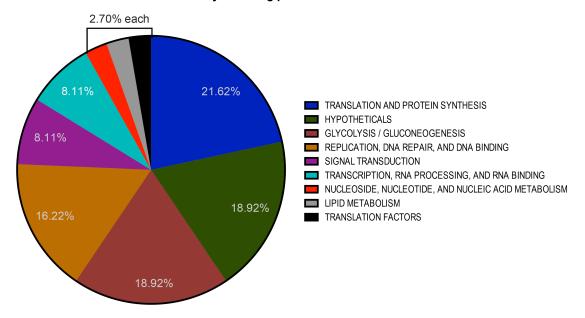
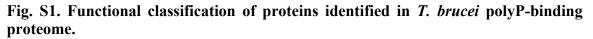
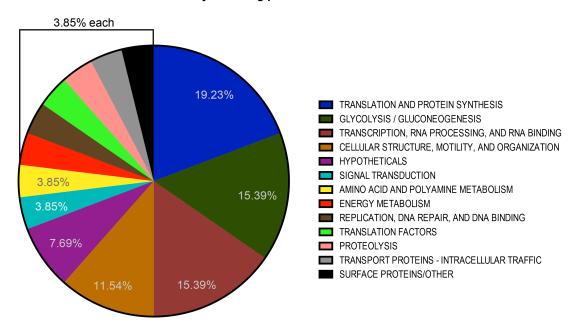
Supporting information


Inorganic Polyphosphate Interacts with Nucleolar and Glycosomal Proteins in Trypanosomatids

Raquel S. Negreiros, Noelia Lander, Guozhong Huang, Ciro D. Cordeiro, Stephanie Smith, James H. Morrissey, and Roberto Docampo


Figs. S1-S9


Tables S1-S2

Videos S1-S2

Functional distribution of T. brucei PolyP-binding proteins

Functional distribution of T. cruzi PolyP-binding proteins

Fig. S2. Functional classification of proteins identified in *T. cruzi* polyP-binding proteome

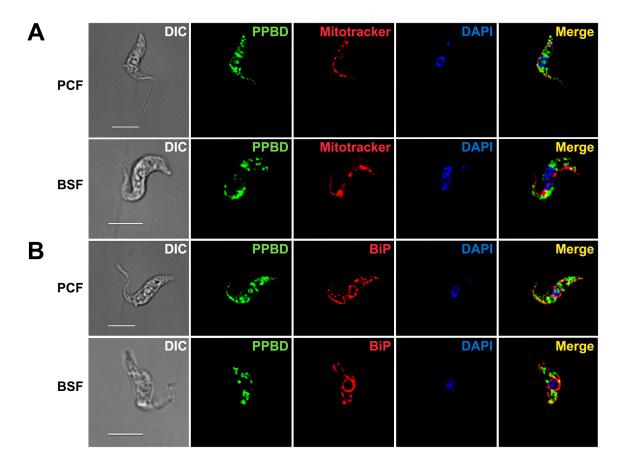


Fig. S3. Immunofluorescence microscopy analysis of polyP localization. (A) PPBD (green) does not co-localize with MitoTracker (*red*). (B) PPBD (green) does not co-localize with antibodies against BiP (*red*). DIC, differential interference contrast. DAPI staining in *blue*. Scale bars = 5 μ m.

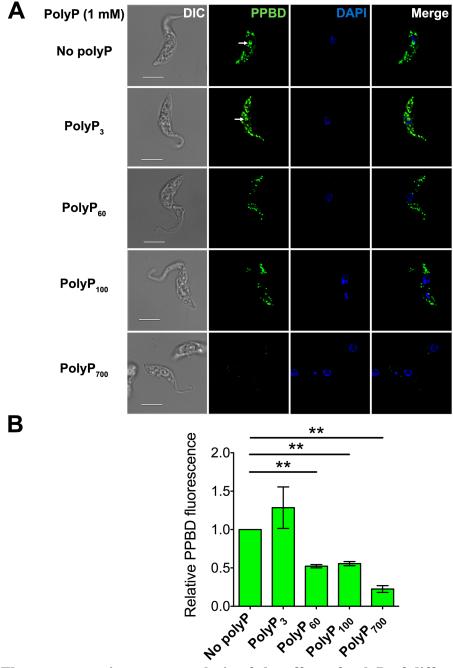


Fig. S4. Fluorescence microscopy analysis of the effect of polyP of different length on PPBD staining in *T. brucei* PCF. (A) Alexa Fluor 488-labeled PPBD was preincubated with 1 mM (in phosphate units) polyP₃, polyP₆₀, polyP₁₀₀, or polyP₇₀₀ for 1 h and then used for fluorescence microscopy. Nucleolus labeling is indicated by *white arrows*. DIC, differential interference contrast. DAPI staining is in *blue*. Scale bars = 5 µm. (B) Quantification of the fluorescence of cells labeled with PPBD previously incubated with polyP of different lengths as compared with control cells. A total of 664 cells were examined in three biological experiments. Values are means \pm SEM, n = 3, ** P < 0.01, One-way ANOVA test with multiple comparisons.

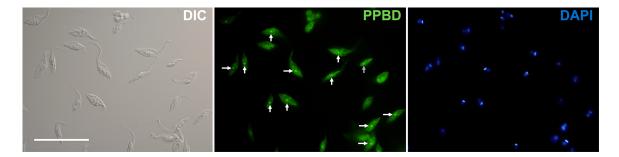
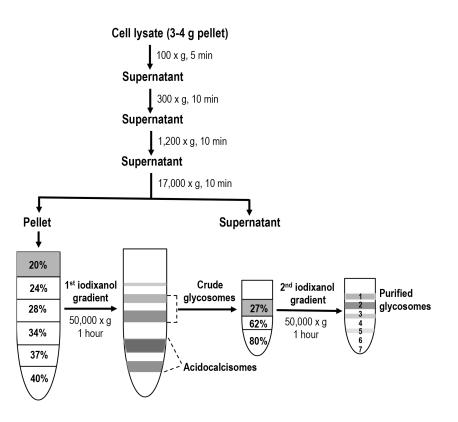



Fig. S5. Conventional fluorescence microscopy analysis of PPBD-labeled *T. cruzi* epimastigotes. PPBD (*green*) shows cytosolic labeling and labels the nucleolus (*white arrows*). DIC, differential interference contrast. DAPI staining is in *blue*. Scale bar = 50 μ m.

Fig. S6. Subcellular fractionation of glycosomes. Wild type *T. brucei* PCF lysates were obtained by grinding with silicon carbide, decanted by low speed centrifugation to eliminate debris and silicon carbide, and centrifuged at $17,000 \times g$ for 10 min to isolate the organellar fraction that was applied to the 20% step of a discontinuous iodixanol gradient. After centrifugation at 50,000 g for 1 h, the fractions containing crude glycosomes were combined, washed, pelleted, resuspended and then applied to the 27% step of a second iodixanol gradient and centrifuged at 50,000 g for 1 h as described under *Experimental Procedures*. Aliquots from each fraction were used for enzymatic assays. Fractions 1 and 2 correspond to the purified glycosomes.

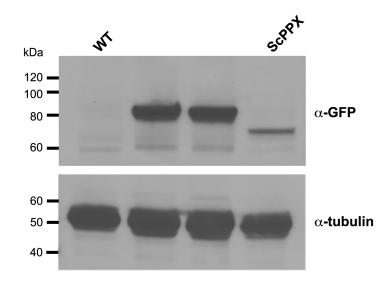


Fig. S7. Complete image of western blot analysis from PCF WT (*left lane*) and PTS2-ScPPX1-eYFP-expressing cells (*right lane*) using polyclonal antibody against GFP. The middle gel lanes correspond to samples not related to this work. Molecular weight markers are at *left*. Tubulin was used as a loading control.

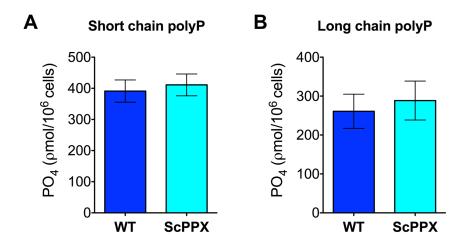


Fig. S8. Quantification of total short and long chain polyP extracted from PCF WT and *PTS2-ScPPX1-eYFP*-expressing cells. (A) Short chain polyP quantification. No significant differences observed, n = 3. (B) Long chain polyP quantification. No significant differences observed, n = 3.

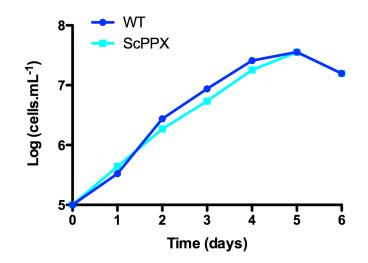


Fig S9. Growth curves of PCF WT and *PTS2-ScPPX1-eY*FP-expressing cells over 6 days.

S1 Table. All proteins identified in Trypanosoma brucei.

S2 Table. All proteins identified in Trypanosoma cruzi.

S1 Video. Co-localization of PPBD and PPDK in *T. brucei* PCF from Fig 1A. PPBD is shown in *green*, PPDK in *red*, and DAPI in *blue*.

S2 Video. Co-localization of PPBD and VP1 in *T. brucei* PCF from Fig 1B. PPBD is shown in *green*, VP1 in *red*, and DAPI in *blue*.