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SUMMARY

In many problems of maximum likelihood estimation, it is impossible to carry out either
the E-step or the M-step of the EM algorithm. The present paper introduces a gradient
algorithm that is closely related to the EM algorithm. This EM gradient algorithm approx-
imately solves the M-step of the EM algorithm by one iteration of Newton’s method. Since
Newton’s method converges quickly, the local properties of the EM gradient algorithm
are almost identical with those of the EM algorithm. Any strict local maximum point of
the observed likelihood locally attracts the EM and EM gradient algorithm at the same
rate of convergence, and near the maximum point the EM gradient algorithm always pro-
duces an increase in the likelihood. With proper modification the EM gradient algorithm
also exhibits global convergence properties that are similar to those of the EM algorithm.
Our proof of global convergence applies and improves existing theory for the EM
algorithm. These theoretical points are reinforced by a discussion of three realistic
examples illustrating how the EM gradient algorithm can succeed where the EM algorithm
is intractable.

Keywords: CONVERGENCE; DIRICHLET DISTRIBUTION; MAXIMUM LIKELTHOOD; ROBUST
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1. INTRODUCTION

The EM algorithm is one of the most versatile algorithms in modern statistics
(Dempster et al., 1977; Little and Rubin, 1987). Because of its simplicity and
numerical stability, it is often the method of choice for computing maximum
likelihood or maximum a posteriori estimates. In truth, the EM algorithm is not
so much an algorithm as a prescription for an algorithm. In many interesting
examples, either the E-step or the M-step proves intractable. When faced with such
a dilemma, most statisticians immediately turn to other algorithms such as scoring.
However, statisticians are beginning to devise tactics to overcome the lack of explicit
solutions of either the E-step or the M-step. Part of the motivation for the Gibbs
sampler and data augmentation certainly originates with frustration in solving the
E-step (Wei and Tanner, 1990).

Intractability of the M-step has also begun to yield to new numerical techniques.
For instance, in the ECM algorithm of Meng and Rubin (1993), the M-step is done
in cyclic fashion with different subsets of the parameters successively incremented.
In some real examples, it is possible to solve the M-step for subsets of parameters
but not for all parameters simultaneously. The one-step-late (OSL) algorithm of
Green (1990) is designed for maximum a posteriori estimation. Green suggests this
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algorithm when the introduction of a prior renders the M-step intractable. In
specific applications the OSL algorithm is derived by temporarily fixing the gradient
of the log-prior and then solving the M-step with this qualification. Finally, the
gradient algorithm of Titterington (Titterington, 1984; Titterington et al., 1985)
mimics the EM algorithm for linear exponential families.

In the present paper, we explore a variation of the EM algorithm that is closest
in form to Titterington’s algorithm. This new gradient algorithm has convergence
properties that are almost identical with those of the standard EM algorithm. In
fact, we shall show that it has the same local rate of convergence and, with proper
precautions, the same desirable property of always leading uphill. To explain this
new algorithm, let us recall the conventions underlying the EM algorithm (Dempster
et al., 1977, Little and Rubin, 1987). An important distinction is drawn between
the observed incomplete data Y and the unobserved complete data X. The complete
data X are assumed to have probability density f(X|6), which is a function of a
parameter vector # as well as of X. In the E-step of the EM algorithm, the con-
ditional expectation

Q(616") = Elln {f(X|6)}| Y, 6]

is computed. Here 6" is the current estimated value of 6. In the M-step, the 6
maximizing Q(f|6") is found. This yields the new parameter estimate §"*', and this
two-step process is repeated until convergence. The essence of the EM algorithm
is that increasing Q(f|6") forces an increase in the log-likelihood L(6) of the
observed data.

If it is impossible to carry out the M-step exactly, we can contemplate solving
it iteratively. This is an unattractive alternative because it involves iterating within
iterations. The fastest common algorithm for iteratively solving the M-step would
be Newton’s method, which has quadratic convergence compared with the linear
convergence experienced in the EM algorithm. These considerations suggest that,
perhaps, a single iteration of Newton’s method at each M-step would be adequate
to ensure convergence of an approximate EM algorithm. This heuristic argument
forms the basis of our new gradient algorithm. Update the current parameter
column vector 8" by

0n+l =" — d20Q(0n|0n)—l leQ(onlon)
= ¢" — d¥*Q(6"|6™) ' AL(67). 0y

In equation (1) the operators d!° and d? take first and second partial derivatives
respectively with respect to the first variable of Q. The column vector dL(f) is
the score of the log-likelihood L(6). Because L(f) — Q(f|6") has its minimum at
6 = 0", the equality d'°Q(6"|6") = dL(6") holds whenever 6" is an interior point of
the parameter domain (Dempster ef al., 1977). We shall refer to algorithm (1) as
the EM gradient algorithm.

In his gradient algorithm, Titterington (1984) substituted in equation (1) the
Fisher information matrix of the complete data X for the matrix —d*Q(6"|6").
When the complete data belong to a linear exponential family, the two matrices
coincide. One advantage of Titterington’s algorithm is that it is necessarily an ascent
algorithm. This means that a fractional step in the current direction will certainly
lead to an increase in L(f). We can retain this advantage in the EM gradient
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algorithm by demanding that d*°Q(6"|6") be negative definite. In all the examples
discussed later, the Hessian matrix d°Q(f|6") is indeed always negative definite.
This fact in turn implies strict concavity of Q(f|6") and uniqueness of the max-
imum point §"*'. In some cases negative definiteness of d*Q(6"|6") can only be
achieved by reparameterization; this does not change the EM algorithm but does
affect the EM gradient algorithm.

In the next section, we present some specific examples where the M-step of the
EM algorithm is intractable, but the EM gradient algorithm is straightforward. The
third and fourth sections of the current paper are devoted to a theoretical develop-
ment of the EM gradient algorithm. This gives us a chance to verify some of the
claims made for the algorithm and, in particular, to investigate its convergence
properties. Some of our results improve existing theory for the EM algorithm as
well (Dempster et al., 1977; Boyles, 1983; Wu, 1983). In the concluding discussion,
we note some generalizations and limitations of the EM gradient algorithm.

2. EXAMPLES

2.1. Dirichlet Distribution
First consider an example where the complete data belong to a linear exponential
family. Suppose that X,, ..., X, are independent random variables with X
having gamma density

T'@) 'x?'exp(—x;)

for x; > 0. With the superscript * denoting vector transpose, the Dirichlet random
vector Y = (Y, ..., Y)* is defined by setting its ith component equal to the
proportion

k
Yi=X[2) X

j=1

It can be shown that Y has density

(%0)

gy|0) = =1+ H}’?’—l
IIreny !
i=1

on the simplex {y = (31, . . ., ¥)*: »1>0, ..., ¥ >0, L, y;, = 1} endowed with
the uniform measure. The random vector Y constitutes the observed data, and the
underlying random vector X = (X,, ..., X;)* constitutes the complete data.

For an independent and identically distributed sample Y?, ..., Y” from the
Dirichlet distribution, we can attempt to estimate the parameter vector 6 =
@,, . .., 6,)* by the EM algorithm. Let X', . . ., X™ be the corresponding com-
plete data. It is immediately evident that up to an irrelevant constant

k k m
Q@16 = —m >, InT®) + >, 6 — 1) D, E(lnX| ¥, 67). )

i=1 i=1 j=1

Owing to the presence of the terms InI'(f;) in equation (2), we cannot solve
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the M-step analytically. However, the EM gradient algorithm is trivial to imple-
ment since the Hessian matrix d°Q(8|6") is diagonal with ith diagonal entry
—md*{InT'(9,)}/d6?. In this example as in other linear exponential examples, it is
unnecessary to evaluate the conditional expectations of the E-step.

Scoring is an attractive alternative to the EM gradient algorithm in this particular
example (Narayanan, 1991). The data of Mosimann (1962) on the relative frequen-
cies of k =3 serum proteins in m = 23 young, white Pekin ducklings furnish
an interesting test case for comparing the EM gradient algorithm with scoring.
Starting from 6' = (1., 1., 1.)*, both algorithms converge to the maximum point
(3.22, 20.38, 21.69)* with the log-likelihood en route showing a steady increase to its
maximum value of 73.12500. However, scoring takes only nine iterations for the
log-likelihood to achieve its final value, whereas the EM gradient algorithm takes
333 iterations. This example just confirms the relatively slow convergence of the
EM algorithm. Speed of convergence must always be balanced against numerical
stability and ease of programming. Here the EM gradient algorithm avoids matrix
inversion. Both algorithms need to face the unpleasant task of evaluating log-
gamma, digamma and trigamma functions (Pike and Hill, 1966; Schneider, 1978).

2.2. Adaptive Robust Linear Regression via t-distribution

Lange et al. (1989) investigated an EM algorithm for adaptive robust regression
based on f-distributed errors (Dempster ef al., 1980). A t-distributed random
variable Y with mean p, scale o and degrees of freedom » can be represented by
the shifted ratio Y = p + V/~U, where U = x%/v is a x? random variable scaled
to have mean 1 and V is an independent normal random variable with mean 0 and
standard deviation o¢. The pair (Y, U) constitutes the complete data corresponding
to the observed data Y. We shall let the mean u({) depend on a parameter vector
¢ and denote the concatenated parameter vector ({*, o, »)* by 0.

If we observe a sequence of independent observations Y, . . ., Y™ having dif-
ferent mean functions p!({), ..., u™() but the same scale ¢ and degrees of
freedom v, then the E-step of the EM algorithm gives up to a constant

12
Q0|6 = —mlno - 55—2;1 WY — W (P — mlnr@

my v v m ; v & ;
nly)+(-1) 50 -3 5w

where w! = E(U'| Y?, ") and ¢' = E(In U’| Y, 6") are given by (" + 1)/ {v" + d'(6")}
and DG{(" + 1)/2} — In[{»" + d'(#™)}/2] respectively. Here d'(6") =[{Y’ -
$(¢")}/0"? and DG(s) denotes the digamma function d {InT'(s)}/ds (Lange et al.,
1989).

The M-step of the EM algorithm simplifies because maximization over { and ¢
separates from maximization over ». When each p/({) = ¢*z' is a linear function
of a covariate vector z’, then maximization over { and ¢ reduces to weighted linear
regression. Maximization over » cannot be done in closed form and requires an
iterative solution. The EM gradient algorithm avoids the inner iteration on », but
it may encounter difficulties since d*°Q(6"|6") is not necessarily negative definite.
This problem can be circumvented by the reparameterization « = 1/0 and 8 =¢{/¢
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(Pratt, 1981). Retaining the symbol 6 for the concatenated parameter vector
(B*, «, v)*, it is straightforward to check that d*°Q(8"|6") is block diagonal with
upper left block

0 0 LI g 4 . .
o )= S eer v
corresponding to 8 and o and lower right block m/2v — (m/4) TG(v/2) corres-
ponding to », where TG(s) denotes the trigamma function (Hille, 1959). The upper
left block is negative definite provided that the matrix (z'. . . z™) has rank equal
to the number of components of 3. The lower-right block is negative because the
trigamma function satisfies

1 1 v 1 1 & 1
i ZTG(E) =% AR AT R
1 lgm 1

<___
2v  4Jo (v/2+s)2ds

= 0.

Lange and Sinsheimer (1993) gave a numerical example of robust linear regression
with two mean parameters. After the reparameterization 8 = (8*, «, v)*, the EM
algorithm takes 51 iterations on this problem, and the EM gradient algorithm takes
53 iterations. However, the EM algorithm requires two or three inner iterations per
M-step to compute the update of ». Thus, the EM gradient algorithm has an edge
in computational speed. Titterington’s algorithm can also be used for this problem.
The Fisher information matrix for the complete data is block diagonal, having upper
left block

0 0 LW A VPN
o o) Bl cor w0
and lower right block —m/2» + (m/4) TG(v/2). Titterington’s algorithm takes a
painful 5420 iterations to reach the maximum likelihood of —119.5427. En route
many of the computed increments diminish the log-likelihood, and the standard
remedy of step halving must be employed as a countermeasure.

2.3. Markov Chain Model for Survival Analysis

Consider a continuous time Markov chain {Z(¢), ¢ > 0} with k states and with
infinitesimal transition rates A; between pairs of states / and j. The finite time
transition probabilities P;(¢) = Pr(Z, = j|Z, = i) can be collectively expressed by
the matrix exponential P(¢) = exp(tA), where the matrix A has off-diagonal entries
AU = Aij and diagonal entries Aii = - A,' = _zj;ti)‘ij (Chiang, 1980).

In modelling the effects of covariates on the transition rates, it is convenient to
adopt the functional form A; = exp(§*w"), where w" is a vector of covariates
appropriate to transitions between states i and j. In survival analysis models of
cancer progression, the disease state of a person in a clinical study is observed at
some sequence of times ¢, < ... < t,. The covariates may change from one time
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interval (¢,, t,,) to the next (¢,.;, ,.,), but within a time interval we assume that
the covariates, and hence the transition rates as well, are constant.

The natural complete data corresponding to the observed sequence of states
Z, =iy, ... Z,, =i,on a patient is the whole process {Z(t): t; <t < t,}. The
Markov assumption implies the patient’s likelihood factors as

Pr(Z, =i) [[Pr(Z,=i;|Z, , = i_). 3)
j=2

In general, it is preferable to condition on the initial state i; at time ¢, and to
employ a conditional likelihood omitting the leftmost factor of expression (3). This
amended representation makes it clear that we can view the evolution of the patient’s
history as a sequence of multinomial trials. Without loss of generality, we can
therefore focus on a single patient who starts for convenience in state i at time 0
and ends in state j at time ¢.

To deal with the interval censoring of the complete data, suppose that the Markov
chain is in state r at the moment of some transition. The neighbouring state s is
chosen with probability A,/A,. This probability must be multiplied by the density
A, exp(— Au), assuming that the chain has spent an amount of time u in state
r since last arriving there. Thus, this transition and its previous waiting period
together contribute a factor of A exp(—A.u) to the complete data likelihood.
These contributions should be supplemented by the factor exp(—A;v) for the
duration v of the stay in the final state j after the last transition during [0, 7]. The
complete data log-likelihood can therefore be expressed as

Z IVrsln Ars - Z TrAr’
(r,s) r

where N,, is the random number of transitions from r to s during [0, 7] and 7, is
the random length of time in state r during [0, f].

To implement the E-step of the EM gradient algorithm, we must compute the
conditional expectations of each N, and T, given the initial and final states.
Fortunately, these conditional expectations can be expressed in terms of the finite
time transition probabilities as

[\ Powr Pyt - uy du
° , @
P;(t)

E(Nrslzo = ia Zt =.]) =

gt P, (u)P,;(t — u)du
0 : )
P;(¢)

To verify expression (4) consider a small time interval (¥, ¥ + du). On this interval
there is a transition from r to s with probability A,,du, provided that the chain is
poised in state r at time #. Once the transition takes place, the chain must move
on to state j from state s in the remaining ¢ — u units of time. The denominator
in expression (4) arises from conditioning on the initial and final states. Verification
of expression (5) follows by similar reasoning.

Expressions (4) and (5) can be easily evaluated since each entry of P(¢) is typically

ET,|Zy =i, Z,=)) =
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a linear combination of exponential functions. If we now suppose that P,(¢) =
Z:icn=1cm exp(pmt) and PSJ(t) = Z:5=ldn CXp(p,,t), then

k —_—
[ PPyt — ) du = 0y 3 3 i, ZnD) — XRnD)

m=1 n¥m Pm = Pn

k
+ Ars 23 C @ eXD(Dm L. (6)
m=1

Although for this model the M-step of the EM algorithm is thwarted by an intrac-
table system of transcendental equations, the EM gradient algorithm behaves well.
Negative definiteness of d?Q(8"|6") follows immediately from its representation

— 2 E(T|Zy =i, Z, = j, 6") 3 we(wW*)* exp {(6")*w"}
r S#Tr
for a single pair of adjacent times on a single patient under the parameterization
As = exp(6*w™).

Wanek et al. (1993) carried out a detailed analysis of melanoma data according
to the above Markov chain model. They obtained maximum likelihood estimates
by a version of the ECM algorithm of Meng and Rubin (1993) that depends on
numerically maximizing the Q-function one parameter at a time. A preliminary
comparison of this algorithm and the EM gradient algorithm suggests that the EM
gradient algorithm is at least an order of magnitude faster.

3. LOCAL CONVERGENCE OF ALGORITHM

Not surprisingly, the theoretical properties of the EM gradient algorithm closely
parallel those of the EM algorithm. To keep our discussion reasonably short, we
shall make several simplifying assumptions. First, it helps to restrict attention to
examples where the parameter domain U is an open convex set of some Euclidean
space #*. Let 0, and occasionally ¢ and v, denote typical elements of U. We shall
require that the log-likelihood L() be continuous and upper compact in the sense
that the set {#e U: L(f) > c} is compact for every constant ¢c. Upper compactness
implies that L(f) tends to —oo as @ approaches the boundary of U and that
L(6) has at least one maximum point. It is also convenient to suppose that L(8)
and Q(6|¢) and their first and second differentials with respect to 6 are jointly
continuous in # and ¢. Finally, as in the examples, we demand that d?Q(6|#)
be negative definite. Among other things, this implies that the matrix inverse
d®Q(6|6)~! always exists and that the iterates of the algorithm are well defined,
except possibly for the question of whether they fall in U.

With these provisos, we investigate the local convergence properties of the EM
gradient algorithm (1). For brevity call the EM gradient algorithm map M(0). Now
suppose that 8% is a stationary point of L(f). Proceeding formally, the differential
dM(6>) should be

dM(6™) = I - d®Q(0=|6=) ' d*L(6™) + d {d®Q(6|6=)~'}dL(E™)
= I - d®Q(O=|6=) "' d*L(6™)
= d2Q(6~6=)~" {d*Q(6=|6) ~ d’L(6)}. )
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The fact that dL(8*) = 0 saves us the trouble of evaluating the differential of
d®Q(6|6) " at 6=. A careful proof of formula (7) assuming no third derivatives of
Q(00) is given in Ortega (1990). In any case, the differential (7) coincides with the
differential of the EM algorithm map (Dempster et al., 1977).

Proposition 1. Under the above assumptions, if § is a local maximum of L(#)
such that d2L(6*) is negative definite, then the EM gradient algorithm is locally
attracted to 8. The linear rate of convergence to 6> is determined by the domin-
ant eigenvalue of dM(6%).

Proof. Because the matrix —d*Q(6>|0*) is positive definite and the matrix
difference d2L(6%) — d®Q(8>|6>) is positive semidefinite, the theory of relative
eigenvalues for symmetric matrices (Hestenes, 1981) implies that all eigenvalues of
dM(0*) lie on the half open interval [0, 1). The proposition is therefore an immed-
iate consequence of Ostrowski’s theorem (Ortega, 1990). O

The slow convergence of the EM and EM gradient algorithms can be ameliorated
by inflating the current step by a fixed factor (Redner and Walker, 1984). Con-
sider the modified EM gradient map M,(0) = 6 + t {M(f) — 6} for £ > 0. At 07
this map has differential dM,(0=) = (1 — £)I + tdM(6>). To every eigenvalue of
dM(0>) there corresponds an eigenvalue w, =1 —7 + tw of dM,(6%) and vice
versa. Because every we [0, 1), it is easy to deduce that every w,e(—1, 1) when
0 < t < 2. In this range of ¢, the spectral radius of dM, (%) is less than 1, and
Ostrowski’s theorem again implies the local attraction of M,(f) to 6.

It is noteworthy that there is an optimal choice of ¢. Following the traditional
development of successive relaxation in linear algebra (Hdmmerlin and Hoffmann,
1991), suppose that the largest and smallest eigenvalues of dM(0™) are wmax and
wmin- Then the spectral radius of dM,(6>) is given by max{|1l — ¢ + twmin|,
|1 — ¢ + twpa|}- This expression for the spectral radius has a minimum relative to
t when 1 — ¢ + twyy, and 1 — f + twy,, are equal in magnitude and opposite in

sign. Thus the optimal ¢ is

2

The corresponding spectral radius (Wmax — Wmin)/(2 — Wmin — Wmay) is less than 1
even if #,, > 2. In practice, the eigenvalues of dM(#*) are impossible to predict in
advance of knowing 6. For problems with a high proportion of missing data,
the value ¢ = 2 often works well. For instance, taking ¢ = 2 approximately halves
the number of iterations until convergence in the Dirichlet and robust regression
examples discussed earlier.

The modified algorithm M,(#) also has the desirable property of being locally
monotone when 0 < ¢ < 2.

Proposition 2. Suppose that 6"*' = M,(6") converges to the point 6>. Then,
for all sufficiently large n, either 6" = 6= or L(6"*") > L(6").

Proof. Since the increment 6”*! — " is given by
0n+1 _ 0n - _tdZOQ(0n|0n)—l dL(0”),
the difference A(8”) = L(0"*') — L(8") has second-order Taylor expansion
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A(on) —_ dL(en)*(0n+1 _ on) + %(erwl _ gn)* dZL(¢n)(0n+l __ 0n)

A o")*{dZL(qs") - %d”Q(e"lo")} o' - o), ®)

N =

where ¢" is a point on the line segment from 6" to 6"*!. Now the limit

lim { d°L(#") - %dl"Q(e"te")} = L") - d*Q(0=]6%) — (% - 1) d2Q(0~|6%)

is a positive definite matrix because it is expressible as the difference of the posi-
tive semidefinite matrix d?L(#*) — d*°Q(6*|6*) and the negative definite matrix
(2/t — 1)d®Q(0>|6>). Since the eigenvalues of a matrix depend continuously on
its entries (Ortega, 1990), it follows that the quadratic form (8) is positive for n
large and 67! # 6", O

4. GLOBAL CONVERGENCE OF ALGORITHM

We now embark on the more subtle task of investigating global convergence of
the EM gradient algorithm. A major impediment to establishing global convergence
is the possible failure of the monotonicity property L(8"*') > L(6") far from the
maximum point. Although monotonicity appears to be the rule in practice, to
establish global convergence in theory we need to enforce monotonicity. From
the variety of possible enforcement mechanisms, we elect the natural option of
instituting a limited line search at every EM gradient step. This strategy ties in well
with certain novel convergence results to be presented here pertaining to any con-
tinuous, generalized EM algorithm (Dempster e al., 1977). It is noteworthy that
in our two numerical examples monotonicity holds in practice.

Our limited line search involves maximizing Q(f|6") along the EM gradient
direction d(8") = —d*°Q(6"|6")~' dL(#") emanating from the current iterate 6. For
the line search modified algorithm A4(6), the next iterate "*! = A(") is defined to
be the unique point " + " d(6") maximizing Q{6" + «d(6")|0"} for a €0, 1].
Note that §*! exists and is unique because Q {6" + o d(6")|6"} is a strictly concave
function of o and d(8") is an ascent direction. When 6" + « d(#") is infeasible for
some a € [0, 1], Q{6" + «d(0")|6"} decreases as the boundary of the feasible region
U is approached owing to the fact that L(f) tends to — oo in this situation. If 8" is
a stationary point of L(#), then d(8") = 0 holds, and all « yield 8" + « d(6") = 6".
In this case 6" is a fixed point of A(6). Conversely, any fixed point of A(f) is a
stationary point of L(f). The next proposition establishes the only additional prop-
erty that is necessary for global convergence.

Proposition 3. The modified EM gradient algorithm A(6) is continuous.

Proof. Suppose that some sequence 6" not necessarily generated by A(f) has
limit #=. Then lim,_,,, {d(8")} = d(6*) because d(f) is continuous. Now let o™ d(")
be a convergent subsequence of the bounded sequence o” d(6”). Passing to a subse-
quence if necessary, assume in addition that lim,. .(a™) = «a. Taking limits on / in
the inequality

Q{6 + ™ d(9™)| 0™} > Q {6™ + Bd(6™)|6™}
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produces
Q{6= + ad(8™)|0=} > Q{6= + Bd(6™)|0"}

for any Be{0, 1]. Hence, 6 + «d(8*) coincides with the unique optimal point
along the direction d(8*) emanating from 6=,

From this point onwards, it suffices to assume that 4(f) is any continuous map
of the feasible region Uinto itself satisfying L {A(6)} > L(6), with equality occurring
only when 6 is a fixed point of A(f). The set of fixed points of A(#) is assumed
to coincide with the set S of stationary points of L(f). In the terminology of
Dempster et al. (1977), A(0) is a continuous generalized EM (GEM) algorithm. The
original EM algorithm, the ECM algorithm of Meng and Rubin (1993) and our
modified EM gradient algorithm all qualify as continuous GEM algorithms. Con-
tinuity of the EM and ECM algorithms is almost invariably a consequence of the
implicit function theorem. Our first result in this general framework is the basis
of all work on discrete Lyapunov functions. Its well-known proof is sufficiently
brief to repeat here (Luenberger, 1984).

Proposition 4 (Lyapunov’s theorem). Let I'" be the set of limit points generated
by the sequence 6"*! = A(#") starting from some initial §'. Then I is contained in
the set S of stationary points of L(#).

Proof. Consider a typical limit point ¢ = lim,_,.(0™). Since L(f") is monotone
and bounded above, lim, . {L(6")} exists. Hence, taking limits in the inequality
L {A(0™)} > L(6™) and using the continuity of 4(f) and L(#), we conclude that
L {A(¢)} = L(¢). Thus, ¢ is a fixed point of A(f) and consequently also a stationary
point of L(#f). O

The next two propositions are adapted from Meyer (1976).

Proposition 5. The set of limit points ' of §"*! = A(#") is compact and
connected.

Proof. T is a closed subset of the compact set {¢p e U: L(¢) > L(9")} and is
therefore itself compact. Another theorem of Ostrowski states that I' is connected
provided that lim,_ . [|6"*! — 6"|| = 0 (Ostrowski, 1973). If this sufficient condition
fails, then the compactness of {¢ e U: L(¢) > L(6")} makes it possible to extract a
subsequence 6™ such that lim,_.(0™) = ¢ and lim,_.(6™*') = ¢ both exist, but
¥ # ¢. Now the continuity of A(f) implies that ¢ = A(¢), and the monotonicity of
A(0) implies that L(y) = L(¢) = lim,_,, {L(8")}. The equality L(y) = L(¢) forces
the contradictory conclusion that ¢ is a fixed point of A4(#). Hence, the sufficient
condition lim,_.|[6"*! — 6"|| = 0 for connectivity holds. O

Proposition 6. Suppose that the feasible region U is open, that the log-
likelihood L(0) is differentiable and upper compact and that all stationary points
are isolated. Then any sequence of iterates 8”*! = A4(0") generated by a continuous
GEM algorithm A(#) has a limit, and this limit is a stationary point of L(6).

Proof. 1In the compact set {¢: L(¢) > L(f")} there can only be a finite number
of stationary points. Since the set of limit points I' is a connected subset of this
finite set of stationary points, I' reduces to a single point. g

Some comments about proposition 6 are in order. First, there is no guarantee
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that the limit of a GEM sequence furnishes a global maximum; in fact, Wu (1983)
gave a counter-example where convergence to a saddlepoint occurs in the EM
algorithm. However, any such counter-example is apt to involve unusual sym-
metries, and convergence to at least a local maximum of the log-likelihood is almost
always experienced in numerical practice. Second, Wu (1983) and Boyles (1983)
highlighted the importance of the condition lim,_||¢"*' — 6"} = 0 in proving con-
vergence of the EM algorithm. This condition emerges as a consequence of the con-
tinuity of A(6) in proposition 5. Finally, there is an easily stated sufficient condition
that ensures discreteness of the set of stationary points S. Any point § whose Hessian
matrix d2L(f) is non-singular is termed non-degenerate. It is straightforward to
verify that every non-degenerate stationary point is isolated (Hestenes, 1981). Thus,
S is certainly discrete when all 8 € S are non-degenerate.

5. DISCUSSION

The essence of the EM algorithm is that it transfers the maximization of L(6)
to the maximization of the far simpler function Q(f|¢). This maximization transfer
perspective suggests how to formulate the EM gradient algorithm in the presence
of parameter constraints and bounds. One should attempt to maximize Q(f|¢)
subject to the constraints and bounds via the quadratic approximation

Q0|¢) = Q(¢|9) + AL(@)*( — ¢) + 3 (6 — $)* d*°Q(| )0 — ¢).

This problem can be solved by standard techniques of quadratic programming.

Parameter constraints and bounds not only complicate implementation, but they
also complicate a theoretical development of the algorithm. We have taken the
course of defining these complications out of existence. In real examples, parameter
estimates do occur on boundaries, and the rate of convergence of the EM algorithm
can be sublinear. In spite of these complications, we can often construct a coherent
qualitative convergence theory, particularly in examples like medical imaging where
the observed log-likelihood is strictly concave (Lange and Carson, 1984).

Even in examples without constraints and boundaries, multiple modes of the
likelihood surface are a problem. Caution should be exercised to ensure that the
EM gradient algorithm does not converge to an inferior mode. One obvious remedy
is to restart the algorithm at a number of different points. It is possible for the EM
and EM gradient algorithms started from the same point to converge to different
points. In one mixture of normals problem this occurred, with the EM algorithm
reaching the better mode. The imposition of a Bayesian prior almost always makes
the Q(6| ¢) function more concave. We have said little about maximum a posteriori
analysis for the simple reason that it has almost no effect on how the EM gradient
algorithm is formulated or implemented. The log-prior is left untouched by the
E-step and is just added to Q(8|¢).

The rate of convergence of the EM gradient algorithm is identical with that
of the EM algorithm. In many problems convergence can be frustratingly slow.
Doubling the current increment provides some improvement, but more radical
measures can be employed. For example, the EM gradient algorithm can be made
the basis of a quasi-Newton acceleration (Lange, 1995). On extreme examples, this
acceleration technique produces an order of magnitude or more reduction in the
number of iterations until convergence.
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In conclusion, the ultimate test of any algorithm lies in its performance on a
variety of practical problems. The EM gradient algorithm has already proved useful
on a few numerical examples. Especially promising are the dramatic improvements
seen with the quasi-Newton acceleration. However, there is a clear need for addi-
tional testing and rigorous comparison with competing algorithms.
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