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Abstract
We solve the problem of optimal stopping of a Brownian

motion subject to the constraint that the stopping time's

distribution is a given measure consisting of finitely many

atoms. In particular, we show that this problem can be con-

verted to a finite sequence of state-constrained optimal con-

trol problems with additional states corresponding to the

conditional probability of stopping at each possible termi-

nal time. The proof of this correspondence relies on a new

variation of the dynamic programming principle for state-

constrained problems, which avoids measurable selections.

We emphasize that distribution constraints lead to novel

and interesting mathematical problems on their own, but

also demonstrate an application in mathematical finance to

model-free superhedging with an outlook on volatility.
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1 INTRODUCTION

In this paper, we consider the problem of choosing an optimal stopping time for a Brownian motion

when constrained in the choice of distribution for the stopping time. While standard optimal stopping

theory has focused primarily on unconstrained finite- and infinite-horizon stopping times (e.g., Peskir

& Shiryaev, 2006; Shiryaev, 2008) and very recently on constraints on the first moment of the stopping

time (e.g., Ankirchner, Klein, & Kruse, 2017; Miller, 2017; Pedersen & Peskir, 2016), there is a very

limited literature on the problem of optimal stopping under distribution constraints.

It turns out that distribution-constrained optimal stopping is a difficult problem, with stopping strate-

gies depending pathwise on the Brownian motion in general. This is to be expected because a constraint

on the stopping time's distribution forces the stopper to consider what he would have done along all

other paths of the Brownian motion when deciding whether to stop. The main task at hand is to identify

relevant state variables and then transform the problem so that it can be analyzed by standard methods.
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BAYRAKTAR AND MILLER 369

In this paper, we illustrate a solution in the special case that the target distribution consists of finitely

many atoms. Our approach consists of iterated stochastic control problems wherein we introduce con-

trolled processes representing the conditional distribution of the stopping time. We then characterize

the value function of the distribution-constrained optimal stopping problem in terms of the value func-

tions of a finite number of state-constrained optimal control problems. This dynamic approach to the

problem in terms of a controlled process with unbounded diffusion is similar in flavor to recent results

in nonlinear optimal stopping (Miller, 2017) and control of measure-valued martingales in Cox and

Källblad (2017).

The key mathematical contributions of this paper lie in our proof of a dynamic programming

principle relating each of the sequential optimal control problems. We provide an argument that avoids

the use of measurable selections, similar to the proofs of weak dynamic programming principles in

Bouchard and Touzi (2011), Bouchard and Nutz (2012), and Bayraktar and Yao (2013). However,

we deal with state-constraints in a novel way, which relies on some a priori regularity of the value

functions.

While the problem of distribution-constrained optimal stopping is mathematically interesting in

its own right, we emphasize that there is room for applications in mathematical finance and optimal

control theory. For instance, we demonstrate an application to model-free superhedging of financial

derivatives when one has an outlook on the quadratic variation of an asset price. Here, the distribution

on the quadratic variation corresponds to that of a stopping time by the martingale time-change

methods utilized recently in Bonnans and Tan (2013) and Galichon, Henry-Labordère, and Touzi

(2014). Furthermore, the problem of optimal stopping under moment constraints on the stopping time

reduces to the distribution-constrained optimal stopping problem in cases where there exists a unique

atomic representing measure in the truncated moment problem (e.g., Curto & Fialkow, 1991; Lasserre,

2010). There also appears to be a connection between distribution-constrained optimal stopping and

inverse first passage-time problems (e.g., Capocelli & Ricciardi, 1972; Zucca & Sacerdote, 2009).

We should also mention that after the publication of our preprint, Beiglboeck, Eder, Elgert, and

Schmock (2018) gave geometric descriptions of optimal stopping times using optimal transport

theory.

This paper proceeds as follows. In Section 2, we provide our solution to distribution-constrained

optimal stopping of Brownian motion. In particular, we characterize the solution via a finite sequence

of iterated state-constrained stochastic control problems. The main result is provided by an induction

argument in Theorem 2.10, but the heart of the argument lies mainly in the proofs of Lemma 2.8 and

Lemma 2.9. We also provide time-dependent versions of these results, which can be characterized as the

viscosity solutions of associated HJB equations. The key arguments here lie in a Dynamic Programming

Principle in Theorem 2.16. In Section 3, we demonstrate an application to model-free superhedging

with an outlook on volatility. We convert this problem into a distribution-constrained optimal stopping

problem where the volatility outlook corresponds to a distribution constraint for the stopping time. We

demonstrate numerical results, which provide some intuition for the behavior of the optimal stopping

strategies. Finally, we provide complete proofs of our main results in Appendices A–D.

2 MAIN RESULTS

2.1 Problem formulation
We consider a probability space (Ω, ,ℙ) supporting a standard Brownian motion 𝑊 . We take

𝔽 ∶= {𝑡}𝑡≥0 to be the natural filtration of𝑊 augmented to satisfy the usual properties. We consider
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a given payoff function 𝑓 ∶ ℝ → ℝ, which is assumed to be Lipschitz continuous. We also use the

notation

𝑋𝑡,𝑥𝑢 ∶= 𝑥 +𝑊𝑢 −𝑊𝑡

for any (𝑥, 𝑡) ∈ ℝ × [0,∞) and 𝑢 ∈ [𝑡,∞).
In this paper, we are also given a target distribution 𝜇, which is supported on (0,∞) and assumed to

consist of finitely many atoms. Without loss of generality, we assume the following representation:

𝜇 =
𝑟∑
𝑘=1
𝑝𝑘𝛿𝑡𝑘 , (2.1)

where 𝑟 ∈ ℕ, 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑟, 𝑝1 +⋯ + 𝑝𝑟 = 1, and 𝑝1,… , 𝑝𝑟 > 0. We also introduce the con-

venient notation Δ𝑡𝑘 ∶= 𝑡𝑘 − 𝑡𝑘−1 for each 𝑘 ∈ {1,… , 𝑟}.

The distribution-constrained optimal stopping problem we consider is

𝑣⋆ ∶= sup
𝜏∈

𝔼
[
𝑓
(
𝑋

0,𝑥0
𝜏

)]
s.t. 𝜏 ∼

𝑟∑
𝑘=1
𝑝𝑘𝛿𝑡𝑘 ,

(2.2)

where we take  to be the collection of all finite-valued 𝔽 -stopping times, which are independent of

0. We let 𝑥0 ∈ ℝ be some fixed starting value. That is, we choose a stopping time 𝜏 whose distribution

is equal to 𝜇 in order to maximize the expected payoff of a stopped Brownian motion starting at 𝑥0.

2.2 Construction of distribution-constrained stopping times
There are multiple ways to naturally represent a stopping time satisfying a distribution constraint. In

this section, we outline two particular such representations and illustrate how they immediately lead to

constructions of such stopping times.

We first provide a characterization of distribution-constrained stopping times in terms of a partition-

ing of the path space into regions with specified measures. Later, we make a connection with controlled

processes.

Lemma 2.1. A stopping time 𝜏 has the distribution 𝜇 if and only if it is of the following form:

𝜏 =
𝑟∑
𝑘=1
𝑡𝑘 1𝐴𝑘,

almost surely, where {𝐴1,… , 𝐴𝑟} partition Ω and, for each 𝑘 ∈ {1,… , 𝑟}, 𝐴𝑘 is 𝑡𝑘-measurable with
ℙ[𝐴𝑘] = 𝑝𝑘.

Proof of Lemma 2.1. It is clear from the construction that such a 𝜏 is a 𝔽 -stopping time and 𝜏 ∼ 𝜇. The

converse follows by taking a stopping time 𝜏 such that 𝜏 ∼ 𝜇 and defining the sets 𝐴𝑘 ∶= {𝜏 = 𝑡𝑘} for

each 𝑘 ∈ {1,… , 𝑟}. □

With this in mind, we can immediately explicitly construct a stopping time with given distribution.

Corollary 2.2. There exists a stopping time 𝜏 such that 𝜏 ∼ 𝜇.

Proof of Corollary 2.2. Define a partition {𝐴1,… , 𝐴𝑟} of Ω as

𝐴1 ∶=
{
𝑊𝑡1 −𝑊0 ≤ √

𝑡1 Φ−1(𝑝1)
}
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𝐴2 ∶=
{
𝑊𝑡2 −𝑊𝑡1 ≤

√
𝑡2 − 𝑡1 Φ−1

(
𝑝2

𝑝2 +⋯ + 𝑝𝑟

)}\
𝐴1

⋮

𝐴𝑘 ∶=
{
𝑊𝑡𝑘 −𝑊𝑡𝑘−1 ≤

√
𝑡𝑘 − 𝑡𝑘−1 Φ−1

(
𝑝𝑘

𝑝𝑘 +⋯ + 𝑝𝑟

)}\
(𝐴1 ∪⋯ ∪ 𝐴𝑘−1)

⋮

𝐴𝑟 ∶= Ω ⧵ (𝐴1 ∪⋯ ∪ 𝐴𝑟−1),

where Φ is the cumulative distribution function of the standard normal distribution. It is clear that 𝐴𝑘
is 𝑡𝑘 -measurable with ℙ[𝐴𝑘] = 𝑝𝑘 for each 𝑘 ∈ {1,… , 𝑟}. Then, by Lemma 2.1, 𝜏 ∶=

∑𝑟
𝑘=1 𝑡𝑘 1𝐴𝑘

defines a stopping time with 𝜏 ∼ 𝜇. □

The proof above constructs a stopping time which roughly stops when there are events in the left-tail

of a distribution. However, one could easily modify the construction to stop in right-tail events, events

near the median, or on the image of any Borel set of appropriate measure under Φ.

While this construction may suggest converting the distribution-constrained optimal stopping prob-

lem into optimization over Borel sets of specified measure, we emphasize next that there is no reason

to expect the stopping times to be measurable with respect to 𝜎(𝑊𝑡1 ,… ,𝑊𝑡𝑟 ). In particular, in the next

example, we show a construction of a distribution-constrained stopping time, which is entirely path

dependent.

Corollary 2.3. There exists a stopping time 𝜏, independent of (𝑊𝑡1 ,… ,𝑊𝑡𝑟 ), satisfying 𝜏 ∼ 𝜇.

Proof. Define a sequence of random variables (𝑀1,… ,𝑀𝑟) as

𝑀𝑘 ∶= (𝑡𝑘 − 𝑡𝑘−1)−1∕2 max
𝑡𝑘−1≤𝑠≤𝑡𝑘

|||||𝑊𝑠 −𝑊𝑡𝑘−1 − (𝑠 − 𝑡𝑘−1)
𝑊𝑡𝑘 −𝑊𝑡𝑘−1
𝑡𝑘 − 𝑡𝑘−1

|||||
for each 𝑘 ∈ {1,… , 𝑟}. Then each𝑀𝑘 is the absolute maximum of a Brownian bridge over [𝑡𝑘−1, 𝑡𝑘],
scaled by the length of the time interval. In particular, each 𝑀𝑘 is 𝑡𝑘 -measurable, independent of

(𝑊𝑡1 ,… ,𝑊𝑡𝑟 ), and equal in distribution to the absolute maximum of a standard Brownian bridge on

[0, 1], the cumulative distribution function of which we denote by Φ𝐵𝐵 .
Define a partition {𝐴1,… , 𝐴𝑟} of Ω as

𝐴1 ∶=
{
𝑀1 ≤ Φ−1

𝐵𝐵
(𝑝1)

}
𝐴2 ∶=

{
𝑀2 ≤ Φ−1

𝐵𝐵

(
𝑝2

𝑝2 +⋯ + 𝑝𝑟

)}\
𝐴1

⋮

𝐴𝑘 ∶=
{
𝑀𝑘 ≤ Φ−1

𝐵𝐵

(
𝑝𝑘

𝑝𝑘 +⋯ + 𝑝𝑟

)}\
(𝐴1 ∪⋯ ∪ 𝐴𝑘−1)

⋮

𝐴𝑟 ∶= Ω ⧵ (𝐴1 ∪⋯ ∪ 𝐴𝑟−1).

It is clear that 𝐴𝑘 is 𝑡𝑘-measurable with ℙ[𝐴𝑘] = 𝑝𝑘 for each 𝑘 ∈ {1,… , 𝑟}. Then, by Lemma 2.1,

𝜏 ∶=
∑𝑟
𝑘=1 𝑡𝑘 1𝐴𝑘 defines a stopping time with 𝜏 ∼ 𝜇, which is independent of (𝑊𝑡1 ,… ,𝑊𝑡𝑟 ). □



372 BAYRAKTAR AND MILLER

Clearly, the stopping time constructed above is an admissible stopping time in the distribution-

constrained optimal stopping problem, but there is no hope to express it in terms of the value of the

Brownian motion at each potential time to stop. While stopping times involving the Brownian bridge

may seem unnatural at first, their use is a key idea in the proofs of Lemma 2.8 and Lemma 2.9.

Another useful result obtained from Lemma 2.1 is the following approximation result.

Proposition 2.4. Fix 𝑝, 𝑝′ ∈ [0, 1]𝑟 satisfying 𝑝1 +⋯ + 𝑝𝑟 = 1 and 𝑝′1 +⋯ + 𝑝′𝑟 = 1. For any 𝜏 ∈ 
such that

𝜏 ∼
𝑟∑
𝑘=1
𝑝𝑘𝛿𝑡𝑘 ,

there exists 𝜏′ ∈  such that

𝜏′ ∼
𝑟∑
𝑘=1
𝑝′
𝑘
𝛿𝑡𝑘 ,

which satisfies

ℙ
[
𝜏 ≠ 𝜏′] ≤ 4𝑟‖𝑝 − 𝑝′‖𝓁1 .

Proof.

Step 1: By Lemma 2.1, there exists a partition {𝐴1,… , 𝐴𝑟} of Ω such that each 𝐴𝑘 is 𝑡𝑘-measurable

with ℙ[𝐴𝑘] = 𝑝𝑘 and

𝜏 =
𝑟∑
𝑘=1
𝑡𝑘1𝐴𝑘,

almost surely. The goal is to define 𝜏′ in terms of a related partition.

We first make a key observation: For any 𝑡 > 0, 𝜃 ∈ (0, 1), and 𝑡-measurable set 𝐴 such that

ℙ[𝐴] > 0, there exists a real number 𝑤 ∈ ℝ such that

ℙ
[
𝑊𝑡 ≥ 𝑤 ∣ 𝐴] = 𝜃.

This follows immediately from the observation that the distribution of 𝑊𝑡 has no atoms, and

thus when conditioning on an event of nonzero probability, the conditional distribution cannot

have atoms.

Step 2: Define an 𝑡1-measurable set 𝐴′1 as

𝐴′1 ∶=

⎧⎪⎪⎨⎪⎪⎩
𝐴1 𝑝1 = 𝑝′1
𝐴1 ∪

{
𝑊𝑡1 ≥ 𝑤+1

}
𝑝1 < 𝑝

′
1

𝐴1 ∩
{
𝑊𝑡1 ≥ 𝑤−1

}
𝑝1 > 𝑝

′
1,

where 𝑤+1 , 𝑤
−
1 ∈ ℝ are chosen such that

ℙ
[
𝑊𝑡1 ≥ 𝑤+1 ∣ Ω ⧵ 𝐴1

]
=
𝑝′1 − 𝑝1
1 − 𝑝1
, ℙ

[
𝑊𝑡1 ≥ 𝑤−1 ∣ 𝐴1

]
=
𝑝′1
𝑝1
.
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Notice, if 𝑝1 < 𝑝
′
1, then 𝑝1 < 1 and ℙ[Ω⧵𝐴1] > 0, so𝑤+1 is well defined. Similarly, if 𝑝1 > 𝑝

′
1,

then 𝑝1 > 0 and ℙ[𝐴1] > 0, so 𝑤−1 is well defined.

It is clear that ℙ[𝐴′1] = 𝑝
′
1 by construction. The key property, however, is that either 𝐴1 ⊆ 𝐴

′
1

or 𝐴′1 ⊆ 𝐴1. From this, we can immediately compute the measure of the symmetric difference

of 𝐴1 and 𝐴′1,

ℙ
[
𝐴1 △ 𝐴

′
1
]
= |||𝑝1 − 𝑝′1||| .

Step 3: Now, suppose that we have constructed {𝐴′1,… , 𝐴
′
𝑘−1} already. Define

𝑞𝑘 ∶= ℙ
[
𝐴𝑘 ⧵

(
𝐴′1 ∪⋯ ∪ 𝐴′

𝑘−1
)]
.

Define a 𝑡𝑘-measurable set 𝐴′
𝑘

as

𝐴′
𝑘
∶=

⎧⎪⎪⎨⎪⎪⎩
𝐴𝑘 ⧵

(
𝐴′1 ∪⋯ ∪ 𝐴′

𝑘−1
)

𝑞𝑘 = 𝑝′𝑘(
𝐴𝑘 ⧵

(
𝐴′1 ∪⋯ ∪ 𝐴′

𝑘−1
))

∪
{
𝑊𝑡𝑘 ≥ 𝑤+𝑘

}
𝑞𝑘 < 𝑝

′
𝑘(

𝐴𝑘 ⧵
(
𝐴′1 ∪⋯ ∪ 𝐴′

𝑘−1
))

∩
{
𝑊𝑡𝑘 ≥ 𝑤−𝑘

}
𝑞𝑘 > 𝑝

′
𝑘
,

where 𝑤+
𝑘
, 𝑤−
𝑘
∈ ℝ are chosen such that

ℙ
[
𝑊𝑡𝑘 ≥ 𝑤+𝑘 ∣

(
𝐴′1 ∪⋯ ∪ 𝐴′

𝑘−1
)
∪ (Ω ⧵ 𝐴𝑘)

]
=
𝑝′
𝑘
−𝑞𝑘

1−𝑞𝑘
,

ℙ
[
𝑊𝑡𝑘 ≥ 𝑤−𝑘 ∣ 𝐴𝑘 ⧵

(
𝐴′1 ∪⋯ ∪ 𝐴′

𝑘−1
)]

=
𝑝′
𝑘

𝑞𝑘
.

As before, the inequalities between 𝑞𝑘 and 𝑝′
𝑘

imply that 𝑤+
𝑘

and 𝑤−
𝑘

are well defined when

they are needed. Furthermore, it is clear that ℙ[𝐴′
𝑘
] = 𝑝′
𝑘
.

In this case, the key property becomes that either

𝐴𝑘⧵
(
𝐴′1 ∪⋯ ∪ 𝐴′

𝑘−1
)
⊆ 𝐴′
𝑘

(2.3)

or

𝐴′
𝑘
⊆𝐴𝑘 ⧵

(
𝐴′1 ∪⋯ ∪ 𝐴′

𝑘−1
)
⊆ 𝐴𝑘. (2.4)

First, we consider the case that (2.3) holds. Because each set in {𝐴1,… , 𝐴𝑘} is disjoint, for any

𝓁 ∈ {1,… , 𝑘 − 1}, we can bound the overlap between𝐴𝑘 and𝐴′𝓁 by the symmetric difference

of 𝐴𝓁 and 𝐴′𝓁 ,

ℙ
[
𝐴𝑘 ∩ 𝐴′𝓁

] ≤ ℙ
[
𝐴′𝓁 ⧵ 𝐴𝓁

] ≤ ℙ
[
𝐴𝓁 △ 𝐴′𝓁

]
.

Using (2.3), we can compute

ℙ
[
𝐴𝑘△ 𝐴

′
𝑘

]
= ℙ

[
𝐴′
𝑘

]
− ℙ[𝐴𝑘] + 2ℙ

[
𝐴𝑘⧵𝐴′𝑘

] ≤ |||𝑝𝑘 − 𝑝′𝑘||| + 2ℙ
[
𝐴𝑘 ∩

(
𝐴′1 ∪⋯ ∪ 𝐴′

𝑘−1
)]
.

Using the previous inequalities, we deduce

ℙ
[
𝐴𝑘△ 𝐴

′
𝑘

] ≤ |||𝑝𝑘 − 𝑝′𝑘||| + 𝑘−1∑
𝓁=1

2ℙ
[
𝐴𝑘 ∩ 𝐴′𝓁

] ≤ |||𝑝𝑘 − 𝑝′𝑘||| + 𝑘−1∑
𝓁=1

2ℙ
[
𝐴𝓁 △ 𝐴′𝓁

]
.
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In the case that (2.4) holds, this same inequality immediately follows.

Step 4: By induction on 𝑘 ∈ {1,… , 𝑟}, we construct a disjoint partition {𝐴′1,… , 𝐴
′
𝑟} of Ω such that

𝐴′
𝑘

is 𝑡𝑘-measurable and ℙ[𝐴′
𝑘
] = 𝑝′
𝑘
. Furthermore, we obtain a rough bound

ℙ
[
𝐴𝑘△ 𝐴

′
𝑘

] ≤ 𝑘∑
𝓁=1

4𝑘−𝓁 |||𝑝𝓁 − 𝑝′𝓁
||| .

By Lemma 2.1, there exists a stopping time 𝜏′ of the form

𝜏′ =
𝑟∑
𝑘=1
𝑡𝑘1𝐴′
𝑘
.

Then, we can immediately compute1

ℙ
[
𝜏 ≠ 𝜏′] ≤ 𝑟∑

𝑘=1
ℙ
[
𝐴𝑘△ 𝐴

′
𝑘

] ≤ 𝑟∑
𝑘=1

4𝑟 |||𝑝𝑘 − 𝑝′𝑘||| ≤ 4𝑟‖𝑝 − 𝑝′‖𝓁1 .
□

The technical importance of this result is, of course, that it allows us to obtain continuity in the

problem with respect to changes in the distribution constraint on the stopping times.

While we have demonstrated that a lot can be said about distribution-constrained stopping times

using the representation in Lemma 2.1, it turns out that we can obtain a more manageable representation

if we introduce extra controlled processes, which represent the conditional probability of the stopping

time taking on each possible value. This vector-valued stochastic process is a martingale in a probability

simplex. In the next result, we make clear the connection between this process and a distribution-

constrained stopping time.

In the remainder of the paper, we define  to denote the collection of all progressively measurable,

square-integrable, ℝ𝑟-valued processes which are independent of 0. We also denote

𝑌 𝑡,𝑦,𝛼𝑢 ∶= 𝑦 + ∫
𝑢

𝑡

𝛼𝑠𝑑𝑊𝑠

for all (𝑡, 𝑦) ∈ [0,∞) ×ℝ𝑟, 𝑢 ∈ [𝑡,∞), and 𝛼 ∈ . When needed, we will denote the 𝑘th coordinate of

this vector-valued process by 𝑌 (𝑘),𝑡,𝑦,𝛼 . We will occasionally abuse notation and leave out superscripts

when they are clearly implied by the context.

We also denote by Δ the following closed and convex set

Δ ∶=
{
𝑦 = (𝑦1,… , 𝑦𝑟) ∈ [0, 1]𝑟 ∣ 𝑦1 +⋯ + 𝑦𝑟 = 1

}
⊂ ℝ𝑟.

We then can state a lemma regarding a characterization of distribution-constrained stopping times in

terms of a state-constrained controlled martingale.

Lemma 2.5. A stopping time 𝜏 ∈  has the distribution 𝜇 if and only if it is of the form

𝜏 = min
𝑘∈{1,…,𝑟}

{
𝑡𝑘 ∣ 𝑌

(𝑘),0,𝑝,𝛼
𝑡𝑘

= 1
}
,

almost surely, for some 𝛼 ∈  such that

𝑌
0,𝑝,𝛼
𝑡 ∈ Δ,
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almost surely, for all 𝑡 ≥ 0, and

𝑌
(𝑘),0,𝑝,𝛼
𝑡𝑘

∈ {0, 1},

almost surely, for each 𝑘 ∈ {1,… , 𝑟}.

Proof.

Step 1: Let 𝛼 ∈  be a control for which 𝑌
0,𝑝,𝛼
𝑡 ∈ Δ, almost surely, for all 𝑡 ≥ 0 and 𝑌

(𝑘),0,𝑝,𝛼
𝑡𝑘

∈ {0, 1},

almost surely, for each 𝑘 ∈ {1,… , 𝑟}. Define 𝜏 as

𝜏 ∶= min
𝑘∈{1,…,𝑟}

{
𝑡𝑘 ∣ 𝑌

(𝑘),0,𝑝,𝛼
𝑡𝑘

= 1
}
.

It is clear from the properties above that 𝑌
(𝑘),0,𝑝,𝛼
𝑡𝑟

∈ {0, 1} for every 𝑘 ∈ {1,… , 𝑟} and 𝑌
0,𝑝,𝛼
𝑡𝑟

∈
Δ, which implies that 𝜏 ≤ 𝑡𝑟, almost surely. Then 𝜏 ∈  , but we must check that it has 𝜇 as its

distribution.

Fix 𝑘 ∈ {1,… , 𝑟} and note that

ℙ
[
𝜏 = 𝑡𝑘

]
= ℙ

⎡⎢⎢⎢⎢⎣
{
𝑌
(1),0,𝑝,𝛼
𝑡1

= 0
}
∩⋯ ∩

{
𝑌
(𝑘−1),0,𝑝,𝛼
𝑡𝑘−1

= 0
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴

∩
{
𝑌
(𝑘),0,𝑝,𝛼
𝑡𝑘

= 1
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵

⎤⎥⎥⎥⎥⎦
.

Note that 𝐵 ⊂ 𝐴 up to a set of measure zero because in the set 𝐵⧵𝐴, we have 𝑌
(𝑘),0,𝑝,𝛼
𝑡𝑘

= 1
as well as 𝑌

(𝓁),0,𝑝,𝛼
𝑡𝓁

= 1 for some 𝓁 < 𝑘. Because 𝑌 0,𝑝,𝛼 is a martingale constrained to Δ, this

implies 𝑌
(𝓁),0,𝑝,𝛼
𝑡𝑘

= 1, almost surely, which contradicts 𝑌
0,𝑝,𝛼
𝑡𝑘

∈ Δ. Then, we can conclude

ℙ
[
𝜏 = 𝑡𝑘

]
= ℙ

[
𝑌
(𝑘),0,𝑝,𝛼
𝑡𝑘

= 1
]
= 𝑝𝑘

because 𝑌
(𝑘),0,𝑝,𝛼
0 = 𝑝𝑘 and 𝑌

(𝑘),0,𝑝,𝛼
𝑡 is a martingale taking values zero and one at 𝑡𝑘.

Step 2: Let 𝜏 ∈  be a stopping time such that 𝜏 ∼ 𝜇. Then define the [0, 1]𝑟-valued process 𝑌 as

𝑌
(𝑘)
𝑡 ∶= 𝔼

[
1{𝜏=𝑡𝑘} ∣ 𝑡

]
.

Note that 𝑌 0 = 𝑝. By the Martingale Representation Theorem, there exists a control 𝛼 ∈  for

which 𝑌
0,𝑝,𝛼
𝑡 = 𝑌 𝑡, almost surely, for all 𝑡 ≥ 0. We can then check that

𝑌
(1),0,𝑝,𝛼
𝑡 +⋯ + 𝑌 (𝑟),0,𝑝,𝛼𝑡 = 𝔼

[
1{𝜏=𝑡1} +⋯ + 1{𝜏=𝑡𝑟} ∣ 𝑡

]
= 1,

so 𝑌
0,𝑝,𝛼
𝑡 ∈ Δ for all 𝑡 ≥ 0, almost surely. Finally, for any 𝑘 ∈ {1,… , 𝑟}, we have 𝑌

(𝑘),0,𝑝,𝛼
𝑡𝑘

=
1{𝜏=𝑡𝑘} ∈ {0, 1} because {𝜏 = 𝑡𝑘} is 𝑡𝑘-measurable.

Define a stopping time 𝜎 as

𝜎 ∶= min
𝑘∈{1,…,𝑟}

{
𝑡𝑘 ∣ 𝑌

(𝑘),0,𝑝,𝛼
𝑡𝑘

= 1
}
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and suppose that there exists a set 𝐴 of nonzero probability on which 𝜏 ≠ 𝜎. Then, for

some 𝑘,𝓁 ∈ {1,… , 𝑟} such that 𝑘 ≠ 𝓁, the set 𝐵 ∶= 𝐴 ∩ {𝜏 = 𝑡𝑘} ∩ {𝜎 = 𝑡𝓁} has nonzero

probability.

Suppose that 𝓁 < 𝑘. Then, 𝑌
(𝓁),0,𝑝,𝛼
𝑡𝓁

= 1 on 𝐵 and because 𝑌 0,𝑝,𝛼 is a martingale constrained to Δ,

it follows that 𝑌
(𝓁),0,𝑝,𝛼
𝑡𝑘

= 1 on 𝐵, and consequently, 𝑌
(𝑘),0,𝑝,𝛼
𝑡𝑘

= 1{𝜏=𝑡𝑘} = 0, which contradicts 𝜏 = 𝑡𝑘
on 𝐵. On the other hand, suppose that 𝓁 > 𝑘. Then 𝑌

(𝑘),0,𝑝,𝛼
𝑡𝑘

≠ 1 on 𝐵, but because 𝑌
(𝑘),0,𝑝,𝛼
𝑡𝑘

= 1{𝜏=𝑡𝑘}
this also contradicts 𝜏 = 𝑡𝑘 on 𝐵. We conclude 𝜏 = 𝜎, almost surely. □

2.3 Solution via iterated stochastic control
It is convenient to define a sequence of sets that will be important in the remainder of the paper. For

each 𝑘 ∈ {1,… , 𝑟}, define

Δ𝑘 ∶= {(𝑦1,… , 𝑦𝑟) ∈ Δ ∣ 𝑦𝓁 = 0 for each 𝓁 ∈ {1,… , 𝑘 − 1}} ⊆ Δ.

Note that each set is closed and convex and Δ𝑘+1 ⊂ Δ𝑘 for each 𝑘 ∈ {1,… , 𝑟 − 1}.

We also introduce subcollections of stopping times and controls with additional independence prop-

erties, which will be used later in proofs of the Dynamic Programming Principle. In particular, for any

𝑡 ∈ [0,∞) we define a subcollection of stopping times

𝑡 ∶= {
𝜏 ∈  ∣ 𝜏 is independent of 𝑡} ⊂ 

and a subcollection of controls

𝑡 ∶= {
𝛼 ∈  ∣ 𝛼 is independent of 𝑡} ⊂ .

We then define a sequence of iterated distribution-constrained optimal stopping problems.

Definition 2.6. For each 𝑘 ∈ {1,… , 𝑟}, define a function 𝑣𝑘 ∶ ℝ × Δ𝑘 → ℝ as

𝑣𝑘(𝑥, 𝑦) ∶= sup
𝜏∈𝑡𝑘−1

𝔼
[
𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝜏

)]
s.t. 𝜏 ∼

𝑟∑
𝓁=1
𝑦𝓁𝛿𝑡𝓁 .

(2.5)

Note that 𝑣⋆ = 𝑣1(𝑥0, 𝑝). We emphasize that while each 𝑣𝑘 is written as a function depending on an

entire tuple 𝑦 = (𝑦1,… , 𝑦𝑟) ∈ Δ𝑘, we have 𝑦1 = ⋯ = 𝑦𝑘−1 = 0 by the definition of Δ𝑘.
Our goal is to convert these iterated distribution-constrained optimal stopping problems into iterated

state-constrained stochastic control problems.

First, we record a growth and continuity estimate for each 𝑣𝑘.

Proposition 2.7. There exists 𝐶 > 0, which depends only on 𝑓 and 𝜇, for which

||𝑣𝑘(𝑥, 𝑦)|| ≤ 𝐶 (1 + |𝑥|)||𝑣𝑘(𝑥, 𝑦) − 𝑣𝑘(𝑥′, 𝑦′)|| ≤ 𝐶 (||𝑥 − 𝑥′|| + ‖𝑦 − 𝑦′‖1∕2)
for each 𝑘 ∈ {1,… , 𝑟} and all (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ ℝ × Δ𝑘.

We do not specify the choice of norm in 𝑦 because it only affects the choice of constant.
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Proof. Recall that 𝑓 is assumed to be Lipschitz-continuous. Let 𝜏 ∈ 𝑡𝑘−1 be an arbitrary stopping time

such that 𝜏 ∼
∑𝑟
𝑘=1 𝑦𝑘𝛿𝑡𝑘 (such a stopping time exists by Corollary 2.2). Then, we have

||||𝔼 [
𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝜏

)]|||| ≤ 𝔼
[||||𝑓 (𝑋𝑡𝑘−1,𝑥𝜏 )||||

]
≤ |𝑓 (0)| + 𝐿(|𝑥| + 𝔼

[|||𝑊𝜏 −𝑊𝑡𝑘−1 |||])
≤ |𝑓 (0)| + 𝐿(|𝑥| + 2𝔼

[|||𝑊𝑡𝑟 |||])
≤ |𝑓 (0)| + 𝐿(|𝑥| + 2

√
2
𝜋
𝑡𝑟

)
.

Next, we compute

𝑣𝑘(𝑥′, 𝑦) ≥ 𝔼
[
𝑓
(
𝑋
𝑡𝑘−1,𝑥

′

𝜏

)]
≥ 𝔼

[
𝑓 (𝑋𝑡𝑘−1,𝑥𝜏 )

]
− 𝐿 ||𝑥 − 𝑥′|| .

Finally, by applying Proposition 2.4, we can construct a stopping time 𝜏′ ∈ 𝑡𝑘−1 such that 𝜏′ ∼∑𝑟
𝑘=1 𝑦𝑘𝛿𝑡𝑘 and

ℙ
[
𝜏 ≠ 𝜏′] ≤ 4𝑟‖𝑦 − 𝑦′‖.

Then, we can compute

𝑣𝑘(𝑥, 𝑦′) ≥ 𝔼
[
𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝜏′

)]
≥ 𝔼

[
𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝜏

)]
− 𝐶𝔼

[
1𝜏≠𝜏′ |||𝑋𝑡𝑘−1,𝑥𝜏′ −𝑋𝑡𝑘−1,𝑥𝜏

|||]
≥ 𝔼

[
𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝜏

)]
− 2𝐶𝔼

[
1𝜏≠𝜏′ |||𝑊𝑡𝑟 |||]

≥ 𝔼
[
𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝜏

)]
− 2𝐶 2𝑟 𝑡1∕2𝑟 ‖𝑦 − 𝑦′‖1∕2

𝓁1
.

Then, the stated results hold because (𝑥, 𝑦) ∈ ℝ × Δ𝑘 and 𝜏 were both arbitrary. □

In the remainder of the paper, it will prove useful to consider a type of perspective map on the sets

Δ𝑘. For each 𝑘 ∈ {1,… , 𝑟}, define 𝑃𝑘 ∶ Δ𝑘 → Δ𝑘 as

𝑃𝑘(𝑦1,… , 𝑦𝑟) ∶=
{

(𝑦1,… , 𝑦𝑟) if 𝑦𝑘 = 1
(𝑦𝑘+1 +⋯ + 𝑦𝑟)−1(0,… , 0, 𝑦𝑘+1,… , 𝑦𝑟) if 𝑦𝑘 < 1.

(2.6)

We note three key properties of this map.

1. For any 𝑦 ∈ Δ𝑘⧵{𝑒𝑘}, we have 𝑃𝑘(𝑦) ∈ Δ𝑘+1.

2. For any 𝑦 ∈ Δ𝑘, the 𝑘th coordinate of 𝑃𝑘(𝑦) is either zero or one.

3. The map 𝑃𝑘 is continuous on Δ𝑘⧵{𝑒𝑘}.
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We now provide a dynamic programming lemma whose proof has the same flavor of the weak

dynamic programming results in Bouchard and Touzi (2011), Bouchard and Nutz (2012), and Bayraktar

and Yao (2013). Compared to these previous results, we have a priori continuity of the value functions

on the right-hand side, so we do not need to consider upper and lower semicontinuous envelopes. We

extend the ideas of a countable covering of the state-space by balls, each associated with a nearly

optimal stopping time. To deal with the state constraints, we employ an argument that utilizes the

compactness and convexity of Δ𝑘 along with the continuity of 𝑣𝑘+1. The proof of this lemma is the

heart of the paper, but is quite involved, so it is relegated to Appendix A.

Lemma 2.8 (Dynamic programming). For every 𝑘 ∈ {1,… , 𝑟 − 1} and every (𝑥, 𝑦) ∈ ℝ × Δ𝑘, we
have

𝑣𝑘(𝑥, 𝑦) = sup
𝛼∈𝑡𝑘−1

𝔼
[
𝑌
(𝑘),𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡𝑘−1,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘
, 𝑌
𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

)]
s.t. 𝑌 𝑡𝑘−1,𝑦,𝛼𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡𝑘−1
𝑌
(𝑘),𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

∈ {0, 1}, almost surely.

(2.7)

Proof. See Appendix A. □

Next, we demonstrate that we may relax the terminal constraint. The proof of this idea relies on a

careful construction of a perturbed martingale that satisfies the terminal constraints of the previous

problem but does not significantly change the expected payoff. The proof of this result shares many

key ideas with the previous lemma. For the sake of exposition, we provide this proof in Appendix B.

Lemma 2.9 (Constraint relaxation). For every 𝑘 ∈ {1,… , 𝑟 − 1} and every (𝑥, 𝑦) ∈ ℝ × Δ𝑘, we have

𝑣𝑘(𝑥, 𝑦) = sup
𝛼∈𝑡𝑘−1

𝔼
[
𝑌

(𝑘),𝑡𝑘−1,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡𝑘−1,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

))]
s.t. 𝑌 𝑡𝑘−1,𝑦,𝛼𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡𝑘−1, almost surely,

(2.8)

where 𝑃𝑘 ∶ Δ𝑘 → Δ𝑘 is the perspective map defined in (2.6).

Note, even though 𝑃𝑘(𝑒𝑘) ∉ Δ𝑘+1, the right-hand side of (2.8) is well defined because 𝑣𝑘+1 is known

to be bounded and continuous. Then, there is a unique continuous extension of the map (𝑥, 𝑦) → (1 −
𝑦𝑘)𝑣𝑘+1(𝑥, 𝑦) from Δ𝑘⧵{𝑒𝑘} to Δ𝑘. That is, taking the right-hand side to be zero when 𝑦 = 𝑒𝑘.

Proof. See Appendix B. □

With these lemmas in hand, we can now state the main result of this paper.

Theorem 2.10. The function 𝑣𝑟 ∶ ℝ × Δ𝑟 → ℝ satisfies

𝑣𝑟(𝑥, 𝑦) = 𝔼
[
𝑓
(
𝑋
𝑡𝑟−1,𝑥
𝑡𝑟

)]
for every (𝑥, 𝑦) ∈ ℝ × Δ𝑟.

For each 𝑘 ∈ {1,… , 𝑟 − 1}, the function 𝑣𝑘 ∶ ℝ × Δ𝑘 → ℝ is the value function of the following
state-constrained stochastic control problem:

𝑣𝑘(𝑥, 𝑦) = sup
𝛼∈𝑡𝑘−1

𝔼
[
𝑌
(𝑘),𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡𝑘−1,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

))]
s.t. 𝑌 𝑡𝑘−1,𝑦,𝛼𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡𝑘−1, almost surely,
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where 𝑃𝑘 ∶ Δ𝑘 → Δ𝑘 is defined as in (2.6).
Of course, we then have

𝑣⋆ = 𝑣1(𝑥0, 𝑝1,… , 𝑝𝑟).

Proof. It is clear that 𝑣𝑟 has the representation above because there is only one admissible stopping

time. The rest follows immediately from applying Lemma 2.8 and Lemma 2.9. □

2.4 Time-dependent value functions
While, for the purposes of this paper, we may consider the results of Theorem 2.10 as a solution to

the distribution-constrained optimal stopping problem, we can consider an additional time-dependent

version of the state-constrained problem, which is amenable to numerical resolution. In particular, the

time-dependent value functions will correspond to viscosity solutions of Hamilton–Jacobi–Bellman

(HJB) equations.

Definition 2.11. Define a function 𝑤𝑟 ∶ [𝑡𝑟−1, 𝑡𝑟] ×ℝ × Δ𝑟 → ℝ as

𝑤𝑟(𝑡, 𝑥, 𝑦) ∶= 𝔼
[
𝑓
(
𝑋𝑡,𝑥𝑡𝑟

)]
.

For each 𝑘 ∈ {1,… , 𝑟 − 1}, define a function 𝑤𝑘 ∶ [𝑡𝑘−1, 𝑡𝑘] ×ℝ × Δ𝑘 → ℝ as

𝑤𝑘(𝑡, 𝑥, 𝑦) ∶= sup
𝛼∈

𝔼
[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
s.t. 𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡, almost surely,

where 𝑃𝑘 ∶ Δ𝑘 → Δ𝑘 is defined as in (2.6).

Remark 2.12. Using the properties of the time-independent auxiliary value functions 𝑣𝑘 deduced in

Section 2.3, we can consider the terminal payoff as a given Hölder continuous function. Then, this is a

true state-constrained optimal stochastic control problem. In particular, we note that by the argument of

remark 5.2 in Bouchard and Touzi (2011) we can equivalently define 𝑤𝑘 as a supremum over controls

in , which are not necessarily independent of 𝑡.
We note an immediate relationship with the value functions of Section 2.3.

Corollary 2.13. For each 𝑘 ∈ {1,… , 𝑟}, we have

𝑣𝑘(𝑥, 𝑦) = 𝑤𝑘(𝑡𝑘−1, 𝑥, 𝑦)

for all (𝑥, 𝑦) ∈ ℝ × Δ𝑘.

Proof. This result is obvious from the definition of 𝑤𝑘 and Theorem 2.10. □

Before stating a Dynamic Programming Principle for the time-dependent value functions, we first

investigate their regularity. In particular, we aim to demonstrate that each𝑤𝑘 is concave in 𝑦 and jointly

continuous with estimates on its modulus of continuity.

Proposition 2.14. For each 𝑘 ∈ {1,… , 𝑟}, the function 𝑤𝑘(𝑡, 𝑥, ⋅) is concave for each (𝑡, 𝑥).

Proof. We proceed by backward induction. Notice that the set Δ𝑟 is a singleton, so the functions 𝑤𝑟
and 𝑣𝑟 are both trivially concave in 𝑦.
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Suppose that 𝑣𝑘+1 is concave in 𝑦 for some 𝑘 ∈ {1,… , 𝑟 − 1}. The key observation is that the map

Δ𝑘 ⧵ {𝑒𝑘} ∋ 𝑦 → (1 − 𝑦𝑘)𝑣𝑘+1
(
𝑥, 𝑃𝑘(𝑦)

)
= (𝑦𝑘+1 +⋯ + 𝑦𝑟)𝑣𝑘+1

(
𝑥,

(0,… , 0, 𝑦𝑘+1,… , 𝑦𝑟)
𝑦𝑘+1 +⋯ + 𝑦𝑟

)
is concave for every 𝑥 ∈ ℝ because it is the perspective transformation of the concave map Δ𝑘+1 ∋
𝑦 → 𝑣𝑘+1(𝑥, 𝑦) (see section 3.2.6 in Boyd & Vandenberghe, 2004).

With this in mind, fix any (𝑡, 𝑥) ∈ [𝑡𝑘−1, 𝑡𝑘] ×ℝ, 𝑦1, 𝑦2 ∈ Δ𝑘, and 𝜆 ∈ [0, 1]. Let 𝛼1, 𝛼2 ∈  be arbi-

trary controls for which

𝑌
𝑡,𝑦1,𝛼1
𝑢 , 𝑌

𝑡,𝑦2,𝛼2
𝑢 ∈ Δ𝑘,

almost surely, for all 𝑢 ≥ 𝑡. Define 𝑦 ∶= 𝜆𝑦1 + (1 − 𝜆)𝑦2 and 𝛼𝑢 ∶= 𝜆𝛼1,𝑢 + (1 − 𝜆)𝛼2,𝑢. Then, 𝛼 ∈ 
and

𝑌 𝑡,𝑦,𝛼𝑢 ∈ Δ𝑘,

almost surely, for all 𝑢 ≥ 𝑡 by the convexity of the set Δ𝑘.
Then, using the concavity of the perspective map, we can compute

𝑤𝑘(𝑡, 𝑥, 𝑦) ≥ 𝔼
[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
≥ 𝔼

[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+ 𝜆

(
1 − 𝑌 (𝑘),𝑡,𝑦1,𝛼1𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦1,𝛼1
𝑡𝑘

))
+ (1 − 𝜆)

(
1 − 𝑌 (𝑘),𝑡,𝑦2,𝛼2𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦2,𝛼2
𝑡𝑘

))]
= 𝜆𝔼

[
𝑌
(𝑘),𝑡,𝑦1,𝛼1
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦1,𝛼1𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦1,𝛼1
𝑡𝑘

))]
+ (1 − 𝜆)𝔼

[
𝑌
(𝑘),𝑡,𝑦2,𝛼2
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦2,𝛼2𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦2,𝛼2
𝑡𝑘

))]
.

But because 𝛼1, 𝛼2 were arbitrary, we conclude

𝑤𝑘(𝑡, 𝑥, 𝑦) ≥ 𝜆𝑤𝑘(𝑡, 𝑥, 𝑦1) + (1 − 𝜆)𝑤𝑘(𝑡, 𝑥, 𝑦2).

Then, 𝑤𝑘 is concave in 𝑦, and hence so is 𝑣𝑘 by Corollary 2.13. Then the result holds by induction.□

We can go a step further and obtain a detailed estimate of the joint continuity of 𝑤𝑘.

Proposition 2.15. There exists 𝐶 > 0, which depends only on 𝑓 and 𝜇, such that for each 𝑘 ∈
{1,… , 𝑟 − 1}, we have

||𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥′, 𝑦′)|| ≤ 𝐶 (||𝑡 − 𝑡′||1∕4 + ||𝑥 − 𝑥′|| + (
1 + |𝑥| + ||𝑥′||) ‖𝑦 − 𝑦′‖1∕4𝓁2

))
for all (𝑡, 𝑥, 𝑦), (𝑡′, 𝑥′, 𝑦′) ∈ [𝑡𝑘−1, 𝑡𝑘] ×ℝ × Δ𝑘.
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The proof of this statement is relatively straightforward but long-winded, so we relegate it to

Appendix C. We do not claim that these Hölder exponents are sharp.

Proof. See Appendix C. □

The upside of this representation as an optimal stochastic control problem is that we can characterize

each time-dependent value function𝑤𝑘 as a viscosity solution of a corresponding HJB equation. At this

point, we can prove a Dynamic Programming Principle for the time-dependent value functions. While

these are state-constrained stochastic control problems, we can directly use the a priori continuity of

𝑤𝑘 in 𝑦 and convexity of Δ𝑘 as in the proof of Lemma 2.8.

Theorem 2.16. Fix 𝑘 ∈ {1,… , 𝑟 − 1}, (𝑡, 𝑥, 𝑦) ∈ [𝑡𝑘−1, 𝑡𝑘) ×ℝ × Δ𝑘, and any ℎ > 0 such that 𝑡 + ℎ <
𝑡𝑘. Let {𝜏𝛼}𝛼∈𝑡 be a family of stopping times independent of 𝑡 and valued in [𝑡, 𝑡 + ℎ]. Then

𝑤𝑘(𝑡, 𝑥, 𝑦) = sup
𝛼∈𝑡

𝔼
[
𝑤𝑘

(
𝜏𝛼,𝑋𝑡,𝑥
𝜏𝛼
, 𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)]
s.t. 𝑌 𝑡,𝑦,𝛼𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡, almost surely.

Proof. See Appendix D. □

From this result, we can immediately verify that each time-dependent value function is a viscosity

solution of an HJB. Once we have the Dynamic Programming Principle in hand, this result becomes rea-

sonably standard, so we direct the interested reader to Katsoulakis (1994), Bouchard and Nutz (2012),

and Rokhlin (2014).

We first define elliptic operators 𝐹𝑘,𝐺𝑘 ∶ 𝕊1+𝑟 × Δ𝑘 → ℝ as

𝐹𝑘(𝑅, 𝑦) ∶= sup

{(
1
𝑎

)⊤
𝑅

(
1
𝑎

)
∣ 𝑎 ∈ 𝔸𝑘(𝑦)

}

𝐺𝑘(𝑅, 𝑦) ∶= sup

{(
0
𝑎

)⊤
𝑅

(
0
𝑎

)
∣ 𝑎 ∈ 𝔸𝑘(𝑦), ‖𝑎‖𝓁2 = 1

}
,

where

𝔸𝑘(𝑦) ∶=
{
𝑎 ∈ ℝ𝑟 ∣ ∃𝜖 > 0 s.t. 𝑦 + 𝑎 (−𝜖, 𝜖) ⊂ Δ𝑘

}
.

The intuition behind these definitions is that 𝔸𝑘(𝑦) encodes admissible directions in which a state-

constrained martingale starting from 𝑦 ∈ Δ𝑘 may evolve. In particular, a martingale constrained to

lie in Δ𝑘 cannot have nonzero quadratic variation in the outer normal direction on the boundary. The

elliptic operator 𝐹𝑘 shows up naturally from applying Dynamic Programming, while 𝐺𝑘 encodes the

concavity in 𝑦.

The main properties of 𝐹𝑘 and 𝐺𝑘 are that

𝐹𝑘(𝑅, 𝑦) < +∞ ⇒ 𝐺𝑘(𝑅, 𝑦) ≤ 0
𝐺𝑘(𝑅, 𝑦) < 0 ⇒ 𝐹𝑘(𝑅, 𝑦) < +∞.

Then, following the arguments of Bayraktar and Sirbu (2013), we can deduce that the value function

is a viscosity solution of an equation involving an envelope with 𝐺𝑘.
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Proposition 2.17. The function 𝑤𝑟 is the unique solution of the heat equation (in reversed time),{
𝑢𝑡 +

1
2𝑢𝑥𝑥 = 0 in [𝑡𝑟−1, 𝑡𝑟) ×ℝ × Δ𝑟

𝑢 = 𝑓 on {𝑡 = 𝑡𝑟} ×ℝ × Δ𝑟.

For each 𝑘 ∈ {1,… , 𝑟 − 1}, 𝑤𝑘 is a continuous viscosity solution of the HJB equation,{
min

{
𝑢𝑡 + 𝐹𝑘(𝐷2𝑥𝑦𝑢, 𝑦), 𝐺𝑘(𝐷

2
𝑥𝑦𝑢, 𝑦)

}
= 0 in [𝑡𝑘−1, 𝑡𝑘) ×ℝ × Δ𝑘

𝑢 = 𝑦𝑘𝑓 (𝑥) + (1 − 𝑦𝑘)𝑣𝑘+1(𝑥, 𝑃𝑘(𝑦)) on {𝑡 = 𝑡𝑘} ×ℝ × Δ𝑘.
(2.9)

The proof of this statement follows from a standard argument and an additional analysis of admis-

sible controls on the boundaries. For more details on the introduction of the operator 𝐺𝑘 to obtain a

variational inequality, we refer the interested reader to Bayraktar and Sirbu (2013) or section 4 in Pham

(2009).

The more important question, of course, is whether or not one can obtain a uniqueness result for

viscosity solutions of (2.9). It is standard to show that (2.9) admits a comparison principle when we

have Dirichlet conditions on the boundary of Δ𝑘. In the following, we demonstrate that we can prove

uniqueness even with second-order boundary conditions using the special structure of the domain.

Theorem 2.18. There is a unique continuous viscosity solution of (2.9), which satisfies

|𝑢(𝑡, 𝑥, 𝑦)| ≤ 𝐶 (1 + |𝑥|)
for some 𝐶 > 0.

Of course the time-dependent value functions satisfy this linear growth constraint as a corollary of

Proposition 2.15.

The key idea in this proof is that when we restrict a viscosity solution of (2.9) to the relative interior

of any face 𝐹 of Δ𝑘 in the 𝑦-coordinate, the restricted function is a viscosity solution of the same

equation on a smaller state-space. In particular, when restricted to a vertex, the equation reduces to

the heat equation, for which we immediately have uniqueness. We then apply the comparison principle

to the equation restricted to an edge using the fact that we have uniqueness on the vertices to deduce

uniqueness on edges. We proceed as such on higher dimensional faces until we prove uniqueness on

all of Δ𝑘.

Sketch of Proof. Fix 𝑘 ∈ {1,… , 𝑟 − 1} and let 𝑢, 𝑣 ∶ [𝑡𝑘−1, 𝑡𝑘] ×ℝ × Δ𝑘 → ℝ be two continuous vis-

cosity solutions of (2.9). Suppose that 𝑢 > 𝑣 at some point. By the terminal condition, this must occur

at some 𝑡0 < 𝑡𝑘.

Suppose that there exists a vertex 𝑦0 of the simplex Δ𝑘 such that 𝑢 ≠ 𝑣 at some point when restricting

to 𝑦0 in the 𝑦-coordinate. By proposition 6.9 in Touzi (2013), we note that both 𝑢 and 𝑣 are viscosity

solutions of the heat equation when restricting the vertex 𝑦0 in the 𝑦-coordinate. But this contradicts

uniqueness for the heat equation.

Let 𝐹 be a minimal dimension face of the simplex Δ𝑘 such that 𝑢 ≠ 𝑣 at some point when restricting

to 𝐹 in the 𝑦-coordinate. Again, by propositon 6.9 in Touzi (2013), we conclude that both 𝑢 and 𝑣

are viscosity solutions of the same equation on the relative interior of 𝐹 . Of course, the boundary of

𝐹 is the union of lower dimension faces of the simplex Δ𝑘, so, by the assumed minimal dimension

property of 𝐹 , we conclude that 𝑢 = 𝑣 when restricting to the boundary of 𝐹 in the 𝑦-coordinate. Then

by applying the comparison principle to (2.9) with Dirichlet boundaries, we deduce that 𝑢 = 𝑣 on 𝐹 .

The theorem then follows by considering the 𝑘-dimensional face, Δ𝑘 itself. □
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3 APPLICATION TO SUPERHEDGING WITH A VOLATILITY
OUTLOOK

In this section, we consider an application of distribution-constrained optimal stopping in mathematical

finance. In particular, we consider the problem of model-free superhedging of a contingent claim with

payoff 𝑓 (𝑋𝑇 ) using only dynamic trading in an underlying asset 𝑋.

We assume that the price process 𝑋𝑡 is a martingale under some unknown martingale measure ℚ,

but do not specify the exact volatility dynamics. However, in this problem, we assume that we have an

outlook on the volatility in the form of the distribution of the quadratic variation, ⟨𝑋⟩𝑇 .2
3.1 Model-free superhedging
We follow the model-free setting of Galichon et al. (2014) and Bonnans and Tan (2013). LetΩ ∶= {𝜔 ∈
𝐶([0, 𝑇 ],ℝ) ∣ 𝜔0 = 0} be the canonical space equipped with uniform norm ‖𝜔‖∞ ∶= sup0≤𝑡≤𝑇 |𝜔𝑡|,
𝐵 the canonical process, ℚ0 the Wiener measure, 𝔽 ∶= {𝑡}0≤𝑡≤𝑇 the filtration generated by 𝐵, and

𝔽+ ∶= {+
𝑡 }0≤𝑡≤𝑇 the right-limit of 𝔽 .

Fix some initial value 𝑥0 ∈ ℝ. Then, we denote

𝑋𝑡 ∶= 𝑥0 + 𝐵𝑡.

For any real-valued, 𝔽 -progressively measurable process 𝛼 satisfying ∫ 𝑇0 𝛼2𝑠 d𝑠 < ∞,ℚ0-a.s., we define

the probability measure on (Ω, ),

ℚ𝛼 ∶= ℚ0◦ (𝑋𝛼)
−1 ,

where

𝑋𝛼𝑡 ∶= 𝑥0 + ∫
𝑡

0
𝛼𝑟 d𝐵𝑟.

Then 𝑋𝛼 is a ℚ𝛼-local martingale. We denote by  the collection of all such probability measures

ℚ on (Ω, ) under which 𝑋 is a ℚ-uniformly integrable martingale. The quadratic variation process⟨𝑋⟩ = ⟨𝐵⟩ is universally defined under any ℚ ∈ , and takes values in the set of all nondecreasing

continuous functions from ℝ+ to ℝ+.

Let 𝜇 be a given probability distribution of the form (2.1). Then, we consider the problem

𝑈 ∶= sup
ℚ∈

𝔼ℚ [
𝑓 (𝑋𝑇 )

]
s.t. ⟨𝑋⟩𝑇 ∼ 𝜇,

where  is a collection of admissible martingale measures. This corresponds to a model-free super-

hedging price in a sense made clear by the duality results in, for example, Bonnans and Tan (2013).

3.2 Equivalence to distribution-constrained optimal stopping
We show that this problem is equivalent to distribution-constrained optimal stopping of Brownian

motion.
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Proposition 3.1. We have

𝑈 ∶= sup
ℚ∈

𝔼ℚ [
𝑓 (𝑋𝑇 )

]
= sup
𝜏∈

𝔼ℚ0
[
𝑓 (𝑋𝜏 )

]
.

s.t. ⟨𝑋⟩𝑇 ∼ 𝜇 s.t. 𝜏 ∼ 𝜇.

Proof. This argument can be found in theorem 2.4 of Bonnans and Tan (2013). For completeness, we

reproduce it below.

Let ℚ ∈  such that the ℚ-distribution of ⟨𝑋⟩𝑇 is 𝜇. It follows by the Dambis–Dubins–Schwarz

Theorem that𝑋𝑇 = 𝑥 + 𝑊̃⟨𝑋⟩𝑇 , where 𝑊̃ is a standard Brownian motion and 𝜏 ∶= ⟨𝑋⟩𝑇 is a stopping

time with respect to the time-changed filtration with distribution 𝜇 (see theorem 4.6 in Karatzas &

Shreve, 1991). Then 𝑈 ≤ sup𝜏∼𝜇 𝔼ℚ0 [𝑓 (𝑋𝜏 )].
Let 𝜏 be a stopping time such that 𝜏 ∼ 𝜇. Define a process 𝑋𝜏 as

𝑋𝜏𝑡 ∶= 𝑥 + 𝐵𝜏∧ 𝑡
𝑇−𝑡
.

Note that𝑋𝜏 is a continuous martingale on [0, 𝑇 ]with ⟨𝑋𝜏⟩𝑇 = 𝜏, so𝑋𝜏 induces a probability measure

ℚ ∈  such that ⟨𝑋𝜏⟩𝑇 = 𝜏 ∼ 𝜇. Then the opposite inequality holds. □

Then, one can obtain a model-free super-hedging price with a volatility outlook by solving the

iterated stochastic control problem in Section 2.3.

3.3 Numerical example
In this section, we obtain approximate numerical solutions of the distribution-constrained optimal stop-

ping problem using finite-difference schemes.

In particular, we consider two potential outlooks on volatility. In the first, the binary outlook, we

assume equal probability between a high- and low-volatility scenario:

𝜇2 ∶=
1
2
𝛿10 +

1
2
𝛿20.

In the second, we augment the binary outlook with a third extreme volatility scenario, which occurs

with small probability:

𝜇3 ∶=
9
20
𝛿10 +

9
20
𝛿20 +

1
10
𝛿100.

Our goal is to compute the model-free superhedging price of a European call option under each volatil-

ity outlook. Because we do not restrict to models where the price process is nonnegative, we can take

the payoff to be 𝑓 (𝑥) ∶= 𝑥+ without loss of generality.

Then, as before, we define value functions for each outlook as

𝑣2(𝑥) ∶= sup
𝜏∈ (𝜇2)

𝔼𝑥
[
𝑓 (𝑊𝜏 )

]
and 𝑣3(𝑥) ∶= sup

𝜏∈ (𝜇3)
𝔼𝑥

[
𝑓 (𝑊𝜏 )

]
.

We solve the problem using the iterated stochastic control approach from Section 2.3. In particular,

we obtain a viscosity solution of the corresponding HJB equation in Section 2.4 using a finite-difference

scheme. It is important to emphasize that because of potential degeneracy due to the extra state variables

in 𝑤2 and 𝑤3, it is critical to use a monotone numerical scheme.
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In these results, we apply a version of the wide-stencil scheme introduced in Oberman (2007). In

particular, we approximate the nonlinear terms in each equation by monotone finite-difference approx-

imations of the following form:

sup
𝛼∈ℝ

[(
1
𝛼

)⊤(
𝑢𝑥𝑥 𝑢𝑥𝑦
𝑢𝑥𝑦 𝑢𝑦𝑦

)(
1
𝛼

)]
≈ max
𝑘∈(𝑡,𝑥,𝑦)

𝑢(𝑥 + ℎ, 𝑡, 𝑦 + 𝑘) − 2𝑢(𝑥, 𝑡, 𝑦) + 𝑢(𝑥 − ℎ, 𝑡, 𝑦 − 𝑘)
ℎ2

,

where the set (𝑡, 𝑥, 𝑦) is a collection such that 𝑦 ± 𝑘 lies on nearby grid-points. For a rigorous analysis

of wide-stencil schemes for degenerate elliptic equations, we refer the reader to Oberman (2007, 2008)

and Froese and Oberman (2011).

For comparison, we consider two main special cases, which we refer to as the “mean volatility” value

and the “support-constrained” value. We define the mean volatility value as the model-free superhedg-

ing price obtained by assuming the quadratic variation will be equal to the mean of the distribution in

the corresponding distribution-constrained problem. We define their corresponding value functions as

𝑣2 and 𝑣3, respectively. On the other hand, we define the support-constrained value as the model-free

superhedging price obtained when only restricting the quadratic variation to have the same support as

that of the distribution in the corresponding distribution-constrained problem. We define their corre-

sponding value functions as 𝑣2 and 𝑣3, respectively.

We expect the following ordering:

𝑓 (𝑥) ≤ 𝑣2(𝑥) ≤ 𝑣2(𝑥) ≤ 𝑣2(𝑥)
and

𝑓 (𝑥) ≤ 𝑣3(𝑥) ≤ 𝑣3(𝑥) ≤ 𝑣3(𝑥).
Furthermore, we note that we can compute 𝑣2, 𝑣2, 𝑣3, and 𝑣3 explicitly in terms of heat kernels (see

section 2.3 in Evans, 2010).

We illustrate the value function for the two- and three-atom problem in Figure 3.1 and Figure 3.2,

respectively. As expected, we see a superhedging value which is increasing in the underlying asset

price (or, equivalently, decreasing in the strike price) and respects the bounds implied by the support-

constrained and average-volatility models. As expected, the bound provided by the support-constrained

superhedging problem is particularly poor in the three-model volatility outlook, where we stipulate that

the high volatility (high value) case is rare.

It is interesting to note that careful comparison of the two figures illustrates an increase in super-

hedging value between the two volatility outlooks, which is roughly proportional to the increase in

square-root of expected quadratic variation. For example, there is approximately a 25% increase in

value at 𝑥 = 0, which is essentially exactly in line with the 25.2% increase in square-root of expected

quadratic variation between the two outlooks. This matches our intuition that call option superhedging

prices should be proportional to expected volatility to first order.

In Figure 3.3, we provide a probability density estimate of 𝑊10 conditional on 𝜏 = 10 and 𝜏 =
20 for an approximate optimal stopping time for the two-atom volatility outlook model starting from

𝑊0 = 0. We obtain these estimates by performing Monte Carlo simulations with controls estimated

from a numerical solution of the associated HJB equations. We use grid spacings 𝑑𝑥 = 0.1, 𝑑𝑦 =
0.005, and 𝑑𝑡 = 0.01. We perform 107 simulations and verify that relevant statistics from the Monte

Carlo simulation match those from the finite-difference solutions (e.g., expected payoff, distribution

and moments of the stopping time and stopped process) to within a reasonable margin of error.
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F I G U R E 3 . 1 Comparison of the model-free superhedging values corresponding to distribution constraints on

quadratic variation (𝑣2), support constraints on quadratic variation (𝑣2), and averaged quadratic variation (𝑣2). Each

of these is in the two-atom (binary) volatility outlook. The distribution-constrained value corresponds with the value

function of an optimal stopping problem under a two-atom distribution constraint
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F I G U R E 3 . 2 Comparison of the model-free superhedging values corresponding to distribution constraints on

quadratic variation (𝑣3), support constraints on quadratic variation (𝑣3), and averaged quadratic variation (𝑣3). Each of

these is in the three-atom (trinary) volatility outlook. The distribution-constrained value corresponds with the value

function of an optimal stopping problem under a three-atom distribution constraint

The density estimates provide insight into the form of the optimal strategy. Recall that the payoff is

locally affine at all points except 𝑥 = 0, where it is strictly convex instead. Then, we expect an optimal

stopping strategy to be one, which maximizes local time accumulated at the origin. As expected, we

find that the density of𝑊10 conditional upon 𝜏 = 10 is largely concentrated on points away from 𝑥 = 0,

at which the payoff process is unlikely to spend significant time as a submartingale if we were to choose

not to stop.

It is interesting to note the lack of sharp cutoff between the two density estimates. One might expect

the optimal strategy to be of a form where there exists a “stopping region” and a “continuation region.”
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F I G U R E 3 . 3 Probability density estimates of 𝑊10 conditional on 𝜏 = 10 and 𝜏 = 20 for an optimal stopping

time for the two-atom volatility outlook model starting from 𝑊0 = 0. Density estimates were made by Monte Carlo

simulations on high-resolution solutions to the associated HJB equations. Sample size,𝑁 = 107

On the contrary, the smooth overlap of the two density estimates is persistent even as we vary the

resolution of the finite-difference solver, which suggests that the true optimal stopping strategy is not

of the form {𝜏 = 10} ⊂ 𝜎(𝑊10). That is, the numerics suggest that optimal stopping strategies may be

path dependent even in simple examples.
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ENDNOTES
1 We emphasize that the preceding inequalities are hardly sharp. An immediate question is whether a sharper approxi-

mation result, with a constant that scales favorably as 𝑟→ ∞, exists.

2 We note that while it may seem unlikely that we have an atomic measure representing our volatility outlook, this is

a reasonable starting place for two reasons. It is possible to approximate more general measures by atomic measures

because it is possible to prove continuity of the value function in the Wasserstein topology (see lemma 3.1 in Cox

& Källblad, 2017). Second, pricing by allowing only a finite number of scenarios, as opposed to specifying a full

continuous-valued model, is standard in industry (e.g., the specification of rates, default, and prepayment scenarios in

standard models for securitized products).
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APPENDIX A: PROOF OF LEMMA 2.8
This first argument is in the spirit of proofs of the weak dynamic programming principle, which avoid

measurable selection, as in Bouchard and Touzi (2011), Bouchard and Nutz (2012), and Bayraktar and

Yao (2013). In these arguments, the authors typically use a covering argument to find a countable

selection of 𝜖-optimal controls on small balls of the state-space. The main difficulty here is that while

a control may be admissible for the state-constrained problem at one point in state-space, there is no

reason to expect it to satisfy the state constraints starting from nearby states.

The new idea in our approach is to cover Δ𝑘+1 with a finite mesh. We show that we can replace the

process 𝑌 by a modified process 𝑌 𝜖 , which lies on the mesh points almost surely at the terminal time.

We construct the new process in a measurable way using the Martingale Representation Theorem on a

carefully constructed random variable. Then, we show that, using the continuity of 𝑣𝑘+1, the objective

function along 𝑌 is close to that along 𝑌 𝜖 for a fine enough grid.

Once we know we can consider a perturbed process 𝑌 𝜖 , which lies on a finite number of points in

Δ𝑘+1 at the terminal time almost surely, we can construct 𝜖-optimal stopping times using a standard

covering argument in ℝ.

Proof. Fix (𝑥, 𝑦) ∈ ℝ × Δ𝑘. For convenience of notation, define

𝐴 ∶= sup
𝛼∈𝑡𝑘−1

𝔼
[
𝑌
(𝑘),𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡𝑘−1,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘
, 𝑌
𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

)]
s.t. 𝑌

𝑡𝑘−1,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡𝑘−1
𝑌
(𝑘),𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

∈ {0, 1}, almost surely.

In the remainder of this proof, we do not write 𝑡𝑘−1 in the superscripts of𝑋 and 𝑌 because it is always

fixed.

Step 1: Fix an arbitrary 𝜖 > 0. Choose 𝑅 > 0 large enough that

ℙ

[
sup
𝑡𝑘−1≤𝑢≤𝑡𝑘

|||𝑊𝑢 −𝑊𝑡𝑘−1 ||| ≥ 𝑅
]
≤ 𝜖2.

Because 𝑣𝑘+1 is continuous on the compact set [𝑥 −𝑅, 𝑥 +𝑅] × Δ𝑘+1, we can find 𝛿 > 0 small

enough that

||𝑣𝑘+1(𝑥′, 𝑦′) − 𝑣𝑘+1(𝑥′, 𝑦′′)|| ≤ 𝜖
for all 𝑥′ ∈ [𝑥 −𝑅, 𝑥 +𝑅] and 𝑦′, 𝑦′′ ∈ Δ𝑘+1 such that

‖𝑦′ − 𝑦′′‖𝓁∞ ≤ 𝛿.

https://doi.org/10.1111/mafi.12171
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Similarly, because 𝑓 is Lipschitz and 𝑣𝑘+1 is Lipschitz in 𝑥 uniformly in 𝑦, we can find 𝛿 > 0,

possibly smaller than before, such that we also have

||𝑓 (𝑥′) − 𝑓 (𝑥′′)|| + ||𝑣𝑘+1(𝑥′, 𝑦′) − 𝑣𝑘+1(𝑥′′, 𝑦′)|| ≤ 𝜖
for all 𝑥′, 𝑥′′ ∈ ℝ and 𝑦′ ∈ Δ𝑘+1 such that

||𝑥′ − 𝑥′′|| ≤ 𝛿.
Step 2: We now construct a finite mesh on Δ𝑘+1. Let  ∶= {𝑦𝑗}𝑁𝑗=1 be a finite subset of Δ𝑘+1 with the

property that

• the convex hull of  is Δ𝑘+1, and

• any point 𝑦 ∈ Δ𝑘+1 can be written as a convex combination of finitely many points in  ,

each contained in a 𝛿-neighborhood of 𝑦.

This is possible by compactness and convexity of Δ𝑘+1. In particular, we can define a contin-

uous function 𝑇 ∶ Δ𝑘+1 → [0, 1]𝑁 with the properties that

• 𝑇𝑗(𝑦) = 0 for all 𝑦 ∈ Δ𝑘+1 such that |𝑦 − 𝑦𝑗| > 𝛿,
•

∑𝑁
𝑗=1 𝑇𝑗(𝑦) = 1 for all 𝑦 ∈ Δ𝑘+1, and

•
∑𝑁
𝑗=1 𝑦𝑗𝑇𝑗(𝑦) = 𝑦 for all 𝑦 ∈ Δ𝑘+1.

This corresponds to a continuous map from a point 𝑦 ∈ Δ𝑘+1 to a probability weighting of

points in  such that 𝑦 is a convex combination of nearby points in  . Such a map can be

obtained by an 𝓁2-minimization problem, for instance.

Step 3: Let {𝐴𝑖}𝑖≥1 be a countable and disjoint covering of ℝ with an associated set of points {𝑥𝑖}
such that the 𝛿-ball centered at 𝑥𝑖 contains the set 𝐴𝑖.

For each 𝑖 ≥ 1 and 𝑗 ∈ {1,… , 𝑁}, let 𝜏𝑖,𝑗 ∈ 𝑡𝑘 be a stopping time satisfying

𝜏𝑖,𝑗 ∼
𝑟∑

𝓁=1
𝑦
(𝓁)
𝑗
𝛿𝑡𝓁

such that

𝔼
[
𝑓
(
𝑋
𝑡𝑘,𝑥𝑖
𝜏𝑖,𝑗

)] ≥ 𝑣𝑘+1(𝑥𝑖, 𝑦𝑗) − 𝜖.
Note that the above uses 𝑦

(𝓁)
𝑗

to denote the 𝓁th entry of the vector 𝑦𝑗 .

By choice of 𝛿 > 0 in the first step and the definition of the sets 𝐴𝑖, we have

𝑣𝑘+1(𝑥𝑖, 𝑦𝑗) ≥ 𝑣𝑘+1(𝑥, 𝑦𝑗) − 𝜖
𝔼
[
𝑓
(
𝑋
𝑡𝑘,𝑥
𝜏𝑖,𝑗

)] ≥ 𝔼
[
𝑓
(
𝑋
𝑡𝑘,𝑥𝑖
𝜏𝑖,𝑗

)]
− 𝜖

for all 𝑥 ∈ 𝐴𝑖.
Putting these inequalities together, we conclude that

𝔼
[
𝑓
(
𝑋
𝑡𝑘,𝑥
𝜏𝑖,𝑗

)] ≥ 𝑣𝑘+1(𝑥, 𝑦𝑗) − 3𝜖

for all 𝑖 ≥ 1, 𝑗 ∈ {1,… , 𝑁}, and 𝑥 ∈ 𝐴𝑖.
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Step 4: Let 𝛼 ∈ 𝑡𝑘−1 be an arbitrary control for which 𝑌
𝑦,𝛼
𝑢 ∈ Δ𝑘 for 𝑢 ≥ 𝑡𝑘−1 and 𝑌

(𝑘),𝑦,𝛼
𝑡𝑘

∈ {0, 1}
almost surely. For any 0 < ℎ < 𝑡𝑘 − 𝑡𝑘−1, define two random variables,𝑀1 and𝑀2, as

𝑀1 ∶= ℎ−1∕2(𝑊𝑡𝑘 −𝑊𝑡𝑘−ℎ) (A.1)

𝑀2 ∶= ℎ−1∕2 max
𝑡𝑘−ℎ≤𝑠≤𝑡𝑘 |𝑊𝑠 −𝑊𝑡𝑘−ℎ − 𝛿−1(𝑠 − 𝑡𝑘 + ℎ) (𝑊𝑡𝑘 −𝑊𝑡𝑘−ℎ)|.

Then, 𝑀1 and 𝑀2 are 𝑡𝑘-measurable and independent of each other. 𝑀1 is equal in distri-

bution to a standard normal distribution, the cumulative distribution function of which we

denote by Φ. Similarly, 𝑀2 is equal in distribution to the absolute maximum of a standard

Brownian bridge on [0, 1], the cumulative distribution function of which we denote by Φ𝐵𝐵 .
Furthermore, if we define

 ∶= 𝜎(𝑡𝑘−ℎ ∪ 𝜎(𝑊𝑡𝑘 )),
then𝑀1 is -measurable, while𝑀2 is independent of .

Define a random vector 𝑌 𝑡𝑘 as

𝑌
(𝑘)
𝑡𝑘

∶= 1{𝑀2≤Φ−1
𝐵𝐵

(𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)}

and

𝑌
(𝑘+1)∶𝑟
𝑡𝑘

∶= 1{𝑀2>Φ−1
𝐵𝐵

(𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)}

×
𝑁∑
𝑗=1
𝑦𝑗1{Φ−1(

∑𝑗−1
𝑖=1 𝑇𝑖(𝑃𝑘(𝑌

𝑦,𝛼
𝑡𝑘−ℎ

)))<𝑀1≤Φ−1(
∑𝑗
𝑖=1 𝑇𝑖(𝑃𝑘(𝑌

𝑦,𝛼
𝑡𝑘−ℎ

)))},

where we follow the conventions that Φ−1(0) = −∞, Φ−1(1) = +∞, and that sums over an

empty set are zero. We denote the (𝑘 + 1)th through 𝑟th entry in the random vector by 𝑌
(𝑘+1)∶𝑟
𝑡𝑘

.

Then 𝑌 𝑡𝑘 ∈ Δ𝑘 is 𝑡𝑘-measurable and is constructed to have the key property that

𝔼
[
𝑌 𝑡𝑘 ∣ 𝑡𝑘−ℎ

]
= 𝑌 𝑦,𝛼
𝑡𝑘−ℎ
,

almost surely.

By the Martingale Representation Theorem, there exists 𝛼𝜖 ∈  for which 𝑌
𝑦,𝛼𝜖
𝑡𝑘

= 𝑌 𝑡𝑘 almost

surely. It is clear by the construction that 𝑌 𝑡𝑘 is independent of 𝑡𝑘−1 , so we can take 𝛼𝜖 ∈
𝑡𝑘−1 . Then, by construction, 𝑌

𝑦,𝛼𝜖
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡𝑘−1, 𝑌

(𝑘),𝑦,𝛼𝜖
𝑡𝑘

∈ {0, 1}, and 𝑌
𝑦,𝛼𝜖
𝑡𝑘

∈ 
when 𝑌

(𝑘),𝑦,𝛼𝜖
𝑡𝑘

= 0, almost surely.

We now perform a key computation. First, note that

𝔼
[
𝑌
(𝑘),𝑦,𝛼𝜖
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌
𝑦,𝛼𝜖
𝑡𝑘

)]
= 𝔼

[
1
{𝑌

(𝑘)
𝑡𝑘

=1}
𝑓
(
𝑋𝑥𝑡𝑘

)]
+ 𝔼

[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌 𝑡𝑘

)]
.
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For the first term on the right-hand side, we simply compute

𝔼
[
1
{𝑌

(𝑘)
𝑡𝑘

=1}
𝑓
(
𝑋𝑥𝑡𝑘

)]
= 𝔼

[
1{𝑀2≤Φ−1

𝐵𝐵
(𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)}𝑓
(
𝑋𝑥𝑡𝑘

)]
= 𝔼

[
𝔼
[
1{𝑀2≤Φ−1

𝐵𝐵
(𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)} ∣ 
]
𝑓
(
𝑋𝑥𝑡𝑘

)]
= 𝔼

[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘−ℎ
𝑓
(
𝑋𝑥𝑡𝑘

)]
.

We deal with the second term in a similar way, but the computation is more involved. Note

that by construction we have

‖𝑌 𝑡𝑘 − 𝑃𝑘 (𝑌 𝑡,𝑦,𝛼𝑡𝑘−ℎ)‖𝓁∞ ≤ 𝛿

almost surely in the set {𝑌
(𝑘)
𝜃 = 0}. Recall we also took 𝛿 small enough such that

|𝑣𝑘+1(𝑥′, 𝑦′) − 𝑣𝑘+1(𝑥′, 𝑦′′)| ≤ 𝜖
for all 𝑥′ ∈ [𝑥 −𝑅, 𝑥 + 𝑅] and 𝑦′, 𝑦′′ ∈ Δ𝑘+1 such that ‖𝑦′ − 𝑦′′‖𝓁∞ ≤ 𝛿. But then we can

compute

𝔼
[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌 𝑡𝑘

)]
= 𝔼

[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
1{|𝑊𝑡𝑘 |≤𝑅}𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌 𝑡𝑘

)]
+ 𝔼

[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
1{|𝑊𝑡𝑘 |≥𝑅}𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌 𝑡𝑘

)]
≥ 𝔼

[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
1{|𝑊𝑡𝑘 |≤𝑅}𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
+𝔼

[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
1{|𝑊𝑡𝑘 |≥𝑅}𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌 𝑡𝑘

)]
− 𝜖

≥ 𝔼
[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
−𝔼

[
1{|𝑊𝑡𝑘 |≥𝑅}

(||||𝑣𝑘+1 (𝑋𝑥𝑡𝑘 , 𝑌 𝑡𝑘)|||| + ||||𝑣𝑘+1 (𝑋𝑥𝑡𝑘 , 𝑌 𝑦,𝛼𝑡𝑘−ℎ)||||
)]

− 𝜖

≥ 𝔼
[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
− 2

√
ℙ
[|𝑊𝑡𝑘 | ≥ 𝑅]𝐶(1 + |𝑥|) − 𝜖

≥ 𝔼
[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
− 2(1 + 𝐶)(1 + |𝑥|)𝜖,

where 𝐶 > 0 comes from the growth bound from Proposition 2.7. With this in hand, we now

complete the analysis of the second term:

𝔼
[
1
{𝑌

(𝑘)
𝑡𝑘
=0}
𝑣𝑘+1

(
𝑋𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
= 𝔼

[
1{𝑀2>Φ−1

𝐵𝐵
(𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)}𝑣𝑘+1

(
𝑋𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
= 𝔼

[
𝔼
[
1{𝑀2>Φ−1

𝐵𝐵
(𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)} ∣ 
]
𝑣𝑘+1

(
𝑋𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
= 𝔼

[(
1 − 𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)
𝑣𝑘+1

(
𝑋𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
.



BAYRAKTAR AND MILLER 393

Using the continuity of 𝑓 , 𝑣𝑘+1, and 𝑃𝑘, along with the Dominated Convergence Theorem, we

note

lim
ℎ→0

𝔼
[
𝑌

(𝑘),𝑦,𝛼
𝑡𝑘−ℎ
𝑓
(
𝑋𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)
𝑣𝑘+1

(
𝑋𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
= 𝔼

[
𝑌

(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼
𝑡𝑘

))]
= 𝔼

[
𝑌

(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥
𝑡𝑘
, 𝑌
𝑦,𝛼
𝑡𝑘

)]
.

Then putting these results together, we see that for ℎ > 0 small enough

𝔼
[
𝑌

(𝑘),𝑦,𝛼𝜖
𝑡𝑘
𝑓
(
𝑋𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥
𝑡𝑘
, 𝑌
𝑦,𝛼𝜖
𝑡𝑘

)]
≥ 𝔼

[
𝑌

(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥
𝑡𝑘
, 𝑌
𝑦,𝛼
𝑡𝑘

)]
− 𝜖 − 2(1 + 𝐶)(1 + |𝑥|)𝜖.

Step 5: Finally, we intend to construct an 𝜖-optimal stopping time using the covering from the second

step. Define a stopping time 𝜏𝜖 as

𝜏𝜖 ∶= 𝑡𝑘 + 1{𝑌 (𝑘),𝑡,𝑦,𝛼𝜖𝑡𝑘
=0}

∞∑
𝑖=1

𝑁∑
𝑗=1
𝜏𝑖,𝑗1{𝑋𝑥𝑡𝑘∈𝐴𝑖}

1{𝑌 𝑦,𝛼𝜖𝑡𝑘 =𝑦𝑗}
.

By construction, we have 𝜏𝜖 ∼
∑𝑟

𝓁=1 𝑦𝓁𝛿𝑡𝓁 . We proceed to make a careful computation. First,

note that

𝔼
[
𝑓
(
𝑋𝑥𝜏𝜖

)]
= 𝔼

[
1{𝜏𝜖=𝑡𝑘}𝑓

(
𝑋𝑥𝑡𝑘

)]
+ 𝔼

[
1{𝜏𝜖>𝑡𝑘}𝑓

(
𝑋𝑥𝜏𝜖

)]
.

We focus on the second term. In particular, we have

𝔼
[
1{𝜏𝜖>𝑡𝑘}𝑓

(
𝑋𝑥𝜏𝜖

)]
=

∞∑
𝑖=1

𝑁∑
𝑗=1

𝔼
[
1{𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

=0}1{𝑋𝑥𝑡𝑘∈𝐴𝑖}
1{𝑌 𝑦,𝛼𝜖𝑡𝑘 =𝑦𝑗}

𝑓
(
𝑋𝑥𝜏𝑖,𝑗

)]
=

∞∑
𝑖=1

𝑁∑
𝑗=1

𝔼
[
1{𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

=0}1{𝑋𝑥𝑡𝑘∈𝐴𝑖}
1{𝑌 𝑦,𝛼𝜖𝑡𝑘 =𝑦𝑗}

𝔼
[
𝑓
(
𝑋𝑥𝜏𝑖,𝑗

)
∣ 𝑡𝑘

]]
≥ ∞∑
𝑖=1

𝑁∑
𝑗=1

𝔼
[
1{𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

=0}1{𝑋𝑥𝑡𝑘∈𝐴𝑖}
1{𝑌 𝑦,𝛼𝜖𝑡𝑘 =𝑦𝑗}

𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌
𝑦,𝛼𝜖
𝑡𝑘

)]
− 3𝜖

= 𝔼
[(

1 − 𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

)
𝑣𝑘+1(𝑋𝑥𝑡𝑘 , 𝑌

𝑦,𝛼𝜖
𝑡𝑘

)
]
− 3𝜖,

where the inequality follows from the construction in the third step and the independence of

the stopping times 𝜏𝑖𝑗 with respect to 𝑡𝑘 .
Then, we conclude

𝔼
[
𝑓
(
𝑋𝑥𝜏𝜖

)] ≥ 𝔼
[
𝑌
(𝑘),𝑦,𝛼𝜖
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌
𝑦,𝛼𝜖
𝑡𝑘

)]
− 3𝜖.

Combining this with the main inequality from the previous step, we obtain

𝑣𝑘(𝑥, 𝑦) ≥ 𝔼
[
𝑓
(
𝑋𝑥𝜏𝜖

)]
≥ 𝔼

[
𝑌
(𝑘),𝑦,𝛼𝜖
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌
𝑦,𝛼𝜖
𝑡𝑘

)]
− 3𝜖

≥ 𝔼
[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌
𝑦,𝛼
𝑡𝑘

)]
− 4𝜖 − 2(1 + 𝐶)(1 + |𝑥|)𝜖.
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Because 𝜖 and 𝛼 were arbitrary, then we conclude 𝐴 ≤ 𝑣𝑘(𝑥, 𝑦).
Step 6: Let 𝜏 ∈ 𝑡𝑘 be an arbitrary stopping time such that 𝜏 ∼

∑𝑟
𝓁=1 𝑦𝓁𝛿𝑡𝓁 . Define a martingale as

𝑌
(𝑖)
𝑡 ∶= 𝔼

[
1{𝜏=𝑡𝑖} ∣ 𝑡

]
for all 𝑡 ≥ 0 and each 𝑖 ∈ {1,… , 𝑟}. We can easily check that 𝑌

(𝑖)
0 = 𝑦𝑖 for each 𝑖 ∈ {1,… , 𝑟}

and

𝑌
(1)
𝑡 +⋯ + 𝑌 (𝑟)𝑡 = 𝔼

[
1{𝜏=𝑡1} +⋯ + 1{𝜏=𝑡𝑟} ∣ 𝑡

]
= 1.

Then, if we consider 𝑌 as an ℝ𝑟-valued martingale with 𝑌
(𝑖)
𝑡 ≡ 0 for all 𝑖 ∈ {1,… , 𝑘 − 1},

then we see 𝑌𝑡 ∈ Δ𝑘 for each 𝑡 ≥ 0. Finally, we have

𝑌
(𝑘)
𝑡𝑘

= 𝔼
[
1{𝜏=𝑡𝑘} ∣ 𝑡𝑘

]
= 1{𝜏=𝑡𝑘} ∈ {0, 1}.

Then, by the Martingale Representation Theorem, there exists 𝛼 ∈ 𝑡𝑘 for which 𝑌
𝑦,𝛼
𝑡 = 𝑌𝑡

for all 𝑡 ≥ 0, almost surely. We can compute

𝔼
[
𝑓
(
𝑋𝑥𝜏

)]
= 𝔼

[
1{𝜏=𝑡𝑘}𝑓

(
𝑋𝑥𝑡𝑘

)
+ 1{𝜏>𝑡𝑘}𝑓

(
𝑋𝑥𝜏

)]
= 𝔼

[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝔼
[
𝑓
(
𝑋𝑥𝜏

)
∣ 𝑡𝑘

]]
.

On the set {𝜏 > 𝑡𝑘}, we have

ℙ
[
𝜏 = 𝑡𝑖 ∣ 𝑡𝑘

]
= 𝔼

[
1{𝜏=𝑡𝑖} ∣ 𝑡𝑘

]
= 𝑌 (𝑖)𝑡𝑘

for each 𝑖 ∈ {𝑘 + 1,… , 𝑟}. For almost every 𝜔 ∈ {𝜏 > 𝑡𝑘}, we have

𝔼
[
𝑓
(
𝑋𝑥𝜏

)
∣ 𝑡𝑘

] ≤ 𝑣𝑘+1 (𝑋𝑥𝑡𝑘 , 𝑌 𝑦,𝛼𝑡𝑘 )
by the Strong Markov Property and stationarity properties of Brownian motion. Then, we

conclude

𝔼
[
𝑓
(
𝑋𝑥𝜏

)] ≤ 𝔼
[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌
𝑦,𝛼
𝑡𝑘

)] ≤ 𝐴.
Because 𝜏 was an arbitrary stopping time, this implies

𝑣𝑘(𝑥, 𝑦) ≤ 𝐴.
□

APPENDIX B: PROOF OF LEMMA 2.9
The main idea of this argument is that we can take a controlled process 𝑌 , which does not satisfy

𝑌
(𝑘)
𝑡𝑘

∈ {0, 1}, and modify it on an interval [𝑡𝑘 − ℎ, 𝑡𝑘] to a perturbed process 𝑌 𝜖 with the properties

that 𝑌𝑡𝑘−ℎ = 𝑌
𝜖
𝑡𝑘−ℎ

and 𝑌
𝜖,(𝑘)
𝑡𝑘

∈ {0, 1}. In particular, we may do this in a way that does not appreciably

change the expected payoff.

One key idea, which we draw the reader's attention toward, is the use of the Brownian bridge over

[𝑡𝑘 − ℎ, 𝑡𝑘] in the construction. This construction is in the spirit of Corollary 2.3. While one might
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initially attempt a construction similar to Corollary 2.2, using a Brownian bridge instead of Brownian

increments allows us to condition on𝑊𝑡𝑘 at a key point in the argument.

Proof. Fix (𝑥, 𝑦) ∈ ℝ × Δ𝑘. For convenience of notation, define

𝐴 ∶= sup
𝛼∈𝑡𝑘−1

𝔼
[
𝑌
(𝑘),𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡𝑘−1,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘
, 𝑌
𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

)]
s.t. 𝑌

𝑡𝑘−1,𝑦,𝛼
𝑢 ∈ Δ𝑘 for 𝑢 ≥ 𝑡𝑘−1
𝑌
(𝑘),𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

∈ {0, 1} almost surely,

and

𝐵 ∶= sup
𝛼∈𝑡𝑘−1

𝔼
[
𝑌
(𝑘),𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

𝑓
(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡𝑘−1,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋
𝑡𝑘−1,𝑥
𝑡𝑘
, 𝑃𝑘(𝑌
𝑡𝑘−1,𝑦,𝛼
𝑡𝑘

)
)]

s.t. 𝑌
𝑡𝑘−1,𝑦,𝛼
𝑢 ∈ Δ𝑘 for 𝑢 ≥ 𝑡𝑘−1.

By Lemma 2.8, we have 𝑣𝑘(𝑥, 𝑦) = 𝐴. In the remainder of the proof we withhold the superscript 𝑡𝑘−1
on 𝑋 and 𝑌 for the sake of brevity.

Step 1: Let 𝛼 ∈ 𝑡𝑘−1 be an arbitrary control for which 𝑌
𝑦,𝛼
𝑢 ∈ Δ𝑘 for 𝑢 ≥ 𝑡𝑘−1 and 𝑌

(𝑘),𝑦,𝛼
𝑡𝑘

∈ {0, 1}
almost surely. Note that 𝑌

𝑦,𝛼
𝑡𝑘

= 𝑃𝑘(𝑌
𝑦,𝛼
𝑡𝑘

) on the set {𝑌 (𝑘),𝑦,𝛼𝑡𝑘 = 0}, almost surely. Then

𝔼
[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌
𝑦,𝛼
𝑡𝑘

)]
= 𝔼

[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼
𝑡𝑘

))] ≤ 𝐵.
Because 𝛼 was arbitrary, we conclude 𝐴 ≤ 𝐵.

Step 2: Let 𝛼 ∈ 𝑡𝑘−1 be an arbitrary control for which 𝑌
𝑦,𝛼
𝑢 ∈ Δ𝑘 for 𝑢 ≥ 𝑡𝑘−1, almost surely. For any

0 < ℎ < 𝑡𝑘 − 𝑡𝑘−1, define a random variable𝑀 as

𝑀 ∶= ℎ−1∕2 max
𝑡𝑘−ℎ≤𝑠≤𝑡𝑘 |𝑊𝑠 −𝑊𝑡𝑘−ℎ − ℎ−1(𝑠 − 𝑡𝑘 + ℎ) (𝑊𝑡𝑘 −𝑊𝑡𝑘−ℎ)|.

Then𝑀 is 𝑡𝑘-measurable and is equal in distribution to the absolute maximum of a standard

Brownian bridge on [0, 1], the cumulative distribution function of which we denote by Φ𝐵𝐵 .
If we define  ∶= 𝜎(𝑡𝑘−ℎ ∪ 𝜎(𝑊𝑡𝑘 )), then𝑀 is independent of .

Define a random vector 𝑌 𝑡𝑘 as

𝑌
(𝑘)
𝑡𝑘

∶= 1
{𝑀≤Φ−1

𝐵𝐵

(
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)
}

and

𝑌
(𝑘+1)∶𝑟
𝑡𝑘

∶= 𝑃𝑘
(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

)
1
{𝑀>Φ−1

𝐵𝐵

(
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)
}
,

where 𝑌
(𝑘+1)∶𝑟
𝑡𝑘

denotes the (𝑘 + 1)th through 𝑟th element in the vector. Let 𝑌
(𝑖)
𝑡𝑘

≡ 0 for any

𝑖 ∈ {1,… , 𝑘 − 1}. Then 𝑌 𝑡𝑘 is 𝑡𝑘-measurable and has the key property that 𝔼[𝑌 𝑡𝑘 ∣ 𝑡𝑘−ℎ] =
𝑌
𝑦,𝛼

𝑡𝑘−ℎ
. We also note that 𝔼[1

{𝑌
(𝑘)
𝑡𝑘

=1}
∣ ] = 𝑌 (𝑘),𝑦,𝛼

𝑡𝑘−ℎ
.
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By the Martingale Representation Theorem, there exists 𝛼𝜖 ∈ 𝑡𝑘−1 such that 𝑌
𝑦,𝛼𝜖
𝑢 ∈ Δ𝑘 for

𝑢 ≥ 𝑡𝑘−1, 𝑌
(𝑘),𝑦,𝛼𝜖
𝑡𝑘

∈ {0, 1}, and 𝑌
𝑦,𝛼𝜖
𝑡𝑘

= 𝑌 𝑡𝑘 almost surely. We can then compute

𝔼
[
𝑌
(𝑘),𝑦,𝛼𝜖
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌
𝑦,𝛼𝜖
𝑡𝑘

)]
= 𝔼

[
1
{𝑌

(𝑘)
𝑡𝑘

=1}
𝑓
(
𝑋𝑥𝑡𝑘

)
+ 1

{𝑌
(𝑘)
𝑡𝑘

=0}
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
= 𝔼

[
𝔼
[
1
{𝑌

(𝑘)
𝑡𝑘

=1}
∣ 

]
𝑓
(
𝑋𝑥𝑡𝑘

)
+ 𝔼

[
1
{𝑌

(𝑘)
𝑡𝑘

=0}
∣ 

]
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
= 𝔼

[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘−ℎ
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
.

But by the continuity and growth bounds of 𝑓 and 𝑣𝑘+1, we can apply the Dominated Conver-

gence Theorem to see

lim
𝛿→0+

𝔼
[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘−ℎ
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
= 𝔼

[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼
𝑡𝑘

))]
.

So then, for any 𝜖 > 0, we may take ℎ > 0 small enough that

𝔼
[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼
𝑡𝑘

))]
≤ 𝔼

[
𝑌
(𝑘),𝑦,𝛼
𝑡𝑘−ℎ
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼
𝑡𝑘−ℎ

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑦,𝛼

𝑡𝑘−ℎ

))]
+ 𝜖

= 𝔼
[
𝑌
(𝑘),𝑦,𝛼𝜖
𝑡𝑘
𝑓
(
𝑋𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑦,𝛼𝜖𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑥𝑡𝑘
, 𝑌
𝑦,𝛼𝜖
𝑡𝑘

)]
+ 𝜖

≤ 𝐴 + 𝜖.
Because 𝜖 and 𝛼 were arbitrary, we conclude 𝐵 ≤ 𝐴. □

APPENDIX C: PROOF OF PROPOSITION 2.15
Proof. We proceed in several steps, each relating the value function between nearby points. In the first

three points, we consider a shift backward in the time variable, a shift forward in time variable away

from the terminal time, and lastly a jump onto the terminal time. In the fourth step, we discuss arbitrary

perturbations in 𝑥. In the fifth step, we discuss a perturbation inside the interior of some face of Δ𝑘,
including a possible jump off the face. In the sixth step, we consider a jump from an interior point onto

a face of Δ𝑘. Finally, in the final step, we discuss how to put these together into one coherent bound.

Step 1: Fix (𝑡, 𝑥, 𝑦) ∈ [𝑡𝑘−1, 𝑡𝑘] ×ℝ × Δ𝑘 and 𝑡′ ∈ [𝑡𝑘−1, 𝑡𝑘] such that 𝑡′ ≤ 𝑡. Let 𝛼 ∈  be an arbitrary

control for which 𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡, almost surely. Define a new control 𝛼′ ∈  as

𝛼′𝑢 ∶= 1{𝑢≥𝑡}𝛼𝑢,

for all 𝑢 ≥ 𝑡′. We can see that 𝑌
𝑡′,𝑦,𝛼′
𝑢 ∈ Δ𝑘 for all 𝑢 ∈ [𝑡′, 𝑡𝑘] and 𝑌

𝑡′,𝑦,𝛼′

𝑡𝑘
= 𝑌 𝑡,𝑦,𝛼𝑡𝑘 , almost surely.

Then
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𝑤𝑘(𝑡′, 𝑥, 𝑦) ≥ 𝔼
[
𝑌
(𝑘),𝑡′,𝑦,𝛼′
𝑡𝑘
𝑓
(
𝑋𝑡

′,𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡

′,𝑦,𝛼′

𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡

′,𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡′,𝑦,𝛼′

𝑡𝑘

))]
= 𝔼

[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡

′,𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡

′,𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
≥ 𝔼

[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
−2𝐶 𝔼 ||𝑊𝑡 −𝑊𝑡′ || ,

where 𝐶 > 0 is at least as large as the Lipschitz constants in 𝑥 for 𝑓 and 𝑣𝑘+1. But recall that

for Brownian motion we can find 𝐶 > 0 such that

𝔼 ||𝑊𝑡 −𝑊𝑡′ || ≤ 𝐶 ||𝑡 − 𝑡′||1∕2 .
Using this and the fact that 𝛼 was arbitrary, we then conclude

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥, 𝑦) ≤ 2𝐶2 ||𝑡 − 𝑡′||1∕2 .
Step 2: Fix (𝑡, 𝑥, 𝑦) ∈ [𝑡𝑘−1, 𝑡𝑘) ×ℝ × Δ𝑘 and 𝑡′ ∈ [𝑡𝑘−1, 𝑡𝑘) such that 𝑡 ≤ 𝑡′. Define

𝜂 ∶=

√
𝑡𝑘 − 𝑡
𝑡𝑘 − 𝑡′

≥ 1.

Let 𝛼 ∈  be an arbitrary control for which 𝑌
𝑡,𝑦,𝛼′
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡, almost surely. Define

new control 𝛼′ ∈  as

𝛼′𝑢 ∶= 𝜂 𝛼𝜏𝑢 ,

where

𝜏𝑢 ∶= 𝜂2(𝑢 − 𝑡′) + 𝑡

for all 𝑢 ∈ [𝑡′, 𝑡𝑘]. Note that 𝛼′𝑢 ∈ 𝜏𝑢 by definition. Because 𝜏𝑢 ≤ 𝑢, we then have 𝛼′𝑢 ∈ 𝑢 so

it is an adapted control. We can also check by the time-change properties of the Itô Integral

that (
𝑊𝑡𝑘 −𝑊𝑡′ , 𝑌

𝑡′,𝑦,𝛼′

𝑡𝑘

) (𝑑)
=

(
𝜂−1(𝑊𝑡𝑘 −𝑊𝑡), 𝑌

𝑡,𝑦,𝛼
𝑡𝑘

)
.

Then 𝑌
𝑡′,𝑦,𝛼′
𝑢 ∈ Δ𝑘 for all 𝑢 ∈ [𝑡′, 𝑡𝑘], almost surely, by the convexity of Δ𝑘 and the martingale

property of 𝑌 . Then 𝛼′ is an admissible control.

We can compute

𝑤𝑘(𝑡′, 𝑥, 𝑦) ≥ 𝔼
[
𝑌
(𝑘),𝑡′,𝑦,𝛼′
𝑡𝑘
𝑓
(
𝑋𝑡

′,𝑥
𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡

′,𝑦,𝛼′

𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡

′,𝑥
𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡′,𝑦,𝛼′

𝑡𝑘

))]
≥ 𝔼

[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼

′

𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼′

𝑡𝑘

))]
−2𝐶(1 − 𝜂−1)𝔼 |||𝑊𝑡𝑘 −𝑊𝑡||| .
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Now we proceed to bound the final term in this inequality. First, note that by the convexity of

𝑥 → 𝑥−1∕2, we can a bound

𝜂−1 =
(
1 + 𝑡

′ − 𝑡
𝑡𝑘 − 𝑡′

)−1∕2
≥ 1 − 𝑡

′ − 𝑡
2(𝑡𝑘 − 𝑡′)

.

Furthermore, for large enough 𝐶 > 0, depending only upon 𝑡𝑟, we have 𝔼|𝑊𝑢| ≤ 𝐶 for all

𝑢 ∈ [0, 𝑡𝑟]. Then we can estimate

(1 − 𝜂−1)𝔼 |||𝑊𝑡𝑘 −𝑊𝑡||| ≤ 2𝐶 𝑡
′ − 𝑡

2(𝑡𝑘 − 𝑡′)
.

Putting these together and recalling that 𝛼 was arbitrary, we conclude

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥, 𝑦) ≤ 4𝐶2
||𝑡 − 𝑡′||
𝑡𝑘 − 𝑡′
.

Step 3: Fix (𝑡, 𝑥, 𝑦) ∈ [𝑡𝑘−1, 𝑡𝑘] ×ℝ × Δ𝑘 and let 𝛼 ∈  be an arbitrary control for which 𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘

for all 𝑢 ≥ 𝑡, almost surely. By the Lipschitz continuity of 𝑓 and 𝑣𝑘+1 in 𝑥 we can compute

𝔼
[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
≤ 𝔼

[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓 (𝑥) +

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑥, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
+ 𝐶𝔼

[|||𝑊𝑡𝑘 −𝑊𝑡|||] .
We can bound the error term by 𝐶|𝑡𝑘 − 𝑡|1∕2. By viewing the term containing 𝑣𝑘+1 as a per-

spective map applied to a concave function (see the proof of Proposition 2.14) and noting that

the controlled process 𝑌 is a martingale, we can apply Jensen's Inequality to see

𝔼
[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓 (𝑥) +

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑥, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))] ≤ 𝑦𝑘𝑓 (𝑥) + (1 − 𝑦𝑘)𝑣𝑘+1(𝑥, 𝑃𝑘(𝑦))

≤ 𝑤𝑘(𝑡𝑘, 𝑥, 𝑦).
But then because 𝛼 was arbitrary, we conclude that

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤(𝑡𝑘, 𝑥, 𝑦) ≤ 𝐶 ||𝑡𝑘 − 𝑡||1∕2 .
Step 4: Fix (𝑡, 𝑥, 𝑦) ∈ [𝑡𝑘−1, 𝑡𝑘] ×ℝ × Δ𝑘 and 𝑥′ ∈ ℝ. Let 𝛼 ∈  be an arbitrary control for which

𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡, almost surely. Then we immediately compute

𝑤𝑘(𝑡, 𝑥′, 𝑦) ≥ 𝔼
[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥

′

𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥

′

𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
≥ 𝔼

[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
−2𝐶 ||𝑥 − 𝑥′|| ,

where 𝐶 > 0 is at least as large as the Lipschitz constant in 𝑥 of 𝑓 and 𝑣𝑘+1. Because 𝛼 was

arbitrary, we conclude

𝑤𝑘(𝑡, 𝑥′, 𝑦) ≥ 𝑤(𝑡, 𝑥, 𝑦) − 2𝐶 ||𝑥 − 𝑥′|| .
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Step 5: Fix (𝑡, 𝑥, 𝑦) ∈ [𝑡𝑘−1, 𝑡𝑘] ×ℝ × Δ𝑘. Suppose for now that 𝑦 is not a vertex of Δ𝑘, or equivalently

that the value in each coordinate is less than one. Denote by

 ∶=
{
𝑖 ∈ {1,… , 𝑟} ∣ 𝑦𝑖 = 0

}
,  = {1,… , 𝑟} ⧵ 

the disjoint collections of coordinates in which 𝑦 is zero and nonzero, respectively. Let

𝛿 ∶= min
𝑖∈

{
min{|𝑦𝑖|, |1 − 𝑦𝑖|}} > 0.

Let 𝑦′ ∈ Δ𝑘 be any point satisfying ‖𝑦 − 𝑦′‖𝓁∞ ≤ 𝛿2. Let 𝛼 ∈  be an arbitrary control for

which 𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡, almost surely. Note that 𝛼 equals zero almost surely for each

coordinate in .

Define a new control 𝛼′ ∈  as

𝛼′𝑢 ∶=
(
1 − ‖𝑦 − 𝑦′‖1∕2𝓁∞

)
𝛼𝑢

and note that by construction, we have

min
(
𝑌 (𝑖),𝑡,𝑦,𝛼

′
𝑢 , 1 − 𝑌 (𝑖),𝑡,𝑦,𝛼′𝑢

) ≥ 𝛿‖𝑦 − 𝑦′‖1∕2𝓁∞

for each 𝑖 ∈  . Similarly, we have

min
(
𝑌 (𝑖),𝑡,𝑦

′,𝛼′

𝑢
, 1 − 𝑌 (𝑖),𝑡,𝑦′,𝛼′

𝑢

) ≥ 𝛿‖𝑦 − 𝑦′‖1∕2
𝓁2 −‖𝑦 − 𝑦′‖𝓁2 ≥

(
𝛿−‖𝑦−𝑦′‖1∕2

𝓁2

)‖𝑦−𝑦′‖1∕2𝓁 ≥ 0,

for all 𝑢 ≥ 𝑡, almost surely. This together with the observation that 𝛼′ equals zero in each direc-

tion in  implies that 𝑌
𝑡,𝑦′,𝛼′

𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡 almost surely. Furthermore, we have

‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑌 𝑡,𝑦
′,𝛼′

𝑡𝑘
‖𝓁∞ ≤ ‖𝑦 − 𝑦′‖𝓁∞ +

(
1 −

√
1 − ‖𝑦 − 𝑦′‖1∕2𝓁∞

)‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑦‖𝓁∞

≤ ‖𝑦 − 𝑦′‖𝓁∞ +𝑅‖𝑦 − 𝑦′‖1∕2𝓁∞

≤ (1 + 𝑅)‖𝑦 − 𝑦′‖1∕2𝓁∞ , (C.1)

almost surely, where 𝑅 > 0 is the diameter of the set Δ𝑘.
Before proceeding with concrete bounds, we note an estimate regarding the perspective map.

For any 𝑦, 𝑦′ ∈ Δ𝑘 such that 𝑦𝑘, 𝑦
′
𝑘
≠ 1, we have

‖𝑃𝑘(𝑦) − 𝑃𝑘(𝑦′)‖𝓁∞ ≤
(

1
1 − 𝑦𝑘

+ 1
1 − 𝑦′
𝑘

)‖𝑦 − 𝑦′‖𝓁∞ .
That is, the perspective map fails to be Lipschitz as 𝑦𝑘, 𝑦

′
𝑘
→ 1. Using this along with the

Hölder continuity and bounds on 𝑣𝑘+1 from Proposition 2.7, we can carefully bound

|||(1 − 𝑦𝑘)𝑣𝑘+1(𝑥, 𝑃𝑘(𝑦)) − (1 − 𝑦′
𝑘
)𝑣𝑘+1(𝑥, 𝑃𝑘(𝑦′))

|||≤ min{1 − 𝑦𝑘, 1 − 𝑦′𝑘} ||𝑣𝑘+1(𝑥, 𝑃𝑘(𝑦)) − 𝑣𝑘+1(𝑥, 𝑃𝑘(𝑦′))||
+|𝑦𝑘 − 𝑦′𝑘| (||𝑣𝑘+1(𝑥, 𝑃𝑘(𝑦))|| + ||𝑣𝑘+1(𝑥, 𝑃𝑘(𝑦′))||)

≤ √
2𝐶‖𝑦 − 𝑦′‖1∕2𝓁∞ + 2𝐶(1 + |𝑥|)‖𝑦 − 𝑦′‖𝓁∞ .
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This bound is easily seen in the case 𝑦𝑘, 𝑦
′
𝑘
≠ 1 and may be carefully checked when either

equals zero exactly.

Then using the bound above as well as the growth bounds on 𝑓 , we check

𝑤𝑘(𝑡, 𝑥, 𝑦′) ≥ 𝔼
[
𝑌
(𝑘),𝑡,𝑦′,𝛼′
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦

′,𝛼′

𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦′,𝛼′

𝑡𝑘

))]
≥ 𝔼

[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
−𝔼

[√
2𝐶‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑌 𝑡,𝑦

′,𝛼′

𝑡𝑘
‖1∕2𝓁∞ + 3𝐶|𝑋𝑡,𝑥𝑡𝑘 |‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑌 𝑡,𝑦

′,𝛼′

𝑡𝑘
‖𝓁∞]
.

Applying Hölder's Inequality and the almost-sure bound in (C.1), we bound the last term by

𝔼
[|𝑋𝑡,𝑥𝑡𝑘 | ‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑌 𝑡,𝑦

′,𝛼′

𝑡𝑘
‖𝓁∞] ≤ (

𝑥2 + 𝑡𝑟
)1∕2 (1 + 𝑅)1∕2‖𝑦 − 𝑦′‖1∕4𝓁∞ .

Putting these all together and recalling that 𝛼 was arbitrary, we conclude

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡, 𝑥, 𝑦′) ≤ 𝐶(1 + |𝑥|)‖𝑦 − 𝑦′‖1∕4
𝓁2
,

for large enough constant 𝐶 > 0.

If 𝑦 is a vertex, then the only admissible control is 𝛼 ≡ 0, so we obtain the same bound (in fact

a better bound) for any nearby 𝑦′ directly from Proposition 2.7.

Step 6: Fix some 𝛿 > 0 at least small enough that 𝛿 < 1∕(2𝑟). Fix (𝑡, 𝑥, 𝑦) ∈ [𝑡𝑘−1, 𝑡𝑘] ×ℝ × Δ𝑘 such

that at least one element of (𝑦𝑘,… , 𝑦𝑟) is in (0, 𝛿2). Denote by

 ∶=
{
𝑖 ∈ {1,… , 𝑟} ∣ 𝑦𝑖 = 0

}
,  =

{
𝑖 ∈ {1,… , 𝑟} ∣ 𝑦𝑖 ∈ (0, 𝛿2)

}
,

 ∶= {1,… , 𝑟} ⧵ ( ∪  )

the disjoint collections of coordinates in which 𝑦 is zero, “small,” and “large,” respectively. Let

𝑦′ ∈ Δ𝑘 be any point obtained from setting elements of 𝑦 in  to zero and adding these values

to a single index 𝜅 ∈ . Then 𝑦′ is zero in all coordinates  ∪  and nonzero (and “large”) in

all coordinates . Furthermore, ‖𝑦 − 𝑦′‖𝓁∞ ≥ 𝛿2, so

𝛿 ≤ ‖𝑦 − 𝑦′‖1∕2𝓁∞ .

Let 𝛼 ∈  be an arbitrary control for which 𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡, almost surely. Note that

𝛼 equals zero almost surely for each coordinate in . Similarly, because each component of

𝑌 𝑡,𝑦,𝛼 is a martingale, we conclude

𝛿2 ≥ 𝑦𝑖 = 𝔼
[
𝑌
(𝑖),𝑡,𝑦,𝛼
𝑡𝑘

] ≥ 𝛿ℙ [
𝑌
(𝑖),𝑡,𝑦,𝛼
𝑡𝑘

]
for each 𝑖 ∈  . That is, ℙ[𝑌 (𝑖),𝑡,𝑦,𝛼𝑡𝑘

≥ 𝛿] ≤ 𝛿, so the 𝑖th coordinate of 𝑌 𝑡,𝑦,𝛼 stays small with

high probability.

Define 𝛼′ ∈  by moving the values of 𝛼 at coordinates 𝑖 ∈  to the 𝜅th coordinate. Note that,

by construction,

𝑌 (𝜅),𝑡,𝑦
′,𝛼′

𝑢 = 𝑌 (𝜅),𝑡,𝑦,𝛼𝑢 +
∑
𝑖∈
𝑌 (𝑖),𝑡,𝑦,𝛼𝑢 ∈ [0, 1]
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and 𝑌
(𝜅),𝑡,𝑦′,𝛼′
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡, almost surely. Furthermore, we have

𝑌
(𝑖),𝑡,𝑦′,𝛼′
𝑡𝑘

= 𝑌 (𝑖),𝑡,𝑦,𝛼𝑡𝑘
,

for each 𝑖 ∈  ∪ ⧵ {𝜅}, and

ℙ
[|||𝑌 (𝑖),𝑡,𝑦′,𝛼′𝑡𝑘

− 𝑌 (𝑖),𝑡,𝑦,𝛼𝑡𝑘

||| ≥ 𝛿] ≤ 𝛿
for each 𝑖 ∈  . Finally, we have

ℙ
[|||𝑌 (𝜅),𝑡,𝑦′,𝛼′𝑡𝑘

− 𝑌 (𝜅),𝑡,𝑦,𝛼𝑡𝑘

||| ≥ 𝑟𝛿] ≤ 𝛿.
In summary, we have

ℙ
[‖𝑌 𝑡,𝑦′,𝛼′𝑡𝑘

− 𝑌 𝑡,𝑦,𝛼𝑡𝑘 ‖𝓁∞ ≥ 2𝑟𝛿
] ≤ 𝛿.

Then using the same bounds as in the previous step, we can now compute

𝑤𝑘(𝑡, 𝑥, 𝑦′) ≥ 𝔼
[
𝑌
(𝑘),𝑡,𝑦′,𝛼′
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦

′,𝛼′

𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦′,𝛼
𝑡𝑘

))]
≥ 𝔼

[
𝑌
(𝑘),𝑡,𝑦,𝛼
𝑡𝑘
𝑓
(
𝑋𝑡,𝑥𝑡𝑘

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼𝑡𝑘

)
𝑣𝑘+1

(
𝑋𝑡,𝑥𝑡𝑘
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼
𝑡𝑘

))]
−𝔼

[√
2𝐶‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑌 𝑡,𝑦

′,𝛼′

𝑡𝑘
‖1∕2𝓁∞ + 3𝐶|𝑋𝑡,𝑥𝑡𝑘 |‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑌 𝑡,𝑦

′,𝛼′

𝑡𝑘
‖𝓁∞]
.

The first term on the right-hand side may be bounded as

𝔼
[‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑌 𝑡,𝑦

′,𝛼′

𝑡𝑘
‖1∕2𝓁∞

] ≤ √
2ℙ

[‖𝑌 𝑡,𝑦′,𝛼′𝑡𝑘
− 𝑌 𝑡,𝑦,𝛼𝑡𝑘 ‖𝓁∞ ≥ 2𝑟𝛿

]
+

√
2𝑟𝛿

≤ √
2(𝑟 + 1)𝛿1∕2.

Similarly, the second term may be bounded as

𝔼
[|𝑋𝑡,𝑥𝑡𝑘 |‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑌 𝑡,𝑦

′,𝛼′

𝑡𝑘
‖𝓁∞] ≤

√|𝑥|2 + 𝑡𝑟 𝔼 [‖𝑌 𝑡,𝑦,𝛼𝑡𝑘 − 𝑌 𝑡,𝑦
′,𝛼′

𝑡𝑘
‖2𝓁∞]1∕2

≤ 2
√

(|𝑥|2 + 𝑡𝑟)(1 + 𝑟2)𝛿.
Putting these all together and recalling that 𝛼 was arbitrary and 𝛿 ≤ ‖𝑦 − 𝑦′‖1∕2𝓁∞ , we conclude

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡, 𝑥, 𝑦′) ≤ 𝐶(1 + |𝑥|)‖𝑦 − 𝑦′‖1∕4
𝓁2
,

for large enough constant 𝐶 > 0.

Step 7: We now briefly remark how to put all of these estimates together. We consider the Hölder

estimates in each coordinate separately as they can be combined in the end using triangle

inequality. Note that the Lipschitz regularity in 𝑥 has already been proven.

In the time direction, fix (𝑡, 𝑥, 𝑦) ∈ [𝑡𝑘−1, 𝑡𝑘] ×ℝ × Δ𝑘 and 𝑡′ ∈ [𝑡𝑘−1, 𝑡𝑘] some small 𝜃 > 0
such that 𝜃 < 𝑡𝑘 − 𝑡𝑘−1. If 𝑡′ ≤ 𝑡, then by Step 1 we have

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥, 𝑦) ≤ 2𝐶2 ||𝑡 − 𝑡′||1∕2 .
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If 𝑡 < 𝑡′ = 𝑡𝑘, then by Step 3 we have

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥, 𝑦) = 𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡𝑘, 𝑥, 𝑦) ≤ 𝐶 ||𝑡𝑘 − 𝑡||1∕2 = 𝐶 ||𝑡 − 𝑡′||1∕2 .
Now suppose that 𝑡 < 𝑡′ ≤ 𝑡𝑘 − |𝑡 − 𝑡′|1∕2. By Step 2, we have

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥, 𝑦) ≤ 4𝐶2 |𝑡 − 𝑡′|
𝑡𝑘 − 𝑡′

≤ 4𝐶2 |𝑡 − 𝑡′||𝑡 − 𝑡′|1∕2 = 4𝐶2|𝑡 − 𝑡′|1∕2.
In the next step, we critically see where the (1∕4)-Hölder coefficient appears. If 𝑡𝑘 − |𝑡 −
𝑡′|1∕2 ≤ 𝑡 < 𝑡′ < 𝑡𝑘, then by an application of Step 1 and Step 3, we see

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥, 𝑦) ≤ [𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡𝑘, 𝑥, 𝑦)] + [𝑤𝑘(𝑡𝑘, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥, 𝑦)]

≤ 𝐶|𝑡𝑘 − 𝑡| + 4𝐶2|𝑡𝑘 − 𝑡′|1∕2
≤ 𝐶|𝑡 − 𝑡′|1∕2 + 4𝐶2|𝑡 − 𝑡′|1∕4.

Finally, we consider the case 𝑡 ≤ 𝑡𝑘 − |𝑡 − 𝑡′|1∕2 ≤ 𝑡′ < 𝑡𝑘. By an application of each of Steps

1 through 3, we see

𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥, 𝑦) ≤ [𝑤𝑘(𝑡, 𝑥, 𝑦) −𝑤𝑘(𝑡𝑘 − |𝑡 − 𝑡′|1∕2, 𝑥, 𝑦)]
+ [𝑤𝑘(𝑡𝑘 − |𝑡 − 𝑡′|1∕2, 𝑥, 𝑦) −𝑤𝑘(𝑡𝑘, 𝑥, 𝑦)]
+ [𝑤𝑘(𝑡𝑘, 𝑥, 𝑦) −𝑤𝑘(𝑡′, 𝑥, 𝑦)] ≤ 4𝐶2

|𝑡𝑘 − |𝑡 − 𝑡′|1∕2 − 𝑡||𝑡 − 𝑡′|1∕2
+𝐶|𝑡 − 𝑡′|1∕4 + 4𝐶2|𝑡𝑘 − 𝑡′|1∕2 ≤ 4𝐶2 |𝑡 − 𝑡′||𝑡 − 𝑡′|1∕2
+𝐶|𝑡 − 𝑡′|1∕4 + 4𝐶2|𝑡 − 𝑡′|1∕4

≤ (𝐶 + 8𝐶2)|𝑡 − 𝑡′|1∕4.
Of course, by taking a large enough constant we can bound all |𝑡 − 𝑡′|1∕2 terms by |𝑡 − 𝑡′|1∕4
terms and obtain the (1∕4)-Hölder continuity result in 𝑡.

The (1∕4)-Hölder continuity result follows by a similar approach by cases as in the time pertur-

bation case. The key idea is that Step 5 and Step 6 tell locally how to perturb in a (1∕4)-Hölder

way, including onto and off the boundaries. Then by a covering argument and the compactness

of Δ𝑘 we can obtain a finite chain of local Hölder inequalities connecting any two points and

obtain the result for sufficiently large constant. □

APPENDIX D: PROOF OF THEOREM 2.16
This argument is essentially a time-dependent version of that given in the proof of Lemma 2.8. The

key idea here is to use the convexity of the set Δ𝑘 and the concavity of 𝑤𝑘 in 𝑦 to construct an 𝜖-

suboptimal control, which satisfies the state-constraint as a convex combination of admissible controls

starting from nearby points.
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Proof. Fix (𝑡, 𝑥, 𝑦) ∈ [𝑡𝑘−1, 𝑡𝑘) ×ℝ × Δ𝑘 and 0 < ℎ < 𝑡𝑘 − 𝑡𝑘−1. For convenience of notation, define

𝜃 ∶= 𝑡𝑘 and

𝐴 ∶= sup
𝛼∈𝑡

𝔼
[
𝑤𝑘

(
𝜏𝛼,𝑋𝑡,𝑥
𝜏𝛼
, 𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)]
s.t. 𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡.

The inequality 𝑤𝑘(𝑡, 𝑥, 𝑦) ≤ 𝐴 is a standard result even in the case of these state constraints. We refer

the interested reader to theorem 3.3 in Touzi (2013) and instead focus on the opposite inequality.

Step 1: Fix an arbitrary 𝜖 > 0. Choose 𝑅 > 0 large enough that

ℙ
[

sup
𝑡≤𝑢≤𝑡+ℎ

||𝑊𝑢 −𝑊𝑡|| ≥ 𝑅] ≤ 𝜖2.
Because 𝑤𝑘 is continuous on the compact set [𝑡, 𝑡 + ℎ] × [𝑥 − 𝑅, 𝑥 +𝑅] × Δ𝑘, we can find

𝛿 > 0 small enough that

||𝑤𝑘(𝑡′, 𝑥′, 𝑦′) −𝑤𝑘(𝑡′, 𝑥′, 𝑦′′)|| ≤ 𝜖
for all (𝑡′, 𝑥′) ∈ [𝑡, 𝑡 + ℎ] × [𝑥 −𝑅, 𝑥 + 𝑅] and 𝑦′, 𝑦′′ ∈ Δ𝑘 such that

‖𝑦′ − 𝑦′′‖𝓁∞ ≤ 𝛿.
Similarly, because 𝑓 is Lipschitz and 𝑣𝑘+1 is Lipschitz in 𝑥 uniformly in 𝑦, we can find 𝛿 > 0,

possibly smaller than before, such that we also have

||𝑓 (𝑥′) − 𝑓 (𝑥′′)|| + ||𝑣𝑘+1(𝑥′, 𝑦′) − 𝑣𝑘+1(𝑥′′, 𝑦′)|| ≤ 𝜖
for all 𝑥′, 𝑥′′ ∈ ℝ and 𝑦′ ∈ Δ𝑘+1 such that

||𝑥′ − 𝑥′′|| ≤ 𝛿.
Finally, take 𝛿 > 0 potentially even smaller so that

𝛿1∕2 + 𝛿1∕4 ≤ 𝜖.
Step 2: We first construct a finite mesh on [𝑡, 𝑡 + ℎ] andΔ𝑘, which will be fine enough to take advantage

the continuity of𝑤𝑘. Let Λ ∶= {𝑡𝑖}𝑀𝑖=1 be a finite collection of mesh points in [𝑡, 𝑡 + ℎ] with the

key property that for any 𝑢 ∈ [𝑡, 𝑡 + ℎ], there exists 𝑖 ∈ {1,… ,𝑀} such that 𝑢 ≤ 𝑡𝑖 ≤ 𝑢 + 𝛿.
By the compactness and convexity of Δ𝑘, we can obtain a finite subset of Δ𝑘,  ∶= {𝑦𝓁}𝑃𝓁=1,

with the property that

• the convex hull of  is Δ𝑘 and

• any point 𝑦 ∈ Δ𝑘 can be written as a convex combination of points in  , each contained in

a 𝛿-neighborhood of 𝑦.

In particular, we can find a continuous function 𝑇 ∶ Δ𝑘 → [0, 1]𝑃 with the properties

• 𝑇𝓁(𝑦) = 0 for all 𝑦 ∈ Δ𝑘 such that |𝑦 − 𝑦𝓁| > 𝛿,
•

∑𝑃
𝓁=1 𝑇𝓁(𝑦) = 1 for all 𝑦 ∈ Δ𝑘, and

•
∑𝑃

𝓁=1 𝑦𝓁𝑇𝓁(𝑦) = 𝑦 for all 𝑦 ∈ Δ𝑘.
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This corresponds to a continuous map from a point 𝑦 ∈ Δ𝑘 to a probability weighting of points

in  such that 𝑦 is a convex combination of nearby points in  .

By the same type of covering argument as in the proof of Lemma 2.5, we can obtain a finite

and disjoint covering of [𝑥 −𝑅, 𝑥 + 𝑅] by measurable sets {𝐴𝑗}𝑁𝑗=1, each contained in a 𝛿-ball,

and controls 𝛼𝑖𝑗𝓁 ∈ 𝑡𝑖 with the key properties that 𝑌
𝑡𝑖,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡𝑖 and

𝔼
[
𝑌
(𝑘),𝑡𝑖,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

𝑓
(
𝑋
𝑡𝑖,𝑥

𝜃

)
+

(
1 − 𝑌 (𝑘),𝑡𝑖,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

)
𝑣𝑘+1

(
𝑋
𝑡𝑖,𝑥

𝜃
, 𝑃𝑘

(
𝑌
𝑡𝑖,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

))]
≥ 𝑤𝑘 (𝑡𝑖, 𝑥, 𝑦𝓁) − 3𝜖

for each 𝑖 ∈ {1,… ,𝑀}, 𝑗 ∈ {1,… , 𝑁}, 𝓁 ∈ {1,… , 𝑃 }, and 𝑥 ∈ 𝐴𝑗 .

Step 3: Fix an arbitrary control 𝛼 ∈  for which 𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡 and let 𝜏𝛼 be the associated

stopping time, which is valued in [𝑡, 𝑡 + ℎ]. We are next going to construct a new control related

to the suboptimal controls 𝛼𝑖𝑗𝓁 . In words, we will follow 𝛼 up to the stopping time 𝜏𝛼 , then

set the control to zero until the first subsequent hitting time of Λ. Then, we will follow an

appropriate convex combination of the controls 𝛼𝑖𝑗𝓁 .

To make this precise, define a stopping time

𝜏 ∶= inf{𝑡 ≥ 𝜏𝛼 ∣ 𝑡 ∈ Λ}.

Define a collection of controls 𝛼𝓁 ∈  as

𝛼𝓁,𝑢 ∶= 1{𝑢∈[𝑡,𝜏𝛼]}𝛼𝑢 + 1{𝑢>𝜏}
𝑀∑
𝑖=1

𝑁∑
𝑗=1

1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥
𝜏

∈𝐴𝑗}
𝛼𝑖𝑗𝓁,𝑢

for each 𝓁 ∈ {1,… , 𝑃 } and all 𝑢 ≥ 𝑡. Finally, define a control 𝛼 ∈  as

𝛼𝑢 ∶= 1{𝑢∈[𝑡,𝜏𝛼]}𝛼𝑢 + 1{𝑢>𝜏}
𝑃∑

𝓁=1
𝑇𝓁

(
𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)
𝛼𝓁,𝑢

for all 𝑢 ≥ 𝑡.
The control 𝛼 is adapted because the map 𝑇 is continuous. Similarly, it can be easily seen to

be square-integrable. The key property, however, is that 𝛼 satisfies 𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡. In

words, this follows from the convexity of the set Δ𝑘 and the fact that 𝛼 is a convex combination

of controls, each of which satisfies the state-constraint.

Making this precise, we use the assumed properties of the map 𝑇 and the dynamics of 𝑌 to

compute

𝑌
𝑡,𝑦,𝛼

𝜃
= 𝑦 + ∫

𝜏𝛼

𝑡

𝛼𝑢𝑑𝑊𝑢 + ∫
𝜃

𝜏

𝛼𝑢𝑑𝑊𝑢

= 𝑌 𝑡,𝑦,𝛼
𝜏𝛼

+
∑
𝑖,𝑗,𝓁

1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥
𝜏

∈𝐴𝑗}
𝑇𝓁(𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)∫
𝜃

𝜏

𝛼𝑖𝑗𝓁,𝑢𝑑𝑊𝑢

= 1{|𝑊𝜏−𝑊𝑡|≥𝑅}𝑌 𝑡,𝑦,𝛼𝜏𝛼 +
∑
𝑖,𝑗

1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥
𝜏

∈𝐴𝑗}

(
𝑌
𝑡,𝑦,𝛼
𝜏𝛼

+
∑
𝓁

𝑇𝓁(𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)∫
𝜃

𝜏

𝛼𝑖𝑗𝓁,𝑢𝑑𝑊𝑢

)
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= 1{|𝑊𝜏−𝑊𝑡|≥𝑅}𝑌 𝑡,𝑦,𝛼𝜏𝛼 +
∑
𝑖,𝑗

1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥
𝜏

∈𝐴𝑗}
∑
𝓁

𝑇𝓁(𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)
(
𝑦𝓁 + ∫

𝜃

𝜏

𝛼𝑖𝑗𝓁,𝑢𝑑𝑊𝑢

)
= 1{|𝑊𝜏−𝑊𝑡|≥𝑅}𝑌 𝑡,𝑦,𝛼𝜏𝛼 +

∑
𝑖,𝑗

1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥
𝜏

∈𝐴𝑗}
∑
𝓁

𝑇𝓁(𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)𝑌 𝑡𝑖,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃
.

Recall though that 𝑌
𝑡𝑖,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

∈ Δ𝑘 and 𝑌
𝑡,𝑦,𝛼
𝜏𝛼

∈ Δ𝑘 almost surely. Then the equality above and

the convexity of Δ𝑘 demonstrate that 𝑌
𝑡,𝑦,𝛼
𝑢 ∈ Δ𝑘 for all 𝑢 ≥ 𝑡 almost surely.

Step 4: We now proceed to make a very delicate series of estimates. First, we have

𝑤𝑘(𝑡, 𝑥, 𝑦) ≥ 𝔼
[
𝑌

(𝑘),𝑡,𝑦,𝛼
𝜃
𝑓
(
𝑋𝑡,𝑥
𝜃

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼
𝜃

)
𝑣𝑘+1

(
𝑋𝑡,𝑥
𝜃
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼

𝜃

))]
≥ ∑
𝑖,𝑗

𝔼
[
1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥𝜏 ∈𝐴𝑗}

(
𝑌

(𝑘),𝑡,𝑦,𝛼
𝜃
𝑓
(
𝑋𝑡,𝑥
𝜃

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼
𝜃

)
𝑣𝑘+1

(
𝑋𝑡,𝑥
𝜃
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼

𝜃

)))]
−𝐶𝔼

[
1{|𝑊𝜏|≥𝑅} (1 + |||𝑋𝑡,𝑥𝜏 |||)] ,

where the last term comes from known growth bounds on 𝑓 and 𝑣𝑘+1. Of course, this term is

bounded by 𝜖
√
𝐶(1 + |𝑥|) by the choice of 𝑅 and use of Hölder's Inequality. Next, rewriting

each term in the sum above using the key property from the construction of 𝛼 in the previous

step, we see

𝔼
[
1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥𝜏 ∈𝐴𝑗}

(
𝑌

(𝑘),𝑡,𝑦,𝛼
𝜃
𝑓
(
𝑋𝑡,𝑥
𝜃

)
+

(
1 − 𝑌 (𝑘),𝑡,𝑦,𝛼
𝜃

)
𝑣𝑘+1

(
𝑋𝑡,𝑥
𝜃
, 𝑃𝑘

(
𝑌
𝑡,𝑦,𝛼

𝜃

)))]
= 𝔼

[
1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥𝜏 ∈𝐴𝑗}

(∑𝑃
𝓁=1 𝑇𝓁

(
𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)
𝑌

(𝑘),𝑡𝑖 ,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

𝑓
(
𝑋𝑡,𝑥
𝜃

)
+

(
1 −

∑𝑃
𝓁=1 𝑇𝓁

(
𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)
𝑌

(𝑘),𝑡𝑖 ,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

)
𝑣𝑘+1

(
𝑋𝑡,𝑥
𝜃
, 𝑃𝑘

(∑𝑃
𝓁=1 𝑇𝓁

(
𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)
𝑌
𝑡𝑖,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

)))]
≥ 𝑃∑

𝓁=1
𝔼
[
1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥𝜏 ∈𝐴𝑗}𝑇𝓁

(
𝑌
𝑡,𝑦,𝛼
𝜏𝛼

) (
𝑌

(𝑘),𝑡𝑖 ,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

𝑓
(
𝑋𝑡,𝑥
𝜃

)
+

(
1 − 𝑌 (𝑘),𝑡𝑖 ,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

)
𝑣𝑘+1

(
𝑋𝑡,𝑥
𝜃
, 𝑃𝑘

(
𝑌
𝑡𝑖,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

)))]
using the concavity of 𝑣𝑘+1 composed with the perspective function in 𝑦 (see the proof of

Proposition 2.14). Next, by the suboptimality conditions of 𝛼𝑖𝑗𝑘, we see

𝔼
[
1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥𝜏 ∈𝐴𝑗}𝑇𝓁

(
𝑌
𝑡,𝑦,𝛼

𝜏𝛼

) (
𝑌

(𝑘),𝑡𝑖 ,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

𝑓
(
𝑋𝑡,𝑥
𝜃

)
+

(
1 − 𝑌 (𝑘),𝑡𝑖 ,𝑦𝓁 ,𝛼𝑖𝑗𝓁
𝜃

)
𝑣𝑘+1

(
𝑋𝑡,𝑥
𝜃
, 𝑃𝑘

(
𝑌
𝑡𝑖,𝑦𝓁 ,𝛼𝑖𝑗𝓁

𝜃

)))]
≥ 𝔼

[
1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥𝜏 ∈𝐴𝑗}𝑇𝓁

(
𝑌
𝑡,𝑦,𝛼

𝜏𝛼

)
𝑤𝑘

(
𝑡𝑖, 𝑋
𝑡,𝑥

𝜏
, 𝑦𝓁

)]
− 3𝜖

≥ 𝔼
[
1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥𝜏 ∈𝐴𝑗}𝑇𝓁

(
𝑌
𝑡,𝑦,𝛼

𝜏𝛼

)
𝑤𝑘

(
𝑡𝑖, 𝑋
𝑡,𝑥

𝜏
, 𝑌
𝑡,𝑦,𝛼

𝜏𝛼

)]
− 4𝜖,

where we used the locality property of the map 𝑇 and continuity of 𝑤𝑘 assumed in the con-

struction of  . Lastly, summing over 𝑖, 𝑗,𝓁, we see

∑
𝑖,𝑗,𝓁 𝔼

[
1{𝜏=𝑡𝑖}1{𝑋𝑡,𝑥𝜏 ∈𝐴𝑗}𝑇𝓁

(
𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)
𝑤𝑘

(
𝑡𝑖, 𝑋
𝑡,𝑥

𝜏
, 𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)]
≥ 𝔼

[
𝑤𝑘

(
𝜏,𝑋𝑡,𝑥
𝜏
, 𝑌
𝑡,𝑦,𝛼
𝜏𝛼

)]
− 𝔼

[
1{(|𝑊𝜏|≥𝑅}𝑤𝑘(𝜏,𝑋𝑡,𝑥𝜏 , 𝑌 𝑡,𝑦,𝛼𝜏𝛼 ]

≥ 𝔼
[
𝑤𝑘(𝜏𝛼,𝑋

𝑡,𝑥
𝜏𝛼 , 𝑌
𝑡,𝑦,𝛼
𝜏𝛼 )

]
− 𝐶 𝔼

[|𝜏 − 𝜏𝛼|1∕4 + |||𝑋𝑡,𝑥𝜏 −𝑋𝑡,𝑥𝜏𝛼
||| + 1{|𝑊𝜏|≥𝑅} (1 + |||𝑋𝑡,𝑥𝜏 |||)]

≥ 𝔼
[
𝑤𝑘

(
𝜏𝛼,𝑋𝑡,𝑥𝜏𝛼 , 𝑌

𝑡,𝑦,𝛼
𝜏𝛼

)]
− 𝐶

(
𝛿1∕4 + 𝛿1∕2 + 𝜖 (1 + |𝑥|)]
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for sufficiently large𝐶 > 0. In this step, we used growth bounds on𝑤𝑘 and the Hölder estimates

from Proposition 2.15 together with the fact that |𝜏 − 𝜏𝛼| ≤ 𝛿 by construction. By the choice

of 𝛿, however, we see this last error term is bounded by 𝐶(2 + |𝑥|)𝜖.
Putting all these computations together and recalling that 𝛼 and 𝜖 > 0 were arbitrary, we see

𝑤𝑘(𝑡, 𝑥, 𝑦) ≥ 𝐴.
□


