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A Conditionally Fluorescent Peptide Reporter of Secondary
Structure Modulation
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Proteins containing intrinsic disorder often form secondary
structure upon interaction with a binding partner. Modulating
such structures presents an approach for manipulating the re-
sultant functional outcomes. Translational repressor protein 4E-
BP1 is an example of an intrinsically disordered protein that

forms an a-helix upon binding to its protein ligand, eIF4E. Cur-
rent biophysical methods for analyzing binding-induced struc-

tural changes are low-throughput, require large amounts of

sample, or are extremely sensitive to signal interference by the
ligand itself. Herein, we describe the discovery and develop-

ment of a conditionally fluorescent 4E-BP1 peptide that reports
structural changes of its helix in high-throughput format. This

reporter peptide is based on conditional quenching of fluores-
cein by thioamides. In this case, fluorescence signal increases

as the peptide becomes more ordered. Conversely, destabiliza-

tion of the a-helix results in decreased fluorescence signal. The
low concentration and low volume of peptide required make

this approach amenable for high-throughput screening to dis-
cover ligands that alter peptide secondary structure.

Dynamic conformational change is a critically important occur-

rence for mediating protein function.[1] From exposing enzyme

active sites and initiating catalytic turnover, to driving selectivi-
ty in interactions between protein binding partners, modula-

tion of protein structure can yield information about functional
fate(s).[1, 2] Intrinsically disordered proteins (IDPs) and proteins

containing intrinsically disordered regions (IDRs) are exception-
ally dynamic, existing as conformational ensembles as opposed
to more rigid secondary and tertiary structures.[3] Their struc-

tural fluidity contributes to their function as signaling hubs in
protein interaction networks that regulate cellular growth and
development.[1, 2] Within these signaling cascades, binding-in-
duced structuring has been found to be an important driver of

protein–protein interaction (PPI) affinity and specificity.[1]

For example, a family of three intrinsically disordered transla-

tional repressor proteins known as the eIF4E-binding proteins
(4E-BPs) regulate a subset of mRNA transcripts, including Mcl-

1, cyclin D1, and c-Myc, that are integral for maintenance of

cellular homeostasis.[4] These proteins function by sequestering
eIF4E from eIF4G, which shares a similar eIF4E-binding motif,
to inhibit the initiation of cap-dependent translation
(Figure 1).[5] The 4E-BPs each form a short a-helix upon binding

to eIF4E, with helix formation driving binding.[1, 2, 5] Mechanistic
target of rapamycin complex 1 (mTORC1)-dependent phos-
phorylation of the 4E-BPs regulates their activity,[6] in part by
destabilizing the helix,[7] thus indicating that chemical modula-
tion of the helix-forming peptide region could be a promising
strategy through which to impart functional control over the

protein. This rationale has been used in the design of stapled
peptides based on the eIF4E-binding sequences of 4E-BPs,[8] as
well as their biological competitor, eIF4G.[9] Stabilization of 4E-

BP binding to eIF4E also contributes to the function of the
small-molecule modulator of cap-dependent translation, 4EGI-

1;[10] however, identifying selective 4E-BP ligands that specifi-
cally modulate helicity presents an additional challenge.

Commonly used methods for analyzing protein and peptide

structure include circular dichroism (CD) and NMR spectrosco-
pies, as well as X-ray crystallography. Although these tech-

niques are powerful and yield detailed information about pro-
tein structure, they are also low-throughput, they require large

amounts of sample, and data analysis is often challenging, par-
ticularly when studying IDPs.[1, 2, 12] Thus, there is a need for

Figure 1. The interaction between 4E-BP1 and eIF4E is driven by the forma-
tion of an a-helix upon binding. When this helix is destabilized by mTORC1-
dependent phosphorylation, it is outcompeted by the scaffolding protein
eIF4G. eIF4E·4E-BP1 peptide complex PDB: 4UED;[11] eIF4E·eIF4G peptide
complex PDB: 1EJH.[5]
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new approaches to identify modulators of conformational
change in a broadly applicable format.

Previous studies have demonstrated the utility of thioamides
and their derivatives as minimally perturbing fluorescence

quenchers in proteins through a photoinduced electron trans-
fer (PET) mechanism.[13] In contrast to other processes that
result in quenched fluorescence through energy transfer, such
as FRET, PET quenching does not require spectral overlap of
the electron donor and acceptor and occurs over very short

distances (&3–5 a).[14] Inspired by the use of conditional thio-
amide quenching for sensing protease activity[14a] and confor-
mational dynamics of macromolecules,[14a, 15] we have adapted
this approach to observe the disorder-to-order transition of

the 4E-BP1 “hot-spot” peptide. Herein, we describe the seren-
dipitous discovery and development of a fluorescent peptide

reporter that can detect modulation of the 4E-BP1 helix at

nanomolar peptide concentrations.
We initially synthesized a 15-amino acid peptide containing

residues Thr50–Asn64 of the 4E-BP1 isoform for development
of a fluorescence polarization assay. This “hot-spot” peptide

contained the eIF4E-binding motif conjugated to fluorescein
isothiocyanate (FITC) at the N terminus through a two-b-ala-

nine linker. Interestingly, rather than reporting polarization

upon binding to eIF4E, the peptide demonstrated increased
fluorescence (data not shown). Because the thiourea motif

formed upon FITC coupling (Scheme 1 A) has been shown to
quench in a similar way to thioamides,[13a] our hypothesis was

that, in a dynamic solution state, this moiety might partially
quench the disordered 4E-BP1 peptide’s fluorescence through

PET. Any increase in peptide helicity (i.e. , upon eIF4E binding)

would subsequently reorient the thiourea out of the PET dis-
tance, thereby decreasing the effective concentration of

quenched peptide and resulting in the observed increase in
fluorescence signal (Scheme 1 B). Conversely, a decrease in

fluorescence signal would be expected when the helix is desta-
bilized, due to an increase in the effective concentration of the

quenched peptide. Such a peptide reporter could greatly

impact the way changes in IDP conformation and dynamics
are observed, and could be utilized for high-throughput

screening of chemical modulators of IDP structure. Thus, we

set out to test the hypothesis that we had inadvertently dis-
covered such a reporter.

To explore this hypothesis, fluorescence measurements were
recorded in the presence and in the absence of 50 % 2,2,2-tri-

fluoroethanol (TFE), a solvent known to induce helical ordering
in 4E-BP1 and other peptides.[16] Additionally, we directly com-

pared the effect of TFE on the FITC peptide with its effect on a

peptide N-terminally labeled with 5(6)-carboxyfluorescein
(FAM), which lacks the thiourea moiety at the peptide–fluoro-

phore linkage. As shown in Figure 2 A, a 2.5-fold increase in
fluorescence was observed upon the addition of TFE to a

10 nm solution of the FITC-4E-BP1 peptide. Importantly, on
using CD spectroscopy, we confirmed that TFE enhanced the

peptide’s helical propensity from 7 % to 33 % (Figure 2 B). Al-

though the FAM-4E-BP1 peptide showed a similar response to
TFE by CD, the fluorescence response did not increase to the

same extent as in the case of the FITC peptide. A C-terminal
FITC-4E-BP1 peptide was also prepared; however, it exhibited
little helical propensity even in 50 % TFE (Figure S2 in the Sup-
porting Information). This finding was not surprising because,

on the basis of the eIF4E-4E-BP1 peptide structures,[5, 11, 12, 17] C-
terminal modification of the 4E-BP1 helix likely disrupts the for-
mation or stability of secondary structure by destabilization of

the helical dipole. Together, these results offered preliminary
substantiation for our hypothesis that the observed increase in

fluorescence signal was linked to helix induction.
To provide additional evidence of structure-mediated fluo-

rescence enhancement, we probed a cysteine–aromatic inter-

action in the 4E-BP1 peptide (Cys62–Phe58, Figure 3 A), which
we hypothesized to stabilize helical conformation.[18] Consis-

tent with this model, alkylation of the cysteine residue with io-
doacetamide caused a 4.8-fold decrease in peptide fluores-

cence, which was not altered with 50 % TFE (Figure 3 B). Impor-
tantly, these results were corroborated by CD spectroscopy
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Scheme 1. Rationale behind the fluorescent peptide reporter. A) FITC cou-
pling to the N terminus of b-alanine yields a thiourea linkage. B) Working hy-
pothesis for the peptide reporter.
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(Figure 3 C). These data not only show the ability of our pep-
tide reporter to detect helix disruption, but also indicate that

the TFE-induced increase in fluorescence of the unmodified

peptide is not primarily a consequence of nonspecific solvent

effects on fluorescein itself, thus confirming that we had, in
fact, created a reporter of 4E-BP structure modulation. Armed

with such a reporter, we wished to optimize its utility for high-

throughput screening (HTS) experiments to identify peptide li-
gands that specifically induce 4E-BP1 helicity as a mode of

action for modulating eIF4E activity and cap-dependent trans-
lation.

To enable these efforts, we sought to improve the signal-to-
background ratio (S/B) of our assay; thus, we explored the

effect of incorporating additional thioamide moieties within

the peptide sequence.[14a, 15a, 19] We chose to incorporate thio-
leucine in place of Leu59, which is contained within the helix,

and thioisoleucine in place of Ile53, which is N-terminal to the
helix (Figure 4 A). Fmoc-protected thioamide amino acid pre-

cursors were synthesized as described[14a, 20] and used in solid-
phase peptide synthesis. Whereas additional thioamide moie-
ties did decrease the overall fluorescence of the peptides, the

S/B was not significantly improved (Figure 4 B). Thus, the
native FITC-4E-BP1 peptide reporter was determined to be op-
timal because it does not require the synthesis of thioamide-
containing amino acid precursors.

To recapitulate our original observation, the FITC-labeled 4E-
BP1 peptide was titrated with varying concentrations of MBP-

eIF4E. As shown in Figure 5 A, a dose-dependent increase in

peptide fluorescence was observed. The calculated EC50 from
this titration experiment was (93.5:3.0) nm ; however, the S/B

from this experiment was low (Figure 5 B). We hypothesized
that because fluorescein fluorescence is pH-dependent be-

tween pH 6.8 and 9.0,[21] raising the pH to 8.5 should improve
S/B by increasing the maximum observable signal. Indeed,

when the titration experiment was repeated at pH 8.5, a signif-

icant increase in S/B was observed (Figure 5 C). Similar results
were also found with TFE (Figure S3). Moreover, there was little

change in helicity trends observed at the elevated pH as as-
sessed by CD spectroscopy (Figure S4 and Table S1). Important-

ly, the measured EC50 value was (65.5:1.4) nm, which is com-
parable with the reported Kd value of 4E-BP1 peptide binding

Figure 2. Evaluation of peptide fluorescence quenching by thiourea. A) Relative fluorescence units (RFUs, lex = 494, lem = 520 nm) of 10 mL of 10 nm FITC- or
FAM-conjugated 4E-BP1 peptides in assay buffer (50 mm sodium phosphate pH 7.4, 200 mm NaCl, 1 mm DTT, and 1 mm EDTA) in the absence or in the pres-
ence of 50 % TFE. FAM-conjugated peptide fluorescence does not increase in TFE to the same degree as that of the FITC-conjugated peptide. Fluorescence
measurements were made in triplicate; p values were generated in GraphPad prism by using two-way ANOVA. *** p = 0.001; ** p = 0.004. B) FITC- and FAM-
conjugated 4E-BP1 peptides exhibit similar increases in helicity in the presence of TFE, as determined by CD spectroscopy (100 mm peptide in 50 mm sodium
phosphate buffer, pH 7.4) with or without 50 % TFE at 25 8C.

Figure 3. A thiol–aromatic interaction is required for 4E-BP1 helix formation.
A) Phe58 and Cys62 enter into a H-bond-like interaction in the 4E-BP1 helix.
B) RFUs (lex = 494, lem = 520 nm) of 10 mL of 10 nm FITC-4E-BP1 peptides in
assay buffer in the absence or in the presence of 50 % TFE. Alkylation of
Cys62 by iodoacetamide decreased peptide fluorescence relative to the un-
modified FITC-4E-BP1 peptide. This decrease in RFUs is unaffected by the
presence of 50 % TFE. C) Alkylation of Cys62 by iodoacetamide decreased
peptide helicity relative to the unmodified FITC-4E-BP1 peptide. This de-
crease in helicity was unaffected by the presence of TFE. Percentage helici-
ties of FITC-4E-BP1 peptides were determined by CD spectroscopy (100 mm
peptide in 50 mm sodium phosphate buffer pH 7.4) with or without 50 %
TFE at 25 8C.

ChemBioChem 2019, 20, 40 – 45 www.chembiochem.org T 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim42

Communications

http://www.chembiochem.org


to eIF4E (50 nm by isothermal calorimetry).[5] We also demon-
strated specificity of the signal generation, and no fluorescence

enhancement was observed when the peptide was titrated
with a-synuclein in assay buffer at pH 8.5. This protein, a
known aggregator, is not known to bind to 4E-BP1 (Figure S5).
Intriguingly, the maximum fluorescence response for eIF4E ti-

tration was found to be much larger than the response with
50 % TFE. We believe this is due to additional hydrophobic

contacts that have been experimentally shown to occur be-
tween the amino acid side chains of eIF4E and the 4E-BP1 pep-
tide N terminus.[5, 10a, 11, 17] These interactions provide additional

stabilization of the N terminus, resulting in lower probability of
fluorescence quenching, but are not directly involved in the

4E-BP1 helix ; however we have not ourselves experimentally
precluded the possibility of direct interaction between the flu-

orophore and MBP-eIF4E.

We were then prompted to confirm that a PET mechanism
was indeed responsible for the changes in fluorescence ob-

served in our experiments under the optimized buffer condi-
tions. As expected, there was an increase in the fluorescence

lifetime of the peptide (Figure S6 A) in 50 % TFE (4.976 ns) rela-
tive to that in buffer alone (4.029 ns). In addition, the absorb-

ance spectrum of the peptide was relatively unchanged by the

presence of TFE (Figure S6 B). Together, these results are consis-

tent with observations in other PET quenched systems.[15b] Al-
though there was a minute blue shift in peptide absorbance in
50 % TFE (Figure S6 B), this is characteristic of conformational
change in fluorophore conjugates.[15b]

Lastly, we tested the robustness of the FITC-4E-BP1 reporter
peptide to determine its amenability to HTS for discovery of

new inducers of the 4E-BP1 a-helix. To do so, we calculated
the Z’ factor, which statistically assesses the dynamic range
and standard deviation of the assay.[22] This analysis yielded a

Z’ value of 0.7 in a 384-well plate experiment with use of auto-
mated liquid handling. Importantly, assays with Z’ values of

>0.5 have been described as excellent for HTS efforts. This
shows the utility of such a probe for the discovery of second-

ary structure modulators (Figure 6).

In conclusion, we have developed a fluorescent 4E-BP1 pep-
tide that can report both induction and stabilization of its a-

helix. Additionally, we have used our 4E-BP1 peptide to probe
the thiol–aromatic interaction between Phe58 and Cys62 and

its impact on 4E-BP1 helix stability. The prevalence of similar
binding-induced folding transitions in biological signaling

Figure 4. Incorporation of additional thioamide residues into the 4E-BP1 sequence does not significantly improve the signal-to-background ratio. A) Peptide
sequences of thioamide-containing peptides (circled in orange). B) Fluorescence signals (lex = 494, lem = 520 nm) of 10 mL of 10 nm FITC-4E-BP1 peptides in
assay buffer in the absence or in the presence of 50 % TFE. Signal-to-background ratios were determined by dividing the fluorescence signal of each peptide
in 50 % TFE by its fluorescence signal in assay buffer alone.

Figure 5. Fluorescent peptide responses to titration with MBP-eIF4E. RFUs (lex = 494, lem = 520 nm) of FITC-4E-BP1 peptide in assay buffer titrated with varying
concentrations of MBP-eIF4E (0–500 nm). Final well volumes for fluorescence readings were 10 mL with a final peptide concentration of 10 nm. A) MBP-eIF4E
titration at pH 7.4. B) Data from (A) graphed to scale with (C) show low relative fluorescence of peptide in buffer at pH 7.4. C) MBP-eIF4E titration at pH 8.5
shows an overall improvement both in fluorescence signal and in signal-to-background ratio. Titration experiments were performed in triplicate.

ChemBioChem 2019, 20, 40 – 45 www.chembiochem.org T 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim43

Communications

http://www.chembiochem.org


pathways indicates potential utility of a conditionally fluores-
cent peptide in systems including p27 linker ordering upon

binding to CDK4, p53 folding upon MDM2 binding, and struc-
turing of pKID coupled to binding of KIX.[1] Such peptides

could be used for the discovery of new modulators of struc-
ture and function.

Notably, not all IDPs form static secondary structures. Such

“fuzzy complexes” retain varying levels of conformational re-
striction at the bound IDP’s interaction site.[1, 23] It is likely that

a reporter, such as the one we have described, would only be
useful in a subset of these systems, dependent upon the rela-

tive conformational restriction occurring in the bound state of
a given IDP, as well as optimization of thioamide placement.

We look forward to application of our rationale in such sys-

tems to determine its applicability for studying a more diverse
range of IDP PPIs. There is also the possibility to utilize such an

approach for more complex systems. For example, native
chemical ligation can be used for the incorporation of a fluoro-

phore and quenching thioamide through protein semisynthe-
sis.[24]

Finally, what we have described is an equilibrium assay for a

PPI in the nanomolar range; however, many IDPs interact with
their ligands through multiple low-affinity sites.[1, 2] In applica-

tion of our approach to such interactions—those in the milli-
molar range, for example— there will be two time-dependent

processes affecting the equilibrium: the binding kinetics of the
PPI and the timescale of PET quenching. PET quenching occurs

on a nanosecond timescale, which presumably favors PPIs with
slower dissociation rates. Further exploration of PPI kinetics
and the correlation to PET quenching studies are needed to

determine the range of affinity interactions that can be reliably
observed with our platform. With these considerations in

mind, our described approach demonstrates great promise as
a chemical biology tool for observation of protein structure

perturbation in a high-throughput format.

Experimental Section

Assay fluorescence measurements : Peptides, which were dis-
solved as stocks (1 mm) in buffer A [sodium phosphate (pH 7.4 or
8.5, 50 mm), NaCl (200 mm), dithiothreitol (DTT; 1 mm), EDTA

(1 mm), DMF (30 %, v/v)] , were diluted to appropriate working con-
centrations for subsequent experiments. For fluorescence measure-
ments, peptides were diluted to working solutions (20 nm in assay
buffer). For TFE experiments, the working solutions were further di-
luted to 10 nm with assay buffer or TFE. Peptide working solution
(10 nm, 10 mL) was added to each well, and the fluorescence was
read immediately with use of excitation/emission wavelengths of
490/520 nm with a 515 nm cutoff and three scans/well. For MBP-
eIF4E and a-synuclein titrations, peptide working solutions (10 nm,
10 mL) were titrated serially with protein solutions (10 mL) for a final
peptide concentration of 10 nm and final protein concentrations of
0–500 nm and 0–900 nm for MBP-eIF4E and a-synuclein, respec-
tively. All measurements were performed in triplicate.
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