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1  | INTRODUC TION

Chemicals incorporated in solid materials have been identified 
as a major source of passive emissions to indoor air and of trans-
fers into house dust and skin. Typical examples include chemicals 
used as plasticizers in building materials and flame retardants in 
furniture. To estimate the release of these chemicals from solid 
materials and subsequent consumer exposures, the dimensionless 
solid material-air partition coefficient (Kma), defined as the ratio 
of the concentration in the material to the concentration in the 
air at equilibrium, is one of the key parameters.2 The Kma is es-
sential in determining the chemical transfer from solid material 
to air and to house dust, as well as the chemical concentration 

at the material surface, which further determines the inhalation, 
dermal and dust ingestion exposures. Kma is specific to a chemical-
material combination and is also influenced by ambient tempera-
ture. Experimental techniques such as chamber tests for building 
materials,3 and sorption experiments for polymer materials4-6 
have enabled measurement of a limited number of Kma values for 
building materials such as vinyl flooring, gypsum board, plywood 
and cement, as well as polymer materials used for passive sam-
plers including polyurethane foams (PUF), polyethylene (PE), and 
polypropylene (PP). Recently, studies have also been conducted 
to measure the Kma for clothing and fabrics.7,8 However, since 
experiments are costly and time-consuming, measured Kma val-
ues are only available for a limited number of chemical-material 
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Abstract
The material-air partition coefficient (Kma) is a key parameter to estimate the release 
of chemicals incorporated in solid materials and resulting human exposures. Existing 
correlations to estimate Kma are applicable for a limited number of chemical-material 
combinations without considering the effect of temperature. The present study de-
velops a quantitative structure-property relationship (QSPR) to predict Kma for a large 
number of chemical-material combinations. We compiled a dataset of 991 measured 
Kma for 179 chemicals in 22 consolidated material types. A multiple linear regression 
model predicts Kma as a function of chemical’s Koa, enthalpy of vaporization (∆Hv), 
temperature, and material type. The model shows good fitting of the experimental 
dataset with adjusted R2 of 0.93 and has been verified by internal and external valida-
tions to be robust, stable and has good predicting ability (R2

ext
 > 0.78). A generic QSPR 

is also developed to predict Kma from chemical properties and temperature only (ad-
justed R2 = 0.84), without the need to assign a specific material type. These QSPRs 
provide correlation methods to estimate Kma for a wide range of organic chemicals 
and materials, which will facilitate high-throughput estimates of human exposures for 
chemicals in solid materials, particularly building materials and furniture.
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combinations. Thus, quantitative relationships are needed to pre-
dict this partition coefficient from known physiochemical proper-
ties for chemicals without experimental data, which is especially 
important for high-throughput approaches, for which a large num-
ber of chemical-material combinations need to be evaluated.

Several correlation methods have been developed to estimate 
Kma from physiochemical properties of chemicals. For example, 
several studies have correlated Kma to the chemical’s vapor pres-
sure using data on volatile organic compounds (VOCs) in building 
materials.4,9-11 Other studies which focused on semi-volatile or-
ganic compounds (SVOCs) in passive sampling devices have found 
correlation between Kma and the octanol-air partition coefficient 
(Koa).

5,6,12,13 Furthermore, Holmgren et al14 estimated Kma as a 
function of five Abraham solvation parameters for six groups of 
materials, but these parameters are not readily available. For the 
aforementioned approaches, the main limitation is that the cor-
relations are specific to certain chemical classes and materials; for 
example polycyclic aromatic hydrocarbons (PAHs) in low-density 
polyethylene (LDPE), which limits their application for other 
chemical-material combinations. Addressing this research gap 
to facilitate wider applicability, Guo developed a method which 
estimates the Kma as a function of the chemical’s vapor pressure 
for all materials and chemical classes.11 However, this approach 
is developed based on a small dataset which mainly includes 
VOCs in building materials limiting its applicability to also address 
SVOCs. Another limitation of the previous studies is that the ef-
fect of temperature was not well considered in the correlation. 
Some studies provided different correlation coefficients for cer-
tain discrete temperatures,15 while others corrected the predic-
tors for temperature.16 However, since the known physiochemical 
properties such as vapor pressure and Koa are often only given as 
values at 25°C, correcting them for temperature may not always 
be practical as the corresponding enthalpies of phase change are 
not available for all chemicals. Several studies did establish cor-
relations between Kma and temperature, but the correlations were 
only verified using experimental data on limited chemicals such as 
formaldehyde and other aldehydes.17,18

In all, the currently available correlation methods to estimate 
Kma do not provide sufficient coverage of chemicals incorporated in 
solid materials at different ambient temperatures. A recent research 
hotspot in exposure sciences is to develop low tier, high-throughput 
methods to estimate exposure to chemical in consumer products 
across a variety of chemical-material combinations, which requires 
high-throughput estimates of Kma for a wide range of material-
chemical combinations. Thus, the present study aims to develop a 
more comprehensive correlation method to estimate Kma for a wide 
range of organic compounds in multiple solid materials, addressing 
the need for high-throughput exposure assessments. More specif-
ically, we aim to:

(1).	Carry out a comprehensive literature review to collect exper-
imental Kma data on a wide range of materials and 
chemicals.

(2).	Use multiple linear regression techniques to establish the rela-
tionship between Kma and various predictor variables including 
physiochemical properties, material type, and temperature.

(3).	Perform internal and external validations to characterize the va-
lidity and predictive power of the developed correlation.

This QSPR provides a more advanced correlation method to 
estimate the Kma of organic compounds compared to previous 
studies, as it covers a wide range of solid materials and chemicals, 
and consistently incorporates the effect of temperature. A similar 
QSPR has been developed by our group for the internal diffusion 
coefficient in solid materials.1 By providing reliable estimates of 
the key partition and diffusion parameters for a large number 
of material-chemical combinations, these QSPRs will facilitate 
high-throughput assessments of chemical emissions and human 
exposures for chemicals incorporated in solid materials relevant 
for various science-policy fields such as chemical alternatives as-
sessment (CAA), risk assessment, and life cycle assessment (LCA).

2  | MATERIAL S AND METHODS

2.1 | Dataset

2.1.1 | Data collection

Experimental material-air partition coefficient data were compiled 
from 43 references from the peer-reviewed scientific literature 
(provided in Section S1). Dimensionless partition coefficients were 
collected. If the partition coefficients were expressed in mL/g or 
m3/g, they were converted to dimensionless values by multiplying 
these by the density of the solid material. If the partition coef-
ficients were expressed in the unit of m, they were converted to 
dimensionless values by dividing these by the thickness of the ma-
terial. The initial dataset of Kma contained a total of 1008 records 
covering 179 unique chemicals and 75 distinct solid materials.

Practical implications

•	 The developed QSPRs provide a comprehensive correla-
tion method to estimate Kma, covering a much wider 
range of organic chemicals and solid materials compared 
to previous studies.

•	 A still accurate generic correlation without the need to 
assign a material type is also included.

•	 Combined with the QSPR estimating the internal diffu-
sion coefficient,1 these QSPRs facilitate high-throughput 
estimates of indoor human exposures to chemicals in-
corporated in solid materials.

•	 This is highly relevant for multiple science-policy fields, 
including chemical alternatives assessment (CAA), risk 
assessment (RA), and life cycle assessment (LCA).
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2.1.2 | Data curation

For the 179 unique chemicals of the initial Kma dataset, molecular 
weight, vapor pressure, water solubility, and logKow at 25°C were 
obtained from EPISuite.19 For these physiochemical properties, 
experimental values were used when available, otherwise the 
software-estimated values were used. The enthalpy of vaporization 
(∆Hv, J/mol) of each chemical was obtained from ChemSpider esti-
mated values (www.chemspider.com).

For the octanol-air partition coefficient (logKoa) at 25°C, experi-
mental values are only available for part of the 179 chemicals in the 
dataset. To avoid inconsistency, we used the logKoa values estimated 
by EPISuite19 for all of the 179 chemicals. In EPISuite, logKoa is es-
timated by subtracting logKaw (dimensionless log air-water partition 
coefficient) from logKow, logKaw and logKow being estimated by the 
HenryWin and KowWin functions, respectively.19 Experimental log-
Koa values were also collected and their impacts on the QSPR were 
assessed, as presented in Section S6.

To avoid over-fitting of the QSPR model, the 75 original materials 
for Kma were grouped into 22 consolidated material types, based on 
the name of the materials and the similarity of the regression coef-
ficients (see Section S1), ensuring a minimum of five data points and 
three different chemicals per consolidated material type. The data 
points with materials that cannot be grouped according to the above 
criteria were excluded from further analyses.

The final Kma dataset contains 991 data points with 179 unique 
chemicals in 22 consolidated material types. The temperature at 
which the Kma was measured ranges from 15 to 100°C. The final 
dataset is provided in Supporting information.

2.2 | Modeling methods

2.2.1 | Multiple linear regression model

A multiple linear regression (MLR) analysis was performed to iden-
tify and quantify the effect of different parameters on the parti-
tion coefficient, with details described in our previous paper on the 
QSPR for diffusion coefficient.1 Briefly, the MLR model takes the 
following general form:

where log10Kma is the logarithm of the dimensionless Kma, α is 
the intercept; X1 to Xn are independent variables related to the 
properties of the chemical or the environment; β1 to βn are re-
gression coefficients for the respective independent variables X1 
to Xn. M1 to Mm are dummy variables for the packaging materials, 
with one dummy variable per type of material. A dummy variable 
equals 1 for the material type it represents, and equals 0 for all 
other materials; for example, M1 = 1 for material type 1, M1 = 0 for 
material types 2 to m. b1 to bm are regression coefficients for the 
respective dummy variables M1 to Mm. The number of m is equal 

to the number of material types considered minus one, since PU-
ether—the material type with the highest number of measured Kma 
data—is used as the reference material type and does not require 
a dummy available in the MLR. Regression coefficients were es-
timated by the least squares (LS) method. All regression analyses 
were performed using IBM SPSS Statistics version 23 (IBM corpo-
ration, Armonk, New York).

In previous studies, either the chemical’s vapor pressure4,9-11 or 
logKoa

5,6,12,13 has been used as predictor of the Kma in a given ma-
terial. Abraham solvation parameters were also used as predictors 
by Holmgren et al,14 but these parameters are not considered here 
since they are not readily available. Initial regressions (Section S2) 
suggest that logKoa is a better predictor of Kma compared to vapor 
pressure. Thus, the chemical’s logKoa at 25°C was used as the inde-
pendent variable for chemical properties in Equation (1).

Thus, the MLR model takes the following form:

where T_term is a term representing the effect of temperature 
and will be described in the next section (Section 2.2.2).

2.2.2 | Temperature dependence

In thermodynamics, the temperature dependence of equilibrium 
constant, Keq, can be described by the van’t Hoff equation:

where K1 and K2 are the equilibrium constants at temperature 
T1 and T2, respectively, T1 and T2 are absolute temperatures (K), R is 
ideal gas constant (8.314 J/(K∙mol)), and ∆Hphase change is the enthalpy 
of phase change (J/mol).

Since Kma is an equilibrium constant by definition and the chemi-
cal’s log10Koa at 25°C or 298.15 K is used as an independent variable 
in the MLR model (Equation 2), we assume that the temperature de-
pendence of Kma also follows the van’t Hoff equation:

where ∆Hma is the enthalpy of the partitioning between material 
and air (J/mol), and 2.303 is a conversion factor between log10K and 
lnK.

Ideally, the enthalpy ∆Hma should be different for different 
chemical-material combinations. Kamprad and Goss have deter-
mined the ∆Hma values for 54 unique chemicals in PU-ether using 
measured Kma data from 15 to 95°C,4 so we were able to develop a 
linear correlation to estimate ∆Hma from chemical properties (results 

(1)log10 Kma=�+�1 ⋅X1+⋯+�n ⋅Xn+b1 ⋅M1+⋯+bm ⋅Mm

(2)log10 Kma=�+�logKoa
⋅ log10Koa+�T ⋅T_term+b1 ⋅M1+⋯+b21 ⋅M21
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shown in Section 3.1). Since no experimental ∆Hma values are avail-
able for materials other than PU-ether, we use the ∆Hma correlation 
developed above across all materials. Therefore, in our regression 
model of Kma, the ∆Hma is chemical-specific, but not material-
specific. The final MLR model thus takes the following form:

2.3 | Model validation

Validation of the final MLR model (Equation 4) was performed using 
the QSARINS software, version 2.2.1 (www.qsar.it) which is devel-
oped by Gramatica et al.20,21

2.3.1 | Internal validation

The MLR model’s capacity to predict portions of the training dataset 
was evaluated in an internal validation process, using two techniques 
in QSARINS: the leave more out (LMO) cross-validation and the Y-
scrambling, which have been described previously.1,21 1000 itera-
tions were used for the LMO cross-validation, and the percentage 
of the excluded elements was set as 20%, and 1000 iterations for 
Y-scrambling.

2.3.2 | External validation

We also evaluated the model’s ability to provide reliable predictions 
on new datasets by external validation, using the splitting approach, 
which split the existing dataset (991 data points) into one training 
dataset and one prediction dataset. The training dataset was used to 
generate regression coefficients of the MLR model, and then the MLR 
model was applied to the prediction set to examine the prediction 
performances of the model. Three kinds of splitting were performed 
using existing options in the QSARINS software (see Section S4.1 for 
details) by random percentage, by ordered response and by struc-
ture. We introduced a fourth kind of splitting by studies, where all 
data points from certain studies were manually selected as the train-
ing set and data points from remaining studies as the prediction set. 
If a consolidated material type only includes data points from one 
study, all of these data points were assigned into the training set in 
order to ensure that the MLR model constructed using the training 
set includes all consolidated material types. The four types of split-
ting yielded similar sample sizes of approximately 800 data points for 
the training set and 200 data points for the prediction set (Table S3).

3  | RESULTS AND DISCUSSIONS

3.1 | Temperature dependence

As described in Section 2.2.2, the temperature dependence of Kma 
is determined by the enthalpy of the partitioning between material 
and air, ∆Hma (J/mol). Using the measured Kma data for 54 chemicals 
in PU-ether from 15 to 95°C4 (data are provided in Section S3), we 
obtained the following correlation to estimate ∆Hma:

N = 54, R2 = 0.786, R2
adj
 = 0.782, SE = 2.85, RMSE = 2.80

ANOVA: F = 191, df = 1, P < 0.0001
where ∆Hv is the chemical’s enthalpy of vaporization (J/mol) ob-
tained from ChemSpider (www.chemspider.com).

This simple linear model shows good fitting of the experimental 
∆Hma data, with an adjusted R-squared of 0.782, and the model fit is 
highly significant with an ANOVA P-value < 0.0001. Figure 1 shows 
the scatter plot of predicted vs measured ∆Hma and the residual plot, 
which indicate good agreement with the 1:1 line and random distri-
bution of residuals throughout the dataset. These results suggest 
that there is indeed a linear relationship between ∆Hma and ∆Hv in 
PU-ether, and Equation (5) was also used as default to estimate ∆Hma 
for all other materials.

3.2 | Final QSPR and model fitting

Using the full dataset (991 data points) and Equation (4), the final 
MLR model for predicting the solid material-air partition coefficient 
is as follows:

(4)log10 Kma=�+�logKoa
⋅ log10Koa+�T

ΔHma

2.303 ⋅R

(

1

T
−

1

298.15

)

+b1 ⋅M1+⋯+b21 ⋅M21

(5)ΔHma=1.37 ⋅ΔHv−14.0

F IGURE  1 A, Measured Enthalpy of material-air partitioning 
(∆Hma) and B, residuals as a function of the (∆Hma) predicted from 
chemical enthalpy of vaporization (∆Hv - Equation 5). The dotted 
line in (A) indicates the 1:1 line
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N = 991, R2 = 0.934, R2
adj
 = 0.933, SE = 0.62, RMSE = 0.62

ANOVA: F = 597, df = 23, P < 0.0001
where Kma is the dimensionless solid material-air partition coefficient, 
Koa is the chemical’s dimensionless octanol-air partition coefficient at 
25°C, ∆Hma is the enthalpy of the partitioning between material and 
air (J/mol) which is given by Equation (5), T is absolute temperature 
(K), and b is the material-specific coefficients presented in Table 1. 
This model is provided as an excel model in Supporting Information to 
facilitate application. The standard errors for the coefficients are also 

presented in Table 1. An SE of 0.63 of the final model (Equation 6) in-
dicates that the 95% confidence interval (CI) of the predicted logKma 
is the predicted value ± 1.22, indicating that most of the predicted 
Kma are within a factor of 16 from the measured Kma.

This MLR model shows excellent fitting of the experimental data, 
with an adjusted R-squared of 0.93 and a root mean square error 
(RMSE) of 0.62. The model fit is highly significant with an ANOVA 
P-value smaller than 0.0001. Figure 2A shows the scatter plot of 
predicted vs measured logKma, which aligns well with the 1:1 line. 
The residual plot (Figure 1B) shows that the residuals are distributed 
evenly throughout the dataset, and most residuals have absolute val-
ues smaller than 2, again indicating the good fit of the linear model 
for the data.

This MLR model assumes that the correlation between logKma 
and the chemical’s logKoa is the same across material types, which 
seems reasonable given the excellent model fitting. Plotting the 
logKma against chemical’s logKoa for selected material types (Figure 3) 
confirmed that the correlation between logKma and the chemical’s 
logKoa (ie, the slopes of the fitted straight lines in Figure 3) is similar 
but with slight differences across material types, indicating that a 
single coefficient for logKoa, as in the present QSPR model, might 
not be perfect. This could have been accounted for by including in-
teraction terms between logKoa and material types, but this would 
introduce 21 more terms in the model without greatly improving the 
model fitting (Section S5), so the interaction terms were not retained 
in the final QSPR model.

(6)log10 Kma=−0.38+0.63 ⋅ log10 Koa+0.96 ⋅
ΔHma

2.303 ⋅R

(

1

T
−

1

298.15

)

+b

TABLE  1 Regression coefficients for Equation (6)

Variable Coefficient SEa P-value

Intercept −0.38 0.06 <0.001

log10Koa 0.63 0.01 <0.001

ΔHma 
(1/T-1/298.15)/2.303R

0.96 0.04 <0.001

Consolidated material types (coefficient b)

Carpet 1.97 0.14 <0.001

Cellulose fabric (cotton, 
linen)

0.72 0.12 <0.001

Cement, Calcium silicate 1.11 0.10 <0.001

Concrete 2.20 0.29 <0.001

Ethylene Vinyl Acetate 
(EVA)

3.50 0.32 <0.001

Glass 1.11 0.29 <0.001

Gypsum board 1.28 0.18 <0.001

Latex and solvent-based 
paint

2.92 0.19 <0.001

Paper 0.14 0.10 0.16

Plywood 1.36 0.18 <0.001

Polyester fabric 0.60 0.14 <0.001

Polyether ether ketone 
(PEEK)

2.73 0.29 <0.001

Polyethylene (PE) 2.45 0.17 <0.001

Polypropylene (PP) 2.06 0.29 <0.001

Polytetrafluoroethylene 
(PTFE)

2.08 0.29 <0.001

PU-ester −0.72 0.07 <0.001

PU-etherb 0.00 0.19 n/a

PUF-undefined 1.06 0.15 <0.001

Rayon fabric 0.97 0.18 <0.001

Stainless steel 2.07 0.29 <0.001

Vinyl flooring 2.26 0.11 <0.001

Wooden boardsc 2.01 0.09 <0.001

aStandard error. 
bReference material. 
cIncludes oriented strand board (OSB), particleboard, medium-density 
board and high-density board. 

F IGURE  2 A, measured logKma and B, residuals as a function of 
logKma predicted by the final QSPR (Equation 6). The dotted line in 
(A) indicates the 1:1 line
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As described in the methods, this final MLR model uses 
EPISuite-estimated logKoa values as predictors, since experimen-
tal logKoa are not available for all chemicals in the dataset. MLR 
models developed using mixed logKoa values (ie, for a chemical 
experimental logKoa is used when available, otherwise EPISuite-
estimated logKoa is used) also yielded similar results as the final 
MLR model (adjusted R2 ranged from 0.930 to 0.931, for details 
see Section S6), indicating that the impact of experimental logKoa 
on the model is minimal.

3.3 | Impact of each predictor

As shown in Equation (6), the key predictors of the solid material-air 
partition coefficient are the chemical’s logKoa, ∆Hv, temperature, and 
the solid material type. The regression coefficient for logKow is 0.63 
and is highly significant (P < 0.0001), indicating that the material-air 
partition coefficient increases with increasing logKoa, which is con-
sistent with findings from previous studies.5,6,13

The regression coefficient of the temperature term is 0.96 and is 
also highly significant (P < 0.0001), indicating that the Kma decreases 
with higher temperature. Experimental data from Kamprad et al did 
show reduced Kma with increased temperature, and it also makes 
intuitive sense that at higher temperature the Kma is lower leading 
to faster chemical migration from solid material to air. As discussed 
in Section 3.1, the effect of temperature on Kma also depends on 
the ∆Hma, which increases linearly with the chemical’s enthalpy of 
vaporization ∆Hv.

The 21 dummy variables for the material types reflect the mate-
rial dependency of the Kma. As “PU-ether” (polyurethane-ether) was 
used as the reference material in the regression, the value of its co-
efficient b is zero (Table 1). For each of the other material types, the 
coefficient b determines the difference in logKma between that ma-
terial type and PU-ether. Chemicals in solid material types with high 
values of b are more difficult to migrate to air than in those with 
low values of b. The three material types with highest b coefficients 
are ethylene vinyl acetate (EVA), latex and solvent-based paint and 

polyether ether ketone (PEEK) which are dense materials, while the 
three types with lowest b coefficients are PU-ester (polyurethane-
ester), PU-ether and paper which tend to be porous materials. It 
should be noted that the data for a given consolidated material 
type were gathered from different studies, and the composition 
and properties of the material type may vary between studies, so 
the material type coefficients in Table 1 only represent an average 
composition and partition behavior for the specific material types.

The significance of the material type coefficient only indicates 
that the coefficient bs of these material types are significantly dif-
ferent from the reference material type, PU-ether, but if another 
material type was selected as the reference material, the regression 
coefficients and statistical significance of all materials would change. 
Thus, the insignificance of the regression coefficient for “paper” 
(Table 1) does not indicate that this material type does not have a 
relevant influence on the Kma. As a result, we keep all 21 material 
type dummy variables in the final regression to retain as much infor-
mation as possible.

To better illustrate the impact of each predictor on the material-
air partition coefficient, we varied each predictor from the mini-
mum to the maximum value in the entire dataset (991 data points) 
while keeping the other predictors constant, and calculated the 
change in logKma using the regression coefficients in the final QSPR 
(Equation 6). Since the chemical’s ∆Hv determines the ∆Hma which 
modifies the relationship between logKma and temperature, the im-
pact of temperature was calculated as two extremes using the min-
imum and maximum values of ∆Hv in the entire dataset. As shown 
in Figure 4, the chemical’s logKoa has the highest impact on logKma 
among predictors. The impact of temperature on logKma is very low 
with the lowest value of ∆Hv (22.3 kJ/mol), but the impact become 
moderate with the highest value of ∆Hv (75.6 kJ/mol). This indicates 
that for a chemical with low enthalpy of vaporization, the logKma 
only changes slightly with temperature, and vice versa. The material 
type also has a moderate impact on the logKma, which is similar to the 
impact of temperature with the highest value of ∆Hv. Overall, the 
impact of material type is relatively small compared to the impact 
of chemical’s logKoa, indicating that the variation in logKma does not 
strongly depend on the solid material type, which suggests the pos-
sibility of developing a generic QSPR to predict logKma in absence of 
material-specific data.

3.4 | Model validation results

3.4.1 | Internal validation

The correlation coefficient for the LMO cross-validation, Q2

LMO
, aver-

ages 0.93 (range: 0.90-0.95) for the 1000 iterations, and the root 
mean square error for cross-validation (RMSEcv) averages 0.63. Both 
the Q2

LMO
 and RMSEcv are similar to the R2 and RMSE computed using 

the full dataset, which is 0.93 and 0.62, respectively, indicating that 
the model is internally stable.

For Y-scrambling, the R2
Yscr

, Q2

Yscr
 and RMSEYscr for the 1000 it-

erations average 0.023, −0.028, and 2.37, respectively, which are 

F IGURE  3 Temperature adjusted measured logKma as a function 
of logKoa for selected material types including EVA, PE, vinyl 
flooring, and PU-ester

EVA: y = 1.00x + 0.31
PE: y = 0.59x + 2.46

Vinyl flooring: y = 0.86x + 0.88
PU-ester: y = 0.77x –1.49
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substantially different from the R2, Q2

LMO
 and RMSE of the original 

model, indicating that that no correlation exists between the scram-
bled responses and the predictors. Thus, the internal validation 
overall demonstrates that the final QSPR model (Equation 6) is ro-
bust and stable, and is not a result of chance correlation.

3.4.2 | External validation

As described in Section 2.3.2, four types of splitting were used for 
external validation, including splitting by random 20%, by ordered 
response, by structure, and by studies. Six criteria for external vali-
dation, described in detail previously,1,22,23 were computed and are 
presented in Table 2. For the first three types of splitting, the R2

ext
 

are higher than 0.9, and the other five criteria all pass the threshold 
values and are higher than 0.9, indicating good predictive ability of 
the models constructed from training set data. This is expected be-
cause the prediction sets resulted from these three types of splitting 
are generally well within the applicability domain (described in detail 
below) defined by the training sets (Figures S1-S6), since the data 
points were drawn either randomly or alternately.

For the splitting by studies, data from 22 studies were selected as 
the prediction set, while data from 20 studies constituted the training 
set. This splitting can better represent a truly “external” validation, since 
all data from one study were either be in the training set or be in the 
prediction set. The prediction ability of the model constructed from the 
training set is apparently reduced, as the R2

ext
 of this splitting dropped 

to 0.79, and the values of the other five criteria are lower than those for 
the above three types of splitting. This is reasonable since the data vari-
ability is higher between studies than within studies, so the prediction 
set might not be well within the AD defined by the training set (Figures 
S7-S10). Nonetheless, all validation criteria for this splitting still pass the 
thresholds, indicating acceptable prediction ability (Table 2).

3.4.3 | Applicability domain

It is important to define the Applicability domain (AD) of our QSPR 
model, as it can provide information on the reliability of the model 
predictions24 for future users who would like to use the model on 
new chemicals. If the new chemicals are inside the AD, the model 
predictions are interpolated and are more reliable. However, if the 
chemicals are outside the AD, the predictions are extrapolated and 
less reliable.24

For definition of the AD, the model being evaluated is the final 
QSPR model presented in Equation (6), and the training dataset thus 
refers to the full dataset including 991 data points. Three comple-
mentary methods were applied to define the AD of the Kma QSPR: 
the range of model predictors, the leverage approach, and the 
PCA of the model predictors, which have been described in detail 
previously.25

For the range of predictors, the model has four predictors: logKoa, 
ΔHv, temperature, and material type. The logKoa, ΔHv, temperature 
of the training dataset range from 1.4 to 14.6, from 22.3 to 75.6 kJ/
mol, and from 15 to 100°C, respectively, defining the AD of the 
model. It is noteworthy that the material type is a categorical vari-
able, and the training set contains 22 consolidated materials types, 

F IGURE  4 Change in logKma with respect to the change in each 
predictor, from minimum to maximum values within the entire 
dataset

–5

0

5

10

Chemical
log Koa

Temperature,
ΔHv = 22.3 kJ/mol

Temperature,
ΔHv = 75.6 kJ/mol

Material
type

Ch
an

ge
 in

 lo
gK

m
a

External validation 
criteria R2

ext
Q2

FI
Q2

F2
Q2

F3
r2
m

CCC

Threshold >0.70 >0.70 >0.70 >0.65 >0.85

Splitting by random 
percentage

0.93 0.93 0.93 0.92 0.90 0.96

Splitting by ordered 
response

0.93 0.93 0.93 0.93 0.90 0.96

Splitting by ordered 
structure

0.94 0.94 0.94 0.94 0.91 0.97

Splitting by studies 0.79 0.86 0.78 0.86 0.71 0.89

R2
ext

: determination coefficient of the prediction set external data.
Q2

FI
: correlation coefficient proposed by Shi et al.

Q2

F2
: correlation coefficient proposed by Schuurmann et al.

Q2

F3
: correlation coefficient proposed by Consonni et al.

r2
m

: determination coefficient proposed by Ojha et al.
CCC: concordance correlation coefficient proposed by Chirico and Gramatica.

TABLE  2 External validation results
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so the model’s AD is also restricted to these 22 material types. For 
the leverage approach, the critical value h* for the diagonal values of 
the hat (h) matrix of the model was calculated to be 0.0727, and the 
AD is defined as the h values less than h*.21,25 For the PCA approach, 
the AD is defined as the space between the minimum and maximum 
values of the PC1 and PC2 scores of the training dataset,21,25 which 
range from −4.39 to 2.04 and from −4.52 to 2.22, respectively. For 
future model users, a new chemical should be considered “inside 
AD” if viewed inside AD by all three methods, and be considered 
“outside AD” if viewed out of AD by all three methods, otherwise it 
should be considered “borderline”.25

3.5 | Generic QSPR

In order to predict the Kma without assigning material properties, we 
built a generic QSPR model which does not include any material-
specific variables using the same dataset. This model only uses the 
chemical properties and temperature as predictors and is as follows:

N = 991, R2 = 0.80, R2
adj
 = 0.80, SE = 1.08, RMSE = 1.08

ANOVA: F = 1943, df = 2, P < 0.0001.
This model has a still relatively high adjusted R-squared of 0.80 

compared to the 0.93 of the regression with material coefficient 
(Equation 6), indicating a good fit of experimental data (Figure 5). 
As discussed in Section 3.2, the impact of the solid material type 
on logKma is relatively small compared to the impact of chemical 
properties, so logKma can be predicted with reasonably high accu-
racy without the material type as a predictor. This generic QSPR 
thus provides a relatively reliable method to estimate the Kma for 
various solid materials that may be difficult to assign a material 
type listed in Table 1, which provides a more comprehensive and 
flexible coverage, although with a slightly lower accuracy, for dif-
ferent chemical-material combinations than the material-specific 
QSPR and can therefore greatly facilitate high-throughput eval-
uations of a large variety of chemical-material combinations. 
However, it should be noted that although without the material 
type as a predictor, this generic model was still developed using 
the experimental data of our collection of 22 material types. Thus, 
this generic model best applies to materials listed in Table 1 and 
similar materials, but may cause a large error for materials with 
special properties, for example in presence of strong ionic forces, 
or of strong pseudo-solvation such that some of the target adsor-
bate molecules take on a different structure within the material 
itself, either due to ionization or tautomerization.

3.6 | Limitations and future work

While the coverage of 22 consolidated materials and possibly any 
solid material as well as inclusion of the effect of temperature are 

major advantages, the present model has several limitations. First, 
the model does not consider chemical ionization or interaction with 
other chemicals within a solid material, which may affect the chemi-
cal’s partitioning between the material and air. Second, the present 
model assumes that the relationship between ∆Hma and chemical’s 
∆Hv, derived from experimental ∆Hma data for one material type 
“PU-ether”, is the same across different material types. Ideally, more 
experimental ∆Hma data for different material types are needed to 
verify this assumption or to develop unique ∆Hma-∆Hv relationships 
for different material types.

Third, since for most Kma datasets the material properties are 
not well characterized or provided in the original publications, the 
classification of the consolidated material types is qualitative and is 
simply based on material names, which may result in considerable 
variations in material properties within one consolidated material 
type. In addition, even with the same composition, different material 
structure may affect the material-air partitioning. Ideally, quantita-
tive, continuous properties of the solid materials, such as descriptors 
of the material’s composition and molecular structure, could be mea-
sured and entered into the model as numerical predictors, so that 
the model can be more accurate for particular materials and can be 
extrapolated to other material types outside the training dataset. In 
addition, if quantitative variables for material types are used, inter-
action terms between chemical’s logKoa and material type variables 

(7)log10 Kma=−0.37+0.75 ⋅ log10 Koa+1.29 ⋅
ΔHma

2.303 ⋅R

(

1

T
−

1

298.15

)

F IGURE  5 A, measured logKma and B, residuals as a function of 
logKma predicted by the generic QSPR (Equation 7). The dotted line 
in (A) indicates the 1:1 line
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can be added to the model without introducing too many additional 
terms, which can improve model fitting, as discussed in Section 3.2.

Fourth, many materials that appear in indoor environments are 
inhomogeneous, such as plywood, gypsum board, carpet, concrete, 
and paper, which may have layers or portions with distinctive prop-
erties. Thus, the Kma values measured in experiments and the QSPR 
built on these measurements likely only represent the material prop-
erties across the experiments. As a result, one needs to use caution 
when applying the present QSPR to predict Kma, especially for highly 
inhomogeneous materials. Another important aspect related to het-
erogenicity is surface partitioning versus bulk partitioning. Since the 
partitioning between solid material and air happens mainly at the 
material surface, the surface properties may have an unusually large 
influence on the apparent partitioning behavior. Therefore, for mate-
rials with a surface layer of distinct properties, or materials with the 
same composition but different surface/bulk structures, the pres-
ent QSPR may not give a correct estimate of the Kma. The distinct 
surface layer may be a result of oxidative aging and soiling, which 
may change with time, or intrinsic features that are time invariant. 
These problems again highlight the importance of using quantitative 
descriptors of material compositions and structures as predictors in 
the QSPR.

Finally, the functional mechanisms of other influence factors 
such as relative humidity are unclear, so they are not included in the 
QSPR. The effect of relative humidity on Kma is likely both chem-
ical and material dependent,4,9 which will require more in-depth 
research.

4  | CONCLUSIONS

A multiple linear regression model has been developed to predict the 
solid material-air partition coefficients (Kma) of organic compounds 
in various solid materials. Experimental Kma data collected from 43 
studies were used to construct the regression model. The model 
uses three continuous variables, chemical’s logKoa, ∆Hv, and abso-
lute temperature, as well as one categorical variable, material type, 
as predictors. The model has been validated internally and externally 
to be robust and stable, and have good predicting ability. The ap-
plicability domain of the model, in terms of the range of predictors, 
includes chemical’s logKoa between 1.4 and 14.6, ∆Hv from 22.3 to 
75.6 kJ/mol, temperature between 15 and 100°C, and material type 
belonging to the 22 consolidated types.

The main advantage of the present model is that it is applicable 
for a wide range of chemical-material-temperature combinations, 
which is more comprehensive than the correlation methods devel-
oped in previous studies which were specific for one solid material 
and often at room temperature. Moreover, a generic model is also 
developed which is able to give relatively accurate estimates of Kma 
without assigning a particular material type, making it suitable for 
high-throughput assessments of the chemical releases from solid 
materials and subsequent consumer exposures.
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