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Abstract

1) The relationship between rooting depth and aboveground hydraulic traits can potentiafly def
droughtresistance strategies that are important in determining species distribution and
coexistence in_seasonal tropical forests, and understanding this idkamgor predicting the
effects of future climate change in these ecosystems. .

2) We assessed. the rooting depth of 12 dominant tree species (representing ~ 42% of the forest
basal area).in"@ seasonal Amazon forest using the stable isotope ratios (%0 anddH) of water
collected™from tree xylem and soils from a range of depths. We took advantage of a major
ENSOvrelated drought in 2015/2016 that caused substantial evaporative isotope enrichment i
the soil and revealed watase strategies of each speciesilamextreme conditions. We

measured the minimum degason leaf water potential both in a normal year (2014; ¥nonenso)
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63 and in an extreme drought year (2015; Wenso). Furthermore, we measured xylem hydraulic traits

64 that indicate water potential thresholds trees tolerate without risking hydraulic faikgran@

65 Pgg).

66 3) We demonstrate that coexisting trees are largely segregated along a single roadroiobe

67 axis defined.by root depth differences, access to light, and tolerance of lowpotdatial.

68 These differences in rooting depth were strongly related to tree size; diameter at breast height
69 (DBH)explaified 72% of the variation in the 3'®Oyyiem. Additionally, 8*%Oyyiem €xplained 49% of

70 the variation“in B, and 70% of Bs, with shallowrooted species ame tolerant of low water
71 potentials; while 5180 of xylem water explained 47% and 77% of the variation of minimum Wnon
72 enso and ‘Fense

73 4) We propose a new formulation to estimate an effective functional rooting deptthe.ékely

74 soil depth from which roots can sustain water uptake for physiological functiong, DBH as

75 predictor of root depth at this site. Based on these estimates, we concludaotimgt depth

76 varies systematically across the most abundant families, genera and species at the Tapajos
77 forest, andsthat understory species in particular are limited to shallowgaspths.

78 5) Our results 'support the theory of hydrological niche segregation and its underlyingffrade

79 related tondrought resistance, which also affect the dominance structure of trees in this seasonal
80 eastern. Amazon forest.

81 6) Synthesis: Our results support the iy of hydrological niche segregation and demonstrate its
82 underlying, tradeoff related to drought resistance (access to deep water vs. tolerance of very low
83 water potentials). We found that the single hydrological axis defining \wagetraits was

84 strondy related to tree size, and infer that periodic extreme droughts influence uctoiyym

85 composition and the dominance structure of trees in this seasonal eastern Amazon forest

86

87  Keywords. hydraulic traits; embolism resistance; Amazon functional diversity; stable isotopes;

88  cavitation; root.depth; 2015 ENSO; water potential

89

90 Introduction

o1 Water availability is one of the most important factors influencing trait evolution and plant
92 species distribution across terrestrial ecosystems (Silvertown, Araya, & G@Qihg). Indeed,

93 drought tolerance is an important driver of species distribution across gradientsooiadigaboth
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at the local and regional scale in the Amazon forest (Esgiuelbert et al., 2016; Bonetti, Feng,

& Porporato, 2017; Cosme, Schietti, Costa, & Oliveira, 2017). Nearly half the Amazont&xhibi
marked seasonality in rainfall and is subject to additional-iighnitude water deficits caused by
positive phases of the El Nifio - Southern Oscillation (ENSO) (Marengo, Tomasleks, Soares,

& Rodriguez2011; Jiméndduiioz et al., 2016). Despite these periodically adverse conditions for
plant growth, trees can sustain transpiration, start new leaf flushing anthimgahotosynthesis
during dry 'periods, though the mechanisms underlying this high drought resistandk @mdest

debate (Saleska et al., 2003; Oliveira, Dawson, Burgess, & Nepstad, 2005; Huete et al., 2006;
Malhi et al.; 2009; RestrepBoupe et al., 2013, Wu et al., 2016, Giardina et al., 2018).

Deep rooting (Nepstad et al., 1994; Markewitz, Devine, Davidson, Brando, & Nepstad,
2010), root*hydraulic redistribution (Oliveira, Dawson, Burgess, & Nepstad, 2005; Leeir@li
Dawson, & Fung, 2005), and root niche partitioning (lvanov et al., 2012) are thought to be
important mechanisms explaining the sustained or increased photosyntheticiypitgdcurierved
during dry, seasons of Amazon forests (Rest@puope et al., 2013; Wu et al.,, 2016).
Notwithstanding, empirical data on the depth distribution of roots of different speweasonal
Amazon forests are scarce (but see Nepstad et al., 1994; Moreira, Sternbergst&dN 2000;
RomeraSaltoes et al., 2005; Markewitz, Devine, Davidson, Brando, & Nepstad, 2010; Davidson et
al., 2011).relative to the high tree diversity in this gstam (Steege et al., 2013; Esph8anto,
Shimabukuro, Aragao, & Machado, 2005; Fauset et al., 2014; Bonetti, Feng, & Porporato, 2017).
During dry. periods, root systems of different morphologies can facilitate the aweidanc
resistance g0“water streddeeply rooted trees can avoid the stress by accessing high water
potential waterin deep soils, sustaining gas exchange over longer periods otwaigr without
the need to adjust physiological regulation. Species with shallow roots are dikbzame water
limited, especially under high VPD conditions common during droughts, leading to largessleclin
in plant water, potential and thus implying the need for drotglatance strategies (Niinemets,
2010; Brum, Teodoro, Abrah&o, & Oliveira, 2017).

Xylemrembolism resistance, estimated as the water potential at which plants lose 50% or
88% of theirshydraulic conductancesgnd Rs), is one of the most important drought resistance
traits (Meinzer, Johnson, Lachenbruch, McCulloh, & Woodruff, 2@0@teregg et al., 2016). This
structural trait determines the range of water potentials under which plants can safely transport
water without risking hydraulic failure via embolism (Hack et al., 2007; Bittencourt, Pereira, &
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125  Oliveira, 2016; Pereira, DominggJunior, Jansen, Choat, & Mazzafera, 2017). Under water
126  stress, plants maintain water potential within a safe range by regulating stomatal conductance,
127  which also inevitably reduces carbon uptake (Sperry, Hacke, Oren, & Comstock, 2002eChoat
128 al., 2013. A hydraulic safety margin can be estimated as the difference between the lowest water
129  potential observed under watgressed conditions andoPand is a metric that is being used as a
130 proxy of drought vulnerability (Meinzer, Johnson, Lachenbruch, McCulloh, & Woodruff, 2009;
131 Anderegg etal’;2016).

132 Given“the range of structural and physiological traits allowing different wateange

133  drought tolerance or avoidance strategies in different plant species, the hydtologiea

134  segregation: (HNS) hypothesis (Silvertown, Araya, & GowiA@15) proposes that within a

135 community,“plants may differ in hydraulic traits to avoid or tolerate drought along a water
136  availability gradient to avoid competition. These traits include water uptake capability (e.qg.
137  different rooting depths or likely leaf water uptake capability), differences in stog@tabl, and

138  differences.in the xylem structure (Araya et al., 2011; Vinya et al., 2013; Oleemh, 2014,

139  Eller, Lima&yOliveira, 2016; Pina, Zandavalli, Oliveira, Nlas, & Soares, 2016; Brum, Teodoro,

140  Abrahdo, & Oliveira, 2017). In fact, these traits can exert a significant eiffedtydrological

141 processes«(GarcBaquero, Silvertown, Gowing, & Valle, 2016) and determine differences in
142  drought resistance strategieas Amazonian tree species (lvanov et al.,, 2012; Bonetti, Feng, &
143  Porporato, 2017). However, empirical data to test the HNS hypothesis in Amazoaalang.

144  Furthermore, whether and how different hydrological niches drive differences in tirough
145  resistancetraitsy, and ecosystem processes are not fully understood (lvanov et al., 2012;
146  Christoffersen-et al., 2016).

147 Naturatabundance stable isotopes of water are a useful tool for determining the depths
148  from which plants acquire water in the soil (Dawson, MelihbPlamboeck, Templer, & Tu,

149  2002). However, this method is effective only when there is a gradient in water isotope ratios with
150 depth, caused by evaporative enrichment at the soil surface (Berry et al., 2017). As water isotopes
151  do not fractionate withroot uptake, a tree’s xylem water isotope ratio reflects the depths from
152  which it iIs drawing water (Dawson et al., 2002). However, substantial depthrgsacievater

153  isotopes are not common in wet tropical forests because the rate of direct soil evaporation is slow
154  relative to the usually continual inputs of meteoric water (Moreira, Sterh&eNepstad, 2000;

155  Evaristo, McDonnell, Scholl, Bruijnzeel, & Chun, 2016). Only during extended very dry periods
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156  can surface soils in wet tropical forests becaigmificantly isotopically enriched, allowing the
157  use of soil water isotopes to estimate the effective rooting uptake depth at a time when water is an
158  important limiting resource.

159 Here, we_took advantage of the severe drought recorded in the easternnAvasizo

160  (JiménezMufies et al., 2016) during the 2016 EFNifio to investigate patterns of soil water use
161 among trees. We sampled soil and xylem water to determine the rooting depth of vaeous tr
162  species "(root“niche partitioning), while also measurindpaism resistance and leaf water
163  potential. We"tested two hypotheses: 1) the vertical canopy position of tree gperiesnopy,

164  subcanopy, and understory trees) relates directly to the vertical distributioat®foelowground

165 (lvanov et al.#2012); and 2) shallewoted species are more drougplerant (i.e., feature traits

166 leading to greater xylem embolism resistance; lowg), Rs compared to deeply rooted species,
167  since they are more prone to seasonal water stress undeetondrought cycledVith our results

168  we propose a model to estimate functional rooting depth for the tropical seas@amimAforest.

169

170  Methods

171 Sudy area

172 Thissstudy was carried out in a lowland tropical rainforest in the L8ogde Biosphere

173  Atmosphere”kn67 experimental iee at Tapajés National Forest near Santarém, Pard, Brazil
174  (54°58'W, 3°51’'S). The elevation is 185 m a.s.l., with topographic relief on the order of 10 m
175  (IBAMA, 2004). Soil depth is greater than 12 m and the water table is approximately d€€pm

176  (Nepstd et@al’2002). Mean total annual precipitation (18983) is 2,037 mm (Fig. S1). During
177  the prolonged.dry season of 2015 (Augbstember), monthly precipitation averaged only 64 mm
178  (RestrepeCoupe et al., 2016). Mean annual temperature and humidity are 25°C and 85%,
179  respectively (Rice et al., 2004).

180
181  Species selection
182 We studied 12 locally abundant tree species occupying a range of canopy positions along

183  the forest vertical profile (understory, subcanopy, and canopy); diameter at gt (DBH)

184 ranged from 3 to 159 cm (Table S1). Ten canopy and subcanopy species were chosen based on a
185 long-term forest inventory database of 4 km of permanent transects. These ten species represent ~
186  41.5% of basal area of trees > 10 cm DBH (Rylal. 2008 updated by Longo, 2013; see S1). We
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also sampled two very abundant understory species in which most individuals $&m@<DBH
(Table S1 and S2).

Sableisotope analysis

We analyzed water stable isotopes (5°H) and (8°0) from tree xylem water and from
different soil depths. To sample xylem water, we collected suberized twig segmedf ifih
diameter) within‘reach or by ladder for small trees, and by climbing some larger trees. From other
large trees; we'sampled sapwagsing a 5nm increment borer at 1.3 m height. For each of the 12
species, we sampled only mature individuals within a narrow DBH range to canmtmbdsible
ontogenetic.effects (n=3 trees per species, except for Emdopleura uchi where n=1; Tabl&2).

To sample soil water, we dug four pits along existing permanent survey transects and
collected soil samples from six different depths 0.15, 0.30, 0.60, 1.0, 1.5, and 2.0 meters. One
additional sample was collected at 0.02 m. We also sampled fromxistong deeper pits at 4, 6,

8, and 10 m depths. Finally, we collected samples from two residential groundwidder Msekm

from the siteyrone 30 m deep and the other 60 m deep, to represent water deeper than 10 m. For
context, sincemwe do not have rainfall isotope measurements, we used modeled precipitation
isotope data._to represent the regional meteoric water line (RMWL) (http://waterisotopes.org
accessed.4/20/2017; Bowen, Wassenaar, & Hobson, 2005). We found a mismatch between the
ranges covered bylant and soil 5°H (Fig. 1A), while the range of 8*20 observed in in plant and

soil samples.was similar (Fig. S2). For this reason we used only 8180Xy|em as a proxy for the depth

of water uptake:

All samples were quickly sealed in vials, wrapped tightih parafiim (R) and kept frozen
in the laboratory. We extracted water from soil and plant samples at UNICAM aisryogenic
distillation /method (KryosisiEKAtech; Ehleringer & Dawson, 1992). Stable isotope ratios of
extracted water were analysed a¢ @@enter for Stable Isotope Biogeochemisttyniversity of
California, Betrkeley, using a hot chromium reactor unit (H/Device ™) interfaced with a Thermo
Delta Plus Xlsimass spectrometer. Data are expressed in delta (8) notation relative to Vienna mean
ocean water'standard AMOW) (Coplen, 2011).

We collected all samples between 30 November and 3 December 2015, during the most
extreme drought on record in this part of the Amazon basin (JinMuoBaz et al., 2016), with a
Palmer Drought Severity Index belo® throughout much of the eastern Amazon. Temperatures
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during the 2015/2016 ENSO reached a record of 1.5 °C higher than the maximum temperature
observed in ENSO October 1997 and 2 °C higher than the peak observed in ENSO January 1983

(JiménezMufioz et al., 2016).

| sotopic mixing.model

We used'the 'simmr' package in R to solve mixing model equations for stable isotapic dat
within a'Bayesian framework (Parnell, 2016). The model is used to infer the proportioteof wa
taken up from'the various depths of gl profile based on stable isotope observations of xylem
water. The isotopic mixing model was run via the ‘simmr_mcmc’ function (Markaindvionte
Carlo - MCMC)sto produce 1,000 iterations over 4 MCMC chains. In the Bayesian context, the
MCMC repeatedl guesses the values of the water uptake proportion and finds those values that
best fit the data representing different source of water to plants defined by a soil depth range
(mean and standard deviation of 8% in a given soil depth). The simulati® thus produce
plausible centributions of each soil layer (in terms of proportion) to the xylem water isotope ratio
and returngagpasterior distribution representing a true probability density of data (Parnell et al.,
2013).

Wesfitted a segmented lineargression model to describe the relationship between §'%0
and soil depth (Fig. S3) using the ‘segmented’ package (Muggeo, 2008). The estimatedrireakpo
was at 0.69 m depth (SD +0.17 m). Therefore, we split the soil data set into timot dispth
ranges:1) shallow soil above 1 m depth, which has a higher proportion of fine roots, larger
seasonal variation of water availability, and larger macropores (Nepstad et al., 1994; Broedel,
Tomasella,"€andido, & von Randow, 2017); and 2) deep soil at or below 1 m depth, wheile the so
water content Is greater, roots are less abundant, and percolation rates are lower (Broedel,
Tomasella, Candido, & von Randow, 2017). The mixing model analysis was not conducted for

Endopleura.uchi_ because we only sampled one individual.

Embolism vulnerability measurements

We measured xylem vulnerability to embolism as the relationship between teetpgec
loss of xylem conductivity (PLC) and xylem water potential (¥x in MPa). PLC was estimated from
percentage of air discharged (PAD) using the pneumatic method (Peréir2@1®). For the two
understory speciessinorea pubiflora and Amphirrhox longifolia, we used the hydraulic bench
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method to calculate the PLC (Sperry, Donnely, & Tyree, 1988). Both methods provide similar
estimates of i and Rg values (i.e., water potentials at which the PLC is 50 and 88%; Pereira et
al., 2016; Zhang et al., 2018).

For both methods, we collected branches longer than 1 m from two to five individuals per
species, reutsthe ends under water, and let them rehydrate overnight keeping the leavea inside
plastic bag.,Tofinduce embolism, we used the bench dehydration method (Sperry, Donnelly, &
Tyree, 1988). We measured Wy as leaf water potential (W), after equilibrating the branch inside a
black plastic bag for at least one hour prior to making the measurement, using a pressure chamber
(PMS 1000; PMS Instruments Co., AlbanyR QJSA).

Air discharge was measured connecting the entire branch to a vacuum reservoir4@th 35
kPa absolute vacuum pressure and calculating the amount of air discharged fromtthe thia
vacuum reservoir. Air discharge volume was calculated by umeagsthe pressure in the known
volume vacuumsreservoir before and after connecting to the plant and using tlgaglieav. The
volume of airdischarged from each branch was measured several times during branch dehydration
at different leaf ¥y values. PA was calculated standardizing air discharge measurements for each
branch by minimum and maximum values. Then we calculatedsgreng R by fitting a Weibull

function to the.data:

PAD = 100
1+€XP[%(‘PA‘“PP50)]

(eq.1)

where PAD'issthe percentagetbé total air discharged, Wpsois the ¥x when PAD equals to 50%,
and S is the slope of the curve (% PAD MBa

For ithe hydraulic method we used an ulow flow meter to measure PLC (Pereira &
Mazzafera=2012). Here, five segments of the base of dategldoranches with ~ 4-6 cm length and
3-5 mm diameters length were cut under water, trimmed with a razor blade and attached to the
flow meterwEach segment was perfused with degasified and filtered 10 n@halokKition by a
gravitydnducedspressure head (> 6 kPa) and the initial flow in each segment was measured. After
the initial measurements, segments were flushed at ~100 kPa to remove all bubbles based on
observation at the opposite side not attached to flow meter. The maximum fldwautwit

embolism, wa then measured. This procedure was performed in several branches at different
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dehydration stages. Using these measurements, we calculated the PLC curve by fitting against ¥y

using Eqg. 1.

Leaf water potential and hydraulic safety margin measurements

We measured minimum leaf water potential at the peak of the dry season during a non
ENSO year-(December 2014; Ynonenso) and during the ENSO drought year (December 2015,
Yenso), using a pressure chamber (Table S2). We used fully expanded and exposed leaves,
collected on.sunny, raifiee days between noon and 2:30 pm. For each species, we calculated the
hydraulic safety.imargin (HSM) as the difference between the min Wiear (Wnonenso or WYenso) and
the Ry or Pgg, to which we referred as HSWh and HSMgs, respectively. The HSM was
calculated for both the ENS&hd nonENSO years (HSMyso and HSMonenso, respectively).

Satistical analysis

We ‘'used R 3.3.3 to perform all statistical analyses (R Core Team, 2017). We tested
whether the effect ofeghth on 8'®0 of soil water was strong enough to differentiate the various
parts of the,soilprofile using linear and multiple nonlinear models. We used @heriédrion to
choose the bestimodel to describe this relationship (Burnham & Anderson, 2003).

To test'the hypothesis that the vertical canopy position of tree species relates directly to the
vertical pattern of water uptake by trees, we used linear regression to test for covariation betwee
DBH, 8"®Ojylem, and the proportion of water uptake from the mixing model. We also used linear
regression to quantify the aa@riation between the uptake depths and xylem resistance to
embolism traits.., We performed a pbsic multiplecomparisons Tuketest to identify taxonomic
groups with, similar estimated effective rooting depth. We also tested the validity of bivariate
models derived here, using obserwsdoredicted variables by linear models. In order to assess

error magnitude; we estimated the root mean squared deviation (RMSD) as

RMSD= »\/ LY (pred — obs)’
=1

(eq.2)
which represents the mean deviation of the predicted value in relation to the obskrgeth\the

same units as the variable under evaluation (Pifieiro, Perelman, Guerschman, 1&, Raag).
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We used an ABOVA to identify differences in slopes of the relationship between 8'°0 and &2H
for the regional meteoric water line and the water lines representing the xylem and soil water

samples.

Effective functienal rooting depth

We used the observed relationships of oxygen isotopes with depth in soil water (Fig 1B)
and with*tree“size in xylem water (Fig 1C), to construct a model to infer the effective functional
rooting depth™(EFRD), or depth of root water uptake, for any individual tree of known size.
Specificall, we fit models to describe the relationships between observed tree diameter, and
xylem &0, and-between soil water %0 and depth. Firstly, we fit a model describing xylem 8*20

as a function'of'DBH (i.e., the inverse of relationship in Fig. 1C):

5180 = k. [1 — exp(r.DBH)]
(eq. 3)
Secondly; we fit a model for soil depth predictedo{Zas a function of soil water *°0
(Fig. 1B):

L .= exp(alSOT_m)

soil
(eq .4)
Combining egs. 3 and 4 yields (Fig. 1D; black line):
|'k ' (1_ exp(r . DBH)) _ m'l
EFRD = exp { p }
(eq.5)

EFRD is computed on a continuous basis, and its minimum and maximum values depend
on the DBH distribution of stems within the plot. To account for the effect of anutgriof the
parameters+fitsin Eq. 3 and Eq. 4 on the predictions of Eq. 5, given the observed variations in
8'%0s0i withssoildepth and in 5'%0,yiem With tree size in larger trees (larger DBH), we performed a
bootstrapping analysis to propagate the uncertainty omth@, k andr parameters (Davison &
Hinkley, 1997)»\We started by creatindl000 bootstrap replicate sets sampling from the data with
replacement combinations of 8*®Ogcj and 518OXy|em (the boot (Canty & Ripley, 2016) andlstools
(Baty et al., 2015) packages in R software were used). Using these replicate sets, we obtained th

m, n, k andr parameters by applying the fitting procedures to Eqns. 3 and 4. Each bootstrap
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replicate set of parameters thus yielded a realization of the functional dependence of Eqn 5. The
median EFRD fit (i.e., based on 1,000 realizations for each DBH) was takle® i@presentative

form of this dependence (shown as the black line in Fig 1D), with the correspamdimds andr
parameter set considered as ‘optimal’. We used this optimal set to evaluate EFRD for all trees in
the census inventory for the k&Y stuy site (4 ha area total, Pyé al.,2008 updated by Longo,

2013).

To evaluate the EFRD at the ecosystem level for this site, we calculated the community
weighted mean"EFRD (following Muscarella & Uriarte, 2016 for community traits generally). For
that, we aggregated inventory data according to taxa (species, genera, and families): we averaged
EFRD (obtained, for individual trees) within each taxa and weighted eachg$proiiic EFRD by

the corresponding dominance, based on its fraction of total steirebesat the site.

Results

Water. stable isotopes reveal ed species differencesin rooting depth

Theextreme drought in 2015 caused substantial evaporative isotope enrichmentrgh the fi
meter of soil insthe Tapajos forest, which allowed us to estimgtadient of rooting depth of tree
species intAmazonia using natueddundance stable isotopes of oxygen (Fig-R). Overall, soil
depth explained 68% of the average 5'%Oso; variability (Table 1). Based on the regression model
with a segmented relationship between 818050i| and soil depth, the breakpoint in the 818050” depth
profile was,0.69 m (Fig. S3, SE= +0.17; r2=0.82; p<0.01). Splitting the soil data into two
categoriedasedwon this threshold as explained above, the average 818050i|(<1m) was-3.08 %o (SD=
+ 1.38), whereas” the average 5% 1) of deeper soil layers were less enriched in 8'%0 (-4.95 %o
+ 0.95). Well water from 380 m depth was the most depleted WifOs,; varying from-5.85 to
-5.35 %o (Fig. 1B; blue rectangle), similar to that of the annual mean for precipitation (6180= -5.7
%o; Fig. 1A).

The_ slope of the regional meteoric water line (RMWL) (slope = 7.70; intercept = 19.99)
0.30, whichgislower than the global meteoric water line (GMWL) (ANCOVA; Table 2; p<0.01).
The soil evaporative line slope was 2.74, which is lower than the RMWL slope (Figabks; 7).
The 8180Xy|em ranged from0.92 t0-6.25 %o suggesting a large diversity of rooting depths for this
community (Fig. 1A). These data fall along a line with slope 1.43 lower than RMWL slope (slo
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361 =6.27; intercept = 9.92; Fig. 1A; Table 2), but higher than the soil evaporative line (ANCOVA,
362 Table 2).

363 Species differed systematically the contribution of water uptake from different depths.

364 The mixing model showed that four species used mostly shallow soil water (<1 r®,sihi

365 species derived at least 50% of their water from soils deeper than 1 m (Fig. 2A)ngRbegith

366 (using 5'%0‘as a proxy) was strongly related to the stem size differences across the species (Fig.
367 1C; rz ='0.72;"p"< 0.01). With the exception of the understory spAciesgifolia, smaller trees

368 (DBH < 30"em)"mostly used water from the soil above 1 m depth (r2 = 0.41; p < 0.05; Table 1),
369 while large trees (DBH > 40 cm) mostly used water from deeper soil (r2 = 0.40,0b<Table 1;

370  Fig. 2B).

371

372 Hydraulicitraits and their relationships with rooting depth

373 Among the species in our survey (Fig. 3Aj, Panged fom -5.01 to-1.52 MPa and £

374  ranges from7.29 t0-2.12 MPa. The variation of §"®Oyyem €xplained 49% of the variation ins®

375 and 70% of*Rs(Table 1; p<0.05), after removal Bfotium apiculatum, which was an outlier as
376 evaluated by Cook’s distance inspection (Aguinis et al., 2013). During ®£N8Q® year, the
377  minimum Whepenso ranged from2.68 MPa to-1.10 MPa. The extreme ENSO drought increased
378  the variationsof leaf water potential; Wenso ranges from4.43 to -1.06 MPa (Fig. 3B).

379 We observed aigher tolerance of low water potential in shallovoted species. Here, the
380  variation of 8180Xy|em explained 47% and 77% of the variation of minimum Y¥onenso and Wenso,

381  respectively(Table 1; p=0.06 and p<0.01). Trees with more enriched xylem watdaKea up

382 from shallowsselil) exhibited lower leaf water potentials in both-BOISO and ENSO years (Fig.
383 3B). The HSMB, and HSMRsg during normal and ENSO years were always positive or very
384 close to zero. The exception was the shallooted specie&inorea pubiflora, which showed

385 1.43 HSMRp.during the ENSO year (Fig-@B). Furthermore, there was no relationship between
386  3"°Oxylem and. HSMR, and HSMRg during normal or ENSO years (Fig. 3C, D).

387

388 Effective functional rooting depth model

389 The models described in Eg-53were used to scale up the overall pattern of effective
390 rooting depth to the whole forest community at Tapajos (Fig. 1D). For Eq. 3, the pasamet
391 derived from EFRD fit, based on 1,000 realizations for each DBH and considered asl*optima
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representative form of this dependencekare5.356 and = -0.0516. In this case, the 8"°Opredicted
explained 52% of the variation of xylem §*®Ogpsenved(r?=0.52; p=0.002; RMSD=1.35%.; Table S2).
The bootstrapping approach estimates thaeampeters ak= -5.579 (SE=0.62) and=-0.061
(SE=0.03)..For Eq. 4, using the same approach of Eq. 3, the parameters derived&B29
andn= -0.588. In this case, the predict,; explained 84% of the variation & observed
(r2=0.84; p<0.001; RMSD=12.9 m; Fig. S4). Here, the results from bootstrappingrnwede076
(SE=0.157@andn= -0.567 (SE=0.087; Fig. 1-C). The model’s deviation from the 1:1 line indicates
that this prediction was biased to shallow soil (modeled line below 1:1 line). Despite the larger
differences between predicted values and observed values (RMSD=12.9 m), we usedelur m
derived from Eg. 5 to extrapolate the EFRD to the larger6Kratudy area at Tapajés Forest. The
estimated average maximum EFRD based on theénmuizn DBH measured within the plot was
13.33 m (25%-75% interquartile interval: 6.73 m to 30.14 m).

Scaling rooting depth estimates to the ecosystem

Ourgestimates of ecosystesnale rooting depth distribution indicated a disproportionate
number of ‘individuals drawing water from depths shallower than 1.32 meter (Median= 0.24 m;
Mean= 1.32,m). The dry season commumigighted mean of EFRD was 3.56 m. There were
specific families, genera, and species restricted to drawing water from shallow soithansl
exclusively drawing water from deep soil, as dictated by their DBH distributighe studied
ecosystem.. This was also confirmed when we contrasted the 10% most dominant taxa (highe
absolute deminance (AQsH): m2.hat), as shown in Fig. S5 and $hat illustrate differences in
EFRD based=on multiple group comparison (Tukey HSD Test; p<0.05). The scatterplatgshowi
the variations in EFRD (hydrological axis) and DBH (light availability aaspss taxa suggests a
single predominant axis of vatian representing a niche spectrum defined jointly by access to
water and light (Fig. 1c; Fig. 4). Differences in circle sizes given by post hoy Testealso show
that only a few/taxonomic groups are more dominant than others (Fig. 4). The limiteaboverl
between cireles demonstrates the segregation of taxa along a single xagloé Bghtwater
availability, from lower light availability and restricted water access, to higher light aligilab
and deep water access (Fig. 4; Fig. S6). By pooling imhais into DBH classes (every 10 cm) to
calculate the absolute dominance of each class @R9, we found a linear negative response of
ADopgH) as a function of EFRD (Fig. S7; r?=0.63; Table 1).
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Discussion

Our results provide strong evidence fgregation of root water uptake in soil as an
important strategy allowing mulipecies coexistence in a seasonal Amazon forest. Specifically,
using 8*°0 to.estimate the effective rooting depth, we empirically confirmed a moesiser
hypothesis (lvanoet al., 2012) that the abogeound vertical structure is related to rooting depth
distribution™(Fig=1C). Furthermore, we showed that greater rooting depth (using 5'%0 as proxy of
root depth) is“associated with lower xylem resistance to embolism des@ssShallowrooted
species, which dominate the understory, compensate for only having access to shhllgth soi
lower water: potentials by having greater xylem resistance to embolism (i.e.Rgyand Rsg;
Fig. 2A) and anisohydric stomatal contisttategy (Tardieu, 1996), demonstrated by their weaker
yearto-year water potential regulation even during an extreme 2015/2016 ENSO drought (Fig. 3
B). Our results also demonstrate, for the first time, the functional integration of-lz@idvabove
grourd hydraulic traits as drivers of drouggnoidance and droughtlerance strategies for
Amazon treeyspecies. These results support the niche theory in tropical forests where it is expected
that plant species strategies range from acquisitive with high growth rates at high resource levels
(e.g. light'and water) to more conservative, slowly growing species that aentaé shade and
drought (Sterck et al., 2011). Additionally, our rooting depth results coupled with $tnesture
parameters allowed th@evelopment of a new formulation to estimate the effective functional
rooting depth (EFRD), defined as the likely soil depth from which roots can susttn uptake
for physiolegical functions (Fig.-D). The EFRD will be useful to modellers interested i
integrating thesCoordination between belamd aboveground plant functions into predictions of
forest productivity responses and forest resilience to climate change forecasts in seasonal
Amazonia (Meir et al., 2009; Markewitz, Devine, Davidson, Bragdbdlepstad, 2010; Ivanov et
al., 2012; Restrepo-Coupe et al., 2016; Christoffersen et al., 2016; Fun et al., 2017).

Ecological implications of soil vertical root partitioning

The strong relationship between functional rooting depth and tree sizel{Bjg.Eq. 3)
that was used to scale our results to the ecosystem level suggests that soil water and light, which
both vary seasonally, are the resources for which trees must compete most stribmgjlyeiasonal
Amazon forest, and that resource partitngnicontributes to species coexistence (Sterck et al.,
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454  2011). Indeed, the distributions of leaf area and light environments are strdatgy te DBH

455  distribution of trees in Tapajos, as individuals optimize their productivity over the vertical gradient
456  to create consistent relationships between canopy light environments and biomalsg $tank et

457 al.,, 2012; 2015). Our results further suggest that rooting depth increases with tree height,
458 compensating.for the greater evaporative demand at the top canbey (McDowell & Allen,

459  2015) and allowing larger trees to be photosynthetically active during the dry seasomgGaardi
460 al., 2018). The“greater light interception of taller trees may allows thenotd &fie carbon costs

461  of growing"deeper roots. Bad on water isotopes in xylem and soil water, our estimates show that
462 maximum effective root depth can be as deep as ~13 m (fi)g.black line; Table S2). This

463 deeper root investment may be attributed to the temporal variability of water availability in
464  Tapajos, inducing deep root investment to reduce water stress and competitiorexuenge dry

465 conditions. These belowground allocation rules force a-wédat the community level between

466 light use (Stark et al., 2015; Wu et al., 2016) and waterstrs¢egies (Ilvanov et al., 2012).

467 Though whether rooting depth and drought tolerance correlate with phenologicalietrateg
468 remains todoestested, we would expect the leaf phenology of canopy trees to respond giare to li
469 availability ‘than” water, whilehe phenology of shallowooted smaller trees would be driven
470  mostly by'water availability.

471 Thesspatial variation in light and water (“ebgdrodight” niche axes) along vertical

472  profiles drives niche partitioning, and forest structural and taxonomic organizaithin the

473  Tapajos community (Fig. 4). We found specific groups of families (five), genera (sewreh)

474  species (five)"deminating a range of soil depths and canopy layers (given by DBH ejatféagc

475 4, PostHoc*Tukey clustering, see legend). Amotig 10% most dominant groups of species,
476 genera and families, there is a relatively limited overlap in EFRD. These results illustrate above
477  and belowground space partitioning at a fine scale by the most dominant groups and represent an
478  average distance sufficiently small for species to minimize competition and dominate in each niche
479  of light (Kohyama, 1993; Stark et al., 2012) and water availability (Araya et al.,, 2011). The
480 strength of interspecific interaction among coexisting dominant species neot tbé distribution

481  of longterm=hydraulic traits selected within the community (Hillebrand, Bennet, &otta

482 2008). In fact, we showed a diversity of drougtiated strategies dependent on rooting depth,
483 xylem embolism resistance (Fig. 2), and abowagd forest vertical structure that might help
484  explain the dominance structure of the Tapajos forest community.
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485 We estimated an effective rooting depth for the whole community as ~3.6 m, considering
486 the communityweighted EFRD mean by species dominafite weighted EFRD mean shows the

487  proportional influence of the dominant species (Muscarella & Uriarte, 2016) arrdhohete the

488  depth with the greatest influence on water use in Tapajos, indicating the depth anesiici the

489  water extraction occurs during dry seas®hese results indicate the prevalence of a dreught
490 avoidance strategy defined by deeper water access to mitigate the seasonal and interannual drought
491  cycles. Indeed;“quantification of fimeot vertical profiles showed only ~10% of the total root
492 mass occued between 4 to 10 m in the eastern Amazon (Nepstad et al., 1994). Anadeer

493 experiment suggested water access by dominantamdpyCoussarea racemosa (=C. albicans),

494  <lerolobium chrysophyllum (=Tachigali chrysophylla) and Eschweilera pedicellata around 2

495 meter depth” (RomerBaltos et al., 2005). During a throughfall exclusion (artificial drought)
496 experiment conducted in Tapajos, based on measures of soil electrical resistivity, it was observed
497 that deeproot water uptake increased up to 18 mhi@ treatment, in contrast with the control plot

498 (Davidson et al., 2011). Further, root systems may allow the hydraulic redistriblita@ter from

499 shallow to deep soil (downward) for storage during the onset of the wet seasontransfer of

500 stored water from deep to shallow soil (upward) to meet the demand by plants durory the
501 season (Lee, Oliveira, Dawson, & Fung, 2005), as has been documerishiikara €elata,

502  Protium robustum andCoussarea racemosa (= C. albicans), which are dominant speciasour site

503 (Oliveira, Dawson, Burgess, & Nepstad, 2005).

504 Shallow+ooted small trees, between-20 cm diameter, (Fig. S4) are quite abundant,
505 representing©45% of the forest aboveground biomass in Tapajos (Vieira et al.,, 2004). This
506 structural pattern canbutes to the median EFRD at a shallow soil depth (~0.37 m), indicating
507 high competition for water uptake in this layer. When water is abundant duringinlyeseason,

508 competition for water is not very important relative to other resources, suergsits and light.

509 However, the high climatic variability and the persistently high water demanadgdire dry

510 season forces. a traddf in terms of tree water use at the community level (Schwinning & Kelly,
511  2013). Moreover, considering the reduced ligiailability for understory trees during the rainy

512 season (Huete et al., 2006; Restr€mupe et al., 2013), the relatively abundant light during the
513 dry season is a window of opportunity for these trees to maximize productivity, whichbenust
514  sustained byheir strategy of drougttblerance. The regular seasonal cycle of water scarcity and
515 the frequent droughts in the eastern Amazon appear to have selected for species that are successful
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at either avoiding or tolerating water stress, as indicated by #a gange of § and Rg we
observed (Fig. 3).

We showed that 8*%0 variance (a proxy for rooting depth) explained 40% and 70% of
speciesspecific variation in B and Rg respectively. Shallow rooted trees had greater xylem
resistance to.embolism fornan, i.e., the lower B and Rg values down to5 MPa and-7.29
MPa, as compared to deeply rooted trees that do not require such high tolerance due te#seir ac
to a largerreservoir of deep water (Fig. 3A). Consequently, shatioted species showegleater
decreases"in‘leaf water potential and hydraulic safety margin thasratge@d species during the
extreme 2015 drought (Fig. 3D and Fig. S7). This suggests that shiathted species can tolerate
a certain degree of embolism to maintain carbon uptake under dry conditions (Meinker et a
2009), although'most species presented positive safety margins. For instance, the higher seasonal
changes in hydraulic safety margins for shaftmeted understory species (Fig. 3) reinforce the
notion that this grup of species can decrease their water potential and operate under a narrow
safety margin_in order to keep their stomata open and maintain gas exchange during the
opportunistiegtime of higher light level (with exception Rrfotium apiculatum, which was vey
vulnerable to ‘embolism and showed relatively little variation in leaf water potential). Indeed, the
shallow-roetedR. pubiflora experienced the most negative leaf water potential among species.
This behavior indicates a strategy consistent with ‘apidoti pattern: reduced control over leaf
water potential in response to changing environmental conditions, therefore leadmgheraisk
of xylem embolism formation (Haclet al. 2006; McDowellet al. 2008).

Suchranisohydric behavior of the lowenogy is an important strategy to sustaining plant
productivity;seensidering that droughtduced mortality risk might be mitigated by some other
compensatory mechanism such as xylem structural reinforcement or plgsiity et al., 2010;
Markesteljn etal,, 2011; Cosme, Schietti, Costa, & Oliveira, 2017). In fact, our resulpstbel
explain the low mortality rates observed in small trees (DBH< 20 cm) in thaugxtlusion
experiments.in.the Amazon (Nepstad, Tohver, David, Moutinho, & Cardinot, 8807osta edl.,
2010), and.even the increased growth rates of small trees following the substartaditynadr
larger trees*during droughts at two Eastern Amazon forest sites (Braatdp2910; Rowland et
al., 2015).

We suggest that these patteans likely also reflected along tree ontogeny, though our data

on mature trees of each species did not address this. Young trees of even dominant canopy species
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must start out with relatively shallow roots, and during this phase of development ayeged a

high degree of embolism resistance to survive in the dense understory environesil Y where
competition for space and water among smaller trees can be intense (Rice et al., 2004; Starck et al.,
2015). Reduction in investment that confers gireaebolism resistance would be consistent with
access to deeper soil water reservoirs with greater root depth (Fontj 20H0). Indeed, a
significant increase indg along with DBH during tree growth was observed across several species

in Caxiuanaforest (Rowland et al., 2015).

Despite"deep water access, larger trees are generally more vulnerable to xylem embolism
and appear to joperate closer to their safety marthias do understory trees (Fig-C3D),
particularly.given the higight and highVPD conditions that they are frequently exposed to
during droughtsindeed, droughinduced mortality of larger trees has been observed in many
areas of the Amazon forestépstad, Tohver, David, Moutinho, & Cardinot, 2007; Phillips et al.,
2010; Rowland et al.,, 2015; Bennett, McDowell, Allen, & Andef$eixeira, 2015). Low
HSMPso may indicate that stomatal regulation takes the full advantage of the small safety range of
xylem pressures (Choat et al., 2012), while running the risk of severe hydraute iiaitirought
conditions extreme enough to deplete the deep soil water these trees use (Anddregl€) a
Deep water.access represents a competitive advantage irofesai®r use, making it possible for
trees to_aveid drought and invest in growth, rather than investing in producing a very resistant
hydraulic transport system (Stark et al., 2015). However, basic principles of plant @dpysiol
predict that.vulnerabilityo drought stress increases with tree height; taller trees need to deal with
higher VPDslight interception, and hydraulic path length (McDowell & Allen 20d/&)¢ch might
be compensated by other water regulation strategies, such as leaf turgor loascav(@artlett,
Scoffoni, & Sack, 2012; Skelton, West, & Dawson, 2015). Indeed, at the¢osgaar scale (2014
2015), deeply rooted larger tree species showed a more isohydric behavior (in terms of water
potential regulation; Fig. 3B).

Further_studies eed to investigate the minimum threshold of deep root water access
required for.tree survival during prolonged drought. Taken together, our results suggest that long
term droughts,might increase embolism risk in species with higlaeard Rs and, if assoiated
with the depletion of nostructural carbohydrates reserves beyond critical thresholds (McDowell
et al., 2008; Sala, Woodruff, & Meinzer, 2012), may lead to increased risk of large ttaétynor
Furthermore, additional studies are needed to elucidate the effect @idugyckal drought on
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578 decreasing deep water recharge and inducing canopy turnover and ecosystem changesnn Amaz
579 (Taufik et al., 2017; Chitrdarak et al., 2018; Leitold et al., 2018). Greater mortality in deep
580 rooted trees was obsed/eluring a drought in a dry tropical forest in India (Chifexak et al.,

581 2018), and attributed to the delayed recharge of deeper water following drought. Additionally,
582 periods withlew groundwater recharge may amplify wildfire occurrence asvels@ atropical

583 forest in Borneo (Taufik et al., 2017), and may intensify the recently observed inaikedse in

584  eastern Amazon (Aragao et al., 2018).

585
586  Estimated Functional Rooting Depth
587 Tree diameter is currently used in allometric models to estimatesco@ot biomass (Tobin

588 et al, 2007;*Gou et al., 2017). Here we suggest an empirically based allometric modeh#&teesti

589 the effective rooting depth (EFRD) for a seasonal Amazon forest using DBH (Eqovsgvet,

590 some uncertainties should be considered.

591 When we examined EFRD responses using the bootstrapping estimates of parapmeters
592 k andr, thesresults yielded an uncertainty of 6 to 30 m depth in soil profile (Fig. 1D and S4).
593 Despite this, the model was sufficiently sensitive to demonstrate ainceiegree of vertical

594  rooting depth_partitioning as a function of tree DBH in all simulations; thus, weoafelent

595 about the.existence of a rooting depth pattern in Tapajés forest that can kexlibfetree DBH.

596  The strong correlation between DBH a380,y.em and the isotopic mixing model results (Fig.1C

597 and Fig. 2C) supports the idea of larger trees using relatively large amounteobelatv 1 m

598 (and likely down to 13 m). While we are aware that our results only provide a ptweder use

599 dynamics during one dry period of a single year (the extreme drought of 2015), we also believe
600 there is a substantial plasticity of root water uptake to allow for shifts in effective rooting depth in
601 response to changes in soil dryness conditions (Doussan, Pierret, Garrigues,s& 2086e

602  Schroder, Javaux, Vanderborght, Korfgen, & Vereecken, 2008; Couvreur, Vanderborght, Draye, &
603 Javaux, 2014, Fun et al., 2017).

604 An_additional source of uncertainty is that xylem water stable isotope composition reflects
605 a mixture oftuptake from multiple depths (see Moreira, Sternberg, & Nepstad, ROO&ro

606  Saltos et al., 2004), considering that Eq. 5 requires the predicted 6180Xy|em from Eqg. 3 to be used

607 and this creates a noise in our estimates. However, the 2015/2016 ENSO induced both a strong
608 isotopic gradient in the soil water, mainly above 1 m depth (Fig. 1), as wstlomg competition
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609 for water, likely leading to a disproportionate uptake of water by each tree from the deepest soil
610 layers it had access to. Furthermore, theimyi model results highlight that even if xylem water

611  stable isotope composition reflects uptake from multiple depths, there was a clear distihction
612  smaller tregs using more shallow water (< 1 m) and larger trees using deeper wkgam(ZFig.

613 2). The uptake,of water from multiple depths may occur in the deeper soil layers, but we were not
614  able to clearly distinguish an isotopic signal in each layer below 1 m depth.

615 Our~results are supported by the survey on root morphologies conducted at Tapajos
616  showing thatthe dimorphic rooting habit with tap roots growing vertically towards deepe

617 layers areistrongly represented at this site (Oliveira et al., 2005). This contrasts witltethre pa
618 observed in a=hypdrumid aseasonal Panamanian forest, wharger trees (DBH > 50 cm)

619  acquired water from shallow soil layers (more 5'%0 enriched water) and small trees from soil up to

620 2 m depth (Meinzer et al., 1999). These authors concluded that larger trees invesh more
621  widening their horizontal root distuition (Meinzer et al., 1999); however, we expect this shallow,
622  extensive strategy to be most common in environments without a long and intense dry séason, or
623  sites that lack=a deep soil (Canadell et al., 1996; Fun et al., 2017). The strategyefirg for

624  shallow soil'water would seem to be advantageous only when soil moisture at these depths is fairly
625 reliable, orif,other drougkdtress avoidance strategies such as deciduous dormancy are employed.
626 Intense competition for a limited amount of shallow soil water during an extendectabyns

627 would likely require high embolism resistance, especially for evergreen canepywigch must

628 endure high VPD and high radiation flux at the top of the canopy throughout the dry season.

629 Evenwith the aforementioned precautions, we highlight the model expressed in Eq. 5 as a
630 good approximation of the overall functional rooting depth in the Tapajés forest (Fig. 3C).
631  Evidence of root activity around 13 m depth in seasonal Amazon forest (Nepstad1994|

632 (Markewitz, Devine, Davidson, Brando, & Nepstad, 2010; Davidson et al., 2011; Ivanov et al.,
633 2012), and.the expected average maximum rooting depth for tropical evergreen forest of 15 (£5.4)
634 m (Canadell_et/al., 1996), lend substantial support to scaling up tRE Ebt a large area in

635 Tapajos (Riee'et al., 2004). We can use sirbpiameasure variables, such as DBH, to parameterize
636 model representations of difficeti--measure underlying functions, such as rooting depth. It will
637 be relevant to determine whether tBERD - DBH relationship holds in neseasonal tropical

638 rainforests and whether we can better describe ecosystem processes by incorporating such
639 relationships into landurface and ecohydrological models.
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Conclusions

The distribution of leaf area andghit environments in seasonal Amazon forests is
integrally connected to the size (diameter) distribution of trees (Stark et al., 2015). We have
confirmed that,tree size is also related to the effective rooting depth (lvarady 2012), and
demonstratedthat such interdependence is associated with different hydraulic strategies.
Specifically,"ourdata show coordination between the rooting depth and embolisnmcesigithin
seasonal Amazon forests, suggesting a todfibetween drought avoidance (i.e. deep rooted) and
drought tolerance (i.e. embolisrasistance). Drougtgvoiding species are characterized by deep
roots, which allew relatively little investment in mechanisms facilitating embolism resistance, a
well as operation near the limit of hydraulic safety margin. This is the predonstrategy in
canopy/overstory trees with greater canopy exposure to light. Drought tolerance, the maatomi
strategy in shallowooted and lightimited understory trees, is demonstrated by the lowgaRd
Pss and high_yeatto-year variability in xylem water potential. These complementary strategies
allow nichespartitioning within the ecosystem and affect the structure ohdotrspecies in the
community,=driven by both water and light availability. Further studies on thetsedinauld be
conductedin,other tropical forests to evaluate the generality of these findings.

Capturing species variation in structural and physiological traits in a-dyense tropical
forest represents an enormous challenge for model parameterizations, but our results suggest that
much of the variation can be captured through the fairly straightforward relationstwgebdree
diameter, canopy position, rooting depth, and hydraulic trait parameters in seasgnaibpidal
forests growing on deep soils. Our results also help to explain theedspn greenp and
increase in productivity observed in seasonal Amazon forests as dependent on canopy trees’ access
to deep sall water (Saleska et al., 2003; Restfamape et al., 20). However, we stress that
further research.is needed to better constrain the partitioning of water use and forest productivity

along vertical canopy gradient under a range of water-abundant andiméteg conditions.
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removal of Protium apiculatum, which was an outlier;SWUP: shallow (<1lm) water use
proportion; DWUP: deep (>1m) water use proportiontLWP : midday leaf water potential,
ADopgn): absolute dominance of each DBH claéBg: water potential at which plants lose 50%
of their hydraualicseonductanc®gs: water potetial at which plants lose 88% of their hydraulic

conductaneeDBH: diameter at breast heigiFRD: estimated functional root depth.

Table 2 ANCQVA statistics comparing the slopes of linear relationships between 880 and §°H.

Slope
ANCOVA F df AIC p ]
Difference
I T T T T T 1

RMW.L : SWEL 65.64 1 92.67 0.001 -2.74
GMWL : RMWL 6.127 1 64.12 0.01 -0.29
RMWL : PWEL 97.37 1 87.51 0.001 -1.43
SWEL : PWEL 17.60 1 101.50 0.003 -1.30

GMWL: “glebal meteoric water lineRMWL : regional meteoric water lIN&SWEL: soil water

evaporative linePWEL : plant water evaporative line.
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1055  Figure 4 Hydrolagical niche axis given by the average estimated functional root depth YESRD

1056  a function ofsthe average diameter at breast height (D8ldjpxy for lightavailability. From top

1057 to bottom is*the average value from both parameters for family, genus, and species level. The
1058 circle size is proportional to dominance (m2thaf the 10% most dominant taxa at each level (see
1059  Fig. S6). The lightl shaded circles represent all tree taxa at Tapajos (see Fig. S5). Colors represent

1060 the PostHoc Tukey comparison results of EFRD to each taxonomic level. The letters on right
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legend indicate differences between groups defined byHRmsTukey statisticatlifferences on
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(see also Fig. S4).

Electronic Supplementary I nformation

Hydrological niche segregation defines forest structure and drought tolerance

strategies ina seasonal Amazon forest.

Mauro Brum, Matthew A. Vadeboncoeur, Valeriy Ivanov, Heidi Asbjornsen, Scott Saleska
Luciana F. Alves, Deliane Penha; Jadson D. Dias, Luiz E.O.C. Aragéo, Fernanda V. Baims, P

R.L. Bittencourt, Luciano Pereira, & Rafael®™iveira

Soecies abundance and basal area

We ‘estimated basal area and local abundance for ten canopy and
subcanopyytree species (Table S1) by extracting individual species data
(diameter at breast height, cm for all live stems = 10 cm, spatial
position, “species identity: year 2012) from a long—term forest tree
inventory-database (n = 4 transects of 1000 x10 m located east of the
TNF tower:; Pyle et al., 2008, Longo, 2013). To estimate the local
abundance_(stems ha?!) and basal area (m? Hafor the two understory tree species,

Amphirrhox longifolia andRinorea pubiflora (Violaceae), we established five roantiguous 500
m2 plots (LO"%"50 m) within an area of 50 x 1000 m (Transect 1), and measured diametat (mm)
30 cm above ground andigbkt (m) of all live individuals > 0.30 m tall.

Water stable isotopes of 6°H

The average 6*Hsoil (<1m) Was-19 %o (+ 8.07), while the average 8*Hsoil (>1m) Was-30 %o
(£5.91). 'Well water from 30 m depth was the most depleted in heavier isotopes, with 6*H i
varying from-34.3 t0-30.6 %o. The 3*°Hyylem ranged from-15.33 t0-47.50 %.. Due to the

incomplete overlap between plant and soil 8?H (in contrast to '%0; Fig 1, Fig S2), we only used
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1089 50 to determine the water source of each tree species asumenukisoitwater endmembers at
1090 different depth intervals.
1091
1092
1093
1094
1095
1096 Table S1Biological and structural attributes of the species studied at Tapajos Forést kBA
1097 study area, Brazil. Values are means acrossha 4durvey area of all trees larger than 10 cm.
1098 Understorysspecies were recorded in five h@5plots. Species aredared from deepest rooting
1099  to shallowesttooting as determined from xylem 5'%0 (Fig. 1). DBH data are from the loteym
1100 forest tree inventory database (Pyle et al., 2008, Longo, 2013). For two undertory species
1101 Amphirrhox longifolia andRinorea pubiflora, too small to be included in the inventory, we report
1102 the DBH ofindividuals sampled for stable isotope analysis.
DBH (cm)
Abundance
Species Family Canopy Position Basal Area (m2.ha’) ) 4 Mean
(ind.ha™)
(SD)
| | I | I | |
Manilkara elata
. Sapotaceae canopy 2.19 10.5 42 +30
(Alleméo ex. Mig.) Monach.
Erisma uncinatum
Vochysiaceae canopy 3.64 11.0 51 +39
Warm.
Pseudopiptadenia psilestachya
] Fabaceae canopy 0.23 2.0 30 £21
(DC.) G.P.Lewis & M.P.Lima
Endopleura uchi )
Humiraceae canopy 0.33 2.3 3¥22
(Huber) Cuatrec.
Mezilaurus itauba
) Lauraceae canopy 0.40 1.5 55 £19
(Meins.)Taub. ex Mez:
Tachigali chrysophylla
) Fabaceae canopy 1.28 17.8 25 +19
(Poepp.) Zarucchi & Herend.
Chamaecrista xinguensis
Fabaceae subcanopy 2.01 155 35+19

(Ducke) H.S.Irwin & Barneby
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Protium apiculatum

Swart.

Coussarea albescens
(DC.) Mll.Arg.

Miconia sp.

Amphirrhox longifolia
(A.St-Hil.) Spreng

Rinorea pubiflora
(Benth.) Sprague &Sandwith

Burseraceae

Rubiaceae

Melastomataceae

Violaceae

Violaceae

subcanopy

subcanopy

subcanopy

understory

understory

0.65

1.48

0.08

0.35

2.45

24.3

92.5

2.5

908

3104

17 +6

133

18 £5

3.5+0.92

2.7 +0.53

1103
1104
1105
1106
1107
1108
1109
1110
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Table S2Sample size (n) for each parameter evaluated in this study.

Isotope Hydraulic Leaf Water Potential (‘¥)
Species (3*®*0 and Traits
2
o°H) (Pso and Pes) NC individual NC leaf / individual
T T T T

ManilKara elata 4 3 - -
Erisma uncinatum 5 3 2 4-5
Pseudopiptadenia 3
psilostachya
Endopleura uchi 1 2 1 5
Mezilaurus itauba 5 2 1 5
Tachigali chrysophylla 4 2 - -



1111
1112

Chamaecrista xinguensis 5 3

Protium apiculatum 5 3
Coussarea albescens 5 3
Miconi 5 3
Arﬂ)hi rrhox longifolia 5 5

¢

Rinor ra 5 5

4-5

45

Author Manusg
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Figure S1 Box ‘plot of monthly rainfall, air temperature, vapor pressure deficit (VPD) and

photosynthetic active radiation (PAR) from hourly measurements between 2006 to 204djas$ Ta
National Forest, Brazil.sée RestrepeCoupe et al., 2013; 2016). The red litws the average

rainfall during 2015.
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1122 Figure S24Boxplot of §H and 5'®0 variation in all plants and all soil depths. On average, xylem
1123 water 5°H (s34 %s) was more depleted than soil wat@5(%o) (t=4.83; p<0.001), while %0 was
1124  more similar-betwen xylem and soil water sampled (t=0.28; p=0.77).
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Figure S3- Regression model with segmented relationship between average %0 and soil depth.
The estimated.breghoint in the soil profile was 0.69 (x0.17) m depth (vertical dashed line; see
results br'statistics). This threshold was used to define the depth categories aboveoani bel

depth (see methods).
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Figure S4Relationship between observed and predicted soil depth and 6180Xy|em models described

in Eq. 3 (right plot) and Eqg. 4 (left plot). The model parameters were derived from admotst

technique and the parameters were chosen by median fitted values from Eq. ®tlees)nThe

black dashedkline is the 1:1 line, the red continuous line is the linear model, and red dashed li

show thedimit of the confidence interval (grey area) estimated by the model.
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1147 Estimated Functional Root Depth (m)

1148 Figure SS5Extrapolated estimated functional root depth (EFRD) for Families, Genera and Species
1149  (from top to bottomusing equation 5. We used coefficients derived using all soil §*°0 data (see

1150  Fig. 3, Fig. S3 and Table S2) to scale across all individuals within the -fuih&ctare study area

1151  at Tapajos National Forest, Brazil (see S1). Colors represent the resitstéioc Tukey
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1152 comparison of EFRD at each taxonomic level. The letters on right legend indicate differences
1153  between groups (p<0.05) and the depth range of EFRD where each groups occurs.
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1154
1155  Figure S6Extrapolated estimated functional root depth (EFRD)tfhe most dominant 10% of
1156  taxa at each level of organization (Family, Genera and Species), based conegudle used
1157 coefficients derived using all soil §'%0 data (see Fig. 3, Fig. S3 and Table S2) to scale up for these
1158 dominant groups within the -Hda study area in the Tapajos National Forest, Brazil (data from Pyle
1159 et al., 2008; update by Longo, 2013; see S1). Colors represent the results-ldbddsikey
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1170

comparison of EFRD for each taxonomic level. The letters in the legend onhhandigatethe
grouped taxa (p<0.05) and the depth range of EFRD corresponding to each group. These data are
the highlighted data points in Fig. 4.
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Figure S7 Relationship between absolute dominance (ADo, rP.lend estimated functional

root depth (EFRD) for each diameter class of trees (labels from 20 to 110; each 10 cm) from
seasonal Amazon ForestTapajos National Forest, Brazil. The black line is adin model
(r>=0.63; p<0:001). Many studies ignore small plants or underrepresent the importahte of t

group to forestfunctioning.
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1171
1172

1173
1174

Figure S8 Percentage of maximum air discharge (PAD) as a function of the xylem water
potential (W) for species descrdal on figure 1. Also shown are percentage loss of conductance
(PLC) data for the two species studied using only this method. Blue lines show Weibudirfsinct

This article is protected by copyright. All rights reserved



1175  fit using eq. 1. Red circles show thg,PEmbolism curves fronk. uncinatum and Miconia sp.
1176  from Pereira et al. 2016.
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