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 30 

Abstract 31 

 It is familiar knowledge that population dynamics occur in both time and space. In this 32 

work we incorporate three distinct but related theoretical schemata to qualitatively interrogate the 33 

complicated structure of part of a real agroecosystem.  The three schemata are first, local 34 

dynamics translated into intransitive oscillators through spatial movement, second, stabilizing the 35 

system through spatial pattern, third, formation of a self-organized spatial pattern. The real 36 

system is the well-studied autonomous pest control in the coffee agroecosystem, in which five 37 

insect species (one of which is a pest) are involved in creating a complex community structure 38 

that keeps the pest under control (the five species are: an ant, Azteca sericeasur, a phorid fly 39 

parasitoid, Pseudacteon sp., a hymenopteran parasitoid, Coccophagus sp., a beetle predator, Azya 40 

orbigera, and the pest itself, the green coffee scale, Coccus viridis). We use the qualitative 41 

framing of the three theoretical schemata to develop a cellular automata model that casts the 42 

basic predator/prey (natural enemy/pest) system as an intransitive oscillator, and then explore the 43 

interaction of the two basic predator/prey systems as coupled oscillators within this model 44 

framework. We note that Gause's principle of competitive exclusion is not violated with this 45 

basic framing (i.e., the two control agents cannot coexist theoretically), but that with a change in 46 

the spatial structure of the background habitat, coexistence can be maintained through the 47 

tradeoff between regional dispersal and local consumption.  Finally, we explore how the other 48 

oscillator in the system (the ant and its phorid parasitoid) can act as a pilot system, creating the 49 

spatial structure in which the other two oscillators operate, but only in the context of disjoint 50 

time frames (between the two control agents and the pilot subsystem). 51 

  52 

 53 

Key words: intransitive loops, cellular automata, predator/prey, spatial pattern, Turing effects, 54 

spatial ecology 55 

 56 

Introduction 57 

 Ecological dynamics in space has been a major theme in ecology for some time (Tilman 58 

and Kareiva 1997, Cronin and Reeve 2005), employing a variety of theoretical approaches 59 

(Pacala and Levin 1997, Massol et al. 2011). Here we propose a unique theoretical framing based 60 
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on our qualitative understanding of a particular subcomponent of an ecosystem, the traditional 61 

shaded coffee agroecosystem.  Our framing differs from previous literature in its qualitative 62 

nature based on observations and experiments in this real system over the past 25 years (Perfecto 63 

and Vandermeer 2015), combining other well-known theoretical issues into a coherent 64 

framework that corresponds to the long-term observable dynamics in this system. The theory is 65 

formed from previous literature on (1) intransitive coupled oscillations, (2) spatial dynamics, (3) 66 

self-organization of spatial pattern. 67 

 The coffee agroecosystem is regarded by some as important both for its tractability in 68 

ecological study (Perfecto et al. 2008, 2014, Perfecto and Vandermeer 2008) and its socio-69 

economic importance, reported to be one of the most traded commodities in the world 70 

(Lashermes et al. 2008), and the base of economic support for 25 million small scale farming 71 

families  and many national economies (Utting-Chamorro 2005, Talbot 2004).  The pest system 72 

in coffee is large and highly variable.  However, at any one point in space and time it is usually 73 

well-defined and less imposing than the 250 potential pests reported for the species (Le Pelley 74 

1968)

 The parasitoid Coccophagus sp. is thought to be an effective biological control agent of 86 

the scale insect.  However, an additional control agent, a coccinelid beetle, Azya orbigera, is also 87 

effective (Vandermeer et al. 2010, Liere and Perfecto 2008). The combination of two control 88 

agents (a parasitoid and a predator) acting directly on a prey item in the same space presents us 89 

with a classic case of two species occupying the same niche, suggesting Gause's principle may 90 

operate.  Yet in 25 years of observations at the same site, both parasitoid and predator have 91 

. In particular we focus on one distinct pest, the green coffee scale insect (Coccus viridis).  75 

A coffee bush may be free of the scale insect pest, or it may have populations of that pest on it, 76 

or the pest population may be in a state of undergoing attack from the hymenopteran parasitoid, 77 

Coccophagus sp.  The attack of the parasitoid is vigorous locally (i.e., on a single coffee bush) 78 

such that all of the scale insects on a given plant are killed rapidly and the parasitoids then 79 

emerge and disappear from the plant.  In other words, the system moves from empty plant to pest 80 

attacking the plant to pest being attacked by parasitoid to empty plant, evidently an intransitive 81 

oscillation, as explained below. Clearly such an oscillation can only occur in a spatially extended 82 

system since migration of both predator and prey are essential parameters. The qualitative 83 

behavior of such a system when extended in space, closely mimics the classical results of 84 

standard predator prey theory.  85 
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remained common in the system.  Part of the theory developed here is aimed at proposing how 92 

the complexity of spatial structure can explain this fact. 93 

   Coffee is traditionally planted under the canopy of shade trees, a natural procedure given 94 

coffee's origin as an understory plant in the first place.  As has been demonstrated (Vandermeer 95 

et al. 2008

 It is notable that in this particular real-world system there is a mutualistic ant/hemipteran 105 

system, the Azteca ant and the scale insect, in which the ant forages on the honeydew produced 106 

by the scale insect and while doing so attacks the natural enemies of the scale insect, to the 107 

mutual benefit of both scale and ant (Jha et al. 2012, Vandermeer and Perfecto 2006).  It is thus 108 

most natural that farmers view the ant as a pest also.  Yet, as we show in this model exercise, it is 109 

the spatial extension of the system that allows the two biological control elements to persist in 110 

the long run, effecting autonomous biological control over the scale insect over the entire farm, 111 

thus sacrificing a small percentage of the farm (from 3 to 7 percent) as effective spatial 112 

repositories of the pest, which keeps the biological control agents alive over the entire region. 113 

) the shade-tree nesting ant, Azteca sericeasur, moves its nest from shade-tree to 96 

shade-tree, presumably in response to a fly parasite in the family Phoridae (Pseudacteon sp). The 97 

ants forage in the nearby coffee bushes (a single nest in a shade tree typically forages on 5–10 98 

surrounding coffee plants). Thus, with respect to this ant species, at the level of a given coffee 99 

bush there is an expected cycle of coffee bush without ants, which becomes occupied by Azteca 100 

ants, which get attacked by Phorid flies, which render the bush free of Azteca ants—another 101 

intransitive loop.  This loop actually creates pattern in the background habitat, which, we argue, 102 

could form the background pattern necessary for coexistence of the two biological control 103 

agents.   104 

 The spatial dynamics of this system can be understood through a three part theoretical 114 

framing: (1) the basic nature of spatial predator/prey systems forming intransitive loops, (2) 115 

heterogeneity of spatial structure stabilizing a coupled system of predator prey loops, and (3) the 116 

self-organization of that spatial structure, through a pilot pattern formation from a distinct 117 

species group. 118 

 119 

The theoretical framing 120 

 The existence of intransitive oscillations in competitive communities was noted 121 

theoretically in 1975 (May and Leonard 1975) and claimed to be widespread in plant 122 
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communities in 2015 (Soliveres et al. 2015), although much earlier Gary Polis noted the general 123 

existence of what he called "loops," in his Coajilla Desert food web (Polis 1991), clearly 124 

referring to their intransitive nature (species 1 beats species 2 which beats species 3 which beats 125 

species 1, a structure similar to the children's game of rock, scissors, paper).  Although the 126 

original analysis of intransitive competition was based on the classical Lotka-Volterra 127 

phenomenological competition equations, it is also the case that intransitivity emerges easily 128 

when competition is framed mechanistically  (i.e., a consumer/resource or predator/prey 129 

dynamic), (Durrett and Levin 1994) and the rather large literature on intransitive competition 130 

theory (Kerr et al. 2002, Frean and Abraham 2001, Al lesina and Levine 2011, Laird and Schamp 131 

2006) is not compromised. However, spatially distributed predation may have an intransitive 132 

structure in and of itself, if the scale of interaction is sufficiently small such that predator and 133 

prey cannot coexist in perpetuity at an individual isolated site. That is, if an empty space is 134 

occupied by a prey item which in turn is occupied by a predator of that prey, and if the predator 135 

overexploits the prey (which inevitably happens if the local space in which dynamics occur is 136 

small), there is a basic intransitive structure—empty, prey, prey/predator, empty.  This structure, 137 

which undoubtedly is common in nature, we refer to as an intransitive oscillator. 138 

 For example, the famed Huffaker experiment (Huffaker 1958) is most often cited as an 139 

example of how spatial extension can induce stability in a predator-prey system. Oranges 140 

provided the substrate for a predator prey pair. Following an individual orange through time, the 141 

pattern was consistently one of an empty orange receiving migrating prey individuals, giving rise 142 

to an orange containing a population of prey individuals. Subsequently individuals from the 143 

predator population arrived, giving rise to an orange containing populations of both prey and 144 

predators. The predators quickly eliminated the prey, giving rise to an empty orange again.  145 

Thus, on a single orange the pattern through time is (1) empty orange gives rise to (2) orange 146 

with a prey population, gives rise to (3) orange with both predator and prey populations, gives 147 

rise to (4) an empty orange. As long as there are both prey and predators migrating, this cycle 148 

repeats itself as an evident intransitive oscillation. The key result of the experiment is that when 149 

a group of oranges is arranged in a spatial pattern, the basic intransitive oscillation creates a 150 

sustained oscillation of predator and prey when averaged over the whole array of oranges, even 151 

though each individual orange is unstable.  152 
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 Since both classical predator prey theory and this spatial formulation are oscillatory, 153 

when two distinct oscillations occur in the same space, they are likely to interact with one 154 

another, which is to say be coupled.  The vast literature on coupled oscillators thus becomes 155 

relevant (Vandermeer 1993, 2004, 2006, Strogatz and Stewart 1993), and questions of 156 

coexistence emerge, depending on the nature of the coupling.  Specifically, when two predators 157 

are coupled through a single prey (two consumers through a single resource), the expectation is 158 

that Gause's principle will come into play. 159 

An additional feature of the Huffaker study is that the predator prey system induced a spatial 160 

structure, wherein distinct patches of prey and predators meander over the space, suggesting that 161 

there was something about the pattern or patchyness that is related to the fact that the instability 162 

at a small scale became stable at a large scale. Subsequently, a related theoretical literature has 163 

evolved, commonly associated with the insights of Alan Turing (1952), in which the prey acts as 164 

if it  were an activator and the predator a repressor, a metaphorical framing that places the spatial 165 

predator prey system in the general category of reaction-diffusion.  Initial theoretical 166 

explorations (Segel and Jackson 1972, Levin and Segel 1976,

 Finally, much of the literature on both intransitive cycles and coupled oscillators in space 174 

is framed in terms of a regular background, effectively a regular lattice forming the 175 

environmental network upon which the population dynamics unfolds. We note first that 176 

fundamental questions of coexistence require a patterned background rather than a regular lattice 177 

(Horn and MacArthur 1972, Levin 2000), and finally note that a patterned background itself may 178 

emerge from independent intransitive oscillators.  179 

 Levin 1979) have given rise to 167 

what seems like a major generalization in ecology (Vandermeer et al. 2008, Alonso et al. 2002, 168 

McGehee and Peacock-Lopez 2005, Bendahmane et al. 2016, Peng and Zhang 2016), that 169 

predator prey systems in physical space will tend to form clusters that are Turing-like.  This 170 

generalization seemingly holds well when the system is cast as a simple intransitive loop, with 171 

the additional provision that the spatial structure can form a background pattern that is essential 172 

for the persistence of other systems living therein, as described below. 173 

 The rest of this paper is organized as follows: First, we explore the basic dynamics of 180 

placing the intransitive cycles in space and coupling them together (in this case the scale insect 181 

attacked by the parasitoid and the predator).  Second, we explore the nature of the underlying 182 

spatial structure and the spatial scale of dispersion scale, casting the problem as a network-183 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

transforming issue.  Third, we examine the nature of the self-organized pilot pattern formation, 184 

in which an additional intransitive oscillator (in this case the ant/phorid predator–prey system) 185 

creates the spatial structure on which the original two oscillators can coexist. 186 

 187 

The dynamics of coupled spatial intransitive oscillators 188 

 The green coffee scale insect, Coccus viridis, a pest of coffee throughout the world 189 

(Coleman and Kannan 1918, LePelley 1968), is one of the key components of this system 190 

(Vandermeer et al. 2010, Vandermeer and Perfecto 2006, Perfecto and Vandermeer 2015). It 191 

attaches mainly to the midrib of the leaves of coffee trees, penetrating the leaf tissue with a sharp 192 

proboscis and sucking material out of the leaf. It is basically sessile as an adult but produces 193 

crawlers as juveniles. The crawlers are dispersed by wind and must disperse from leaf to leaf on 194 

a tree and from plant to plant on a larger scale, plausibly on a regular lattice pattern, but more 195 

often than not in a non-random clustered pattern, depending on the spatial nature of the coffee 196 

plantings. A well-known parasitoid on the scale is a wasp, Coccophagus sp. (Mani et al. 2008). 197 

The idealized version of the system is, at the level of an individual plant (1) an individual plant 198 

without scales is (2) infested by the crawler stage of the Coccus viridis and rapidly forms local 199 

populations on the plant, which (3) attracts the parasitoid Coccophagus sp. which eliminates it 200 

from the plant, rendering the plant free of scales once again. More generally, an empty site is 201 

colonized by a prey item which is subsequently colonized by a predator item which eliminates it, 202 

thus returning the site to an empty state (as outlined in figure 1).  203 

 We model this basic system as a cellular automaton.  Consider a nxn lattice with three 
204 

variables, S (for empty space), P (for predator and prey together) and V (for prey or victim 
205 

alone), all of which are binary, and ki 

 
209 

��(�,�)  =  ���(�,�)�  

(x,y) is a binary number indicating presence or absence of 
206 

the ith variable at the point {x,y}. The number of each of the variables in the Moore 
207 

neighborhood (the surrounding eight cells) is given as, 
208 
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where i = S, P, or V and M indicates summation in the Moore neighborhood around the point 210 

{ x,y}. Thus, for example, NS

 213 

(x,y) is the number of empty cells in the Moore neighborhood 211 

around point x,y. The transformation rules for each lattice cell are as follows: 212 

S changes to V with probability mNV

V changes to P with probability aN

/8 214 

P

P changes to S with probability d 216 

/8 215 

 217 

The parameters m, a and d have clear biological meanings: m = migration rate of the prey, a = 218 

migration rate of the predator, and d = feeding rate of the predator (visualized in Figure 1).  219 

 Over the whole lattice we expect qualitative results that are likely to result from simple 220 

quasi-quantitative reasoning (and correspond to classical results): (1) if the predator’s death rate 221 

is extremely low but its attack rate is extremely high, we expect that the predator will eliminate 222 

all prey and then itself go extinct from a lack of food, thus the elimination of the entire system 223 

(the takeover by empty spaces); (2) if the predator death rate is extremely high and the attack rate 224 

extremely low, the predator will be eliminated from the system and the prey increase to take over 225 

the entire lattice (approach its carrying capacity); (3) with intermediate values of predator attack 226 

and death rates, the system will be maintained, as an intransitive loop in space. The detailed 227 

nature of these three outcomes will depend on parameter values, but it is worth emphasizing that 228 

the overall average behavior of the system is expected to mirror the classical results of predator 229 

prey theory. Results from simple simulations on a 100 × 100 lattice are presented in Figure 2.  230 

 The nature of the coexistence parameter space is complicated but intuitive and simple 231 

simulations reveal a host of potentially interesting temporal behaviors and spatial patterns on the 232 

lattice. However, there is an interesting generalization that can be gleaned from Figure 2. Taking 233 

prey migration rate as a tuning parameter, whence the overall behavior of the system is complete 234 

extinction of the whole system when the prey migration is too low (that which would happen if 235 

the parameter were to the left of the left hand panel of Figure 2) ranging to complete coexistence 236 

of both predator and prey (that which would happen if the parameter were to the right of the right 237 

hand panel of Figure 2). Between these two predictable circumstances, the system will be more 238 

unpredictable, yet with a clear statistical pattern, as illustrated in Figure 2. If either of the other 239 

two parameters are taken as tuning parameters, the qualitative results are equally intuitively 240 
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obvious. And if we construct a parameter that simultaneously increases predator attack rate while 241 

decreasing predator death rate, the system will go from complete elimination of the predator and 242 

persistence of the prey over the whole lattice to a state of emptiness (neither predator nor prey 243 

survive and the whole lattice is empty). In all of these qualitative observations it is important to 244 

note that the three-element persistent solution is always an intransitive loop.  245 

 Corresponding to the framework we seek to study (coupled intransitive oscillators) the 246 

green scale insect has another important predator, a lady beetle, Azya orbigera. It is qualitatively 247 

clear, if difficult to measure quantitatively, that the lady beetle and the parasitoid have different 248 

dispersal qualities and different attack rate properties (Liere et al. 2012, Jha et al. 2012), yet the 249 

basic idea of the two together corresponds to the theoretical structure of coupled oscillators 250 

(Figure 3), a framework that has given rise to a substantial literature (Vandermeer 1993, 2004, 251 

2006, Strogatz and Stewart 1993)(. In accord with this recent literature it is of interest to query the 252 

current framework with respect to a second predator in the system, effectively a situation of 253 

competition with the two predators seeking sustenance from the same food source, and 254 

conceptually fitting into the category of a system of coupled oscillators.  The two predators are, 255 

structurally, in competition with one another.  256 

 257 

 Thus, expanding the original model, we have, 258 

 259 

S changes to V with probability mNV

V changes to P

/8 260 

1 with probability a1NP1

V changes to P

/8 261 

2 with probability a2NP2

P

/8 262 

1 changes to S with probability d

P

1 263 

2 changes to S with probability d

 265 

2 264 

as the fundamental model (illustrated in Figure 3). However, in running the model there is 266 

another emergent state, P1P2. So as to avoid an unnecessary additional time step, we transform 267 

P1P2 to S during the same time step (i.e., the rule P1P2  P1 with probability ฀ and P1P2 P2 268 

with probability 1 −฀฀, generates what is effectively a new nonlinear element into the model 269 

which mitigates against the simplicity of the original formulation, adding an additional 270 

parameter, p1).  271 
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Extensive simulations support what we believe is intuitive, that P1 and P2 should form a 272 

kind of stochastic extinction in this system. That is, the long-term coexistence of P1 and P2

 Strict cellular automata rules are quite restrictive when a second predator is added, 279 

especially in the light of the much-discussed competition/migration tradeoff. That is, the need for 280 

only local interactions (any given cell receives migrants only from its immediate neighbor cells), 281 

mitigates against a framework in which either predator or prey can engage in long distance 282 

migration, even though local parameters are tunable. This restriction can be seen as an obvious 283 

mechanism of why the two predators are unable to coexist, sort of a spatial form of Gause’s 284 

exclusion principle. And it is also the case that creating a situation where one predator is a poor 285 

feeder but migrates rapidly, while the other predator is a poor migrator but feeds rapidly (in 286 

search for the ecologically proverbial tradeoff), does not dampen the apparent result that the two 287 

predators will not coexist except at knife edge sections of parameter space, (structurally similar 288 

to the famous survival of the weakest , in which a genotype of a weaker competitor will exclude 289 

the genotype of a stronger competitor due to spatial constraints; Frean and Abraham 2001). 290 

However, this result depends on what we argue is an overly restrictive constraint on the 291 

background habitat—that it is a regular network (Newman 2010). 292 

 is not 273 

possible, regardless the values of the tuning parameters (if ฀ is added as an additional parameter 274 

(see discussion in previous paragraph), there are knife-edge sections of the parameter space that 275 

allow for coexistence—we ignore those situations as probably uninteresting). Similar 276 

formulations in the literature generate identical results (e.g., Frean and Abraham 2001), which 277 

reflect the classic notion of Gause's principle. 278 

 293 

The structure of the background habitat 294 

A convenient tool for examination of underlying geometry, without imposing strict point-to-295 

point dynamics, is found in the burgeoning field of network theory. Indeed, if the probability of 296 

migration as a function of distance is strongly convex (in the sense that probability is close to 1.0 297 

for close distances and falls rapidly towards zero at some critical distance), we can think of the 298 

geometric space as a network. The coffee plants are nodes and any pair of plants closer than the 299 

critical distance is connected by an edge. The background on which the dynamic process 300 

operates is thus a formal network with nodes and edges. In the real system, although plants may 301 

be concentrated in rows, or on hillside contours, in more traditional systems they frequently seem 302 
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more like a natural plant population. That is, the distribution of plants on the ground is far from a 303 

regular lattice, even though such a planting pattern may have been the original intent of the 304 

farmer.  In Figure 4 we show the distribution of coffee bushes in a small (20 × 20 m) plot, in 305 

southwestern Chiapas, Mexico, illustrating the combination of regularity (from the original 306 

intention of the farmer in planting the bushes) plus irregularity (from random deaths and 307 

subsequent replanting). Thus, we have a network that could be ideally considered a regular 308 

lattice, although its deviation from regularity suggests other idealizations could be possible, as 309 

discussed later. The dynamics of the scale insect population and its predators operates on a 310 

network like this. 311 

 It is reasonable to suggest that the background habitat is viewed differently by the three 312 

players in our real world system. For example, the parasitoids are likely to disperse locally and 313 

build up high population densities locally (Comption, 2002). The beetles, however, fly actively 314 

and are known to disperse widely (Liere et al. 2012). It might then be reasonable to suggest that 315 

the parasitoids are local dispersers and view the habitat as a lattice (perhaps with some of the 316 

nodes clustered), while the beetles, flying widely searching for scale insects, view the habitat 317 

differently. While many spatial models in ecology presume a regular Euclidean space as the 318 

underlying spatial geometry, the geometry faced by most systems in nature does not conform to 319 

this idealization. The migration distance and/or the geometric position of occupation sites may 320 

alter the dynamic rules. For example, if one of the predators is a long-distance migrator, that 321 

effectively changes the regular lattice network to what is effectively a small world network. 322 

Similarly, if nodes are clustered in space, or the rules of migration effectively make them so, the 323 

background habitat is a clustered distribution (which may or may not be scale-free, i.e., the 324 

distribution of number of connections per node may or may not be a power function). Although 325 

other framings are possible, we find it convenient to begin with a regular lattice and consider 326 

modifications in (1) physical positions of the nodes (habitat spaces), and (2) local versus long 327 

distance connections (small world structure). We summarize our categorization scheme in Figure 328 

5. 329 

 With this framing we note that the failure of the dispersal/competition tradeoff paradigm 330 

to stabilize the system (make it persistent) takes on a slightly more complicated form. As noted 331 

above, with a simple modification of the rates of migration and attack rates of the two predators 332 

in the simple CA model it is not possible to maintain both predators in the system. In the context 333 
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of our actual system, we examine the consequences of assuming one predator operates on a strict 334 

lattice structure (as we expect of the parasitoid in the running example) while the other exists on 335 

a small world network, resulting from its long distance dispersal (as we expect of the beetle 336 

predator in our running example). Thus, our framework generates a system structured such that a 337 

clustered lattice underlays the dynamics of one species (i.e., Figure 5c), while a clustered small 338 

world pattern underlays the dynamics of the other species (i.e., Figure 5d). With proper 339 

parameter settings it is evident that both intransitive loops could coexist in perpetuity, an 340 

expectation that is revealed in simple simulations (e.g., Figure 6). 341 

  342 

Self-organized structure of the background habitat 343 

 344 

 Extensive simulations repeat the pattern shown in Figure 6, namely, on a regular lattice 345 

with or without small-world connections the two species are unable to persist together, but on a 346 

clustered lattice with small world connections there are extensive areas of parameter space that 347 

permit coexistence, apparently in perpetuity. The coexistence arrives through the standard 348 

mechanism of a tradeoff between dispersal and competition (Levins and Culver 1971, Cadotte et 349 

al. 2006), with the strong competitor (low predator dispersal rate and high attack rate) 350 

dominating the larger clusters of available sites while the strong disperser (low predator attack 351 

rate and high dispersal rate) dominates the smaller isolated available sites. Thus we see the 352 

coupled intransitive loops reflect the underlying structure assumed to exist regularly in both 353 

theory and in real systems. 354 

 There is another intransitive loop in the system. Most farms are managed with shade trees 355 

above the coffee bushes. As noted above, the arboreal Azteca ant locates its nesting sites in those 356 

shade trees, and forages on the nearby coffee trees. As its colony grows, it buds, forming new 357 

colonies in nearby shade trees, thus forming clusters of nests (Vandermeer et al. 2010, Jackson et 358 

al. 2014). But the ant is attacked by a parasitic fly (Pseudacteon spp.) that effectively causes the 359 

clusters of nests to disappear (either all nests in the cluster are moved far away or they die). 360 

Thus, we have the intransitive loop of (1) empty coffee bush is found by (2) an Azteca colony 361 

(nesting in a nearby shade tree), which ultimately is (3) attacked by the fly parasitoid, eventually 362 

abandoning its nesting site (or dying). As argued elsewhere (Vandermeer et al. 2008), this 363 

system is similar to the classic Turing mechanism in that the phorid acts as a repressor and the 364 
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ant, by moving its nests and occupying other trees, is the activator, with the whole system 365 

operating on the background network of shade trees that are potential sites for the ant nests. This 366 

Turing-like mechanism creates clusters of nests in an otherwise relatively uniform environment 367 

(Figure 7). Most importantly, as noted elsewhere (Jackson et al. 2014), any other organisms that 368 

use the ant nests as background habitat will respond to particular critical distances according to 369 

their own biological properties. 370 

 Thus, the basic intransitive spatial structure of the Azteca ant, the phorid fly and the 371 

empty trees gives rise to clustering in space, and each cluster of ant nests represents a connected 372 

component in the context of network theory. The dependence of the scale/parasitoid complex on 373 

this structure represents a spatial structure created by one system (the Azteca/Phorid system) in 374 

which the other system (the scale/parasitoid/beetle system) is forced to exist. Yet in another 375 

sense, the system is composed of three coupled intransitive loops as illustrated in figure 8 -- the 376 

empty site may be (1) occupied by the scale insect (the prey), and then attacked by the wasp 377 

(predator 1), or (2) occupied by the scale insect (the prey), and then attacked by the beetle 378 

(predator 2), or (3) occupied by the Azteca ants (alternative prey) and then attacked by the phorid 379 

parasitoid (alternative predator).    380 

 The scale insect is strongly influenced by the Azteca ant (the alternative prey of figure 8), 381 

a major element in this system, extensively studied earlier (Vandermeer et al. 2010). The ant 382 

makes its nests in the shade trees in coffee farms and tends scales on the nearby coffee bushes, 383 

which is to say prevents the two predators from attacking the scale insects. Thus, there are 384 

alternative effective habitats in which the scale insect may occur: (1) coffee trees associated with 385 

a nest of the ant, A. sericeasur, and (2) coffee trees not associated with the ant—either of the 386 

predators have complete access to the scale insects in those areas in which the ants are absent, 387 

but greatly reduced access when the ants are present. Consequently, the ants occupying shade 388 

trees effectively create a network on which the two natural enemy systems must operate, that is, 389 

all the area in the coffee farm that is without ant nests. For this reason we add a third intransitive 390 

loop to the system (Figure 8), the ant/phorid system. Note that one of the intransitive loops (the 391 

alternative prey/alternative predator loop of Figure 8), through the Turing mechanism 392 

(Vandermeer et al. 2008) forms the clustered spatial pattern in which the other two predators 393 

must exist, thus creating a basic self-organizing process whereby the system as a whole may 394 

persist.  395 
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 Expanding the basic CA model to include this third loop, we have two new variables, A = 396 

occupied by Azteca ants, and P3, occupied by Azteca ants and their parasitic phorid flies, and the 397 

CA model becomes, 398 

S changes to V with probability m1NV

V changes to P

/8 399 

1 with probability a1NP1

V changes to P

/8 400 

2 with probability a2NP2

P

/8 401 

1 changes to S with probability d

P

1 402 

2 changes to S with probability d

S changes to A with probability m

2 403 

2NA

A changes to P

/8 404 

3 with probability a3P3

P3 changes to S with probability d

/8 405 

3

 407 

   406 

There is an inherent conflict in the structure of the system regarding the switch from S to V 408 

versus the switch from S to A.  In this model we first consider the S to A switch, which, if it 409 

happens, makes the cell unavailable for the S to V switch. 410 

 The subcomponent of this model that includes only the loop, S to A to P3, is similar to 411 

the model we studied earlier, and results in spatial clusters of ant nests on the grid. Thus this 412 

third loop is expected to create a spatial pattern within which the first two loops (S, V, P1 and 413 

S,V,P2

 If the spatial pattern formed by the pattern-forming intransitive loop (the pilot 420 

intransitivity) were to remain constant, clearly that would be no different than fixing an arbitrary 421 

background as we did in the case of Figure 6b. With a completely connected network (e.g., 422 

Figure 9a), as already mentioned, the background is essentially a single background habitat and 423 

the results reported above are repeated (i.e., extinction of one of the original predators). With an 424 

unconnected patchy network (e.g., Figure 9b), the big patches favor the non-dispersing predator 425 

and the small patches favor the dispersing predator, and for many parameter combinations we 426 

) exist, what we call a "pilot pattern" (taking a very approximate metaphorical clue from 414 

so-called pilot wave theory of particle physics, e.g., Valentini 2010) that will permit the 415 

coexistence of the other two predators and their intransitive loops, much like the fixed clusters 416 

did, as, for example, Figure 6b. However, it is evident that the pilot pattern created by this third 417 

loop can take a variety of forms, three examples of which are illustrated in Figure 9. Note that 418 

the clusters where the other two loops must exist are the open spaces.  419 
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should expect the two predators will coexist (as happened above with the fixed spatial pattern). 427 

However, extensive simulations with this situation show that coexistence of the original two 428 

predators is impossible. When the generated pilot pattern is continually changing, the system 429 

effectively merges all the patches stochastically, and the average over time essentially becomes a 430 

single patch.  431 

 Thus, we see that as long as the constructed spatial system of permitted sites is not a 432 

completely connected network (e.g., if it is as in Figure 9b), and as long as the pattern is fixed, 433 

coexistence is possible (e.g., Figure 6b). But with a dynamic system, even though seemingly 434 

favorable patchiness is created by the third (pilot pattern) loop, coexistence is impossible (data 435 

not shown). Thus, at one extreme, if the system that generates the pattern (the alternative 436 

prey/alternative predator; Figure 8) operates at the same temporal scale as the original coupled 437 

system (prey/predator 1/predator 2), coexistence is impossible, but at the other extreme, if the 438 

temporal scale is very long (i.e., the constructed pattern is constant), coexistence is common. The 439 

question thus arises as to what happens at intermediate temporal scales.  440 

Let the temporal scale of the constructing system be ฀. If the constructed space is 441 

fixed for the original coupled system, whereas if ฀ = 1, the constructing system has the same 442 

time scale as the original coupled system. So, with  the background system is constant and 443 

the two predators coexist (with proper parameter values, e.g., Figure 6b). If ฀ = 1, the 444 

background system changes at the same rate as the original coupled system changes and 445 

effectively creates a single average environment, leading to the inevitable extinction of one or 446 

the other predators (data not shown). Clearly a value of ฀ > 1 but can result in either result 447 

and we can imagine a critical value, ฀ crit , above which the original coupled two predator system 448 

will persist in perpetuity and below which competitive exclusion will result. Several relevant 449 

time series are illustrated in Figure 10 and snapshots of one of the spatial patterns that emerges 450 

when ฀ > ฀ crit 

 452 

is illustrated in Figure 11.  451 

 Thus, a clustered spatial structure created by an independent intransitive loop can create 453 

persistence of a distinct set of coupled intransitive loops, but only if the former has a disjointed 454 

time frame, that is, only if the pilot pattern-forming loop operates in a longer time frame than the 455 

coupled system living in that spatial structure. There are parameter combinations where the 456 

relationship between the time frame difference (฀) seems to form a proportional relationship to 457 
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the time to extinction (T) estimate (Figure 12), but other combinations where there is an 458 

accelerating relationship between ฀ and T (Figure 12). Most importantly, there seems to be some 459 

parameter combinations for which the function that relates T to ฀฀ diverges at some critical 460 

฀฀ (฀crit

 463 

), as illustrated in Figure 12. It is also the case that the time to extinction scales as the 461 

inverse of the critical point, which is to say, the equation, 462 

� =  
��1−�(�−�)� ��        1 464 

 465 

describes well the time to extinction (T) relative to the scaling parameter (f) and the critical 466 

exponent (z), according to the dynamic scaling hypothesis (Djurberg et al. 1997). 467 

 468 

Conclusion 469 

 Herein we argue that a spatially explicit intransitive system consisting of empty cell 470 

giving rise to cell with prey giving rise to cell with prey/predator giving rise to empty cell is a 471 

good model for at least the system we model here, the pest system of a Mexican coffee 472 

agroecosystem.  For the actual system being modelled, the prey is a pest species, the green coffee 473 

scale insect.  There are two predators, a wasp parasitoid and a beetle, and coupling them together 474 

creates a situation in which, theoretically, coexistence is impossible.  We note that the general 475 

qualitative framing here is hard to ignore as basically identical to the operation of the system in 476 

nature (individual coffee trees that get attacked by scale insects, but then the scale insects are 477 

attacked by both of these biological control agents).  Yet our generalization that such a coupled 478 

intransitive system cannot persist is inconsistent with the clear observations in nature over the 479 

past 20 years that both of these biological control agents persist in the system, indeed are 480 

responsible for maintaining this pest below significant damage thresholds (Vandermeer et al. 481 

2010). Adding the underlying non-regular pattern of the cells in the system (the coffee bushes on 482 

the farm), enables the co-persistence of the two biological control agents.  But that underlying 483 

spatial pattern is itself a consequence of a distinct intransitive oscillator, what we call the pilot 484 

system.  As noted by Barabás (personal communication), this metaphor is perhaps stretched, in 485 

that the system forming the pattern is doing nothing more than that. To liken it to the dynamic 486 

process in the De Broglie-Bohm theory is certainly very approximate, yet the underlying 487 
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consequences of both the original pilot wave and our pilot pattern are similar and we argue that 488 

this approximate metaphor is potentially useful. 489 

 The so-called pilot system in this case has been elaborated extensively elsewhere (Li et 490 

al. 2016, Philpott et al. 2009, Vandermeer et al. 2008, Perfecto and Vandermeer 2015), whereby 491 

the Azteca ants that form a spatial patchwork in the system (Figure 7c) actually restrict the 492 

operation of the two predators locally (within a patch of Azteca), but also, through their 493 

mutualistic effect on the scale insects, supply the source of scale insects that migrate into the 494 

empty cells (the coffee plants unaffected by the Azteca ants).  It is thus ironic that the protectors 495 

of a pest (the Azteca ants protect the scale insects) are actually the keepers of the source of that 496 

pest, but also responsible for the underlying spatial pattern, both of which are necessary to 497 

maintain the pest's natural enemies over the whole farm. Only a small percentage of shade trees 498 

contain Azteca nests, but those are sources of the scales that help maintain the predators over the 499 

rest of the farm.  Furthermore, the time frame of the systems corresponds qualitatively with the 500 

idea of dynamic scaling (Eq. 1).  The Azteca ants operate on a time scale of from months to 501 

years, while the parasitoid and beetle are on a week to month time schedule.   502 

 Thus, it is (1) the demographic parameters of the coupled predator/prey systems, (2) the 503 

structure of the background habitat, (3) the construction of that structure by a distinct 504 

predator/prey system (the pilot system), and (4) the disjoint time frame between the pilot system 505 

and the biological control systems, which collectively generate the ultimate result of persistence 506 

of the system. This ultimately intuitive structure seems to be responsible for maintaining the 507 

control of the potentially important pest, the green coffee scale, in perpetuity.  It is ironic that 508 

some farmers view the Azteca ants as themselves pests since they are mutualistically associated 509 

with the scale insects.  Yet it is clear from the basic intransitive structures embedded in the 510 

system that the Azteca ants are crucial for maintaining control over this pest over a large area—a 511 

complex web of ecological interactions is thus responsible for control of a pest in one of the most 512 

important crops in the world. 513 

 There may be a generalization here. That dynamic interactions among organisms can 514 

create the habitats in which other organisms exist, a pilot pattern, is certainly not new. For 515 

example, in 1926 Tansley and Chipp noted: 516 

“. . . it is really the whole of the living organisms together, plus the inorganic factors 517 

working upon them, which make up, . . . a ‘system’ . . . But such a ‘system’ considered 518 
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fundamentally . . . must include the ‘inorganic’ factors of the habitat and these obviously 519 

cannot be considered as ‘members’ of the community; and if we take the inorganic factors 520 

as external, why not biotic factors such as grazing animals?” 521 

and even earlier Darwin’s humblebees found refuge in old mouse nests. More recent literature 522 

repeats, in one form or another, a similar idea (e.g., Wu and Loucks 1995, Holt and Keitt 2000), 523 

in one case even referring to the cells of the environment being caused by other organisms 524 

(Caswell 1978). 525 

 While such work treats the issue generally, the notion of a pilot pattern as guiding spatial 526 

structure fits in with these basic insights. If grazing animals avoid the edge of a forest for fear of 527 

predators lurking there, the grasses they feed on receive a spatial respite. The grasses care not 528 

whether the herbivore-free patch is caused by an underlying edaphic factor (inorganic) or by the 529 

threat of predators. Thus, the pilot pattern for the grass is caused by the grazing animals and their 530 

predators. Our results suggest that, while this framework seems to make sense, at its simplest 531 

level there must be some disjunction in the time frame of the pilot system versus the time frame 532 

of the responsive system. If the pattern shifts in the same time scale as the responsive system, it 533 

cannot operate as a pilot, at least in our simple model. We propose that this is a general rule. 534 

 535 
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Figure legends 674 

Figure 1. The basic framework of the model system (note its intransitive nature). 675 

Figure 2. Parameter space study of long term outcome of cellular automata model, plotting 676 

predator attack rate (abscissa) versus predator death rate (ordinate), with proportional bubbles 677 

representing coexistence (prey/pred), or predator extinction and prey survival (prey=K) or 678 

extinction of the whole system (empty). Axes on each graph range from 0 to 1. 679 

Figure 3. Coupling two intransitive loops.  680 

Figure 4. Distribution of coffee trees on a 20 × 20 m plot in Mexico, illustrating both the original 681 

intention of planting trees in rows, but, because of deaths and replanting, also the non-regular 682 

nature of the distribution.  683 

Figure 5. The four qualitatively distinct network structures considered. (a) A regular lattice 684 

where the small circles are the habitats which the predators and prey may occupy (coffee bushes 685 

in the present context), and the connections represent the possible migration pathways. (b) The 686 
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regular lattice in (a) with two connections randomly broken and randomly reattached, creating a 687 

small world structure. (c) A clustered pattern of habitats. (d) The same clustered pattern in (c) but 688 

with a random two connections broken and randomly reattached to create a clustered small world 689 

spatial pattern. In all cases there are 25 nodes (coffee bushes) and 40 connections (dispersal 690 

pathways).  691 

Figure 6. Exemplary simulation results on a regular 100 × 100  lattice with one predator a long 692 

distance migrator (Predator 2) and the other a strong competitor (Predator 1). (a) On a regular 693 

lattice, one of the predators always goes extinct (which one depends on parameters), regardless 694 

of the parameter tradeoff of dispersion versus competition. (b) With a fixed non-random 695 

background habitat representing a clustered small world habitat (as in Figure 5d), a variety of 696 

parameter combinations allows for such coexistence. 697 

Figure 7. Three snapshots of a 45 hectare plot in a Mexican coffee farm. (a) theoretical 698 

distribution of 6,700 trees arranged in a regular lattice, as would be (and was) the underlying 699 

assumption from a simple cellular automata model of the system. (b) the actual distribution of 700 

shade trees (about 6,700) on the farm in 2014, showing the obvious deviation from the regular 701 

lattice. (c) the distribution of shade trees that contained Azteca nests in 2014, illustrating the 702 

clustered nature of the nest distribution.  703 

Figure 8. The three connected intransitive loops with alternative prey. 704 

Figure 9. Examples of the structure generated by the empty space/prey/predator intransitive loop, 705 

where the empty patches are the constructed habitat created for the original coupled intransitive 706 

loop system. (a) Large patches at a parameter setting with a spanning cluster (of white) and a 707 

completely connected network (of white), effectively creating a single patch and the effective 708 

structure of a simple lattice. (b) More constrained patches where both large and small patches 709 

exist, creating the background for a sustained coexistence of both original intransitive loops, 710 

where one predator is a good competitor and the other a good disperser, just on the boarder of a 711 

spanning cluster. (c) Highly isolated patches. 712 

Figure 10 . Exemplary time series of predators with the dispersion/consumption tradeoff, with 713 

the Azteca/Phorid system creating pattern. (a) illustration of the operation of the Azteca/Phorid 714 

system for the first 50 time steps with the resulting spatial structure remaining constant after that 715 

point.  Note the persistence of both predators in the system. (b) same as a, but the Azteca/Phorid 716 

system remaining in the dynamic structure throughout. Note the extinction of predator 1 at time 717 
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step 100.  (c) four examples of the parameter ฀, illustrating the persistence of the system for ฀ = 718 

10 and above. Note how the dynamic pattern of both predators reflects the particular value of ฀.   719 

Figure 11. Spatial structure emerging from three interpenetrating intransitive loops, where prey 2 720 

and predator 3 (coupled with empty sites), are the members of the intransitive loop that provides 721 

the pilot pattern in which the other two intransitive loops live. (Parameter set is the same as 722 

parameter set b in figure 9, with ฀ = 25). 723 

Figure 12. Time to extinction versus ฀฀on a 100 × 100 lattice฀. Open symbols for parameter 724 

set A, Closed symbols for parameter set B. Note the open symbols follow a linear relationship 725 

with ฀, (line is best fit linear least squares regression), while the closed circles fit well the 726 

equation T = 146.77/(1- ฀crit)
4.209 where the divergence is ฀crit = 25.15. For the parameter set 727 

B, any value of ฀ larger than ฀crit is expected to be “stable” in the sense that the expected time 728 

to extinction approaches infinity. Equation graph is from the dynamic scaling hypothesis (Eq. 1).  729 
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