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Summary. Distributed lag models (DLMs) have been widely used in environmental epidemiol-
ogy to quantify the lagged effects of air pollution on a health outcome of interest such as mortality
and morbidity.Most previous DLM approaches consider only one pollutant at a time.We propose
a distributed lag interaction model to characterize the joint lagged effect of two pollutants. One
natural way to model the interaction surface is by assuming that the underlying basis functions
are tensor products of the basis functions that generate the main effect distributed lag functions.
We extend Tukey’s 1 degree-of-freedom interaction structure to the two-dimensional DLM con-
text.We also consider shrinkage versions of the two to allow departure from the specified Tukey
interaction structure and achieve bias–variance trade-off. We derive the marginal lag effects of
one pollutant when the other pollutant is fixed at certain quantiles. In a simulation study, we show
that the shrinkage methods have better average performance in terms of mean-squared error
across various scenarios. We illustrate the methods proposed by using the ‘National morbidity,
mortality, and air pollution study’ data to model the joint effects of particulate matter and ozone
on mortality count in Chicago, Illinois, from 1987 to 2000.

Keywords: Shrinkage; Time series; Tukey’s single degree-of-freedom test for non-additivity;
Two-dimensional distributed lag interaction models

1. Introduction

The association between air pollution and adverse health outcomes has been an important
public health concern and a topic of extensive research in environmental epidemiology (Pope
and Dockery, 2006). The short-term, or acute, effects of air pollution exposure on health out-
comes, such as mortality and cardiovascular events, have been widely studied (Pope et al., 1995;
Dominici et al., 2006). However, most studies so far have considered adverse health effects of
exposure to a single pollutant (Dominici et al., 2010). When ambient concentration data are
available for multiple pollutants, it is standard practice to analyse their effects one at a time by
fitting multiple single-pollutant models. However, the health burden from simultaneous expo-
sure to multiple pollutants may differ from the sum of individual effects and the mode of action
can be synergistic or antagonistic (Mauderly, 1993). A multipollutant approach that considers
the joint effects of chemical mixtures of exposures is likely to yield a more accurate assessment of
health risk (Billionnet et al., 2012). A variety of approaches have been proposed to estimate the
health effects of multiple pollutants (Sun et al., 2013), including the least absolute shrinkage and
selection operator (the lasso) (Tibshirani, 1996), classification and regression trees (Hu et al.,
2008) and Bayesian kernel machine regression (Bobb et al., 2014). However, very few methods
so far have considered the problem of capturing the lagged effect of two pollutants and their
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potential interactions over a biologically meaningful time period. Single-day pollution measures
might underestimate risk when there is a cumulative effect of air pollution over a time window
preceding a health event (Roberts, 2005).

Distributed lag models (DLMs) are a class of models that are often used to include lagged
measures of concentration levels of an ambient air pollutant simultaneously. The parametric
DLM assumes that the lag effect coefficients are a function of the lags, such as lower degree
polynomials (Almon, 1965). Generalized additive DLMs (Zanobetti et al., 2000) use penalized
regression splines (Marx and Eilers, 1998) to represent the distributed lag (DL) function in a
more flexible manner. The Bayesian DLM (Welty et al., 2009) was proposed to incorporate
prior knowledge about the DL function through specification of the prior variance–covariance
matrix of lag coefficients. Most of the discussion regarding DLMs has been in the context
of a single pollutant and only few distributed lag interaction models (DLIMs) with two pol-
lutants have been attempted. Extensions to higher dimensions include bivariate constrained
DLIMs (CDLIMs) (Muggeo, 2007) and high degree DLMs (HDDLMs) (Heaton and Peng,
2014). Muggeo (2007) jointly modelled the temperature and air particular matter with aero-
dynamic diameter less than 10μm (PM10) main effect in the same way as a parametric DLM
with two separate sets of basis functions. Tensor products of the two are employed to char-
acterize the joint DL surface for the temperature–PM10 interaction. Heaton and Peng (2014)
extended the DLM framework to incorporate higher order interactions between lagged predic-
tors corresponding to a single exposure, using a Gaussian process prior as a dimension reduction
tool.

Tukey’s 1 degree-of-freedom (DF) test for non-additivity (Tukey, 1949) is a parsimonious
approach to model the interaction term as a scaled product of its corresponding main ef-
fects (Chatterjee et al., 2006; Maity et al., 2009). In this paper, we extend Tukey’s model to
DLIMs where the interaction is parameterized as a scaled product of two DLM main effects.
We shall consider estimation and inference under such an extension in both frequentist and
Bayesian frameworks. We also propose a Bayesian constrained DLIM (BCDLIM) approach
to characterize the joint effect of two pollutants. Instead of shrinking all main effects and in-
teraction effects toward 0, we set a prespecified parametric CDLIM as the shrinkage target in
this approach. The BCDLIM can strike a desirable bias–variance trade-off in a data-adaptive
way.

The rest of the paper is organized as follows. In Section 2, we first review the existing methods,
including

(a) the unconstrained DLIM (UDLIM) and
(b) the CDLIM.

We then introduce the proposed new methods

(i) the Tukey DLIM (TDLIM),
(ii) the Bayesian TDLIM (BTDLIM) and
(iii) the BCDLIM.

In Section 3, we conduct a simulation study to evaluate the operating characteristics of the five
methods. In Section 4, we illustrate the methods by analysing data from the ‘National morbidity,
mortality, and air pollution study’ (NMMAPS) to estimate the lagged effects of particulate
matter with diameter less than 10μm (PM10) and ozone (O3) concentration on mortality in
Chicago, Illinois, from 1987 to 2000. We conclude with a discussion in Section 5.

There are several novel features of this paper. First, we extend the DLM to the DLIM to
handle two pollutants. We attempt to characterize the changes in a true DL function corre-
sponding to one exposure when the other is fixed at different values. Extending the well-known
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Tukey model for interaction to the DLIM is another innovation. Finally, using data-adaptive
shrinkage to allow for an unconstrained interaction model to shrink towards a parametric
DLIM structure is a new contribution to the literature. More broadly, the paper posits new
ideas for thinking about interaction structures between a pair of time series predictors with
potential lagged effects on an outcome. This approach bears relevance beyond air pollution
epidemiology.

2. Methods

Let x1t denote the first exposure measured at time t (e.g. PM10), x2t denote the second exposure
measured at time t (e.g. O3), yt denote the response measured at time t (e.g. daily mortality count)
and zt denote the vector of covariates at time t, such as temperature and humidity, in addition
to a constant 1 corresponding to the intercept parameter. Let T be the length of the time series,
and L1 and L2 be the maximum number of lags considered for the first and second exposure
respectively. In addition, we denote with X1t = .x1t , : : : , x1,t−L1/T and X2t = .x2t , : : : , x2,t−L2/T

the vector of lagged exposures and with XIt =X1t ⊗X2t , where ‘⊗’ is the Kronecker product, the
.L1 +1/.L2 +1/ elements that refer to the two-way interaction terms between the two exposures.
The log-linear Poisson DLIM with all pairwise interactions between lagged measurements of
the two exposures is described as

yt|zt , X1t , X2t , XIt ∼Poisson.μt/, .1/

log.μt/= zT
t α+XT

1tβ1 +XT
2tβ2 +XT

Itγ

= zT
t α+

L1∑
i=0

x1,t−iβ1i +
L2∑

j=0
x2,t−jβ2j +

L1∑
i=0

L2∑
j=0

γijx1,t−ix2,t−j .2/

where α represents the effect of covariates, β1 = .β10, : : : ,β1L1/T is the .L1 + 1/-vector of
lagged main effects of the first exposure, β2 = .β20, : : : ,β2L2/T is the .L2 + 1/-vector of lagged
main effects of the second exposure and γ = vec.Γ/ = .γ00,γ01, : : : ,γL1L2/T where Γ is the
.L1 + 1/ × .L2 + 1/ matrix of interaction effects. Our primary goal is to estimate the main
effects β1 and β2 and the interaction effects γ. For simplicity, we leave out zT

t α in subsequent
presentations.

Remark 1. Expressions (1) and (2) model the conditional mean response at a time point t

given the current and past measurements of the two exposures. The non-null interaction effect
in equation (2) implies that the lagged effects of the first exposure depend on the level of the
second exposure, and vice versa. It is noted that the interaction effects in equation (2) are not
symmetric, namely γij �=γji for i �= j. A natural quantity of interest is the marginal effect of one
exposure at a certain lag given the other exposure fixed at a certain level such as the median or a
specified quantile. Algebraically, if we fix the second exposure at xÅ

2 across all lags, the marginal
lag effects of the first exposure at lag i can be written as βÅ

1i =β1i +xÅ
2 ΣL2

j=0γij for i=0, : : : , L1.
The vector representation is

βm
1 .xÅ

2 /=β1 +xÅ
2 Γ1 .3/

where 1 is a vector of 1s. Similarly, if we fix the first exposure at xÅ
1 , the marginal lag effects of

the second exposure at lag j can be written as βÅ
2j =β2j +xÅ

1 ΣL1
i=0γij for j =0, : : : , L2 with vector

representation βm
2 .xÅ

1 / =β2 + xÅ
1 ΓT1. Throughout the rest of this paper, we shall summarize

the estimates of β1, β2 and γ=vec.Γ/ on the basis of the above expressions.
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2.1. Existing methods
2.1.1. Unconstrained distributed lag interaction model
The UDLIM does not impose any constraints on coefficientsψ= .βT

1 ,βT
2 ,γT/T in equation (2).

The UDLIM coefficients can be simply estimated via maximum likelihood estimation:

ψ̂UDLIM =arg max
ψ

T∑
t=1

{ytXT
t ψ− exp.XT

t ψ/− log.yt !/},

where Xt = .XT
1t , XT

2t , XT
It/

T. Standard frequentist inference based on large sample theory of
maximum likelihood estimates can be drawn subsequently. However, because of the collinearity
between serially measured exposure levels and the large number of parameters (i.e. L1 +L2 +2
main effect terms and .L1 + 1/.L2 + 1/ interaction terms), the lagged effect estimates may be
less efficient with inflated variance and the estimated DL functions could be highly variable.

2.1.2. Constrained distributed lag interaction model
The parametric DLIM imposes a smooth structure on lagged effect coefficients by assum-
ing that each lag coefficient is a linear combination of known basis functions measured at
its lag index. The CDLIM extends this configuration to two-dimensional scenarios. Assume
that B11.·/, : : : , B1p1.·/ are the p1 basis functions applied to β1 and B21.·/, : : : , B2p2.·/ are the
p2 basis functions applied to β2. The main effects coefficients are assumed to be of the form
β1i =Σp1

m=1B1m.i/θ1m for i=0, : : : , L1 and β2j =Σp2
n=1B2n.j/θ2n for j =0, : : : , L1 where {β1i} and

{β2j} are elements of β1 and β2 respectively, and {θ1m} and {θ2n} are free parameters to be es-
timated. To smooth the interaction surface, Muggeo (2007) utilized tensor products of marginal
basis functions. The element corresponding to the interaction between x1,t−i and x2,t−j can be
expressed as γij =Σp1

m=1Σ
p2
n=1B1m.i/B2n.j/θImn.

Define C1 as an .L1 + 1/ × p1 transformation matrix (Gasparrini et al., 2010) where the
element .i+1, m/ is B1m.i/ and, similarly, define C2 as an .L2 +1/×p2 transformation matrix
where the element .j +1, n/ is B2n.j/. Denote θ1 = .θ11, : : : , θ1p1/, θ2 = .θ21, : : : , θ2p2/ and θI =
.θI11, θI12, : : : , θIp1p2/; the CDLIM coefficients can be written in terms of the free parameters
to be estimated as

β1=C1θ1,

β2=C2θ2,

γ= .C1 ⊗C2/θI :

⎫⎪⎬
⎪⎭

.4/

The free parameters θ1, θ2 and θI can be obtained by maximizing the log-likelihood function

T∑
t=1

{yt.WT
1tθ1 +WT

2tθ2 +WT
ItθI/T − exp.WT

1tθ1 +WT
2tθ2 +WT

ItθI/− log.yt !/}

where W1t =CT
1 X1t , W2t =CT

2 X2t and WIt = .C1 ⊗C2/TXIt . Let Θ= .θT
1 ,θT

2 ,θT
I /T, a vector of

length p1 +p2 +p1p2, and C=diag.C1, C2, C1 ⊗C2/. The CDLIM estimator can be written as
ψ̂CDLIM =CΘ̂ and cov.ψ̂CDLIM/=C cov.Θ̂/CT.

2.2. Proposed methods
2.2.1. Tukey’s distributed lag interaction model
The underlying foundation of Tukey’s model for interaction is a latent variable framework
(Chatterjee et al., 2006). Suppose that we define a surrogate variable for each exposure that
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aggregates the temporal lagged effect of the exposure through a weighted sum at time t, namely

s1t =
L1∑
i=0

w1ix1,t−i, s2t =
L2∑

j=0
w2jx2,t−j: .5/

If we assume that the association between yt , X1t and X2t is through the interaction model

log.E[yt ]/=μ0 +μ1s1t +μ2s2t +μIs1ts2t : .6/

Substituting equation (5) in equation (6), we can obtain

log.E[yt ]/=μ0 +
L1∑
i=0

μ1w1ix1,t−i +
L2∑

j=0
μ2w2jx2,t−j +

L1∑
i=0

L2∑
j=0

μIw1iw2jx1,t−ix2,t−j

=μ0 +
L1∑
i=0

β1ix1,t−i +
L2∑

j=0
β2jx2,t−j +

L1∑
i=0

L2∑
j=0

γijx1,t−ix2,t−j

where β1i =μ1w1i, β2j =μ2w2j and γij =μIw1iw2j. Note that we can express the interaction
coefficient as

γij =β1iβ2j
μI

μ1μ2
,

a scaled product of the corresponding main effect coefficients. This motivates the use of Tukey’s
style interaction in our context. The surrogate variables s1t and s2t represent summary exposures
over all the lags of the two exposures. Coefficients μ0, μ1, μ2 and μI characterize the overall
combined effects of the two exposures in association with outcome measurement at lag 0. The
lag measurements of the two exposures interact through the two surrogate variables in the
simple pairwise interaction model that is described in equation (6). Estimating the lagged effects
in this model is the same as estimating the relative weights to combine the exposure lagged
measurements into a summary surrogate variable. To extend the classical Tukey interaction
structure to DLIMs, we now assume that the main effects are specified in the same way as in the
CDLIM with constrained parameterization such that β1 =C1θ1 and β2 =C2θ2 as in equation
(4). In matrix form, the interaction coefficients can be expressed under Tukey’s model as

γ=η.β1 ⊗β2/= .C1 ⊗C2/{η.θ1 ⊗θ2/}:

Note that the interaction structure corresponding to the TDLIM is a special case of the CDLIM
withθI =η.θ1 ⊗θ2/. The number of parameters that are used for modelling the interaction effect
reduces from p1p2 to 1. The model without interaction is nested within the Tukey structure with
the scalar parameter set to 0, assuming non-null main effects. The free parameters θ1, θ2 and η
can be estimated by maximizing the log-likelihood function

T∑
t=1

[yt{WT
1tθ1 +WT

2tθ2 +ηWT
It.θ1 ⊗θ2/}− exp{WT

1tθ1 +WT
2tθ2 +ηWT

It.θ1 ⊗θ2/}− log.yt !/]:

.7/

The TDLIM is a non-linear regression model where the objective function (7) involves prod-
ucts of the parameters. Linear approximation using a first-order Taylor series expansion can
be applied for parameter estimation and statistical inference. However, empirically, we found
that the approximation accuracy using a first-order approximation is poor and the asymp-
totic variance is far from the empirical variance. We therefore consider an iterative approach
for estimation (details are provided in the on-line supplementary appendix A.1). The value
of the objective function decreases at each step and the solution is guaranteed to converge.
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We recognize that the likelihood function (7) is non-convex in terms of the parameters so
the convergence to a global maximum is not guaranteed by the iterative procedure. How-
ever, in our numerical studies, when the main effects are bounded away from zero, the choice
of various initial values did not affect the final parameter estimates. When at least one of
the main effects are close to the null value, the parameter η is not identifiable and estima-
tion instability occurs in these cases. For statistical inference, we consider a standard boot-
strap by resampling observations with replacement to obtain standard errors and confidence
intervals.

2.2.2. Bayesian Tukey distributed lag interaction model
In the proposed BTDLIM, the main effects are parametrically specified in the same way as in
equation (4) and the interaction effects are modelled in the spirit of the TDLIM. The distinction
from the presentation in the previous section is that the BTDLIM allows a departure from
Tukey’s interaction structure in a data-adaptive way. The BTDLIM assumes that the scalar
parameter can vary across different interaction terms through the prior specification

γ=η� .β1 ⊗β2/, η∼N{0,σ2Σ.ω/}
where η= .η00, η01, : : : , ηL1L2/T is the vector of scalars, ‘�’ is the operator denoting elementwise
multiplication, σ2 is the common variance and Σ is the correlation matrix parameterized by
a single parameter ω> 0. The correlation between ηij and ηiÅjÅ is given by ω

√{.i−i
Å
/2+.j−j

Å
/2}

assuming an exponential structure. The prior on η relaxes the strict specification of Tukey’s
interaction structure. The amount of departure from Tukey’s model is controlled by the pa-
rameter ω. At one extreme, when ω= 0, no structure is imposed on the interaction effects.
The interaction coefficients are simply a reparametrization of the UDLIM coefficients in equa-
tion (2). At the other extreme when ω= 1, the model degenerates to the TDLIM and enforces
the interaction coefficients to follow the Tukey structure exactly. When ω approaches 1, the
correlation between neighbouring coefficients is larger, resulting in a smoother interaction
surface.

To complete the model specifications, we assign θ1 ∼ N.0, 1002I/ and θ2 ∼ N.0, 1002I/ as
vague priors for the main effects coefficients. We assume a non-informative prior (Gelman, 2006)
on the variance parameter σ2 ∼ IG.a=0:001, b=0:001/ where a and b are the shape and scale
parameters of the inverse gamma distribution. To alleviate the computational burden and to
keep the prior uninformative, we let ω have a discrete uniform prior on {0:1, 0:2, : : : , 1}. The
marginal posterior density of β1, β2 and γ is not available in closed form. We use a Metropolis–
Hastings algorithm within a Gibbs sampler to approximate the posterior distribution and obtain
the BTDLIM estimator as the posterior mean with the corresponding highest posterior density
interval as the corresponding credible interval. The full conditional distributions are presented
in the on-line supplementary appendix A.2.

2.2.3. Bayesian constrained distributed lag interaction model
The CDLIM is a fully parametric model. The dimension reduction from L1 +1+L2 +1+ .L1 +
1/.L2 +1/ parameters to p1 +p2 +p1p2 parameters results in a gain of efficiency in estimation.
However, the benefit can be counterbalanced by potential bias when the underlying structure
for the DL functions or surface is misspecified. We propose a BCDLIM to shrink UDLIM
estimates in a smooth manner towards a prespecified CDLIM.

Let B+
11.·/, : : : , B+

1,L1+1.·/ be L1 + 1 basis functions for the first exposure, e.g. B-spline basis
functions of degree 3 (cubic) with intercept and L1 − 3 equispaced internal knots positioned
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between 0 and L1. Note that the basis functions describe the non-linearity in the DL function,
but the exposure effect at each lag is still assumed to be linear. Let T1 be the corresponding
.L1 +1/× .L1 +1/ transformation matrix. Let T2 denote the square transformation matrix with
dimension .L2 + 1/ × .L2 + 1/, constructed in a similar manner for the second exposure, and
let the transformation matrix for the interaction parameter be TI = .T1 ⊗ T2/ with dimension
.L1 +1/.L2 +1/× .L1 +1/.L2 +1/. If we apply the transformation operators T1, T2 and TI to
the CDLIM, the resulting estimator would be identical to the UDLIM estimator since a full
rank transformation on the coefficients does not change the model fit. However, if we imposed
shrinkage on the coefficients by using an L2-penalty, the CDLIM and UDLIM estimators would
be different since the shrinkage is employed in different parameter spaces. The UDLIM estimator
can be viewed as choosing B+

1m.i/= I.m= i+1/ for m=1, : : : , L1 +1 and B+
2n.j/= I.n= j +1/

for n = 1, : : : , L2 + 1, where I.·/ is an indicator function, corresponding to T1 = I and T2 = I.
Although the two sets of estimates share the same shrinkage target (i.e. the zero line), the solution
paths are different. If the basis functions that are selected for T1 and T2 are smooth, the CDLIM
with shrinkage leads to smooth estimates.

Instead of shrinking the model coefficients towards 0, we consider shrinking them to a non-null
target, determined by the transformation matrices C1, C2 and CI = .C1 ⊗C2/ for the CDLIM
that is defined in equation (4). Without loss of generality, we describe only how to construct
the non-null shrinkage target for the first exposure. We first separate T1 into two parts—C1
and Cc

1 where CT
1 Cc

1 = 0. We make use of this orthogonal decomposition to obtain Cc
1 whose

columns span the complementary column space of C1. C1 and Cc
1 define the decomposition

of the transformations corresponding to shrinkage towards a prespecified target and shrinkage
towards 0 respectively. The orthogonal projection of T1 onto the complementary column space
of C1 is given by P1 = .I − C1.CT

1 C1/−1CT
1 /T1. Using singular value decomposition, we can

write P1 = U1D1VT
1 where U1 contains the columns of left singular vectors, D1 is a diagonal

matrix with eigenvalues of P1, and V1 contains the columns of right singular vectors. Since the
rank of P1 is L1 +1−p1, we can write U1 = .U11 U12/ where U11 is an .L1 +1/× .L1 +1−p1/

matrix with columns of singular vectors corresponding to non-zero eigenvalues in D1, whereas
U12 is an .L1 +1/×p1 matrix with columns of singular vectors corresponding to the eigenvalues
of 0. We consider Cc

1 =U11. It is easy to show that CT
1 Cc

1 =0 and the p1 columns of C1 and the
L1 +1−p1 columns of Cc

1 span the entire RL1+1. In other words, shrinkage through the columns
of Cc

1 defines the CDLIM estimate as the shrinkage target. The complementary matrices Cc
2 and

Cc
I for the second exposure and interaction can be constructed using C2 and T2, and CI and TI

respectively in a similar way.
The likelihood corresponding to the above specification is given by

Y|β1,β2,γ∼Poisson{exp.X1β1 +X2β2 +XIγ/}

where Y = .y1, : : : , yT /T, X1 = .X11, : : : , X1T /T, X2 = .X21, : : : , X2T /T and XI = .XI1, : : : , XIT /T.
The prior specifications corresponding to the BCDLIM parameters are

β1 =C1θ1 +Cc
1θ

c
1,

β2 =C2θ2 +Cc
2θ

c
2,

γ=CIθI +Cc
Iθ

c
I ,

θ1 ∼N.0, 1002I/,

θ2 ∼N.0, 1002I/,

θI ∼N.0, 1002I/,
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θc
1 ∼N.0,σ2

1I/,

θc
2 ∼N.0,σ2

2I/,

θc
I ∼N.0,σ2

I I/

where θ1, θ2 and θI are the coefficients without shrinkage and θc
1, θc

2 and θc
I are the coefficients

to be shrunk towards 0. In other words, β1, β2 and γ are shrunk towards C1θ1, C2θ2 and
CIθI respectively. To complete the model specification, we assign hyperpriors on the variance
parameters as

σ2
1 ∼ IG.a0, b0/,

σ2
2 ∼ IG.a0, b0/,

σ2
I ∼ IG.a0, b0/:

We fix a0 = b0 = 0:001 to assume a non-informative hyperprior (Gelman, 2006). A Metrop-
olis–Hastings algorithm within a Gibbs sampler can be used to approximate the posterior
distribution of the model parameters. The full conditional distributions are provided in the
on-line supplementary appendix A.3. The hyperpriors of the the BCDLIM can alternatively
be viewed as penalty terms in penalized likelihood. The dual representation is presented in
supplementary appendix A.4.

3. Simulation study

We conducted a simulation study to compare the estimation performance of the five methods
that were introduced in Section 2 under different settings. We implemented the three frequentist
methods by using the built-in R function glm and the two Bayesian methods by calling the
software ‘just another Gibbs sampler’ using R package rjags (Lunn et al., 2009). The average
computation times for 1000 data sets under each method are provided in the on-line supplemen-
tary appendix A.5 Table 1. All simulations were performed in R version 3.3.1 (R Core Team,
2017).

3.1. Simulation settings
We generated two separate exposure time series (i= 1, 2) of length 1000 days with mean 3 and
first-order auto-correlation equal to 0.5 from the model xit = 0:5xit−1 + εit where εit ∼IID N.0,
0:75/ for i = 1, 2 and t = 1, : : : , 1000. We set L1 = L2 = 9 for both data generation and model
fitting. The outcome yt is generated from a Poisson distribution with mean exp.β0 + XT

1tβ1 +
XT

2tβ2 +XT
Itγ/ for t =1, : : : , 1000 where X1t , X2t and XIt are defined as in Section 2. Let β0 =3

and consider two DL functions for the main effect coefficients β1 and β2—
(a) a cubic and
(b) a function with departure from cubic.

We consider five different underlying true interaction structures for γ—

(i) no interaction,
(ii) Tukey’s style interaction,
(iii) Kronecker product interaction,
(iv) sparse interaction and
(v) unstructured interaction.

The exact specifications are available in the on-line supplementary appendix A.6. In total, nine
simulation scenarios, including all combinations of the two main effect coefficients (a) and
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(b) and five interaction effect coefficients (i)–(v), except the combination of (b) and (iii), are
considered. Exclusion of the combination of (b) and (iii) is because the Kronecker product
interaction cannot be constructed when the corresponding main effects are not fully parametric
as their underlying basis functions are undefined. In all simulations, we assume that the lag
structure of the CDLIM, TDLIM, BTDLIM and BCDLIM is a cubic polynomial in the lags
for all model fitting purposes.

3.2. Evaluation metrics
The marginal lagged effects of the first exposure defined in equation (3) depend on the level at
which the second exposure is fixed. One way to eliminate the effect of the second exposure is
to integrate it out. We consider the use of a finite Riemann sum to approximate numerically
the integral βÅ

1 = ∫
βÅ

1 .x2/dx2 ≈ .1=S/ΣS
s=1β

Å
1 .x

[q.s−0:5/=S ]
2 / where x

[q.s−0:5/=S ]
2 is the .s − 0:5/=Sth

quantile of x2. The empirical bias and empirical relative efficiency of the above quantity with
S =20 are used to summarize the simulation results across various scenarios. The squared bias
is computed as . ˆ̄β

Å
1 −βÅ

1 /T. ˆ̄β
Å
1 −βÅ

1 / where ˆ̄β
Å
1 is the average of the estimates that are obtained

from the 1000 simulated data sets. The empirical mean-squared error (MSE) is computed as
.1=1000/Σ1000

j=1 ||β̂Å
1j −βÅ

1 ||22. The relative efficiency is expressed with respect to the MSE of the
UDLIM estimate, namely the MSE of the UDLIM divided by the MSE of a certain method.
We emphasize that the efficiency is defined through the MSE rather than the variance in this
paper. Because of the symmetry between x1 and x2, we present results for only the marginal
lagged effects of x1.

3.3. Simulation results
Results for the setting with main effects generated from a cubic DL function are summarized
in Table 1. As we can observe in scenario (i), e.g. no interaction, all methods are more efficient
than the UDLIM with relative efficiency ranging from 6.27 to 19.24. The empirical squared bias
is minimal for the UDLIM (0.02), CDLIM (0.00) and BCDLIM (0.00) and is moderately small
for the TDLIM (0.19) and the BTDLIM (0.13). Null interaction is a special case of Tukey’s model

Table 1. Empirical squared bias and empirical relative efficiency (measured with respect to the MSE of the
UDLIM estimate) of marginal lagged effects across five two-dimensional DL interaction models based on
1000 simulation data sets†

Interaction structure Metric Results for the following models:

UDLIM CDLIM TDLIM BTDLIM BCDLIM

(i), no interaction Squared bias 0.02 0.00 0.19 0.13 0.00
Relative efficiency 1.00 6.82 19.24 8.09 6.27

(ii), Tukey’s structure Squared bias 0.01 0.00 0.01 0.01 0.00
Relative efficiency 1.00 6.14 18.66 6.71 5.76

(iii), Kronecker product Squared bias 0.02 0.00 1.05 0.90 0.00
Relative efficiency 1.00 6.68 3.45 2.77 6.17

(iv), sparse Squared bias 0.00 66.22 67.14 1.43 0.08
Relative efficiency 1.00 0.07 0.07 1.71 2.80

(v), unstructured Squared bias 0.00 93.08 93.98 1.08 0.09
Relative efficiency 1.00 0.05 0.05 1.88 2.70

†The lagged effects of both exposures are generated from the same cubic DL function.
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Table 2. Empirical squared bias and empirical relative efficiency (measured with respect to the MSE of the
UDLIM estimate) of marginal lagged effects across five two-dimensional DL interaction models based on
1000 simulation data sets†

Interaction structure Metric Results for the following models:

UDLIM CDLIM TDLIM BTDLIM BCDLIM

(i), no interaction Squared bias 0.02 69.51 70.03 7.39 0.10
Relative efficiency 1.00 0.24 0.25 1.59 3.25

(ii), Tukey’s structure Squared bias 0.01 990.83 1023.84 35.50 0.09
Relative efficiency 1.00 0.00 0.00 0.05 1.35

(iv), sparse Squared bias 0.01 210.32 215.94 10.80 0.52
Relative efficiency 1.00 0.02 0.02 0.35 1.78

(v), unstructured Squared bias 0.01 989.93 1019.06 31.83 0.10
Relative efficiency 1.00 0.00 0.00 0.04 1.34

†The lagged effects of both exposures are generated from the same cubic-like DL function (moderate departure
from a cubic function).

with η= 0. Because TDLIMs correctly specify the main effects and interaction effects with a
smaller number of parameters, it achieves the highest efficiency (19.24). In scenario (ii) where
the non-null interaction effects are of Tukey form, all methods have similar, though slightly
smaller, relative efficiency in comparison with scenario (i), ranging from 5.76 to 18.66. Again,
the TDLIM has the highest relative efficiency as expected. Scenario (iii) represents the situation
where the true interaction structure departs from Tukey’s form. We can see now that the TDLIM
(3.45) is less efficient than the CDLIM (6.68) because of the bias that is introduced in estimating
the interaction surface. However, the TDLIM is still more efficient than the UDLIM (1.00) and
the BTDLIM (2.77). The CDLIM correctly specifies both main effects and interaction effects
in this scenario and attains the highest efficiency.

Across scenarios (i) and (ii), we note that the squared bias and relative efficiency of the
BTDLIM always fall between those of the CDLIM and TDLIM, suggesting that the BTDLIM
successfully performs shrinkage and achieves a better average performance. In addition, we can
observe that the BCDLIM (relative efficiency 6.27, 5.76, 6.17) is slightly less efficient than the
CDLIM (relative efficiency 6.82, 6.14, 6.68) across the three scenarios. The difference is due to
the flexibility of the BCDLIM that accounts for a possible departure from Kronecker product
type of interaction structure. Scenarios (iv) and (v) are situations where the UDLIM is the only
method that can unbiasedly estimate the interaction surface. As expected, both the CDLIM
and the TDLIM suffer from serious bias and the gains of efficiency from dimension reduction
diminish substantially. The class of interaction surfaces that the CDLIM and TDLIM can
describe is restricted. Note that all the methods jointly estimate the main effects and interaction
effects and thus misspecifying the interaction effects could possibly distort the estimation of the
main effects as they are not orthogonal. The BCDLIM is less biased and more efficient than
the BTDLIM across the two scenarios. Across all scenarios when the main effects are correctly
specified, the BCDLIM has the best average performance in terms of estimation efficiency.

We summarize the results where the main effects deviate from a cubic DL function in Table 2.
Both the CDLIM and the TDLIM are seriously biased, largely because of the misspecification
of the main effect terms. These two methods are the least efficient. If we contrast scenarios (i)
and (ii), we can observe that misspecification of the main effects not only influences the accuracy
of estimation of the main effect DL function, but also the interaction DL surface. The BTDLIM
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is biased across the board as well, with squared bias ranging from 7.39 to 35.50 respectively. It is
more efficient than the UDLIM only in situations where there is no interaction. The BCDLIM
is slightly biased across different scenarios with the squared bias ranging from 0.09 to 0.52. The
BCDLIM leads to gains in efficiency with reduced bias. The relative efficiencies are 3.25, 1.35,
1.78 and 1.34 across the four scenarios. Summarizing the results in Tables 1 and 2, it is clear that
the BCDLIM approach has desirable MSE properties across the scenarios, offering a robust
and efficient solution to this problem.

4. Application

4.1. Data overview and modelling
We apply the five methods compared in Section 3 to the NMMAPS data. We jointly model daily
time series of

(a) PM10 and
(b) O3

in association with all-cause non-accidental mortality counts in Chicago, Illinois, for the period
between 1987 and 2000. Details with respect to data assembly are available from http://
www.ihapss.jhsph.edu/data/NMMAPS/. Zanobetti et al. (2000) indicated that it is un-
likely that lags beyond 2 weeks would have a substantial effect. We therefore set L1 = L2 = 14
for PM10 and O3 levels respectively.

Previous studies showed that it is crucial to account for meteorologic variables as potential
confounders in the analysis of air pollution effects (Welty and Zeger, 2005). Dominici et al. (2005,
2007) highlighted the need to adjust carefully for a broad set of confounders and to explore their
functional forms. We specify the adjustment covariates in the same way as Dominici et al. (2005)
and focus on the choice of the lag structure in our application. We acknowledge that there may
be more optimal adjustment models when we introduce interaction effects. Let x1tk, x2tk, ytk

and ztk denote the PM10 level, O3 level, mortality count and vector of time varying covariates,
measured on day t for age group k for t = 1, : : : , 5114 and k = 1, 2, 3 respectively. The three age
categories are ‘greater than or equal to 75 years old’, ‘between 65 and 74 years old’ and ‘less
than 65 years old’. PM10 and O3 were shared exposures across the three age groups so we have
xltk ≡xlt for l=1, 2. For each group k, we assume that, given PM10, O3 and other time varying
confounders, the mortality count in Chicago on day t is a Poisson random variable Ytk with
mean μtk such that

log.μtk/=XT
1tβ1 +XT

2tβ2 +XT
Itγ+ zT

tkα

=XT
1tβ1 +XT

2tβ2 +XT
Itγ+α0 +

2∑
j=1

α1jI.k = j/+
6∑

j=1
α2jI.dowt = j/

+ns.tempt ; 6 DFs,α3/+ns.temp.3/
t ; 6 DFs,α4/

+ns.dptpt ; 3 DFs,α5/+ns.dptp
.3/

t ; 3 DFs,α6/

+ns.t; 98 DFs,α7/+ns.t; 14 DFs,α8/I.k =1/+ns.t; 14 DFs,α9/I.k =2/

where X1t = .x1t , : : : , x1,t−14/T, X2t = .x2t , : : : , x2,t−14/T, XIt = X1t ⊗ X2t and ns.·/ denotes the
natural spline with specified DFs. Predictors dowt , tempt , tempt , dptpt and dptpt represent the
day of the week, the current day’s temperature, adjusted average lag 1–3 temperature, the current
day’s dewpoint temperature and the adjusted average lag 1–3 dewpoint temperatures for day t.
The indicator variables allow different baseline mortality rates within each age group and within
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each day of the week. The smooth term for time t is to adjust for long-term trends and seasonality
and the choice of 98 DFs corresponds to 7 DFs per year over the 14-year time horizon. The last
two product terms separate smooth functions of time with 2 DFs per year for each age group
contrast. The primary goal is to estimate the coefficients β1, β2 and γ, whereas α is the set of
covariate parameters. A four-degree polynomial DL function is applied to both β1 and β2 for
the CDLIM, TDLIM, BTDLIM and BCDLIM. The analysis is performed in R version 3.3.1
and the source code is available from https://github.com/yinhsiuc/NMMAPS DLIM.
The computational times are provided in the on-line supplementary appendix A.4 Table 2 and
the summary statistics corresponding to PM10 and O3 levels are provided in supplementary
appendix A.7.

4.2. Estimating marginal distributed lag function
The quantity 100 exp{10.β1i +xÅ

2 ΣL2
n=0γin/} represents the percentage change in daily mortality

that is associated with an increase of 10μg m−3 in PM10 level at lag i when the O3 level is
at xÅ

2 parts per billion. Similarly, the quantity 100 exp{10.β2j + xÅ
1 ΣL1

m=0γmj/} represents the
percentage change in daily mortality that is associated with an increase in O3 level of 10 parts
per billion at lag j when PM10 is set at xÅ

1 μg m−3. We present the marginal lagged effects of
PM10 and O3 levels in Figs 1 and 2. If we look across the panels in Fig. 1, we can observe
that the fits of the UDLIM are undersmoothed and the fits of the CDLIM and TDLIM are
oversmoothed, whereas those of the BTDLIM and BCDLIM are in between. When O3 is at the
summer average level, the oversmoothing of the CDLIM and TDLIM results in underestimation
of the PM10 effect at lag 3. For instance, the estimated percentage increases in mortality are
associated with an increase of 10 μg m−3 in PM10 level at lag 3 when the O3 level is at average
summer level are 0.53%, 0.14%, 0.03%, 0.23% and 0.36% for the UDLIM, CDLIM, TDLIM,
BTDLIM and BCDLIM respectively. The lower bounds of 95% confidence or credible intervals
for the methods except the TDLIM are appreciably above zero. In this situation, shrinkage
methods are more desirable since the CDLIM and TDLIM misspecify the DL function and
potentially underestimate the relative lag effects. Similarly, we observe slight oversmoothness of
the CDLIM and TDLIM on the O3 effect in Fig. 2. However, the degree of underestimation of
the O3 effect at early lags is smaller. More similar DL functions across all methods except the
UDLIM indicate that the potential misspecification of the DL function by using the CDLIM
and TDLIM is minimal.

We present the marginal DL functions of PM10 and O3 levels by integrating out the other
pollutant in Fig. 3. Similarly to earlier findings, shrinkage is more needed for PM10 as the
CDLIM and TDLIM tend to oversmooth the DL function in this situation. In addition, we
observe that the DL function for PM10 level starts from negative, grows to 0 and peaks at
lag 3, whereas the DL function for O3 level is greater than 0 at lag 0 and peaks at lag 2. The
earlier peak for O3 compared with PM10 suggests a more acute effect of O3 than PM10 with
an earlier window of susceptibility. We also observe that the UDLIM fits of O3 fluctuate more
drastically than the UDLIM fits of PM10. This is explained by the stronger auto-correlation
of the O3 time series and smoothing the DL function is certainly needed and preferred in this
case. We can observe that some of the estimated lagged effects are negative at larger lags for
PM10. This phenomenon is denoted as mortality displacement (Zanobetti et al., 2000) and has
been discovered in previous studies. Mortality displacement, which is also referred to as the
harvesting effect (Zanobetti et al., 2000), is the temporal shift of mortality. Usually a higher
mortality rate due to the deaths of frail individuals a couple of days after a high air pollution
episode is followed by a compensatory reduction in mortality rate due to the death of the more
frail individuals.
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(a)

(b)

Fig. 3. Estimated DL functions up to 14 days for the effects of (a) PM10 and (b) O3 on mortality in Chicago,
Illinois, from 1987 to 2000 based on data from the NMMAPS under five estimation methods (the DL functions
presented here are estimated by integrating out the other pollutant; lag effects are presented as the percentage
change in mortality that is associated with a 10 μg m�3 increase in PM10 and a 10 parts per billion increase
in O3): , UDLIM; , CDLIM; , TDLIM; - – - –, BTDLIM; — —, BCDLIM



94 Y.-H. Chen, B. Mukherjee and V. Berrocal

4.3. Assessing interaction effects
Within each panel of Figs 1 and 2, we note that the estimated DL functions of one pollutant vary
with the level of the other pollutant, indicating that PM10 might moderate the effect of O3 and
vice versa. For the UDLIM, CDLIM and TDLIM, we conducted a likelihood ratio test to test
for PM10–O3-interactions and the p-values are 1:65 × 10−11 (225 DFs), 5:33 × 10−9 (25 DFs)
and less than 10−4 (1 DF) respectively. The precision of the p-value of the TDLIM is only up
to 10−4 because of finite bootstrap samples. For the two shrinkage methods the BTDLIM and
BCDLIM, we computed the difference in deviance information criterion (DIC) (Spiegelhalter
et al., 2002) between the models with and without interaction. The DIC differences are 25.56
and 68.35 respectively. It is difficult to determine a clear threshold of DIC difference for model
selection (Plummer, 2008). However, models with smaller DIC are generally preferred when
DIC differences are greater than 10. Coupled with the p-values that are obtained from the
frequentist approaches, we conclude that the interaction between PM10 and O3 is evident.

From Figs 1 and 2, we can see that the summer curves are above the winter curves, suggesting
that PM10 and O3 have synergistic effects on each other. Furthermore, we observe that the gaps
between the curves of the three quartiles decrease beyond lag 6 and that happens across the board.
The interaction between PM10 and O3 occurs at early lags. We added a dotted curve in each panel
for the estimated DL function from a single-pollutant analysis (i.e. models with PM10 alone or
O3 alone), representing the ‘average’ DL effects if we disregard the interaction effect between
the two pollutants. The evidence in favour of looking at PM10 and O3 jointly is compelling.

5. Discussion

In analysing NMMAPS data, we demonstrated the importance of accounting for interaction
between the PM10 and O3 time series when modelling the joint pollution effect on mortality.
Two major pieces of evidence support the existence of pollutant–pollutant interaction—

(a) the marginal DL function of one pollutant varies when the level of the other changes, and
(b) the small p-values from frequentist approaches and the large DIC values from the Bayesian

approaches suggest evidence in favour of a PM10 ×O3 interaction.

This adds to the finding of previous studies that supported the idea of a plausible synergism
involving PM10 and O3 (Mauderly and Samet, 2009).

In this paper, we presented five strategies to model lagged effects of two pollutants in a
joint model. We reviewed two existing frequentist methods the UDLIM and CDLIM, and we
proposed a frequentist TDLIM using Tukey’s interaction structure, its Bayesian version and
a Bayesian approach to perform shrinkage between the UDLIM and CDLIM. There are two
major novelties. We adopted Tukey’s 1 DF interaction structure to model two-way interactions
parsimoniously. The estimation is efficient and the interaction testing is powerful. We also
introduced the Bayesian version of the TDLIM (i.e. the BTDLIM) and the Bayesian version of
the CDLIM (i.e. the BCDLIM). These Bayesian models allow for a departure from a prespecified
structure of a DL function or surface and have been shown to be robust to misspecification.
They are data adaptive and can achieve bias–variance trade-off.

Each of the five approaches has some limitations that we discuss below. The UDLIM is unbi-
ased but potentially less efficient, especially when the auto-correlation between serial pollution
measurement is large. The CDLIM imposes some structure to constrain the lag coefficients and
can potentially achieve greater estimation precision. In practice, we recommend a DL structure
that is no more complex than a cubic polynomial as the default choice since it is usually suffi-
cient to capture the observed non-linear patterns as a function of the lags. Nonetheless, when the
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DL structure is misspecified, the model-dependent CDLIM estimator can be seriously biased.
Tukey’s type of interaction has mostly been used for hypothesis testing rather than estimation
in previous research. Expressing interaction effects as a scaled product of the corresponding
main effects implies that the interaction effects can be non-zero only when the main effects are
non-zero. This hierarchical feature results in a lack of identifiability for the scaled parameter in
Tukey’s model when the main effects are not present. In addition, Tukey’s model is not invariant
to location shifts. Different centring schemes lead to different estimates of the scale parameter
η and no universal remedy exists.

The hierarchical BCDLIM is robust to misspecification of the DL structure. The data-adaptive
shrinkage can be regarded as an automatic procedure to attain a balance between the more gen-
eral UDLIM and the more constrained CDLIM. The full rank transformation on the UDLIM
imposes smoothness on the shrinkage path and any a priori knowledge about the DL structure
can be incorporated. It is important to note that the BCDLIM can be extended to explore
higher order interaction and multiple-pollutant scenarios. We also tried to adapt the HDDLM
to two-pollutant scenarios. However, the unmodified predictive process interpolator (Banerjee
et al., 2008), which is the major technique that is used in HDDLMs for dimension reduction
(Finley et al., 2009), leads to overly smooth DL functions or surfaces which result in seriously
biased estimates. We therefore decided not to include the HDDLM in this paper.

The two-pollutant DLIMs can be directly combined with DL non-linear models (Gasparrini
et al., 2010) to capture non-linear exposure–outcome associations flexibly by replacing the linear
terms in DLM specifications with some basis functions (e.g. B-splines). As indicated by He et al.
(2015), failing to account for non-linear main effects may lead to spurious detection of linear
interaction terms. However, when the covariates are correlated as in our application, the signals
from non-linear main effects and linear interaction effects may be indistinguishable. In addition,
some regularization may be needed in this high dimensional situation to avoid overfitting. We
consider this line of extension for future research.

The two-pollutant DLIM approaches that are introduced in this paper can also be extended
to multipollutant situations where up to two-way interactions are considered. If one would
like to consider higher order interactions and/or non-linear interactions, extension of tree-
based approaches such as classification and regression trees and the Bayesian kernel machine
regression can be promising. In some situations, choosing the most important pollutants among
multiple candidates that are associated with a health outcome is the primary goal.

In real world settings, it is usually difficult to validate the underlying assumptions of a model-
based estimator. The notion of data-adaptive shrinkage is attractive when no single estimator
is universally optimal. When facing uncertainty, robust models such as the BCDLIM that have
better average performance are more desirable. The BCDLIM can potentially be extended to
areas outside environmental epidemiology. We hope that our work will lead to more attempts
in developing two-dimensional and multi-dimensional DLIMs in the future.
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