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A Proofs

Proof of Theorem 1: Our methodology can be developed for a finite planning horizon; however, we

instead focus on an infinite horizon cyclo-stationary model. To this end, we augment the time index

with a ‘w’ (for weeks) as follows: In this case, T is the number of days in one cycle (e.g., T = 5 days at

our partner institution), and stationarity may be reached by taking the limit w →∞. Let

W k
t =

∑
k1∈K′

∑
τ∈C(k1)

T∑
t1=1

lim
w→∞

w∑
j=0

α
k1,τ
t1,j∑
i=1

Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · sk, (31)

where Lk1,τ
t1+jT ,i(t + wT − (t1 + jT )) is the ith i.i.d instance of the Lk1,τ

t1+jT (t + wT − (t1 + jT )) random

variable. For notational convenience, if t+wT−(t1 +jT ) is negative then Lk1,τ
t1+jT (t+wT−(t1 +jT )) will

be the vector of 0’s. Notice that the second inner sum in Equation (31) considers αk1,τ
t1,j , all type (k1, τ)

patients that were scheduled for their root appointment on day t1 of week j ≤ w. For each one of those

patients, a given realization of Lk1,τ
t1+jT (t+wT − (t1 + jT )) is multiplied by ek · sk, which will determine

the workload each one of those patients will impose in specialty k, t+wT − (t1 + jT ) days later (hence,

on day t of week w in this cyclo-stationary model). The second inner sum is over all weeks j from 0 to

w, and the third inner sum is over all days t1 included in those weeks. Therefore, this captures all type

(k1, τ) patients that were scheduled for a root appointment earlier than day t of planning horizon w,

and the sum of their resource requirements in specialty k on day t of week w. The last two outer sums

consider all patient types τ ∈ C(k1), k1 ∈ K′.

Since the second innermost sum in Equation (31) is non-decreasing in w, we may apply the Monotone

Convergence Theorem to interchange the expectation and the limit. Then, since the number of patients
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scheduled, αk1,τ
t1,j , is independent of the stochastic location process, Lk1,τ

t1+jT ,i(·), we can apply Wald’s

equation to express the random sum
∑α

k1,τ
t1,j

i=1 in Equation (31) in terms of E[αk1,τ
t1

], yielding:

E[W k
t ] =

∑
k1∈K′

∑
τ∈C(k1)

T∑
t1=1

· lim
w→∞

w∑
j=0

E[αk1,τ
t1

] E
[
Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · sk

]

=
∑
k1∈K′

∑
τ∈C(k1)

T∑
t1=1

E[αk1,τ
t1

] ·
∞∑
j=0

Mk∑
m=1

m · rk1,τ ,k
t1

(m, t− t1 + jT ) · sk.

Proof of Theorem 2: Here again we begin by augmenting the time index with the week index, ‘j’,

to capture the fact that the system being modeled is cyclo-stationary with a weekly pattern. Following

the general idea of the proof in Theorem 1, we can formulate the steady state variance of the specialty

k workload random variable on day t of our planning horizon as:

Var[W k
t ] = Var

[ ∑
k1∈K′

∑
τ∈C(k1)

T∑
t1=1

∞∑
j=0

α
k1,τ
t1,j∑
i=1

Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · sk

]
.

As in the proof of Theorem 3.1, the Monotone Convergence Theorem can once again be used to in-

terchange the expectation and the infinite sum. Also, note that (Lk1,τ
t1+jT ,i(t + wT − (t1 + jT )) · ek)i

is a sequence of i.i.d. random variables which are also independent of αk1,τ
t1,j ; Wald’s equation applies.

Moreover, the variance of Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek is the same for every i. Then, the variance

of this random sum can be expressed as follows:

Var

[ αk1,τ
t1,j∑
i=1

Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · sk

]
= E[αk1,τ

t1,j ] ·Var[Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · sk]

+ E[Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · sk]2 ·Var[αk1,τ

t1,j ].

By using the same arguments as the proof of the previous theorem, Equation (8) follows.

Proof of Proposition 1: For any nonnegative discrete random variable β, it is somewhat well known

that E[β] =
∑∞

l=0 P(β > l). In particular, βk,τt⊕1 is nonnegative, so:

E[βk,τt⊕1] =
∞∑
l=0

P
(
βk,τt⊕1 > l

)
=
∞∑
l=0

∑
i∈I

yk,τt (i, l) ·Ψ(i),

where we are using our previously defined binary variables yk,τt (i, l) (see constraints (11) and (12)).

Similarly,

E[(βk,τt⊕1)2] =
∞∑
l=0

(2l + 1) · P
(
βk,τt⊕1 > l

)
,
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which can be rewritten as:

E[(βk,τt⊕1)2] =
∞∑
l=0

[
(2l + 1) ·

∑
i∈I

yk,τt (i, l) ·Ψ(i)

]
.

Then,

β̃k,τt⊕1 =
∞∑
l=0

[
(2l + 1) ·

∑
i∈I

yk,τt (i, l) ·Ψ(i)

]
−

[ ∞∑
l=0

∑
i∈I

yk,τt (i, l) ·Ψ(i)

]2

=
∞∑
l=0

[
(2l + 1) ·

∑
i∈I

yk,τt (i, l) ·Ψ(i)

]
−

∑
(l1,l2)∈(Z+)2

∑
(i1,i2)∈I2

yk,τt (i1, l1) · yk,τt (i2, l2) ·Ψ(i1) ·Ψ(i2).

Finally, replacing the binary products yk,τt (i1, l1) · yk,τt (i2, l2) by a binary variable zk,τt (i1, i2, l1, l2) satis-

fying Equations (15)–(17), we have expressed the variance of the carryover random variable linearly in

our decision variables (see expressions (11)–(14)).

Proof of Theorem 3: The proof of the linearization result is by induction on t. We first show the

result for a finite horizon problem. Then, augmenting the time index with ‘w’ and taking the limit

w →∞ gives, for a stable system, the result for the cyclo-stationary model. For t = 1, βk,τ1 is assumed

to be a fixed input value, independent of Θ. Then, the Dk,τ
1 (i) are independent of (and hence trivially

linear in) Θ since E[Dk,τ ] and Var[Dk,τ ] are independent of Θ. For the induction hypothesis, assume

that the Dk,τ
t (i) can be expressed linearly in Θ. Then, by the construction in Equations (11)–(14),

the induction hypothesis implies that the βk,τt+1(i) can be expressed linearly in Θ. Since expectation is

a linear operator, it follows that βk,τt+1 can also be expressed linearly in Θ. Also, by Proposition 4.1,

β̃k,τt+1 can be expressed linearly in Θ. In order to show that the Dk,τ
t+1(i) can be expressed linearly in

Θ, under Equation (10) it is sufficient to show that E[Dk,τ
t+1] and Var[Dk,τ

t+1] can be expressed linearly

in Θ. For the mean, E[Dk,τ
t+1] = E[Xt+1 + βk,τt+1] = E[Xt+1] + β

k,τ
t+1, which can also be expressed linearly

in Θ since E[Xt+1] is independent of Θ and we have already shown the linearity of βk,τt+1. For the

variance, Var[Dk,τ
t+1] = Var[Xt+1 + βk,τt+1]. Note that Xt+1 is independent of βk,τt+1, and so Var[Dk,τ

t+1] =

Var[Xt+1] + β̃k,τt+1. We have already shown the linearity of β̃k,τt+1, and Var[Xt+1] is independent of Θ.

Hence, both E[Dk,τ
t+1] and Var[Dk,τ

t+1] can be expressed linearly in Θ, which implies, by Equation (9), that

the Dk,τ
t+1(i) can be expressed linearly in Θ.

B Linear Approximation of Carryover Variance

Using Proposition 4.1 to exactly linearize the carryover variance requires many binary variables, which

results in a computational challenge for today’s commercial solvers. For the case studies, we instead

use an approximation. Towards understanding the approximation, it is useful to consider two extremes:

P(Dk,τ
t < Θk,τ

t ) ≈ 1 and P(Dk,τ
t ≥ Θk,τ

t ) ≈ 1. If, P(Dk,τ
t < Θk,τ

t ) ≈ 1, then Var[βk,τt⊕1] = Var[(Dk,τ
t −
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Θk,τ
t )+] ≈ Var[0] = 0. On the other hand, if P(Dk,τ

t ≥ Θk,τ
t ) ≈ 1, then Var[βk,τt⊕1] = Var[(Dk,τ

t −Θk,τ
t )+]

≈ Var[Dk,τ
t −Θk,τ

t ] = Var[Dk,τ
t ]. The approximation of Var[βk,τt⊕1], again denoted β̃k,τt⊕1, linearly weights

these extreme cases as follows:

β̃k,τt⊕1 := 0 · P(Dk,τ
t < Θk,τ

t ) + Var[Dk,τ
t ] P(Dk,τ

t ≥ Θk,τ
t ) =

(
Var[Xk,τ

t ] + β̃k,τt

)
P(Dk,τ

t ≥ Θk,τ
t ).

To achieve this, we define vk,τt (i) to be equal to the DIP variance (Var[Xk,τ
t ] + β̃k,τt ) on day t if and only

if yk,τt (i, 0) equals 1 (or equivalently, Dk,τ
t (i) ≥ Θk,τ

t ). The following constraints will assure that this

definition is met:

vk,τt (i) ≤M · yk,τt (i, 0), (32)

vk,τt (i) ≥
(

Var[Xk,τ
t ] + β̃k,τt

)
−M ·

(
1− yk,τt (i, 0)

)
, (33)

vk,τt (i) ≤
(

Var[Xk,τ
t ] + β̃k,τt

)
. (34)

Then,

β̃k,τt⊕1 =
∑
i∈I

vk,τt (i) ·Ψ(i). (35)

We do something similar for Var[αk,τt ]. By Equation (3), αk,τt + βk,τt⊕1 = Dk,τ
t . In general, αk,τt and βk,τt⊕1

are not independent. Still, for our linear approximation, we define α̃k,τt such that α̃k,τt + β̃k,τt⊕1 equals

Var[Dk,τ
t ]. The part of the DIP variance that is not allocated to βk,τt⊕1 gets allocated to αk,τt : α̃k,τt =

Var[Dk,τ
t ] P(Dk,τ

t < Θk,τ
t ); so:

α̃k,τt =
∑
i∈I

(
Var[Xk,τ

t ] + β̃k,τt⊕1 − v
k,τ
t (i)

)
·Ψ(i). (36)

Figure 13 illustrates the idea.

C Notation and Mixed Integer Program

The purpose of this deterministic MIP model is to create a template (Θ), that decides how much capacity

is to be reserved for different patient classes on a given day in a given service (i.e., department). Patients

are categorized by the service (k) they need and their class (τ). This model will create a cyclo-stationary

template – the template does not change from one cycle to the next.
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Figure 13: Illustration of the linear approximation of variance. In this example, D is Normally distributed with
mean 2.5 and standard deviation 0.3. (Our approximations are validated for a practical setting in the case study
presented in section 5.2.) We are interested in the variances of β and α where β = [D−Θ]+ and α = D−β (recall
Equations (2) and (3)). The exact standard deviations of β and α were calculated using Monte-Carlo simulation,
and are plotted vs. Θ. In particular, if Θ is low relative to E[D], then Var[β] ≈ V [D] and Var[α] ≈ 0. For the linear
variance approximation, Var[β] = Var[D] P(D ≥ Θ) and Var[α] = Var[D] P(D < Θ). The resulting approximate
standard deviations are greater than or equal to the exact values. In general, when Θ is somewhat far away from
E[D], the linear approximations match the exact values, but when Θ is near E[D], the approximate standard
deviations are a bit larger. This means that, under the linear approximation, constraints on the performance
metrics are actually a bit conservative.

C.1 Indices

i index for DIP grid, i = 1, . . . , I.
j index for number of arrivals per day, j = 0, . . . , J .
k index for specialty, k = 1, . . . ,K.
τ index for patient class (e.g., Urgent or Non-Urgent), τ = 1, . . . ,Y .
t index for days, t = 1, . . . ,T .
w index for number of weeks in an itinerary of care, w = 1, 2, . . . ,Z.
h index for number of slots required by a patient, h = 1, . . . ,Hk for department k.
n number of service level constraints on the access delay, n = 1, 2, . . . ,N .
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C.2 Parameters/Fixed Input Data

Ckt total usable capacity (in hours) on day t in service k.
X
k,τ
t E[X(k,τ)

t ]: expected value of the exogenous demand for type (k, τ) on day t.
X̃k,τ
t Var[X(k,τ)

t ]: variance of the exogenous demand for type (k, τ) on day t.
D̂k,τ
t type (k, τ) standard deviation of the DIP on day t under the current system – the

guess for the one-step Newton’s method approximation in Equation (10).
m(i) number of standard deviations the grid point associated with index i is away from

the mean of a given random variable.
M sufficiently large integer chosen by the user.
Ŵ k
t standard deviation of the current system workload for service k – the guess in

Equation (28).
Ψ(i) the probability mass for grid point i.
fk,τt (j) the probability that there are j exogenous type (k, τ) arrivals on day t.
rk1,τ ,k
t1

(m, t− t1) probability that a class τ root appointment in department k1 on day t1 will result
in m downstream appointment slots t days later in department k.

sk length of a time slot in department k in hours.
Hk maximum number of time slots a patient may need in department k on a given

day.

C.3 User Inputs for Possible Constraints

TFAV k,τ
n nth waiting time target (in days) for patient of type (k, τ).

pk,τn bound set on the expected percentage of type (k, τ) patients exceeding TFAV k,τ
n days of

access delay.
Bk limit on the non-urgent mean access delay in specialty k.
i∗ grid point that guarantees the desired maximum violation probability of workload ex-

ceeding a department’s daily capacity (recall Equation (30)).
Okbound mean overtime bound set in hours for specialty k.
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C.4 Decision Variables

Θk,τ
t number of type (k, τ) reserved slots on day t. (nonnegative, integer)

βk,τt (i) conditional overflow demand for type (k, τ) from day t−1 to day t of the planning horizon,
conditioned on realized DIP at m(i) standard deviations above the mean.

εk,τt (i) type (k, τ) helper variable that assures that Dk,τ
t (i) is nonnegative at grid level i.

bk,τt (i) binary variable indicating whether the m(i) standard deviations above the mean will cause
the DIP to be non-negative.

yk,τt (i, l) binary indicator variable equal to 1 when Dk,τ
t (i)−Θk,τ

t ≥ l and 0 otherwise.
vk,τt (i) continuous variable equal to the type (k, τ) total DIP variance on day t when Dk,τ

t (i) −
Θk,τ
t ≥ 0, and equal to 0 otherwise.

Okt (i) number of workload hours that are processed in overtime at grid level i for service k on
day t.

δk,τt,n (i) conditional total number of type (k, τ) slots remaining over the next TFAV k,τ
n days after

all prior demand is scheduled, on day t, conditioned on realized DIP at m(i) standard
deviations above the mean.

xk,τt,n (i) binary helper variable that equals 1 when
(∑TFAV k,τn

l=0 Θk,τ
t⊕l

)
− βk,τt (i) ≥ 0 and equals 0

otherwise.
γk,τt,n (i, j) fraction of patients requesting an appointment of type (k, τ) that exceed TFAV k,τ

n days of
waiting for the appointment, given that there are j type (k, τ) requests on day t, and there
are δk,τt (i) remaining type (k, τ) slots in the template after all prior demand is scheduled.

C.5 Convenience Variables – Can Be Substituted Out Prior to Optimization

Dk,τ
t (i) conditional type (k, τ) DIP level, conditioned on realized DIP at m(i) standard deviations

above the mean.
D
k,τ
t type (k, τ) mean DIP on day t.

D̃k,τ
t type (k, τ) DIP variance on day t.

W
k
t expected workload induced on service k on day t.

W̃ k
t workload variance in service k on day t.

β̄k,τt expected carryover demand of type (k, τ) patients to day t.
ᾱk,τt type (k, τ) expected fulfilled/scheduled demand on day t.
β̃k,τt variance for type (k, τ) carryover demand from day t− 1 to t.
α̃k,τt variance of fulfilled demand for type (k, τ) on day t.
Gk,τt,n expected percentage of type (k, τ) patients on day t that will exceed TFAV k,τ

n days of access
delay.

Ōkt expected overtime hours of service k on day t.

The objective of this MIP formulation is to minimize the mean access delay of urgent patients in a

given department k. (Note that the optimization could also be used to minimize the mean access delay

of urgent patients across all departments by adding a sum over k in the numerator and denominator.)

The objective function is expression (4):

min
∑T

t=1 β
k,Urgent
t∑T

t=1X
k,Urgent
t

.

The user is able to enter constraints on (i) the mean access delay of non-urgent patients for every
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department k (constraints (37)), (ii) the percentage of type (k, τ) patients exceeding TFAV k,τ
n days

of access delay (constraints (38)), (iii) the maximum violation probability of the workload exceeding a

department’s daily capacity (constraints (39)), and (iv) the maximum mean number of hours performed

in overtime in a given department (constraints (40)):

T∑
t=1

β
k,Non-Urgent
t ≤ Bk ·

(
T∑
t=1

X
k,Non-Urgent
t

)
, ∀k; (37)

Gk,τt,n ≤ pk,τn ,∀k,∀τ ,∀t,∀n; (38)

W
k
t +

1
2
m(i∗) ·

(
W̃ k
t

Ŵ k
t

+ Ŵ k
t

)
≤ Ckt , ∀k,∀t; (39)

O
k
t ≤ Okbound,∀k,∀t. (40)

Constraints (41)-(45) allow us to precisely define Dk,τ
t (i), and ensure that it is nonnegative:

Dk,τ
t (i) = D

k,τ
t +

1
2
m(i) ·

(
D̃k,τ
t

D̂k,τ
t

+ D̂k,τ
t

)
+ εk,τt (i),∀k,∀τ ,∀t, ∀i; (41)

εk,τt (i) ≤ −

(
D
k,τ
t +

1
2
m(i) ·

(
D̃k,τ
t

D̂k,τ
t

+ D̂k,τ
t

))
+M · bk,τt (i),∀k,∀τ ,∀t, ∀i; (42)

εk,τt (i) ≤M · (1− bk,τt (i)),∀k,∀τ ,∀t, ∀i; (43)

−M ·
(

1− bk,τt (i)
)
≤ Dk,τ

t +
1
2
m(i) ·

(
D̃k,τ
t

D̂k,τ
t

+ D̂k,τ
t

)
, ∀k, ∀τ ,∀t, ∀i; (44)

D
k,τ
t +

1
2
m(i) ·

(
D̃k,τ
t

D̂k,τ
t

+ D̂k,τ
t

)
≤M · bk,τt (i),∀k,∀τ , ∀t,∀i. (45)

Constraints (46) and (47) define the helper binary variable yk,τt (i, l) to be equal to 1 whenDk,τ
t (i)−Θk,τ

t ≥

l and 0 otherwise. We use these binary variables to calculate the βk,τt⊕1(i) (constraints (48) and (49)),

which allow us to calculate the mean carryover demand, βk,τt⊕1 (Equation (50)). Finally (Equation (51)),

the mean number of type (k, τ) patients scheduled on a given day t can be calculated using the mean

carryover demand and the mean exogenous demand.

−M ·
(

1− yk,τt (i, l)
)
≤ Dk,τ

t (i)−Θk,τ
t − l, ∀k,∀τ ,∀t, ∀i,∀l; (46)

Dk,τ
t (i)−Θk,τ

t − l ≤M · y
k,τ
t (i, l),∀k, ∀τ , ∀t,∀i, ∀l; (47)

Dk,τ
t (i)−Θk,τ

t ≤ βk,τt⊕1(i),∀k, ∀τ ,∀t, ∀i; (48)

βk,τt⊕1(i) ≤ Dk,τ
t (i)−Θk,τ

t +M ·
(

1− yk,τt (i, 0)
)

,∀k,∀τ ,∀t, ∀i; (49)

β
k,τ
t⊕1 =

∑
i∈I

βk,τt⊕1(i)Ψ(i),∀k,∀τ , ∀t; (50)
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αk,τt = D
k,τ
t − β

k,τ
t⊕1 = X

k,τ
t + β

k,τ
t − β

k,τ
t⊕1. (51)

The optimization uses the helper variables vk,τt (i) that equal the type (k, τ) total DIP variance on day t

when Dk,τ
t (i)−Θk,τ

t ≥ 0, and equal 0 otherwise. This is assured by constraints (52)-(54). The variances

of the carryover and fulfilled demands are calculated (Equations (55) and (56)) using vk,τt (i) and the

approximation detailed in expressions (32)–(36).

vk,τt (i) ≤M · yk,τt (i, 0),∀k,∀τ ,∀t,∀i; (52)

vk,τt (i) ≥ D̃k,τ
t −M ×

(
1− yk,τt (i, 0)

)
,∀k, ∀τ , ∀t,∀i; (53)

vk,τt (i) ≤ D̃k,τ
t , ∀k, ∀τ , ∀t,∀i; (54)

β̃k,τt⊕1 =
∑
i∈I

vk,τt (i) ·Ψ(i),∀k, ∀τ , ∀t; (55)

α̃k,τt =
∑
i∈I

(
X̃k,τ
t + β̃k,τt − vk,τt (i)

)
·Ψ(i),∀k, ∀τ , ∀t. (56)

In Equations (57) and (58), we calculate the expected value and variance, respectively, of the total

workload on day t for department k. We define Z as the maximum number of weeks an itinerary of care

can be for any patient type. (Based on the one year dataset, patients had less than a 0.1% probability

of exceeding a three week (15 day) itinerary. Hence, to avoid summing w from 0 to ∞ in our MIP, we

truncated this sum at Z = 2.) Recall that ek is a column vector with all 0’s except a 1 in the kth row.

W
k
t =

K∑
k1=1

Y∑
τ=1

T∑
t1=1

αk1,τ
t1
·
Z∑
w=0

Hk∑
h=1

h · rk1,τ ,k
t1

(h, t− t1 + wT ) · ek · sk,∀k,∀t; (57)

W̃ k
t =

K∑
k1=1

Y∑
τ=1

T∑
t1=1

Z∑
w=0

[
α̃k1,τ
t1

(
Hk∑
h=0

h · rk1,τ ,k
t1

(h, t− t1 + wT ) · ek · sk

)2

+ αk1,τ
t1

·
Hk∑
h=0

(
h2 · s2k · r

k1,τ ,k
t1

(h, t− t1 + wT ) · ek
(

1− rk1,τ ,k
t1

(h, t− t1 + wT ) · ek
)

−
∑

h<q≤Hk

2hq · s2k · r
k1,τ ,k
t1

(h, t− t1 + wT ) · ek · rk1,τ ,k
t1

(q, t− t1 + wT ) · ek
)]

,∀k, ∀t. (58)

Now, we are able to calculate the amount of workload (in hours) that has to be performed in overtime

at grid level i (constraints (59)). Using the Normal distribution assumption on the offered workload,

we then compute (Equation (60)) the mean overtime (in hours) on day t in department k.

Okt (i) ≥W k
t +

1
2
m(i) ·

(
W̃ k
t

Ŵ k
t

+ Ŵ k
t

)
− Ckt ,∀k, ∀t,∀i; (59)

O
k
t =

∑
i∈I

Okt (i) ·Ψ(i),∀k, ∀t. (60)
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The remaining constraints of the MIP (constraints (61)-(67)) formulate Gk,τt,n , the percentage of type

(k, τ) patients arriving on day t that will exceed TFAV k,τ
n days of waiting for a root appointment.

δk,τt,n (i) ≥

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τt (i),∀k,∀τ ,∀t, ∀i, ∀n; (61)

δk,τt,n (i) ≤

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τt (i) +M · (1− xk,τt,n (i)),∀k,∀τ ,∀t, ∀i, ∀n; (62)

δk,τt,n (i) ≤M · xk,τt,n (i),∀k, ∀τ ,∀t, ∀i,∀n; (63)

γk,τt,n (i, j) ≥

(
1−

δk,τt,n (i)
j

)
,∀k,∀τ , ∀t,∀i, ∀j, ∀n; (64)

−M · (1− xk,τt,n (i)) ≤

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τt (i),∀k, ∀τ ,∀t, ∀i,∀n; (65)

M · xk,τt,n (i) ≥

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τt (i),∀k, ∀τ , ∀t,∀i, ∀n; (66)

Gk,τt,n =
∑
i∈I

∑
j∈J

γk,τt,n (i, j) ·Ψ(i) · fk,τt (j),∀k, ∀τ , ∀t,∀n. (67)

C.6 Discrete Event Simulation Model for Patient Scheduling

In this section, we present our discrete event simulation that was developed and analyzed using Visual

C++. The simulation serves several purposes towards building up our APT decision support framework:

(1) In Online Appendix D, we develop an iterative method that integrates the simulation with the

template optimization to refine estimates of the DIP distributions that the optimization is built upon;

(2) In section 5.2, we use the simulation to validate the analytical approximations of the stochastic

parameters and metrics in the optimization; (3) In sections 5.3 and 5.4 we conclude with a case study in

which we use the optimization to design improved templates for our partner health system and employ

the simulation to calculate the impact of those templates on the competing metrics mentioned above.

We first present the simulation dynamics and then discuss model verification and validation.

We describe the timeline for the simulation with the help of Figure 14, which provides a pictorial

representation of the sequence of events that occur during the simulation. To begin, the simulation

inputs include: (1) a template (Θ) denoting the number of root appointments reserved for each patient

class, in each service, for each day of the time horizon to be simulated, (2) the daily resource capacities

over the simulation time horizon (Ckt ), (3) the stochastic location functions for downstream appoint-

ments based on historical data, (4) the empirical exogenous demand distribution for each Xk,τ
t based
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on historical data, and (5) the historical internal referral workload mean and variance from patients

starting their itineraries outside of the three departments we consider (GI, GIM, and Neurology). The

methods and data we use to calculate (2)–(5) for our partner health system will be described in our

case study, in section 5.

The simulation time-step is one day. In Figure 14, the simulation events and timeline are denoted

by the text in the boxes with dashed borders (S1 is the first step/event, S2 occurs second, etc.). At

the beginning of each day, new root appointment requests are generated for each patient type (Step

S1 in Figure 14). Each of these patients is assigned to the first available slot reserved for their type

in our template (Step S2). In Figure 14, availability of root appointments is indicated by the term

A/B, where A is the number of patient slots already scheduled for a root appointment on that day

and B is the total number of slots available in that service on the given day. At this point, access

delay is calculated for each patient by subtracting the arrival day from the day that they are able to

first be accommodated in the scheduling template. After all urgent patients have been assigned a root

appointment, the simulation generates realizations of itineraries (i.e., all the downstream appointments

generated as a result of the root appointment) for all the patients whose root appointment occurs on the

current day of the simulation (Step S3). These subsequent visits and internal referrals are scheduled into

the remaining slots not reserved for root appointments, with the appointments that exceed the service’s

total capacity being served through overtime. Hence there is no template capacity listed for the internal

referral slots; rather, the number listed in the figure is the total number of internal referrals already

scheduled. It is important to note that patients can be scheduled for multiple time slots within the same

service. After all appointment requests (root appointments and internal referrals) are accommodated,

the simulation clock is updated to the next day (Step S4) and the process repeats.

Figure 14: Simulation time-line indicating four steps in each day.

For initial validation, we employed strategies suggested in Sargent (2005) using both black box and

11



white box testing approaches. We also generated output from each of the steps listed above and tested

them to ensure that patient generation, itinerary generation, and workload calculations were occurring

as specified. Using Welch’s method (Law and Kelton 2000), we determined that a warm-up period of 500

days was sufficient. For computational efficiency, we used the batch means method with 5,000 batches of

50 weeks each. This batch length and number of batches was determined by testing numerous different

scheduling templates and ensuring that four key metrics (DIP mean, DIP variance, carryover mean,

carryover variance) from which the other metrics are calculated had sufficiently tight 95% confidence

intervals. For example, for the DIP mean the 95% confidence interval for each template tested was

smaller than 1 appointment slot.

In the following sections, we first present our model for characterizing demand in progress, which

is used to capture the key features of importance to our industry partner: access delay and workload

requirements (and by corollary overtime and utilization).

D DIP Distribution Adjustment Combining Optimization and Sim-
ulation

While representing demand in progress using a Normal distribution enables tractable optimization and is

often a good approximation (Figure 3a) this is not always the case (Figure 3b). However, we find that an

iterative adjustment to the DIP probability masses that integrates the simulation with the optimization

can significantly improve the accuracy of the analytical probability mass approximation. In this section,

we introduce an algorithm that is used to test and adjust the DIP probability mass approximation and

produces accurate results in few iterations for test cases from our case study (section 5.2).

The algorithm starts with the assumption of a Normally distributed DIP distribution. An optimal

template is generated using APT. This template is then simulated to obtain the true probability masses

of the DIP distribution. If the approximate probability masses from the optimization are close enough

to the simulated probability masses, then the template was designed using an accurate representation

of the true DIP probability masses. If not, we update the DIP probability mass estimates using the

simulated probability masses and rerun the optimization, repeating the procedure above.

In this algorithm we define Ψ(i)[n] as the probability mass associated with grid point i (i.e., the

probability mass of the DIP random variable that lies in between µ+m(i) ·σ and µ+m(i+1) ·σ) during

the nth iteration of the algorithm. This is the probability mass that is used as a parameter input to the

optimization during the nth iteration. (Since the probability masses may now vary by department (k),

patient class (τ), and day (t), we really have Ψk,τ
t (i)[n]; but, we suppress the subscript and superscripts.)

12



Likewise ΨS(i) is the actual probability mass associated with grid point i as determined by the discrete

event simulation (section C.6)

0. n=0. Set ε approximation error tolerance.
Initialize Ψ(i)[0] with the probability masses of the Standard Normal.

1. Input Ψ(i)[n] into the APT optimization and obtain optimal template Θ∗

2. Simulate Θ∗ and obtain simulated grid point probability masses ΨS(i).
3. IF |ΨS(i)−Ψ(i)[n]| < ε THEN terminate algorithm ELSE GOTO 4.
4. Ψ(i)[n+ 1] = ΨS(i)
5. n = n+ 1. GOTO 1.

Table 8: Algorithm for obtaining accurate DIP distribution approximations.
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