fail. Therefore, further in-

vestigations are needed for the generalization of our proposed constrained solutions to

flexibly adapt to other possible distributions of the new biomarker.
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Table 1. Simulation results for Gaussian B: for each method, we report mean (relative efficiency

w.r.t. direct regression), MSE, average Brier score, average AUC, average p̂ (SD) and computing

time for 500 datasets of size 55

Method γ̂1 γ̂2 γ̂3 Scaled Brier Score AUC p̂ mean(SD) Time

True value 3 3 2 0.605 0.864 0.49 (0.333) -

Established model - - - 0.796 0.761 0.51 (0.239) -

using known β̄

Direct regression 3.37 (1) 3.40 (1) 2.35 (1) 0.661 0.852 0.49 (0.344) 1.3

MSE 3.36 3.48 0.96

Direct regression + Firth 2.89 (1.55) 2.92 (1.52) 1.99(1.69) 0.651 0.852 0.49 (0.324) 2.4

MSE 2.10 2.18 0.49

Non-informative Bayes 2.72 (1.79) 2.75 (1.78) 2.04 (1.77) 0.647 0.852 0.49 (0.307) 3.6

MSE 1.88 1.93 0.47

Constrained ML 3.08 (3.60) 3.17 (3.91) 2.30 (1.11) 0.628 0.857 0.49 (0.313) 44.9

MSE 0.90 0.88 0.84

Constrained ML + Firth 2.88 (6.01) 2.97 (6.32) 1.96 (1.85) 0.622 0.857 0.49 (0.303) 78.2

MSE 0.55 0.53 0.45

Informative full Bayes 2.87 (4.93) 2.98 (5.15) 2.30 (1.33) 0.624 0.857 0.49 (0.301) 9097.6

MSE 0.64 0.67 0.72

Transformation 2.90 (6.80) 3.00 (6.94) 1.93 (1.75) 0.622 0.857 0.49 (0.298) 888.2

MSE 0.48 0.48 0.48

Chatterjee et al 3.17 (2.91) 3.29 (3.06) 2.34 (1.01) 0.631 0.859 0.49 (0.342) 43.2

MSE 1.13 1.17 0.94

Simple logistic (p̄, B) 3.27 (1.64) 3.34 (1.62) 2.28 (1.11) 0.644 0.858 0.49 (0.339) 0.9

MSE 2.04 2.16 0.84
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Table 2. Expanded PCPThg model: for each method, point estimate (standard error) from the

training dataset, and the Brier score, the AUC and the mean and SD of predicted probabilities from

the validation dataset. The sample size of the training dataset is 679. The sample size of the

validation dataset is 1218.

Model PSA Age DRE Prior biopsy Race Scaled Brier Score AUC p̂ mean(SD)

findings history

Original PCPThg 1.29 (0.09) 0.031 (0.012) 1.00 (0.17) -0.36 (0.18) 0.96 (0.27) – 0.933 0.707 0.14 (0.132)

Estimated PCPThg 1.06 (0.18) 0.033 (0.012) 1.15 (0.26) -1.44 (0.27) 0.44 (0.29) – 0.975 0.716 0.27 (0.174)

Expanded model PCA3

with PCA3 score

PCPThg score+PCA3 – – – – – – 0.950 0.752 0.27 (0.201)

Direct regression 1.00 (0.19) 0.009 (0.013) 1.07 (0.27) -1.30 (0.28) 0.04 (0.31) 0.56 (0.08) 0.950 0.767 0.28 (0.221)

Direct regression + Firth 0.97 (0.19) 0.009 (0.013) 1.06 (0.27) -1.27 (0.27) 0.05 (0.31) 0.56 (0.08) 0.953 0.767 0.28 (0.219)

Non-informative Bayes 0.98 (0.18) 0.009 (0.013) 1.05 (0.27) -1.27 (0.27) 0.04 (0.30) 0.56 (0.08) 0.950 0.767 0.28 (0.218)

Constrained ML 1.20 (0.09) 0.010 (0.007) 1.08 (0.14) -0.55 (0.13) 0.30 (0.19) 0.59 (0.08) 0.948 0.766 0.27 (0.225)

Constrained ML + Firth 1.19 (0.09) 0.012 (0.006) 1.08 (0.14) -0.54 (0.13) 0.47 (0.11) 0.53 (0.07) 0.947 0.764 0.27 (0.218)

Informative full Bayes 1.23 (0.10) 0.009 (0.008) 0.99 (0.17) -0.73 (0.17) 0.26 (0.22) 0.60 (0.08) 0.946 0.767 0.27 (0.222)

Transformation 1.23 (0.07) 0.008 (0.009) 0.96 (0.14) -0.50 (0.13) 0.41 (0.19) 0.55 (0.08) 0.883 0.765 0.22 (0.191)

Chatterjee et al 1.22 (0.08) 0.007 (0.005) 0.86 (0.10) -0.20 (0.08) 0.58 (0.11) 0.56 (0.10) 0.888 0.759 0.15 (0.168)

Simple logistic (p̄, B) 0.82 (0.18) 0.023 (0.000) 0.64 (0.11) -0.23 (0.01) 0.61 (0.10) 0.55 (0.08) 0.940 0.759 0.27 (0.204)

Expanded model T2:ERG

with binary T2:ERG

PCPThg score + T2:ERG – – – – – – 0.932 0.732 0.26 (0.153)

Direct regression 1.01 (0.18) 0.032 (0.012) 1.03 (0.26) -1.44 (0.28) 0.57 (0.29) 0.77 (0.20) 0.929 0.745 0.26 (0.179)

Direct regression + Firth 0.98 (0.18) 0.032 (0.012) 1.02 (0.26) -1.41 (0.27) 0.57 (0.29) 0.76 (0.20) 0.930 0.744 0.27 (0.177)

Non-informative Bayes 0.99 (0.18) 0.032 (0.012) 1.01 (0.26) -1.40 (0.27) 0.55 (0.29) 0.76 (0.20) 0.926 0.745 0.27 (0.175)

Constrained ML 1.14 (0.07) 0.032 (0.004) 1.06(0.14) -0.52 (0.11) 0.81 (0.18) 0.74 (0.21) 0.928 0.742 0.25 (0.176)

Constrained ML + Firth 1.14 (0.07) 0.032 (0.004) 1.06 (0.14) -0.52 (0.11) 0.80 (0.17) 0.72 (0.20) 0.931 0.742 0.26 (0.176)

Informative full Bayes 1.14 (0.09) 0.033 (0.007) 0.95 (0.14) -0.76 (0.16) 0.77 (0.21) 0.73 (0.19) 0.922 0.744 0.25 (0.175)

Transformation 1.17 (0.07) 0.030 (0.007) 0.94 (0.12) -0.50 (0.11) 0.89 (0.16) 0.74 (0.14) 0.889 0.742 0.21 (0.152)

Chatterjee et al 1.25 (0.03) 0.029 (0.002) 0.85 (0.05) -0.37 (0.04) 1.06 (0.05) 0.77 (0.27) 0.911 0.736 0.14 (0.129)

Simple logistic (p̄, B) 0.98 (0.18) 0.023 (0.000) 0.76 (0.11) -0.28 (0.01) 0.73 (0.10) 0.80 (0.19) 0.918 0.739 0.25 (0.155)
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(a) PCPThg model (b) PCPThg score + PCA3, Tomlins et al. (2015)

(c) PCPThg covariates + PCA3, direct regression (d) PCPThg covariates + PCA3, Bayesian transformation
approach

(e) PCPThg score + dichotomized T2:ERG (f) PCPThg covariates + dichotomized T2:ERG, direct
regression

(g) PCPThg covariates + dichotomized T2:ERG,
Bayesian transformation approach

Fig. 1. Calibration plot of the original high-grade Prostate Cancer Prevention Trial risk calculator

(PCPThg) and calibration plots of the expanded PCPThg model by incorporating PCA3 score

and dichotomized T2:ERG
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