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Abstract

It is familiar knowledge that population dynamics occur in both time and space. In this
work we incorporate three distinct but related theoretical schemata to qualitatively interrogate the
complicated.structure of part of a real agroecosystem. The three schemata are first, local
dynamics translated into intransitive oscillators through spatial movesssund, stabilizing the
system'through spatial pattern, third, formation of a self-organized spatehpdtte real
system is the'welstudied autonomaupest control in the coffee agroecosystem, in which five
insect species (one of which is a pest) are involved in creating a complex coynstuugiture
that keepssthespest under control (the five species are: akzio sericeasur, a phorid fly
parasitoid Pseudacteon sp., a hymenopteran parasitdi@hccophagus sp., a beetle predatdzya
orbigera, and the pest itself, the green coffee scaecus viridis). We use the qualitative
framing of the three theoretical schemata to tgva cellular automata model that casts the
basic predator/prey (natural enemy/pest) system as an intransitive oscillator, and then explore the
interactionsofithe two basic predator/prey systems as coupled oscillators within this model
framework>We not¢hat Gause's principle of competitive exclusion is not violated with this
basic framing (i.e., the two control agents cannot coexist theoretically), butitha change in
the spatialstructure of the background habitat, coexistence can be maintangd the
tradeoff between regional dispersal and local consumption. Finally, we exploraéoter
oscillator in the system (the ant and ite@d parasitoid) can act as a pigyistem, creating the
spatial strueture in which the other two oscillatoperate, but only in the context of disjoint

time frames«(between the two control agents and the pilot subsystem).

K ey words. intransitive loopscellular aitomata, pedator/preygpatial patternTuring effects,

spatial ecology.

I ntroduction

Ecologcal dynamics in space has been a major theme in ecology for sor@&itiman
and Kareiva 1997, Cronin and Reeve 2005), employing a variety of theoretical approaches
(Pacalaand Levin 1997, Massol et al. 2011). Here we propose a unique theoretical framing based
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on our qualitative understanding of a particular subcomponent of an ecosystem, thedfadition
shaded coffee agroecosystem. Our framing differs from previous literature in its qualitative
nature basedn observations and experiments in this real system over the past 23Pgetast
and Vandermeer 2015), combining other vikglbwn theoretical issues into a coherent
framework that corresponds to the Ialegm observable dynamics in this system. tHeoryis
formed fromprevious literature ofil) intransitivecoupledoscillations,(2) spatial dynamics, §3
selforganization of spatial pattern.

The coffee agroecosystamregarded by some as important both for its tractability in
ecological studyFRerfectoet al. 2008, 201&erfecto and Vandermeer 2008) and its socio
economic impertance, reported to be one of the most traded commodities in the world
(Lashermeet al.2008), and the base of economic support for 25 million soalé farming
families and many national economiddt{ing-Chamorro 2005, Talbot 2004Y.he pest system
in coffee is large and highly variable. However, at any one point in space and srasualily
well-defined and less imposing than the 250 potential pests reported &pebtiesle Pelley
1968) In partieular we focus on ombstinctpest, the green coffee scale ing€iccus viridis).

A coffee bushsmay bfeee of the scale insect pest,it may have populations of that pest on it,

or the pestipopulation may be in a state of undergoing attack from the hymenopteran parasitoid,
Coccophagussp. The attack of the parasd is vigorous locally (i.e., on a single coffee bush)

such that all of the scale inseots a given planarekilled rapidly and the parasitogithen

emerge and disappeom the plant. In other words, the system moves from empty plant to pest
attacking the"plant tpest being attacked by parasitoid to empty plkwigently an intransitive
oscillation,'as-explained belowWleaty such an oscillation can only occur in a spatially extended
system since migratioof both predator and prey are essential parameters. The qualitative
behavior of such a system when extended in spéusely mimics the classical results of

standard predator prey theory.

TheparasitoidCoccophagus sp. is thought to be an effective biological control agent of
the scale insect. However, an additional control agent, a coccinelid Begdlerbigera, is also
effective(Vandermeer et al. 2010, Liere and Perfez108). The comhbation of two control
agents (a parasitoid and a predator) acting directly on a prey item in the same space presents us
with a classic casef two specie®ccyying the same niche, suggesting Gause's principle may
operate. Yetin 25 years of observations at the same site, both parasitoid and predator have
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remained common in the system. Part of the theory developed here is aimed at proposing how
the complexity of spatial structure can explain this fact.

Coffee is traditionally planted under the canopghade trees, a natural procedure given
coffee's origin as an understory plant in the first place. As has been demonstrated (Vandermeer
et al.2009 the,shade-tree nesting afiffeca sericeasur, moves its nest from shatiee to
shadetree, presumablin response to a fly parasite in the family Phorid2sedacteon sp). The
ants forage“in‘the nearby coffeashes (a single nest in a shade tree typically forages on 5-10
surrounding-coffee plantsThus,with respect to this ant speciesthe level of given coffee
bush there is an expected cycle of coffee bush without ants, which becomes occuyzedaby
ants, which getattacked by Phorid flies, which render the bush fAeeoh ants—amother
intransitiverloop. This loop actually creates pattern in the background habitat, whialgwe,
could form the background pattern necessary for coexistence of the two biological control
agents.

It is\notable that in this particular reabrld system there is a mutualistic ant/hemipteran
system theAzteca ant and the scale inseat which the ant forages on the honeydew produced
by the scale insect and while doing so attacks the natural enemies of the scale insect, to the
mutual benefit of both scale and ant (Jha et al. 2012, Vandermeer and Perfectdt28Qbys
most natural that farmers view the ant as a pest also. Yet, as we show in this model exercise, it is
the spatial extension of the system that allows the two biological control elements to persist in
the long run, effecting autonomous bialmay control over the scale insect over the entire farm,
thus sacrificing,a small percentage of the féinmm 3 to 7 percents effective spatial
repositoriessofithe pest, which keeps the biological control agents alive oegttiteeregion.

The spatl dynamics of this system can be understood thradigreeparttheoretical
framing: (1) the baic nature obpatialpredator/prey systems forming intransitive loops, (2)
heterogeneity.of spatial structure stabilizangpupled systerof predator prey loopsnd(3) the
selforganization othat spatial structuréhrough a pilopattern formatiorirom a distinct

species group
Thetheoretical framing

The existence of intransitive oscillations in competitive communities was not

theoretically in1975 (May and Leonard 1975) and claimed to be widespread in plant
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communities in 201530livereset al.2015), although much earlier Gary Polis noted the general
existence of what he called "loops," in his Coajilla Desert food(®elis 1991), clearly
referring to their intransitive nature (species 1 beats species 2 which beats species 3 which beats
species 1, a structure similar to the children's game of rock, scissors, pafiesugh the
original analysis of intransitive competition waesed on the classical Lotkélterra
phenomenological competition equationss also the case that intransitivity emerges easily
whencompetitionis framed mechanisticallyi.e., a consumer/resouroe predator/prey
dynamic),"Durrett and Levirnl 994 and therather largditerature on intransitive competition
theory (Kerr et al. 200Freanand Abraham 200RAllesina and Levine 2011, Laird and Schamp
2006 is nots:compromisedHowever, spatially distributed predation may have an intransitive
structurein‘and‘of itself, if the scale of interaction is sufficiently small such that predator and
prey cannot coexish perpetuity at an individual isolated siféhat is, if an empty space is
occupied by a prey item which in turn is occupied by a predator of that prey, and if the predator
overexploits the prey (which inevitably happens if the local space in which dynamirgsocc
small), thererisg@asic intransitive structureempty, prey, prey/predator, empty. This structure,
which undoubtedly is common irature, we refer to as an intransitive oscillator.

Forexample, the famed Huffaker experimetiffaker 1958 is most often cited as an
example.ef‘how spatial extension can induceildain a predatosprey systemOranges
provided the substrate for a predator prey pair. Following an individual orange throegkhe
pattern was consistently one of an empty orangavieg migrating prey individuals, giving rise
to an orange“containing a population of prey individuals. Subsequently individuals from the
predator population arrived, giving rise to an orange containing populations of both prey and
predators. The predators quickly eliminated the prey, giving rise to an empty orange again.
Thus, on a single orange the pattern through time is (1) empty orange gives risedade) or
with a prey. population, gives rise {®) orange with both predator and prey populationggiv
rise to(4) an.empty orange. As long as there are both prey and predators midginggingcle
repeats itself'as an evident intransitive oscillation. The key result of the experiment is that when
a group of @ranges is arranged in a spatial pattermatsie intransitive oscillation creates a
sustained oscillation of predator and prey when averaged over the whole array of oxaerges, e

though each individual orange is unstable.
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Since both classical predator prey theory and this spatial formulatios@alatory,
when two distinct oscillations occur in the same space, they are likely to interact with one
another, which is to say be coupled. The vast literature on coupled oscillators thmeeco
relevant (Vandermee993, 2004, 2006, Strogatz andvéet 1993), and questions of
coexistence.emerge, depending on the nature of the coupling. Specifically, when two predator
are coupled through a single prey (two consumers through a single resource)ethatiexpis
that Gause's principle will come mplay.

An additionalfeature otthe Huffaker study is that the predator prey system induced a spatial
structure,'wherein distinct patches of prey and predators meander over thesggesting that
there was something about the pattern or patchynedss tledated to the fact that the instability

at a small'scale became stable at a large.ssalesequentlyg related theoretical literatuhas
evolved, commonly associated with the insights of Alan Turing (1952), in which the preg acts a
if it were an activator and the predator a repressargtaphorical framing that places the spatial
predator prey system in the general category of readtfarsion. Initial theoretical
exploratiopsy(Segel and Jackson 1972, Levin and Segel L8viB, 1979) have gen rise to

what seems like a major generalization in ecoldpn@ermeer et al. 2008, Alonso et al. 2002,
McGeheewand Peacotlopez 2005Bendahmane etl. 2016, Peng and Zhang 2Q16at
predator_prey systems in physical space will tend to form clust&trare Turingike. This
generalization seemingly holds well when the system is cast as a simple intransitive loop, with
the additional provision that the spatial structure can form a background pattern that is essential
for the persistence of other $ym1s living therein, as described below.

Finally;smuch of the literature on both intransitive cycles and coupled osciliatepace
is framed in terms of a regular backgroueffectivelya regular latticéorming the
environmental network upon which the population dynamics unfolds. We note first that
fundamental questions of coexistence require a patterned background rather thaar éatégell
(Horn and MacArthur 1972, Levi2000), and finally note that a patterned background itself may
emerge fromndependenintransitive oscillators.

The'rest of this paper is organized as follows: Rivetexplorethe basic dynamics of
placing the intransitive cycles in space and coupling them togg@thtbis case the scale insect
attacked by the parasitoid and the predator). Second, we explore the nature of thengnderlyi
spatial structure and tiepatial scale oflispersion scale, casting the problenaasetwork-
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transformingssue Third,we examine the nature of the setfjanized pilot pattern formation,
in which an additional intransitive oscillator (in this case the ant/phorid pregetgrsystem)

creates the spatial structure on which the original two oscillators can coexist.

The dynamies.of coupled spatial intransitive oscillators

The,green coffee scale inse€gccus viridis, a pest of coffee throughout the world
(Coleman and"’Kannan 1918, LePelley 1968), is one of the key components of this system
(Vandermeer'et al. 2019andermeeand Perfecto 2006, Perfecto and Vandermeer)2@15
attaches mainly to the midrib of the leaves of coffee trees, penetrating the leaf tissue with a sharp
proboscis andssucking material out of the leak lasically sessile as an adulit producs
crawlersasijuveniles. The crawlers are dispersed by wind and must disperse from leaf to leaf on
a tree and from plant to plant on a larger scale, plausibly on a regular lattice pattern, but more
often than not in a non-random clustered pattern, depending opeitned sature of the coffee
plantings A well-known parasitoid on the scale is a waspccophagus sp. (Mani et al.200§.
The idealizedversion of the system is e kevel of an individual plant (1) an individyaant
without scales:i$2) infested bythe crawler stage of tHeoccus viridis and rapidly forms local
populations,on thplant which @) attracts the parasitof@boccophagus sp. which eliminates it
from theplant, rendering thplantfree of scalesnce again. More generally, an empty site is
colonized by a prey item which is subsequently colonized by a predator item which teleiina

thus returning the site to an empty si@® outlined in figure 1).

We'model this basic system as a cellular automatonsider a nxn lattice with three
variables, S (for empty space), P (for predator and prey together) and V (for preynor vi
alone), allFof'which are binarandk; (x,y) is a binary number indicating presence or absence of
the ith variable at the poinkfy}. The number of each of the variables in the Moore

neighborheedthe surrounding eight cells given as,

Niy) = Y ki)
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210 wherei =S, P, or V and M indicates summation in the Moore neighborhood around the point
211  {xy}. Thus, for example, B(x,y) is the number of empty cells in the Moore neighborhood

212 around poink,y. The transformation rules for each lattice cell are as follows:

213

214 S changes to V with probabilityN,//8
215 V changes‘to P with probabiligNp/8
216 P changes'to S with probabilitly

217

218 The parameters m, a and d have clear biological meanings: m = migration rate of the prey, a =
219 migration rateref the predator, and d = feeding othe predator (visualized indure 1).

220 Over'thewhole latticewe expect qualitative results that areelikto result from simple

221 quasi-quantitative reasonirignd correspond to classical resulf) if the predator’s death rate
222 is extremely low but its attack rate is extremely high, we expect that the predator will eliminate
223 all prey and then itself go #rct from a lack of food, thus the elimination bétentire system

224  (the takeovebyrempty spac@s(2) if the predator death rate is extremely high and the attack rate
225 extremely lowythe predator will be eliminated from the system and the prey mtoeake over
226 the entirevattice (approach itarrying capacity (3) with intermediate values of predator attack
227 and deathsrates, the system will be maintained, as an intransitive loop in spacedailée: de

228 nature of these three outcomes will depend oarpater values, but it is worth emphasizing that
229 the overall.average behavior of the system is expeatedrtor the classical results of predator
230 prey theoryResults from simple simulatiorms a 100 x 100 latticare presented inigure 2.

231 Thewnaturef the coexistence parameggrace is complicatdalt intuitiveand simple

232 simulations reveal a host of potentially interesting tempwebhbviorsand spatial patterran the

233 lattice However, there is an interesting generalization that catebeey fronFigure 2. Taking

234  prey migration rate as a tuning parameter, whence the overall behavior of the systemlete

235 extinction of the whole system when the prey migration is too low (that which would happen if
236 the parameter were to the left of the left hpadel of Figure 2) ranging to complete coexistence
237 of both predator and prey (that which would happen if the parameter were to the rightgtitthe ri
238 hand panel of Figure)2Between these two predictable circumstances, the system will be more
239 unpredictake, yet with a clear statistical pattern, as illustratediguife 2 If either of the other

240 two parameters are taken as tuning parameters, the qualitative results are equally intuitively
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obvious. And if we construct a parameter that simultaneously i @asdator attack rate while
decreasing predator death rate, the system will go from complete elimination of the predator and
persistence of the prey over the whole lattice to a state of emptiness (neither predator nor prey
survive and the whole lattice is empty). In all of these qualitative observdtisnsportant to
note that the.threelement persistent solution is always an intransitive loop.

Corresponding to the framework we seek to study (coupled intransitive oss)lkr
green scale‘insebas another important predator, a lady begidga orbigera. It is qualitatively
clear, if difficult'to measure quantitatively, that the lady beetle and the parasitoid have different
dispersal qualities and different attack rate propertiesd et al2012, Jha et al. 20L2/et the
basic idea.of the two together corresponds to the theoretical structure of couplabissc
(Figure 3),"a framework that has given rise gubstantialiterature(Vandermeer 1993, 2004,
2006, Strogatz anfitewart1993) In accord with this recent literature it is of interest to query the
current framework with respect to a second predator in the system, effeatsiuation of
competition with the two predators seeking sustenance from the same food aodrce
conceptuallyfitting into the category of a system of coupled oscillators. Thpredators are,

structurally; inscompetition with one another.

Thus, expanding the original modede have,

S changes to V with probabilityNy/8
V changes,to Pwith probablity a;Np,/8
V changes to Pwith probabilitya,Npg,/8
P1 changes to S with probabiliti

P, changes.to S with probabilits

as the fudamental model (illustrated indure 3). However, in running the model there is
another emergent state,A3. So as to avoid an unnecessary additional time step, we transform
P.P, to S during the same time step (i.e., the ryl&;P> P; with probability[ Jand RP, >P;

with probability 1-[T ] generates what is effectively a new nonlinear element into the model
which mitigaes against the simplicity of the original formulation, adding an additional

parameter, p.
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Extensive simulations support what we believe is intuitive, thané B should form a
kind of stochastic extinctiom this system. That is, therigtermcoexistence of Pand B is not
possible, regardless the values of the tuning parametériqiidded as an additional parameter
(see discussion in previous paragraphgre are knife-edgeections of the parameter space that
allow for coexistence-we ignore those situations as probably uninteresting). Similar
formulations inthe literature generate identical results (erganand Abraham 2001), which
reflect the“elassic notion of Gause's principle.

Strict'cellular automata rules are quite restrictideen a second predator is added,
especially in the light of the much-discussed competition/migration tradeoffisT iae need for
only local interactions (any given cell receives migrants only from its immediate neighbor cells),
mitigates against a fnaework in which either predator or prey can engage in long distance
migration, evenithough local parameters are tunable. This restriction cam @ seeobvious
mechanism of why the two predators are unable to coexist, sort of a spatial form of Gause’s
exclusion principle. And it is also the case that creating a situation wherngredator is a poor
feederbut migrates rapidly, while the other predator is a poor migrator but feeds rapidly (
search ér the ecologically proverbial tradephffloes not dapen the apparent result that the two
predators:will not coexist except at knife edge sections of parameter space, (structurally similar
to the famous survival of the weakest , in which a genotype of a weaker competitor dleexc
the genotype of a strger competir due to spatial constraints; Fresrd Abraham 2001
However, this result depends on what we argue is an overly restrictive ourmtriie

background*habitat-that it is a regulanetwork Newman2010.

The structur e of the background habitat

A convenient tool for examination of underlying geometry, without imposing strict fmeint-

point dynamics, is found in the burgeoning field of network theory. Indeed, if the probability of
migration as.a.function of distance is strongly convex (in the sense that ptyghsllose to 1.0

for close distances and falls rapidly towards zero at some critical distance), we can think of the
geometric Space as a network. The coffee plants are nodes and any pair of plants closer than the
critical distancds connected by an edge. The background on which the dynamic process
operates is thus a formal network with nodes and edges. In the real system, althutisghafa

be concentrated in rows, or on hillside contours, in more traditional systemseiyegtly seem
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more like a natural plant population. That is, the distribution of plants on the grdandream a
regular lattice, even though such a planting pattern may have been the original ititent of
farmer. In Figure 4 we show the distribution abffee bushes in a small (2028 m) plot, in
southwestern Chiapas, Mexico, illustrating the combination of regularity (frerariginal
intention of.the farmer in planting the bushes) plus irregularity (from random deaths
subsequent replanting). Thuge have a network that could be ideally considered a regular
lattice, although its deviation from regularity suggests other idealimatould be possible, as
discussedlater. The dynamics of the scale insect population and its predators operates on a
network like this.

It issreasonable to suggest that the background habitat is viewed differentlythsethe
players in‘our real world system. For example, the parasitoids are likely&vs#idocally and
build up high papulation densities locallggmpton, 2002). The beetles, however, fly actively
and are known to disperse widelydre et al.2012). It might then be reasonable to suggest that
the parasitoids are local dispersers and view the habitat as a lattice (perhaps with some of the
nodes clusterggwhile the beetles, flying widely searching for scale insects, view the habitat
differently.While many spatial models ircelogy presume a regular Eucladespace as the
underlying.spatial geometry, the geometry faced by most systems in nature does not tmnform
this idealization. The migration distance and/or the geometric position of occugtg®may
alter the dynamic rules. For examplegife of the predators is a lodgtance migrator, that
effectively .changes the regular lattice network to what is effectively a small world network.
Similarly, if'nodes are clustered in space, or the rules of migration effectively make them so, the
background:habitat is a clustered distribution (which may or may not befiemlee., the
distribution of numbeof connections per node may or may not be a power function). Although
other framings are possible, we find it convenient to begin with a regulae lattctconsider
modifications.in(1) physical positions of the nodes (habitat spaces), and (2) local versus long
distance connections (small world structure). We summarize our categorization schegueein F
5.

Withthis framing we note that the failure of the dispersal/competition tradeoff paradigm
to stabilize the system (make it persistent) takes on a slightly more complicatedganoted
above, with a simple modification of the rates of migration andlkattdes of the two predators
in the simple CA model it is not possible to maintain both predators in the systé@m.context
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of ouractual system, we examine the consequences of assuming one predator operates on a strict
lattice structure (awe expecbf the parasitoid in the running example) while the other exists on

a small world network, resulting from its long distance dispersal¢asxpect ofthe beetle

predator in our running exampl@hus, our framework generates a system structured such that a
clustered lattice underlays the dynamics of one species ({garef59, while a clustered small

world pattern underlays the dynamics of the other species (i.e., Figure 5d). With proper
parameter'settings it is evident that both intransitive loopsl@méxist in perpetuity, an

expectation'that is revealed in simple siatigns (e.g., jure 9.

Self-or ganizedsstructur e of the background habitat

Extensive simulatios repeat the pattern shown in Figure 6, namely, on a regular lattice
with or withoutsmallworld connections the two species are unable to persist together, but on a
clustered lattice with small world connections there are extensive areas of parameter space that
permit coexistence, apparently in perpetuity. The coexistence arrives thineugindard
mechanism of-a tradedfetween dispersal and competitidieyins and Culver 1971, Cadotte et
al. 2006, with the strong competitor (low predator dispersal rate and high attack rate)
dominating'the larger clusters of available sites whilesttang disperser (low predator attack
rate and high dispersal rate) dominates the smaller isolated available sites. Thus we see the
coupled intransitive loops reflect the underlying structure assumed toegagnty in both
theory andsin‘real systems.

Theresis another intransitive looptime system. Most farms are managed with shade trees
above thecoffee bushes. As noted above, the arbokaata antlocates its nesting sites in those
shade trees, aridrages on theearbycoffee treesAs its colony grows, it buds, forming new
colonies innearby shade trees, thus forming clusters of nestsdermeer et al. 2010, Jackson et
al. 2014. But.the ant is attacked by a parasitic figdudacteon spp.) that effectively causes the
clusters of nests to disappear (either all nests in the cluster are moved far away or they die).
Thus, we have the intransitive loop of (1) empty coffee bush is found by f2)eza colony
(nesting in a nearby shade tree), which ultimate{@)sttacked by the flparasitoid, eventually
abandoning its nesting site (or dying). As argued elsewNaredermeer et aRk009, this
system is similar to the classic Turing mechanism in that the phorid acts as a repressor and the
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ant, by moving its nests and occupying otinees, is the activator, with the whole system
operating on the background network of shade trees that are potential sites fondgstsariils
Turingdike mechanism creates clusters of nests in an otherwise relativelymimifironment
(Figure 7) Most importantly, as noted elsewhedackson et aR014), any other organisms that
use the ant.nests as background habitat will respond to particular critical distances according to
their own biological properties.

Thus;the basic intransitive spatialstture of theAzteca ant, the phorid fly and the
empty trees‘gives rise to clustering in space, and each cluster of ant nests represents a connected
component in the context of network theoripeTdependence of the scale/pamdicomplex on
this structue represents a spatial structure created by one systez{lee/Phorid system) in
which the other system (the scale/parasitoid/beetle system) is forced to exist. Yet in another
sense, the system is composed of three coupled intransitive loops estéltust figureB -- the
empty site may bgl) occupied by the scale insect (the prey), and then attacked by the wasp
(predator 1), of2) occupied by the scale insect (the prey), and then attacked by the beetle
(predator 2)yo(3) occupied by the Azteca ants (alternative prey) and then attacked by tlte phori
parasitoid (alternative predator)

The.scale insect is strongly influenced by Aateca ant (the alternative preyf figure 8),
amajor element in this system, extensivstydied earlier\(andermeeet al.2010) The ant
makes its nests in the shade trees in coffee farms and tends scales on the nearby coffee bushes
which is to.say prevents the two predators from attacking the scale indacisthere are
alternativeseffctive habitats in which the scale insect may oddircoffee trees associated with
a nest of the.anA. sericeasur, and @) coffee trees not associated with the-aeither of the
predators/have complete access to the scale insects in those areas in which the ants are absent,
but greatly reduced access when the ants are pr€mrgequenththe ants occupying shade
trees effectively, create a network on which the two natural enemy systems must operate, that is,
all the area.in the coffee farm that iglvaut ant nestd-or this reason wadd a third intransitive
loop to the.syster(Figure 8), the ant/phorid system. Note that one of the intransitive loops (the
alternative prey/alternative predator loop of Figure 8), through the Turing mechanism
(Vandermeer et aR009§ forms the clustered spatial pattern in which the other two predators
must exist, thus creating a basic s@ijanizing process whereby the system as a whole may

persist.
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Expanding the basic CA model to include this third loephave two new variables, A =
occupied by Azteca ants, and P3, occupied by Azteca ants and their parasitic @rahdithe
CA model becomes

S changes to V with probability;Ny/8
V changes to Pwith probabilitya;Np,/8
V changes‘to Pwith probabilitya;Np,/8
P, changes to S with probabilit

P, changes to S with probabilits

S changes to A with probability,Na/8
A changesyto Pwith probabilityasPs/8
P3 changes to S with probability

There is an inherent conflict in the structure of the system regarding the switch from S to V
versus the.switch from S to A. In thmeodel we first consider the S goswitch, which, if it
happens, makes the cell unavailable for the \& switch.

The'stbeomponent of this model that includes only the loop, S to AtsRimilar to
the modelwe studied earlier, and results in spatial clusters of ant nests ad.thawg this
third loopis*eéxpected tareatea spatial patternvithin which the first two loops (S, V,:Rand
S,V,P,) exist, what we call a "pilot pattertaking a very approximat@etaphorical clue from
so-called pilot wae theory of particle physics, e.§alentini 2010)that will permit the
coexistence ofithetloer two predators and their intransitive loops, much like the tikesters
did, as, forrexample, Figurdo6However, it is evident that the pilot pattern created by this third
loop can take a variety of forms, three exasspf which are illustrated figure 9 Note that
the clusters where the other two loops must exist are the open spaces.

If the spatial pattern formed by the pattern-forming intransitive loop (the pilot
intransitivity). were to remain constant, clearly that would be no differenffitkiag an arbitrary
background-as we did in the case of Figure 6b. With a completely connected network (e.g.,
Figure 9a),"as.already mentioned, the background is essentially a single backgrouhdrdhbita
the results reported above are repeated €xéinction of one of the original predators). With an
unconnected patchy network (e.g., Figure 9b), the big patches favor tlkéspersing predator
and the small patches favor the dispersing predator, and for many parameter congomati
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should expecthe two predators will coexigas happened above with the fixed spatial pattern).
However extensivesimulations with this situation show that coexistence of the original two
predators is impossible. Mén the generated pilot pattern is continually changing, the system
effectively. merges all the patchs®chastically, and the average over time essentially becomes a
single patchs

Thus, we see that as long as the constructed spatial syspammitted sitess not a
completely'eonnected network (e.d.it is as in kgure 91, and as long ahe pattern is fixed,
coexistence'is'possible (e.giglire 6b). But with a dynamic system, even though seemingly
favorable [patchiness is created by the thiikb{jpattern)loop, coexistence is impossible (data
not shown): Thus, at one extreme, if the system that generates the patternr(tevalte
prey/alternative predatorjgure § operates at the same temporal scale as the original coupled
system (prey/predator 1/predator 2), coexistence is impossible, but at the other extreme, if the
temporal scale is very long (i.e., the constructed pattern is constant), coexistence is common. The
guestion thus arises as to what happens at intermediate temporal scales.

Letsthestemporal scale of the constructing systembdé 7 — cothe constructed space is
fixed for the original coupled system, wheredslit 1, the constructing system has the same
time scalewas the original coupled system. So, withc the background system is constant and
the two_predators coexist (wiltoper parameter values, e.ggl¥e 61. If [] =1, the
background system changes at the same rate as the original coupled system changes and
effectively creates a single average eonwiment, leading to the inevitable extinction of one or
the other predators (data not shown). Clearly a vallig sf] but< sccan result in either result
and we cansimagine a critical valli€l.it , above which the original coupled twredator system
will persist in perpetuity and below which competitive exclusion will reSdt.erakelevant
time series are illustrated Figure 10 and snapshatisone of the spatial patterns that emerges
when[] > [Ehiis illustrated in Figure 1L

Thusya clustered spatial structure created by an independent intransitiveah create
persistence of,a distinct set of coupled intransitive loops, but only if the forsmeardisgjointed
time frame, that is, only if the pilot patteforming loop opeates in a longer time frame than the
coupled system living in that spatial structure. There are parameter combinations where the

relationship between the time frame differenc® ¢eems to form a proportional relatiorship to
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the time to extinction (T) estimatei@iare 12), but other combinations where there is an
accelerating relationship betweefand T (Figure 12). Most importantly, there seems to be some
parameter combinations for which the function that relates T thdiverges at some critical

LT ([cht),.as illustrated in igure 12 It is also the case that the time to extinction scales as the

inverse of the.critical point, which is to say, the equation,

_ f
T = (1_K(a—b))z 1

m

describes/well the time to extinction (T) relative to the scalargmpeterf] and the critical

exponentZ), according to the dynamic scaling hypotheBigifberg et al1997).

Conclusion

Hereinwe arguéhat a spatially explicit imansitive system consisting of empty cell
giving rise to cell with prey giving rise well with prey/predator giving rise to empty dsla
good model for at least the system we model here, the pest system of a Mexican coffee
agroecosystemFor the actual system being modelld, prey is a pest species, the green coffee
scale insectThere ardwo predators, a wasp parasitoid and a beetle, and coupling them together
creates a situation in which, theoretically, coexistence is impossible. We note that the general
qualitative-framing here is hard to ignore as basically identical topd&ton of the system in
nature (individual coffee trees that get attacked by scale insects, but then the scale insects are
attacked by both of these biological control agents). Yet our generalizatiGuthead coupled
intransitive system cannot petsis inconsistent with the clear observations in nature over the
past 20 years.that both of these biological control agents persist in the system, indeed are
responsible“forimaintaining this pest below significant damage threghalddermeer et al.
2010). Adding'the underlying non-regular pattern of the cells in the system (the coffee bushes on
the farm)yenables the -q@ersistence of the two biological control agents. But that underlying
spatial patterniis itself a consequence of a distinct intransgisiéator, what we call the pilot
system. As noted by Barabas (personal communication), this metaphor is perhapediritc
that the system forming the pattern is doing nothing more than that. To liken it to tineiclyna

process in the De BroglBohmtheory is certainly very approximate, yet the underlying
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488 consequences of both the original pilot wave and our pilot pattern are similar and wehatgue
489 this approximate metaphor is potentially useful.

490 The secalled pilot systenm this casénas been elaborated extensively elsewhsret(

491 al. 2016, Philpott et al. 2009, Vandermeer et al. 2008, Perfecto and Vandermeer 2015), whereby
492 theAzteca ants.that form a gtial patchwork in the systemi@fare 7c) actually restrict the

493 operation of the two predagiocally (within a patch oAzteca), but also, through their

494 mutualistic'effect on the scale insects, supply the source of scale insenigtiatinto the

495 empty cells'(the coffee plantmaffected by thézteca ant9. It is thus ironic that the protectors
496 of a pest (thé\zteca antsprotect the scale insects) are actually the keepers of the source of that
497 pest but alsosesponsible for the underlying spatial pattern, both of which are necessary t
498 maintain the pest's natural enemies over the whaohe. Only a small percentage of shade trees
499 containAzteca nests, but those aseurces of the scales thelpmaintain the predators over the
500 rest of the farm.Furthermore, the timameof the systems corresponds qualitatively with the
501 idea of dynant scaling Eq.1). TheAzteca ants operate on a time scale of from months to

502 years, whileithe parasitoid and beetle are on a week to month time schedule.

503 Thus itis (1) the demographic parameters of the coupled predator/prey systeths, (2)
504 structue ofithe background habitaB)(the construction of that structure by a distinct

505 predator/prey systefthe pilotsystem)and @) the disjoint time frame between the pilot system
506 and the biological control systems, whimtilectivelygenerate the ultimate result of persistence
507 of the systemThis ultimately intuitive structure seems to be responsible for maintaining the
508 control of the"potentially important pest, the green coffee scale, in perpetuity. It is ironic that
509 some farmers«ie the Azteca ants as themselves pests since they are mutualistically associated
510 with the scale insects. Yet it is clear from the basic intransitive structures embedded in the
511 system that thézteca ants are crucial for maintaining control oWeis pest ger a large areaa

512 complex web. of ecological interactions is thus responsible for control of a pest @i the most
513 important crops in the world.

514 There'may be a generalization here. That dynamic interactions among organisms can
515 create the habitats inhich other organisms exist, a pilot pattern, is certainly not new. For

516 example, in 1926 Tansley and Chipp noted:

517 “. . .itis really the whole of the living organisms together, plus the inorganargact

518 working upon them, which make up, . .. a ‘system’. .. But such a ‘system’ considered
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fundamentally . . . must include the ‘inorganic’ factors of the habitat and these obviously
cannot be considered as ‘members’ of the community; and if we take the inorgémis fa
as external, why not biotic dtors such as grazing animals?”
and even earlier Darwin’s humblebees found refuge in old mouse nests. More raeguatdite
repeats, in.one form or another, a similar idea (e.g., Wu and LoucksH&98nd Keitt2000),
in one case even referring to the celishe environment being caused by other organisms
(Caswell1978:.

While“such work treats the issue generally, the notion of a pilot pattern as guidia spa
structure fits in with these basic insights. If grazing animals avoid the edge of a forest &dr fea
predators lurking there, the grasses they feed on receive a spatial respite. The grasses care not
whether the*herbivorree patch is caused by an underlying edaphic factor (inorganic) or by the
threat of predators. Thus, the pilot pattern for thegisa caused by the grazing animals and their
predators. Our results suggest that, while this framework seems to make sense, at its simplest
level there.must be some disjunction in the time frame of the pilot system versus the time frame
of the responsiveystem. If the pattern shifts in the same time scale as the responsive system, it

cannot operate‘as a pilot, at least in our simple model. We pribfaaigs is a general rule
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674 Figurelegends

675 Figure 1. Thesbasic framework of the model system (note its intransitive nature)

676 Figure 2. Parameter space study of long term outcome of cellular automata nuitieg pl

677 predator attack rate (abscissa) versus predator death rate (ordinate), with proportional bubbles
678 representing coexistence (prey/pred), or predator extinction and prey survival (prey=K) or

679 extinction'of.the' whole system (empty). Axes on each graph range from O to 1.

680 Figure 3. Coupling two intransitive loops.

681 Figure 4. Distribution of coffee trees on a 2@0<m plot in Mexico, illustrating both the original
682 intentionpsof planting trees in rows, but, because of deaths and replanting, also the non-regular
683 nature of the distribution.

684 Figure 5. The four qualitatively distinct network structures considéag¢A. regular lattice

685 where the small circles are the habitats which the predators and prey may occupy (coffee bushes

686 in the present context), and the connections represent the possible migratiaypathyvhe
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regular lattice in (a) with two connectionsidomly broken and randomly reattached, creating a
small world structureg(c) A clustered pattern of habitats. {i)e same clustered pattern in (c) but
with a random two connections broken and randomly reattached to create a ckratdtebrld

spatial pattern. In all cases there are 25 nodes (coffee bushes) and 40 connections (dispersal
pathways).

Figure 6. Exemplary simulation results on a regularX4@00 lattice with one predator a long
distance migrator (Predator 2) and the other a strong coom@redator 1)) On a regular

lattice, one of'the predators always goes extinct (which one depends on parameters), regardless
of the parameter tradeoff of dispersion versus compet{iWith a fixed nonrandom

background habitat representing a tdusd small world habitat (as ingeare 5d), a variety of
parameter‘eombinations allows for such coexistence.

Figure 7. Threesnapshots of a 45 hectare plot in a Mexican coffeqdatheoretical

distribution of 6,700 trees arranged in a regular lattice, as would be (and was) tiignomde
assumption from a simple cellular automata model of the sydbgthe actual distribution of

shade treesy(about 6,700) on the farm in 2014, showing the obvious deviation from the regular
lattice. (c) the distributio of shade trees that contained Azteca nests in 2014, illustrating the
clustered nature of the nest distribution.

Figure 8..Fhe three connected intransitive loops with alternative prey.

Figure 9. Examples of the structure generated by the empty spagakgayor intransitive loop,
where the .empty patches are the constructed habitat created for the original coupled intransitive
loop system(a)Large patches at a parameter setting with a spanning cluster (of white) and a
completelyseennected network (ohite), effectively creating a single patch and the effective
structure of a simple latticéb) More constrained patches where both large and small patches
exist, creating the background for a sustained coexistence of both originaliiivedasps,

where one predator is a good competitor and the other a good disperser, just on the boarder of a
spanning clustekc) Highly isolated patches.

Figure 10_.Exemplary time series of predators with the dispersion/consumptieoffyaith

the Azteca/Phorid sysin creating patterifa) illustration of the operation of the Azteca/Phorid
system for the first 50 time steps with the resulting spatial structure remaining constant after that
point. Note the persistence of both predators in the systesar(i® as a,ut the Azteca/Phorid
system remaining in the dynamic structure throughout. Note the extinction of pre@atime
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step 100.(c) four examples of the paramefel, illustrating the persistence of the system for [ =

10 and above. Note how the dynamic pattern of both predators reflects the particular ydlue of
Figure 11. Spatial structure emerging from three interpenetrating intvarlsibips, where prey 2
and predator 3 (coupled with empty sites), are the members of the intransitive tquovides

the pilot pattern in which the other two intransitive loops live. (Parameter set is the same as
parameteriset b in figure 9, with = 25).

Figure 12"Time to extinction versid bn a 100 x 100 latti¢el. Open symbols for parameter

set A, Closed'symbols for parameter set B. Note the open symbols follow a liaéansbiip

with [, (line is best fit linear least squares regression), while the closed circles fit well the

equation To.=446.77/(LI T L«)**° where the divergence S = 25.15. For the parameter set
B, any value of] larger than [ditis expected to be “stable” in the sense that the expected time

to extinction approaches infinity. Equation graph is from the dynamic scaling hypotbesis3. (
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