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Abstract  29 

The goals of this review paper on deep learning (DL) in medical imaging and radiation therapy 30 

are to: 1) summarize what has been achieved to date; 2) identify common and unique challenges, 31 

and strategies that researchers have taken to address these challenges; and 3) identify some of the 32 

promising avenues for the future both in terms of applications as well as technical innovations. 33 

We introduce the general principles of DL and convolutional neural networks, survey five major 34 

areas of application of DL in medical imaging and radiation therapy, identify common themes, 35 

discuss methods for data set expansion, and conclude by summarizing lessons learned, remaining 36 

challenges, and future directions. 37 

1. INTRODUCTION 38 

In the last few years, artificial intelligence (AI) has been rapidly expanding and permeating both 39 

industry and academia. Many applications such as object classification, natural language 40 
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processing and speech recognition, which until recently seemed to be many years away from 41 

being able to achieve human levels of performance, have suddenly become viable.1-3 Every 42 

week, there is a news story about an AI system that has surpassed humans at various tasks 43 

ranging from playing board games4 to flying autonomous drones.5 One report shows that 44 

revenues from AI will increase by around 55% annually in the 2016-2020 time period from 45 

roughly $8 billion to $47 billion.6 Together with breakthroughs in other areas such as 46 

biotechnology and nanotechnology, the advances in AI are leading to what the World Economic 47 

Forum refers to as the fourth industrial revolution.7 The disruptive changes associated with AI 48 

and automation are already being seriously discussed among economists and other experts as 49 

both having the potential to positively improve our everyday lives, e.g., by reducing healthcare 50 

costs, as well as to negatively affect society, e.g., by causing large scale unemployment and 51 

rising income inequality8, 9 (according to one estimate, half of all working activities can be 52 

automated by existing technologies10). The advances in AI discussed above have been almost 53 

entirely based on the groundbreaking performance of systems that are based on deep learning 54 

(DL). We now use DL-based systems on a daily basis when we use search engines to find images 55 

on the web or talk to digital assistants on smart phones and home entertainment systems. Given 56 

its widespread success in various computer vision applications (among other areas), DL is now 57 

poised to dominate medical image analysis and has already transformed the field in terms of 58 

performance levels that have been achieved across various tasks as well as its application areas. 59 

1.A. Deep learning, history, and techniques 60 

DL is a subfield of machine learning, which in turn is a field within AI. In general, DL consists 61 

of massive multi-layer networks of artificial neurons that can automatically discover useful 62 
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features, i.e. representations of input data (in our case images) needed for tasks such as detection 63 

and classification, given large amounts of unlabeled or labeled data.11, 12 64 

Traditional applications of machine learning using techniques such as support vector machines 65 

(SVM) or random forests (RF) took as input hand-crafted features, which are often developed 66 

with a reliance on domain expertise, for each separate application such as object classification or 67 

speech recognition. In imaging, hand-crafted features are extracted from the image input data 68 

and reduce the dimensionality by summarizing the input into what is deemed to be the most 69 

relevant information that helps with distinguishing one class of input data from another. On the 70 

other hand, using the image pixels as the input, the image data can be flattened into a high-71 

dimensional vector; for example, in mammographic mass classification, a 500x500 pixel region 72 

of interest will result in a vector with 250,000 elements. Given all the possible variations of a 73 

mass’s appearance due to differences in breast type, dose, type and size of a mass, etc., finding 74 

the hyperplane that separates the high dimensional vectors of malignant and benign masses 75 

would require a very large number of examples if the original pixel values are used. However, 76 

each image can be summarized into a vector consisting of a few dozen or a few hundred 77 

elements (as opposed to over a million elements in the original format) by extracting specialized 78 

features that for instance describe the shape of the mass. This lower dimensional representation 79 

is more easily separable using fewer examples if the features are relevant. A key problem with 80 

this general approach is that useful features are difficult to design, often taking the collective 81 

efforts of many researchers over years or even decades to optimize. The other issue is that the 82 

features are domain or problem specific. One would not generally expect that features developed 83 

for image recognition should be relevant for speech recognition, but even within image 84 

recognition different types of problems such as lesion classification and texture identification 85 
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require separate sets of features. The impact of these limitations has been well demonstrated in 86 

experiments that show performance of top machine learning algorithms to be very similar when 87 

they are used to perform the same task using the same set of input features.13 In other words, 88 

traditional machine learning algorithms were heavily dependent on having access to good feature 89 

representations, otherwise it was very difficult to improve the state-of-the-art results on a given 90 

data set. 91 

The key difference between DL and traditional machine learning techniques is that the former 92 

can automatically learn useful representations of the data, thereby eliminating the need for hand-93 

crafted features. What is more interesting is that the representations learned from one data set can 94 

be useful even when they are applied to a different set of data. This property, referred to as 95 

transfer learning14, 15, is not unique to DL but the large training data requirements of DL make it 96 

particularly useful in cases where relevant data for a particular task is scarce. For instance, in 97 

medical imaging, a DL system can be trained on a large number of natural images or those in a 98 

different modality to learn proper feature representations that allow it to “see”. The pre-trained 99 

system can subsequently use these representations to produce an encoding of a medical image 100 

that is used for classification.16-18 Systems using transfer learning often outperform the state-of-101 

the-art methods based on traditional hand-crafted features that were developed over many years 102 

with a great deal of expertise.  103 

The success of DL compared to traditional machine learning methods is primarily based on two 104 

inter-related factors: depth and compositionality.11, 12, 19 A function is said to have a compact 105 

expression if it has few computational elements used to represent it (“few” here is a relative term 106 

that depends on the complexity of the function). An architecture with sufficient depth can 107 

produce a compact representation, whereas an insufficiently deep one may require an 108 
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exponentially larger architecture (in terms of the number of computational elements that need to 109 

be learned) to represent the same function. A compact representation requires fewer training 110 

examples to tune the parameters and produces better generalization to unseen examples. This is 111 

critically important in complex tasks such as computer vision where each object class can exhibit 112 

many variations in appearance which would potentially require several examples per type of 113 

variation in the training set if a compact representation is not used. The second advantage of 114 

deep architectures has to do with how successive layers of the network can utilize the 115 

representations from previous layers to compose more complex representations that better 116 

capture critical characteristics of the input data and suppress the irrelevant variations (for 117 

instance, simple translations of an object in the image should result in the same classification). In 118 

image recognition, deep networks have been shown to capture simple information such as 119 

presence or absence of edges at different locations and orientations in the first layer. Successive 120 

layers of the network assemble the edges into compound edges and corners of shapes, and then 121 

into more and more complex shapes that resemble object parts. Hierarchical representation 122 

learning is very useful in complicated tasks such as computer vision where adjacent pixels and 123 

object parts are correlated with each other and their relative locations provide clues about each 124 

class of object, or speech recognition and natural language processing where the sequence of 125 

words follow contextual and grammatical rules that can be learned from the data. This 126 

distributed hierarchical representation has similarities with the function of the visual and auditory 127 

cortexes in the human brain where basic features are integrated into more complex 128 

representations that are used for perception.20, 21 129 

As discussed earlier, DL is not a completely new concept, but rather mostly an extension of 130 

previously existing forms of artificial neural networks (ANNs) to larger number of hidden layers 131 
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and nodes in each layer. In the late 1990s until early 2000s, ANNs started to lose popularity in 132 

favor of SVMs and decision-tree-based methods such as random forests and gradient boosting 133 

trees that seemed to be more consistently outperforming other learning methods.22 The reason for 134 

this was that ANNs were found to be both slow and difficult to train aside from shallow 135 

networks with one to two hidden layers, as well as prone to getting stuck in local minima. 136 

However, starting around 2006 a combination of several factors led to faster and more reliable 137 

training of deep networks. One of the first influential papers was a method for efficient 138 

unsupervised (i.e. using unlabeled data, as opposed to supervised training that uses data labeled 139 

based on the ground truth) layer by layer training of deep restricted Boltzmann machines.23 As 140 

larger data sets became more commonplace, and with availability of commercial gaming 141 

graphical processing units (GPUs) it became possible to explore training of larger deeper 142 

architectures faster. At the same time, several innovations and best practices in network 143 

architecture and training led to faster training of deep networks with excellent generalization 144 

performance using stochastic gradient descent. Some examples include improved methods for 145 

network initialization and weight updates,24 new neuron activation functions,25 randomly cutting 146 

connections or zeroing of weights during training,26, 27 and data augmentation strategies that 147 

render the network invariant to simple transformations of the input data. Attention to these 148 

improvements was still mostly concentrated within the machine learning community and not 149 

being seriously considered in other fields such as computer vision. This changed in 2012 in the 150 

ImageNet28 competition in which more than a million training images with 1000 different object 151 

classes were made available to the challenge participants. A DL architecture that has since been 152 

dubbed AlexNet outperformed the state-of-the-art results from the computer vision community 153 
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by a large margin and convinced the general community that traditional methods were on their 154 

way out.29 155 

The most successful and popular DL architecture in imaging is the convolutional neural network 156 

(CNN).30 Nearby pixels in an image are correlated with one another both in areas that exhibit 157 

local smoothness and areas consisting of structures (e.g. edges of objects or textured regions). 158 

These correlations typically manifest themselves in different parts of the same image. 159 

Accordingly, instead of having a fully connected network where every pixel is processed by a 160 

different weight, every location can be processed using the same set of weights to extract various 161 

repeating patterns across the entire image. These sets of trainable weights, referred to as kernels 162 

or filters, are applied to the image using a dot product or convolution and then processed by a 163 

non-linearity (e.g. a sigmoid or tanh function). Each of these convolution layers can consist of 164 

many such filters resulting in the extraction of multiple sets of patterns at each layer. A pooling 165 

layer (e.g. max-pooling where the output is the maximum value within a window) often follows 166 

each convolution layer to both reduce the dimensionality as well as impose translation invariance 167 

so that the network becomes immune to small shifts in location of patterns in the input image. 168 

These convolution and pooling layers can be stacked to form a multi-layer network often ending 169 

in one or more fully connected layers as shown in Fig Error! Reference source not found., 170 

followed by a softmax layer. The same concepts can be applied in 1D and 3D to accommodate 171 

time-series and volumetric data, respectively. Compared to a fully connected network, CNNs 172 

contain far fewer trainable parameters and therefore require less training time and fewer training 173 

examples. Moreover, since their architecture is specifically designed to take advantage of 174 

presence of local structures in images they are a natural choice for imaging applications and a 175 

regular winner of various imaging challenges.  176 
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Another very interesting type of network is the recurrent neural network (RNN) which is ideal 177 

for analyzing sequential data (e.g. text or speech) due to having an internal memory state that can 178 

store information about previous data points. A variant of RNNs, referred to as long short term 179 

memory (LSTM),31 has improved memory retention compared to a regular RNN and has 180 

demonstrated great success across a range of tasks from image captioning32, 33 to speech 181 

recognition1, 34 and machine translation.35 182 

 183 

Generative adversarial networks (GANs) and its different variants (e.g. WGAN36, CycleGAN37, 184 

etc.)  are another promising class of DL architectures that consist of two networks: a generator 185 

and a discriminator.38 The generator network produces new data instances that try to mimic the 186 

data used in training, while the discriminator network tries to determine the probability of 187 

whether the generated candidates belong to the training samples or not. The two networks are 188 

trained jointly with backpropagation, with the generative network becoming better at generating 189 

more realistic samples and the discriminator becoming better at detecting artificially generated 190 

samples. GANs have recently demonstrated great potential in medical imaging applications such 191 

as image reconstruction for compressed sensing in magnetic resonance imaging (MRI).39 192 

1.B. Deep learning in medical imaging 193 

In medical imaging, machine learning algorithms have been used for decades, starting with 194 

algorithms to analyze or help interpret radiographic images in the mid-1960’s.40-42 Computer-195 

aided detection/diagnosis (CAD) algorithms started to make advances in the mid 1980’s, first 196 

with algorithms dedicated to cancer detection and diagnosis on chest radiographs and 197 

mammograms,43, 44 and then widening in scope to other modalities such as computed 198 
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tomography (CT) and ultrasound.45, 46 CAD algorithms in the early days predominantly used a 199 

data-driven approach as most DL algorithms do today. However, unlike most DL algorithms, 200 

most of these early CAD methods heavily depended on feature engineering. A typical workflow 201 

for developing an algorithm for a new task consisted of understanding what types of imaging and 202 

clinical evidence clinicians use for the interpretation task, translating that knowledge into 203 

computer code to automatically extract relevant features, and then using machine learning 204 

algorithms to combine the features into a computer score. There were, however, some notable 205 

exceptions. Inspired by the neocognitron architecture,47 a number of researchers investigated the 206 

use of CNNs48-51 or shift-invariant ANNs52, 53 in the early and mid-1990’s, and massively-trained 207 

artificial neural networks (MTANNs)54, 55 in the 2000’s for detection and characterization tasks 208 

in medical imaging. These methods all shared common properties with current deep CNNs 209 

(DCNNs): Data propagated through the networks via convolutions, the networks learned filter 210 

kernels, and the methods did not require feature engineering, i.e., the inputs into the networks 211 

were image pixel values. However, severely restricted by computational requirements of the 212 

time, most of these networks were not deep, i.e., they mostly consisted of only one or two hidden 213 

layers. In addition, they were trained using much smaller data sets compared to a number of 214 

high-profile DCNNs that were trained using millions of natural images. Concepts such as 215 

transfer learning,14 residual learning,56 and fully convolutional networks with skip connections57 216 

were generally not well-developed. Thus, these earlier CNNs in medical imaging, as competitive 217 

as they were compared to other methods, did not result in a massive transformation in machine 218 

learning for medical imaging.  219 

With the advent of DL, applications of machine learning in medical imaging have dramatically 220 

increased, paralleling other scientific domains such as natural image and speech processing. 221 
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Investigations accelerated not only in traditional machine learning topics such as segmentation, 222 

lesion detection and classification,58 but also in other areas such as image reconstruction and 223 

artifact reduction that were previously not considered as data driven topics of investigation. Fig. 224 

2 22 shows the number of peer-reviewed publications in the last six years in the areas of focus 225 

for this paper, DL for radiological images, and shows a very strong trend: For example, in the 226 

first three months of 2018, more papers were published on this topic than the whole year of 227 

2016.  228 

 229 

Using DL involves making a very large number of design decisions such as number of layers, 230 

number of nodes in each layer (or number and size of kernels in the case of CNNs), type of 231 

activation function, type and level of regularization, type of network initialization, whether to 232 

include pooling layers and if so what type of pooling, type of loss function, and so on. One way 233 

to avoid using trial and error for devising the best architecture is to follow the same exact 234 

architectures that have shown to be successful in natural image analysis such as AlexNet,29 235 

VGGNet,59 ResNet,56 DenseNet,60 Xception,61 or Inception V3.62 These networks can be trained 236 

from scratch for the new task.63-67 Alternatively, they can be pre-trained on natural images that 237 

are more plentiful compared to medical images so that the weights in the feature extraction 238 

layers are properly set during training (see Sec 3.B for more details). The weights only in the last 239 

fully-connected layer or last few layers (including some of the convolutional layers) can then be 240 

retrained using medical images to learn the class associations for the desired task. 241 
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1.C. Existing platforms and resources 242 

A large number of training examples are required to estimate the large number of parameters of a 243 

DL system. One needs to perform backpropagation throughout many iterations using stochastic 244 

gradient descent over mini-batches consisting of a small subset of samples at any given time to 245 

train hundreds of thousands to hundreds of millions or even billions of parameters. A single or 246 

multi-core central processing unit (CPU) or a cluster of CPU nodes in a high-performance 247 

computing (HPC) environment could be used for training, but the former approach would take an 248 

extremely long amount of time while the latter requires access to costly infrastructure.  249 

Fortunately, in the last ten years gaming GPUs have become cheaper, increasingly powerful, and 250 

easier to program. This has resulted in simultaneously far cheaper hardware requirements for 251 

running DL (compared to HPC solutions) and training times that are several orders of magnitude 252 

shorter compared to a solution run on a CPU.27, 68 The most common setup for training DL 253 

models is therefore to train networks on a desktop workstation containing one or more powerful 254 

gaming GPUs that can be easily configured for a reasonable price. There are also several cloud-255 

based solutions including Amazon Web Services (AWS)69 and Nvidia GPU cloud70 that allow 256 

users to train or deploy their models remotely. Recently, Google has developed Application-257 

Specific Integrated Circuit (ASIC) for neural networks to run its wide variety of applications that 258 

utilize DL. These accelerators, referred to as Tensor Processing Units (TPUs), are several times 259 

faster than CPU or GPU solutions and have recently been made available to general users via 260 

Google Cloud.71  261 

In line with the rapid improvements in performance of GPUs, several open-source DL libraries 262 

have been developed and made public that free the user from directly programming GPUs. These 263 

frameworks allow the users to focus on how to set up a particular network and explore different 264 
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training strategies. The most popular DL libraries are TensorFlow,72 Caffe,73 Torch,74 and 265 

Theano.75 They all have Application Programming Interfaces (APIs) in different programming 266 

languages, with the most popular language being Python. 267 

1.D. Organization of the paper 268 

Throughout the paper, we strived to refer to published journal articles as much as we could. 269 

However, DL is a very fast-changing field, and reports of many excellent and new studies either 270 

appear as a conference proceeding paper only, or as a pre-print in online resources such as arxiv. 271 

We did not refrain from citing articles from these resources whenever necessary. In sections 272 

other than Section 2, to better summarize the state-of-the-art, we have included publications from 273 

many different medical imaging, and natural imaging. However, to keep the length of the paper 274 

reasonable, in Section 2, we focused only on applications in radiological imaging and radiation 275 

therapy, although there are other areas in medical imaging that have seen influx of DL 276 

applications, such as digital pathology and optical imaging. This paper is organized as follows: 277 

In Section 2, we summarize applications of DL to radiological imaging and radiation therapy. In 278 

Section 3, we describe some of the common themes among DL applications, which include 279 

training and testing with small data set sizes, pretraining and fine tuning, combining DL with 280 

radiomics applications, and different types of training, such as supervised, unsupervised and 281 

weakly supervised. Since data set size is a major bottleneck for DL applications in medical 282 

imaging, we have devoted Section 4 to special methods for data set expansion. In Section 5, we 283 

summarize some of the perceived challenges, lessons learned, and possible trends for the future 284 

of DL in medical imaging and radiation therapy. 285 
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2. APPLICATION AREAS IN RADIOLOGICAL IMAGING AND RADIATION 286 

THERAPY 287 

2.A. Image Segmentation 288 

DL has been used to segment many different organs in different imaging modalities, including 289 

single-view radiographic images, CT, MR, and ultrasound images.  290 

Image segmentation in medical imaging based on DL generally uses two different input 291 

methods: 1) patches of an input image, and 2) the entire image. Both methods generate an output 292 

map that provides the likelihood that a given region is part of the object being segmented. While 293 

patch-based segmentation methods were initially used, most recent studies use the entire input 294 

image to give contextual information and reduce redundant calculations. Multiple works 295 

subsequently refine these likelihood maps using classic segmentation methods, such as level 296 

sets,76-79, graph cuts,80 and model-based methods,81, 82 to achieve a more accurate segmentation 297 

than using the likelihood maps alone. Popular deep-learning frameworks used for segmentation 298 

tasks include Caffe, Matlab™ and cuda-convnet.  299 

2.A.1. Organ and substructure segmentation 300 

Segmentation of organs and their substructures may be used to calculate clinical parameters such 301 

as volume, as well as to define the search region for computer-aided detection tasks to improve 302 

their performance. Patch-based segmentation methods, with refinements using traditional 303 

segmentation methods, have been shown to perform well for different segmentation tasks.76, 83 304 

Table Error! Reference source not found. briefly summarizes published performance of DL 305 

methods in organ and substructure segmentation tasks using either Dice coefficient or Jaccard 306 

index, if given, as the performance metric. 307 
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A popular network architecture for segmentation is the U-net.84 It was originally developed for 308 

segmentation of neuronal structures in electron microscope stacks. U-nets consist of several 309 

convolution layers, followed by deconvolution layers, with connections between the opposing 310 

convolution and deconvolution layers (skip connections), which allow for the network to analyze 311 

the entire image during training, and allow for obtaining segmentation likelihood maps directly, 312 

unlike the patch-based methods. Derivatives of U-net have been used for multiple tasks, 313 

including segmenting breast and fibroglandular tissue85 and craniomaxillofacial bony 314 

structures.86 315 

Another DL structure that is being used for segmentation of organs is holistically nested 316 

networks (HNN). HNN uses side-outputs of the convolutional layers, which are multi-scale and 317 

multi-level, and produce a corresponding edge map at different scale levels. A weighted average 318 

of the side-outputs is used to generate the final output, and the weights for the average are 319 

learned during the training of the network. HNN has been successfully implemented in 320 

segmentation of the prostate87 and brain tumors.88 321 

2.A.2. Lesion segmentation 322 

Lesion segmentation is a similar task to organ segmentation; however, lesion segmentation is 323 

generally more difficult than organ segmentation, as the object being segmented can have 324 

varying shapes and sizes. Multiple papers covering many different lesion types have been 325 

published for DL lesion segmentation (Table Error! Reference source not found.). A common 326 

task is the segmentation of brain tumors, which could be attributed to the availability of a public 327 

database with dedicated training and test sets for use with the brain tumor segmentation 328 

challenge held by the Medical Image Computing and Computer Assisted Intervention (MICCAI) 329 
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conference from 2014 to 2016, and continuing in 2017 and 2018. Methods evaluated on this data 330 

set include patch-based auto-encoders,115, 116 U-net-based structures,117 as well as HNN.88 331 

 332 

2.B. Detection  333 

2.B.1. Organ detection 334 

 Anatomical structure detection is a fundamental task in medical image analysis, which involves 335 

computing the location information of organs and landmarks in 2D/3D image data. Localized 336 

anatomical information can guide more advanced analysis of specific body parts or pathologies 337 

present in the images, e.g. organ segmentation, lesion detection, and radio-therapy planning. In a 338 

similar fashion to counterparts using traditional machine learning techniques, DL based organ / 339 

landmark detection approaches can be mainly divided into two groups, i.e. classification based 340 

methods and regression based ones. While classification based methods focus on discriminating 341 

body parts / organs on the image or patch level, regression based methods target at recovering 342 

more detailed location information, e.g., coordinates of landmarks. Table Error! Reference 343 

source not found. illustrates a list of the DL based anatomical structure detection methods 344 

together with their performance on different evaluation settings. 345 

Early classification based approaches often utilized off-the-shelf CNN features to classify image 346 

or image patches that contain anatomical structures. Yang et al.135 adopted a CNN classifier to 347 

locate 2D image patches (extracted from 3D MR volumes) that contain possible landmarks as an 348 

initialization of the follow-up segmentation process for the femur bone. Chen et al.136 adopted an 349 

ImageNet pre-trained model and fine-tuned the model using fetal ultrasound frames from 350 

recorded scan videos to classify the fetal abdominal standard plane images.  351 
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A variety of information in addition to original images could also be included to help the 352 

detection task. For the same standard plane detection task in fetal ultrasound, Baumgartner et 353 

al.137 proposed a joint CNN framework to classify 12 standard scan planes and also localize the 354 

fetal anatomy using a series of ultrasound fetal mid-pregnancy scans. The final bounding boxes 355 

were generated based on the saliency maps computed as the visualization of network activation 356 

for each plane class. 357 

Improvements were also achieved by adapting the CNN network with more advanced 358 

architecture and components. Kumar et al.138 composed a two-path CNN network with features 359 

computed from both original images and pre-generated saliency maps in each path. The final 360 

standard plane classification was performed using SVM on a set of selected features.  361 

Another category of methods tackle the anatomy detection problems with regression analysis 362 

techniques. Ghesu et al.139 formulated the 3D heart detection task as a regression problem, 363 

targeting at the 3D bounding box coordinates and affine transform parameters in transesophageal 364 

echocardiogram images. This approach integrated marginal space learning into the DL 365 

framework and learned sparse sampling to reduce computational cost in the volumetric data 366 

setting.140 367 

Yan et al.141, 142 formulated body part localization using DL. The system was developed using an 368 

unsupervised learning method with two inter-sample CNN loss functions. The unsupervised 369 

body part regression built a coordinate system for the body and output a continuous score for 370 

each axial slice, representing the normalized position of the body part in the slice.  371 

Besides the two common categories of methods discussed above, modern techniques (e.g., 372 

reinforcement learning) are also adopted to tackle the problem from a different direction. Ghesu 373 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



18 
 

et al.143 present a good example of combining reinforcement learning and DL in anatomical 374 

detection task. With the application in multiple image data sets across a number of different 375 

modalities, the method could search the optimal paths from a random starting point to the 376 

predefined anatomical landmark via reinforcement learning with the help of effective 377 

hierarchical features extracted via DCNN models. Furthermore, the system was further extended 378 

to search 3D landmark positions with 3D volumetric CNN features.144, 145 Later on, Xu et al.146 379 

further extended this approach by turning the optimal action path searching problem into an 380 

image partitioning problem, in which a global action map across the whole image was 381 

constructed and learned by a DCNN network to guide the searching action. 382 

 383 

2.B.2. Lesion detection  384 

Detection of abnormalities (including tumors and other suspicious growths) in medical images is 385 

a common but costly and time-consuming part of the daily routine of physicians, especially 386 

radiologists and pathologists. Given that the location is often not known a priori, the physician 387 

should search across the 2D image or 3D volume to find deviations compared to surrounding 388 

tissue and then to determine whether that deviation constitutes an abnormality that requires 389 

follow-up procedures or something that can be dismissed from further investigation. This is often 390 

a difficult task that can lead to errors in many situations either due to the vast amount of data that 391 

needs to be searched to find the abnormality (e.g. in the case of volumetric data or whole-slide 392 

images) or because of the visual similarity of the abnormal tissue with normal tissue (e.g. in the 393 

case of low-contrast lesions in mammography). Automated computer detection algorithms have 394 

therefore been of great interest in the research community for many years due to their potential 395 

for reducing reading costs, shortening reading times and thereby streamlining the clinical 396 
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workflow, and providing quality care for those living in remote areas who have limited access to 397 

specialists.  398 

Traditional lesion detection systems often consist of long processing pipelines with many 399 

different steps.158, 159 Some of the typical steps include pre-processing the input data e.g. by 400 

rescaling the pixel values or removing irrelevant parts of the image, identification of locations in 401 

the image that are similar to the object of interest according to rule-based methods, extraction of 402 

hand-crafted features, and classification of the candidate locations using a classifier such as SVM 403 

or RF. In comparison, DL approaches for lesion detection are able to avoid the time-consuming 404 

pipeline design approach. Table 4 presents a list of studies that used DL for lesion detection, 405 

along with some details about the DL architecture. 406 

 Many of the papers focused on detection tasks use transfer learning with architectures from 407 

computer vision.160 Examples of this approach can be found in many publications, including 408 

those for lesion detection in breast ultrasound,161 for detection of bowel obstructions in 409 

radiography,162 and for detection of the third lumbar vertebra slice in a CT scan.163 Usage of 410 

CNNs in lesion detection is not limited to architectures taken directly from computer vision, but 411 

also includes some applications where custom architectures are used.164-167 412 

Most of the early applications used 2D CNNs, even if the data was 3D. Due to prior experience 413 

with 2D architectures, limitations in the amount of available memory of GPUs, and higher 414 

number of samples needed for training the larger number of parameters in a 3D architecture, 415 

many DL systems used multi-view 2D CNNs for analysis of CT and MRI data sets in what is 416 

referred to as 2.5D analysis. In these methods, orthogonal views of a lesion or multiple views at 417 

different angles through the lesion were used to train an ensemble of 2D CNNs whose scores 418 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



20 
 

would be merged together to obtain the final classification score.166, 168 More recently, 3D CNNs 419 

that use three-dimensional convolution kernels are successfully replacing 2D CNNs for 420 

volumetric data. A common approach to deal with the small number of available cases is to train 421 

the 3D CNNs on 3D patches extracted from each case. This way, each case can be used to extract 422 

hundreds or thousands of 3D patches. Combined with various data augmentation methods, it is 423 

possible to generate sufficient number of samples to train 3D CNNs. Examples of using 3D 424 

patches can be found for detection of pulmonary nodules in chest CT,169 and for detection of 425 

lacunar strokes in brain MRI.170 Due to the large size of volumetric data, it would be very 426 

inefficient to apply the CNN in a sliding window fashion across the entire volume. Instead, once 427 

the model is trained on patches the entire network can be converted into a fully convolutional 428 

network171 so that the whole network acts as a convolution kernel that can be efficiently applied 429 

to an input of arbitrary size. Since convolution operations are highly optimized, this results in 430 

fast processing of the entire volume when using a 3D CNN on volumetric data.172  431 

 432 

2.C. Characterization  433 

Over the past decades, characterization of diseases has been attempted with machine learning 434 

leading to computer-aided diagnosis (CADx) systems. Radiomics, the –omics of images, is an 435 

expansion of CADx to other tasks such as prognosis and cancer sub-typing. Radiomic features 436 

can be described as (a) “hand-crafted”/“engineered”/”intuitive” features or (b) deep-learned 437 

features. Characterization of disease types will depend on the specific disease types and the 438 

clinical question. With hand-crafted radiomic features, the features are devised based on imaging 439 

characteristics typically used by radiologists in their interpretation of a medical image. Such 440 

features might include tumor size, shape, texture, and/or kinetics (for dynamic contrast-enhanced 441 
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imaging). Various review papers have already been written about these hand-crafted radiomic 442 

features that are merged with classifiers to output estimates of, for example, the likelihood of 443 

malignancy, tumor aggressiveness, or risk of developing cancer in the future.158, 159 444 

DL characterization methods, on the other hand, may take as input a region of the image around 445 

the potential disease site, such as a region of interest (ROI) around a suspect lesion. How that 446 

ROI is determined will likely affect the training and performance of the DL. Thinking of how a 447 

radiologist is trained during residency will lend understanding of how a DL system needs to be 448 

trained. For example, an ROI that is cropped tightly around a tumor will provide different 449 

information to a DL system than an ROI that is much larger than the encompassing tumor since 450 

with the latter more anatomical background is also included in the ROI. 451 

More and more DL imaging papers are published each year but there are still only a few methods 452 

that are able to characterized among the vast range of radiological presentations across subtle 453 

disease states. Table 5 presents a list of published DL characterization studies in radiological 454 

imaging. 455 

 456 

2.C.1. Lesion characterization 457 

When it comes to computer algorithms and specific radiological interpretation tasks, there is no 458 

one-size-fits-all for either conventional radiomic machine learning methods or DL approaches. 459 

Each computerized image analysis method requires customizations specific to the task as well as 460 

the imaging modality. 461 

Lesion characterization is mainly being conducted using conventional CAD/radiomics computer 462 

algorithms, especially when the need is to characterize (i.e., describe) a lesion rather than 463 
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conduct further machine learning for disease assessment. For example, characterization of lung 464 

nodules as well as characterization of the change in lung nodules over time, are used to track the 465 

growth of lung nodules in order to eliminate false positive diagnoses of lung cancer.  466 

Other examples involving computer characterization of tumors occurs in research in imaging-467 

genomics. Here, radiomic features of tumors are used as image-based phenotypes for correlative 468 

and association analysis with genomics as well as histopathology. A well-documented, multi-469 

institutional collaboration on such was conducted through the TCGA/TCIA Breast Phenotype 470 

Group.220-224  471 

Use of DL methods as feature extractors can lend itself to tumor characterization; however, the 472 

extracted descriptors (e.g., CNN-based features) are not intuitive. Similar to ‘conventional’ 473 

methods that use hand-crafted features, DL-extracted features could characterize a tumor relative 474 

to some known trait – such as receptor status – during supervised training, and that subsequent 475 

output could be used in imaging-genomics discovery studies. 476 

Additional preprocessing and data use methods can further improve characterization such as in 477 

the past use of unlabeled data with conventional features to enhance the machine learning 478 

training.225, 226 Here, the overall system can learn aspects of the data structure without knowledge 479 

of the disease state, leaving the labeled information for the final classification step. 480 

2.C.2. Tissue characterization 481 

Tissue characterization is sought when specific tumor regions are not relevant. Here we focus on 482 

analysis of non-diseased tissue to predict a future disease state (such as texture analysis on 483 

mammograms in order to assess the parenchyma with the goal to predict breast cancer risk159) 484 
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and characterization of tissue that includes diffuse disease, such as in various types of interstitial 485 

lung disease and liver disease.227, 228 486 

In breast cancer risk assessment, computer-extracted characteristics of breast density and/or 487 

breast parenchymal patterns are computed and related to breast cancer risk factors. Using 488 

radiomic texture analysis, Li et al. have found that women at high risk for breast cancer have 489 

dense breasts with parenchymal patterns that are coarse and low in contrast.229 DL is now being 490 

used to assess breast density.194, 195 In addition, parenchymal characterization is being conducted 491 

using DL, in which the parenchymal patterns are related through the CNN architecture to groups 492 

of women using surrogate markers of risk. One example is shown by Li et al. assessing the 493 

performance of DL in the distinction between women at normal risk of breast cancer and those at 494 

high risk based on their BRCA1/2 status.192 495 

Lung tissue has been analyzed with conventional texture analysis and DL for a variety of 496 

diseases. Here, characterization of the lung pattern lends itself to DL as patches of the lung may 497 

be informative of the underlying disease, commonly interpreted by the radiologist’s eye-brain 498 

system. Various investigators have developed CNNs, including those to classify interstitial lung 499 

diseases characterized by inflammation of the lung tissue.207-209 These disease characterizations 500 

can include healthy tissue, ground glass opacity, micronodules, consolidation, reticulation, and 501 

honeycombing patterns.179 502 

Assessing liver tissue lends itself to DCNNs in the task of staging liver fibrosis on MRI by 503 

Yasaka et al. 216 and ultrasonic fatty liver disease characterization by Bharath et al.217 504 

2.C.3. Diagnosis 505 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



24 
 

Computer-Aided Diagnosis (CADx) involves the characterization of a region or tumor, initially 506 

indicated by either a radiologist or a computer, after which the computer characterizes the 507 

suspicious region or lesion and/or estimates the likelihood of being diseased (e.g., cancerous) or 508 

non-diseased (e.g., non-cancerous), leaving the patient management to the physician.158, 159 Note 509 

that CADx is not a localization task but rather a characterization/classification task. The subtle 510 

difference between this section and the preceding two sections, is that here the output of the 511 

machine learning system is related to the likelihood of disease and not just a characteristic 512 

feature of the disease presentation. 513 

Many review papers have been written over the past two decades on CADx, radiomic features, 514 

and machine learning,158, 159 and thus details will not be presented in this paper.  515 

An active area of DL is CADx of breast cancer. Training CNNs “from scratch” is often not 516 

possible for CAD and other medical image interpretation tasks, and thus methods to use CNNs 517 

trained on other data (transfer learning) are considered. Given the initial limited data sets and 518 

variations in tumor presentations, investigators explored the use of transfer learning to extract 519 

tumor characteristics using CNNs trained on nonmedical tasks. The outputs from layers can be 520 

considered as characteristic features of the lesion and serve as input to classifiers, such as linear 521 

discriminant analysis and support vector machines. Fig. 3a shows an example in which AlexNet 522 

is used as a feature extractor for an SVM, and Fig. 3b shows the performance of the SVM based 523 

on features from each layer of AlexNet. 524 

Researchers have found that performance of the conventional radiomics CADx and that of the 525 

CNN-based CADx yielded similar levels of diagnostic performance in the task of distinguishing 526 

between malignant and benign breast lesions, and thus when combined, via a deep feature fusion 527 
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methodology, gave a statistically significant level of performance.196, 197 Fig. 4 shows one 528 

possible method for combining CNN-extracted and conventional radiomics features. 529 

 530 

In an effort to augment, under limited data set constraints, CNN performance with dynamic 531 

contrast-enhanced MRI, investigators have looked to vary the image types input to the CNN. For 532 

example, instead of replicating a single image region to the three RGB channels of VGG19Net, 533 

investigators have used the temporal images obtained from DCE-MRI, inputting the pre-contrast, 534 

the first post-contrast, and the second post-contrast MR images to the RGB channels, 535 

respectively. In addition, to exploit the 4D nature of DCE-MRI (3D and temporal), Antropova et 536 

al. have input MIP (maximum intensity projections) images to the CNN.200 Incorporation of 537 

temporal information into the DL efforts has resulted in the use of recurrent neural network, such 538 

as a long short-term memory (LSTM) recurrent networks.201, 230 539 

Instead of using transfer learning for feature extraction, investigators have used transfer learning 540 

for fine tuning by either (i) freezing the earlier layers of a pre-trained CNN and training the later 541 

layers, i.e., fine tuning or (ii) training on one modality, such as digitized screen/film 542 

mammography (dSFM), for use on a related modality, such as full-field digital mammography 543 

(FFDM). The latter has been shown by Samala et al.199 to be useful in the training of CNN-based 544 

CADx for lesion diagnosis on FFDMs.  545 

Investigations on DL for CADx are continuing across other cancers, e.g.., lung cancer, and other 546 

disease types, and similar methods can be used.204-219 The comparison to more conventional 547 

radiomics-based CADx is also demonstrated further, which is potentially useful for both 548 

understanding the CNN outputs as well as for providing additional decision support.  549 
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2.C.4. Prognosis and staging 550 

Once a cancer is identified, further workup through biopsies gives information on stage, 551 

molecular subtype, and/or genomics to yield information on prognosis and potential treatment 552 

options. Cancers are spatially heterogeneous, and therefore, investigators are interested whether 553 

imaging can provide information on that spatial variation. Currently, many imaging biomarkers 554 

of cancerous tumors include only size and simple enhancement measures (if dynamic imaging is 555 

employed) and, thus, there is interest in expanding, through radiomic features, the knowledge 556 

that can be obtained from images. Various investigators have used radiomics and machine 557 

learning in assessing the stage and prognosis of cancerous tumors.220, 231 Now, those analyses are 558 

being investigated further with DL. It is important to note that when using DL to assess 559 

prognosis, one can analyze the tumor from medical imaging, such as MRI or ultrasound, or from 560 

pathological images. Also, in the evaluation, one needs to determine the appropriate comparison 561 

– a radiologist, a pathologist, or some other histopathological/genomics test.  562 

The goal is to better understand the imaging presentation of cancer, i.e., to obtain prognostic 563 

biomarkers from image-based phenotypes, including size, shape, margin morphology, 564 

enhancement texture, kinetics, and variance kinetic phenotypes. For example, enhancement 565 

texture phenotypes can characterize the tumor texture pattern of contrast-enhanced tumors on 566 

DCE-MRI though analysis the first post-contrast images, and thus quantitatively characterize the 567 

heterogeneous nature of contrast uptake within the breast tumor.220 Here, the larger the 568 

enhancement texture entropy, the more heterogeneous is the vascular uptake pattern within the 569 

tumor, which potentially reflects the heterogeneous nature of angiogenesis and treatment 570 

susceptibility, and serves as a location-specific “virtual digital biopsy”. Understanding the 571 

relationships between image-based phenotypes and the corresponding biopsy information could 572 
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potentially lead to discoveries useful for assessing images obtained during screening as well as 573 

during treatment follow-up, i.e., when an actual biopsy is not practical. 574 

Shi et al.203 demonstrated the prediction of prognostic markers using DL on mammography in 575 

distinguishing between DCIS with occult invasion from pure DCIS. Staging on thoracic CTs is 576 

being investigated by Masood et al. through DL by relating CNN output to metastasis 577 

information for pulmonary nodules.210 In addition, Gonzalez et al. evaluated DL on thoracic CTs 578 

in the detection and staging of chronic obstructive pulmonary disease (COPD) and acute 579 

respiratory disease (ARD).211 While use of DL in the evaluation of thoracic CTs is promising, 580 

more development is needed to reach clinical applicability. 581 

2.C.5. Quantification 582 

Use of DL in quantification requires a CNN output that correlates significantly with a known 583 

quantitative medical measurement. For example, DL has been used in automatic calcium scoring 584 

in low-dose CTs by Lessmann et al.212 and in cardiac left ventricle quantification by Xue et al.213 585 

Similar to cancer workup, in cardiovascular imaging, use of DL is expected to augment clinical 586 

assessment of cardiac defect/function or uncover new clinical insights.232 Larson et al. turned to 587 

DL to assess skeletal maturity on pediatric hand radiographs with performance levels rivaling 588 

that of an expert radiologist.219 DL has been used to predict growth rates for pancreatic 589 

neuroendocrine tumors233 on PET-CT scans. 590 

2.D. Processing and reconstruction 591 

In the previous parts of this section, we focused on applications in which image pixels or ROIs 592 

are classified into multiple classes (e.g., segmentation, lesion detection and characterization), the 593 

subject is classified into multiple classes (e.g., prognosis, staging), or a feature in the image (or 594 
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the ROI) is quantified. In this part, we focus on applications in which the output of the machine 595 

learning algorithm is also an image (or a transformation) that potentially has a quantifiable 596 

advantage over no processing or traditional processing methods.  597 

 598 

2.D.1. Filtering, noise/artifact reduction, and reconstruction 599 

Filtering: Going back to the early days of application of CNNs to medical images, one can find 600 

examples of CNNs that produced output images for further processing. Zhang et al.52 trained a 601 

shift-invariant ANN that aimed at having a high or low pixel value in an output image depending 602 

on whether the pixel was determined to be the center of a microcalcification by an expert 603 

mammographer. Suzuki et al.234 trained an MTANN as a supervised filter for the enhancement 604 

lung nodules on thoracic CT scans. More recently, Yang et al.235 used a cascade of CNNs for 605 

bone suppression in chest radiography. Using ground-truth images extracted from dual-energy 606 

subtraction chest X-rays, the authors trained a set of multi-scale networks to predict bone 607 

gradients at different scales and fuse these results to obtain a bone image from a standard chest 608 

x-ray. Another advantage of CNNs for image filtering is speed: Mori236 investigated several 609 

types of residual convolutional autoencoders and residual CNNs for contrast-limited adaptive 610 

histogram equalization filtering and denoising of X-ray fluoroscopic imaging during treatment, 611 

without specialized hardware.  612 

Noise reduction: The past couple of years have seen a proliferation of applications of DL to 613 

improve the noise quality of reconstruction medical images. One application area is low-dose 614 

image reconstruction. This is important in modalities with ionizing radiation such as CT or PET 615 

for limiting patient dose,237-239, 241 or for limiting damage to samples in synchrotron-based X-ray 616 
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CT.240 Chen et al.237 designed a DL algorithm for noise reduction in reconstructed CT images. 617 

They used the mean-squared pixelwise error between the ideal image and the denoised image as 618 

the loss function, and synthesized noisy projections based on patient images to generate training 619 

data.238 They later combined a residual autoencoder with a CNN in an architecture called the 620 

RED-CNN238, which has a stack of encoders and a symmetrical stack of decoders that are 621 

connected with shortcuts for the matching layers. Kang et al.239 applied a DCNN to the wavelet 622 

transform coefficients of low-dose CT images, and similar to the work of Chen et al.238, used a 623 

residual learning architecture for faster network training and better performance. Their method 624 

won the second-best place at the 2016 “Low-Dose CT Grand Challenge.266 Xiang et al used low-625 

dose PET images combined with T1-weighted images acquired on a PET/MRI scanner to obtain 626 

standard acquisition quality PET images. In comparison to the papers above that started 627 

denoising with reconstructed images, Yang et al. aimed at improving the quality of recorded 628 

projections. They used a CNN-based approach for learning the mapping between a number of 629 

pairs of low- and high-dose projections. After training with a limited number of high-dose 630 

training examples, they used the trained network to predict high-dose projections from low-dose 631 

projections, and then used the predicted projections for reconstruction.  632 

Artifact reduction: Techniques similar to those described for denoising have been applied to 633 

artifact reduction. Jin et al.242 described a general framework for the utilization of CNNs for 634 

inverse problems, applied the framework to reduce streaking artifacts in sparse-view 635 

reconstruction on parallel beam CT, and compared their approach to filtered-backprojection 636 

(FBP) and total variation (TV) techniques. Han et al.244 used DL to reduce streak artifacts 637 

resulting from limited number of radial lines in radial k-space sampling in MRI. Zhang et al.243 638 

used a CNN-based approach to reduce metal artifacts on CT images. They combined the original 639 
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uncorrected image with images corrected with the linear interpolation and beam hardening 640 

correction methods to obtain a three-channel input. This input was fed into a CNN, whose output 641 

was further processed to obtain “replacement” projections for the metal-affected projections.  642 

Reconstruction: Several studies indicated that DL may be useful in directly attacking the image 643 

reconstruction problem. In one of the early publications in this area, Golkov et al.245 applied a 644 

deep-learning approach to diffusion-weighted MR images (DWI) to derive rotationally invariant 645 

scalar measures for each pixel. Hammernik at al.246 designed a variational network to learn a 646 

complete reconstruction procedure for multi-channel MR data, including all free parameters 647 

which would otherwise have to be set empirically. To obtain a reconstruction, the undersampled 648 

k-space data, coil sensitivity maps and the zero-filling solution are fed into the network. 649 

Schlemper et al.247 evaluated the applicability of CNNs for reconstructing undersampled 650 

dynamic cardiac MR data.. Zhu et al.248 introduced an automated transform by manifold 651 

approximation approach to replace the conventional image reconstruction with a unified image 652 

reconstruction framework that learns the reconstruction relationship between sensor and image 653 

domain without expert knowledge. They showed examples in which their approach resulted in 654 

superior immunity to noise and a reduction in reconstruction artifacts compared with 655 

conventional reconstruction methods. 656 

2.D.2. Image registration 657 

To establish accurate anatomical correspondences between two medical images, both hand-658 

crafted features and features selected based on a supervised method are frequently employed in 659 

deformable image registration. However, both types of features have drawbacks.249 Wu et al.249 660 

designed an unsupervised DL approach to directly learn the basis filters that can effectively 661 

represent all observed image patches, and used the coefficients by these filters for 662 
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correspondence detection during image registration. They subsequently further refined the 663 

registration performance by using a more advanced convolutional stacked autoencoder, and 664 

comprehensively evaluated the registration results with respect to current state-of-the-art 665 

deformable registration methods.250 A deep encoder-decoder network was used for predictions 666 

for the large deformation diffeomorphic metric mapping model by Yang et al.251 for fast 667 

deformable image registration. In a feasibility study, Lv et al.252 trained a CNN for respiratory 668 

motion correction for free-breathing 3D abdominal MRI. For the problem of 2D/3D registration, 669 

Miao et al.253 used a supervised CNN regression approach to find a rigid transformation from the 670 

object coordinate system to the x-ray imaging coordinate system. The CNNs were trained using 671 

synthetic data only. The authors compared their method with for intensity-based 2-D/3-D 672 

registration methods and a linear regression- based method, and showed that their approach 673 

achieved higher robustness and larger capture range, as well as higher computational efficiency. 674 

A later study by the same research group identified a performance gap when the model trained 675 

with synthetic data is tested on clinical data.254 To narrow the gap, the authors proposed a 676 

domain adaptation method by learning domain invariant features with only a few paired real and 677 

synthetic data.  678 

2.D.3. Synthesis of one modality from another 679 

A number of studies have recently investigated using DL to generate synthetic CT (sCT) images 680 

from MRI. This is important for at least two applications: First, for accurate PET image 681 

reconstruction and uptake quantification, tissue attenuation coefficients can be readily estimated 682 

from CT images. Thus, estimation of sCT from MRI in PET/MRI imaging is desirable. Second, 683 

there is an interest in replacing CT with MRI in the treatment planning process mainly because 684 

MRI is free of ionizing radiation. Nie et al.255 used a 3D CNN to learn an end-to-end nonlinear 685 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



32 
 

mapping from an MR image to a CT image. The same research group in their later research 686 

added a context-aware GAN for improved results.259 Han et al.256 adopted and modified the U-687 

net architecture for sCT generation from MRI. Current commercially available MR attenuation 688 

correction (MRAC) methods for body PET imaging use a fat/water map derived from a two-echo 689 

Dixon MRI sequence. Leynes et al.257 used multi-parametric MRI consisting of Dixon MRI and 690 

proton-density-weighted zero (ZTE) echo-time MRI to generate sCT images with the use of a 691 

DL model that also adopted the U-net architecture.267 Liu et al.258 trained a deep network (deep 692 

MRAC) to generate sCT from T1-weighted MRI, and compared deep MRAC with Dixon 693 

MRAC. Their results showed that significantly lower PET reconstruction errors were realized 694 

with deep MRAC. Choi et al.260 investigated a different type of synthetic image generation. They 695 

noted that although PET combined with MRI is useful for precise quantitative analysis, not all 696 

subjects have both PET and MR images in the clinical setting, and used a GAN-based method to 697 

generate realistic structural MR images from amyloid PET images. Ben-Cohen et al.261 aimed at 698 

developing a system that can generate PET images from CT, to be used in applications such as 699 

evaluation of drug therapies and detection of malignant tumors that require PET imaging, and 700 

found that a conditional GAN is able to create realistic looking PET images from CT. 701 

2.D.4. Quality assessment  702 

In addition to traditional characterization tasks in medical imaging, such as classification of ROIs 703 

as normal or abnormal, DL has been applied to image quality assessment. Wu et al.262 proposed a 704 

DCNN for computerized fetal US image quality assessment to assist the implementation of US 705 

image quality control in the clinical obstetric examination. The proposed system has two 706 

components: The L-CNN that locates the ROI of the fetal abdominal region in the US image, and 707 

the C-CNN evaluates the image quality by assessing the goodness of depiction for the key 708 
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structures of stomach bubble and umbilical vein. Neylon et al.263 used a deep neural network as 709 

an alternative to image similarity metrics to quantify deformable image registration performance.  710 

Since the image quality strongly depends on both the characteristics of the patient as well as the 711 

imager, both of which are highly variable, using simplistic parameters like noise to determine the 712 

quality threshold is challenging. Lee et al.264 showed that DL using fine-tuning of a pre-trained 713 

VGG19 CNN was able to predict whether CT scans meet the minimal image quality threshold 714 

for diagnosis, as deemed by a chest radiologist. 715 

Esses et al.265 used a DCNN for automated task-based image quality evaluation of T2-weighted 716 

liver MRI acquisition, and compared this automated approach to image quality evaluation by two 717 

radiologists. Both the CNN and the readers classified a set of test images as diagnostic or non-718 

diagnostic. The concordance between the CNN and reader 1 was 0.79, that between the CNN and 719 

reader 2 was 0.73, and that between the two readers was 0.88. The relatively lower concordance 720 

of the CNN with the readers was mostly due to cases that the readers agreed to be diagnostic, but 721 

the CNN did not agree with readers. The authors concluded that although the accuracy of the 722 

algorithm needs to be improved, the algorithm could be utilized to flag cases as low-quality 723 

images for technologist review.  724 

2.E. Tasks involving imaging and treatment 725 

Radiotherapy and assessment of response to treatment are not areas that are traditionally 726 

addressed using neural networks or data-driven approaches. However, these areas have recently 727 

seen a strong increase in the application of deep learning techniques.  Table 7 summarizes 728 

studies in this fast-developing DL application area. 729 

 730 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



34 
 

2.E.1. Discovery: Imaging-genomics (Radiogenomics) 731 

A major need in breast cancer research is the elucidation of the relationship between the 732 

macroscopic image-based presentation of the tumor and its environment and cancer biology 733 

indicators of risk, diagnosis, prognosis, or treatment response. Imaging-genomics, i.e., 734 

“radiogenomics”, aims to find these relationships between imaging data and clinical data, 735 

molecular data, genomic data, and outcome data.222, 224 Of interest is whether DL can provide 736 

sufficient detailed information to relate to genetic data as have hand-crafted radiomic 737 

phenotypes.285 738 

2.E.2. Radiotherapy 739 

The goals of DL in radiation oncology are to assist in treatment planning, assess response to 740 

therapy, and provide automated adaptation in treatments over time. Deep reinforcement learning 741 

using both prior treatment plans and methods for assessing tumor local control were used to 742 

automatically estimate dose protocols.278 Such adaptive radiotherapy methods may provide 743 

clinical decision support for dose adaptation.  744 

Much of the needs in treatment planning relate to the segmentation of organs (discussed earlier) 745 

and in the prediction of dose distributions from contours. Nguyen et al.280 used a U-net to predict 746 

dose from patient image contours on prostate intensity-modulated radiation therapy (IMRT) 747 

patients, and demonstrated desired radiation dose distributions. Foote et al.279 combined a DCNN 748 

with motion tracking to recover anatomical positions from a single projection radiographic image 749 

in real time in order to achieve dynamic tracking of a lung tumor volume.  750 

As discussed earlier, DL can be used to convert between modalities (Section 2.D.3), which can 751 

benefit both diagnosis and therapy. Maspero et al.282 have developed a DL method for creating 752 
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synthetic CTs from MR-only radiotherapy, leading to online adaptive replanning. Such methods, 753 

in order to allow for real time changes, need to rapidly generate synthetic CTs, thus modeling the 754 

radiation attenuation and dose calculations. 755 

While DL methods are being developed to plan and predict radiation therapy to specific tumor 756 

sites, they are also being investigated to assess toxicity to normal organs and tissue. Zhen et al.283 757 

used a transfer learning strategy to predict rectum dose toxicity for cervical cancer radiotherapy. 758 

Segmentation methods to aid in the assessment of treatment plans have been developed as well; 759 

Tong et al. developed a CNN-based method for multi-organ segmentation for use in head and 760 

neck cancer radiotherapy274, Men et al developed a target tumor volume segmentation for rectal 761 

cancer272 and breast cancer,286 while Jackson et al. focused on renal segmentation for automated 762 

radiation dose estimation.275 Dose estimation was also the aim of Kajikawa et al. who 763 

investigated the feasibility of DL in the automated determination of dosimetric eligibility of 764 

prostate cancer patients undergoing intensity modulated radiation therapy.281 765 

Just as with imaging-genomics, as discussed earlier, incorporation of both image-based 766 

phenotypes and genomics in treatment planning and response assessment may yield new 767 

relationships and improved therapeutics.273  768 

Overall, however, use of DL in radiation planning is still at a very early stage in development. 769 

2.E.3. Response to treatment 770 

Just as DL is used to extract tumor characteristics for diagnosis and prognosis, it can also be used 771 

in decision making for assessing response to therapy. In machine learning, various classifiers can 772 

be used to merge the tumor image-based phenotypes into a response prediction. Thus, DL can 773 

also be used to analyze medical image(s) over time to predict response. For example, CNNs were 774 
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used with breast DCE-MRI to assess response to neoadjuvant chemotherapy, where the inputs 775 

varied over contrast time points as well as treatment exam times.270  776 

Cha et al.268 have explored the feasibility of DL through CNNs on pre- and post-treatment CT of 777 

bladder cancer patients to assist in assessment of treatment response. In addition, assessing 778 

prognosis of a tumor contributes to decision making on treatment options and predicting 779 

survival. Lao et al.218 investigated MRI radiomic features and DL as a means to predict survival 780 

in glioblastoma multiforme. Bibault et al. used DL to predict pathologic complete response after 781 

chemoradiation in locally advanced rectal cancer,284 while Ibramov et al. predicted hepatobiliary 782 

toxicity after liver stereotactic body radiotherapy.277 In research unrelated to oncology the 783 

interest in using DL to assess response to treatment has increased as well. Shehata et al.276 used 784 

autoencoders for early detection/prediction of acute renal rejection after kidney transplant.  785 

Nielsen et al. used DL to predict outcome and to assess the effect of treatment with recombinant 786 

tissue-type plasminogen activator in ischemic stroke patients.269 787 

3. COMMON THEMES  788 

3.A. Training and testing with size-limited data sets 789 

The rapid and immense success of DCNNs in many challenging computer vision problems is 790 

achieved through accessibility to large-scale well-annotated data sets, e.g., PASCAL VOC,287 791 

ImageNet28 and MS COCO.288 ImageNet pre-trained DCNN models29, 73 serve as the foundation 792 

in many higher level tasks, e.g. image captioning,289 visual question answering,290 and instance 793 

relationship extraction.291 Compared to natural image data sets, existing medical image data sets 794 

are typically smaller in size. This is because the collection of medical image data sets is often a 795 

challenging, time consuming process, which involves multiple steps, such as searching in large 796 
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hospital PACS systems with moderately structured clinical information, selection of a relatively 797 

small number of useful clinical cases, and further data annotation by expert physicians. In this 798 

sub-section, we explore some of the challenges for applying DL on relatively small data sets.  799 

The concepts and principles discussed below, such as overfitting, the need for independent 800 

training and test data sets, and dependence of performance on training data set size, apply to 801 

most machine learning algorithms, including traditional (shallow) neural networks. However, 802 

some aspects may be exacerbated due to the large number of tunable parameters in DL networks. 803 

Overfitting: It has long been recognized that training a complex classifier with a small data set 804 

invites the risk of overfitting (also termed overtraining). According to the Oxford English 805 

dictionary overfitting is “the production of an analysis that corresponds too closely or exactly to 806 

a particular set of data, and may therefore fail to fit additional data or predict future observations 807 

reliably”. In other words, overfitting occurs when a classifier models the training data too well, 808 

resulting in it failing to generalize and performing poorly on new unseen data. John von 809 

Neumann famously said ‘With four parameters I can fit an elephant, and with five I can make 810 

him wiggle his trunk’.292 Both shallow neural networks and DL exhibit overtraining. 811 

Surprisingly, compared to the huge number of tunable parameters in DL networks, they may 812 

exhibit a more limited amount of overfitting compared to a shallow network designed to achieve 813 

the same functionality. One possible explanation for this, as discussed in the introduction, is that 814 

DL learns a hierarchical representation that matches the composition of the individual 815 

components that the data consists of.293 Another possible explanation, using concepts from 816 

information theory, contends that a deep networks helps better compress the irrelevant 817 

information in the input data and thus can achieve better generalization.294 818 
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A number of ways have been suggested in the literature to reduce overfitting, including 819 

regularization,295 early stopping,296 and drop-out.11, 26 Regularization involves the addition of an 820 

extra term to the loss function during training akin to the use of a Lagrange multiplier to satisfy 821 

certain boundary conditions. The regularization term is typically chosen to penalize overly 822 

complex solutions and for example imposes rules for the smoothness of the solution. Early 823 

stopping can be seen as regularization in time. The longer a network is trained, the more complex 824 

its solutions become, so by regularizing on time (through early stopping) the complexity will be 825 

reduced and generalizability improved. When to stop training is usually determined by 826 

monitoring the loss on a validation set (see next paragraph). Dropout is another very efficient 827 

way to prevent overfitting and the term "dropout" refers to dropping out units in a neural 828 

network.  829 

Training, validation and testing: Ideally, one has access to three large independent data sets to 830 

serve as training, validation, and test set for the training and evaluation of any machine learning 831 

approach. Although the terms ‘validation set’ and ‘test set’ may not be defined consistently 832 

among all communities, here we use the term ‘validation set’ for the set used for fine-tuning as 833 

part of training and ‘test set’ for the set used for final performance evaluation. Fig. 5 shows how 834 

the training, validation, and test sets can be used in a supervised machine learning system in an 835 

ideal scenario with a large number of available cases. However, when the total number of 836 

available cases is small, such a scenario may be inadequate to make full use of the limited-size 837 

data set. For example, if a total of a hundred cases is available, then it may not be reasonable to 838 

randomly assign 20% as a test set and divide the remaining 80 cases into training and validation. 839 

The statistical variability of the classification performance for 20 cases will typically be large, 840 

limiting the usefulness of the reported performance. Instead, it may be clinically more useful to 841 
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use a cross-validation approach (with multiple training/validation and testing data splits) for 842 

obtaining a more realistic performance estimate. Using a cross-validation training/validation and 843 

testing approach is a way to obtain a realistic performance estimate for the entire data set when 844 

done correctly but does not result in a single model. Care must be taken to perform all training 845 

and validation steps only within the training fold of the cross-validation, so that there is no 846 

leakage of information from the different folds into each other that might bias the cross-847 

validation performance estimate. In Section 4, methods to help overcome problems related to 848 

training DL on a small data set are discussed, but one should keep in mind that these methods do 849 

not overcome the most important limitation of having a small data set, i.e., that the small sample 850 

may not accurately represent the population of interest. 851 

Dependence of test performance on training set size: A number of studies in the literature have 852 

investigated the effect of training size on the performance of the machine learning system.297-301 853 

The general trend is that as the number of training cases increases, overtraining decreases and the 854 

performance on the targeted population improves. There is also a number beyond which 855 

increasing the training set size only marginally improves the test performance. However, this 856 

number is believed to be a function of the machine learning system architecture, the task, and the 857 

system inputs. A few papers studied the effect of varying the training set size on the performance 858 

of their DL network.16, 63, 193, 302, 303 Mohamed et al.193 found that for breast density classification, 859 

there is a small increase in test performance (the area under the receiver operating characteristic 860 

curve increases from 0.95 to 0.99, p < 0.001) when their training set size increased from 2000 861 

images to 6000 images. Azizi et al.16 also found that increasing the training data set increased the 862 

performance of a DL model used for prostate cancer detection in ultrasound Gulshan et al.63 863 

showed that for their detection algorithm of diabetic retinopathy in retinal fundus photographs, 864 
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the relative specificity at a given sensitivity on their validation set consistently increased as the 865 

number of training samples increased from around 200 samples to around 60,000 samples, at 866 

which point the performance plateaued. Using natural images data sets, where the available 867 

labeled data are much more abundant compared to medical images, Sun et al.303 demonstrated 868 

that the test performance of the DL network continued to increase when going from 10 million 869 

training samples up to 300 million training samples for both object detection and semantic 870 

segmentation tasks. While it is difficult to obtain data sets of annotated medical images similar in 871 

size to data sets for natural images, the trend that increasing the training data set size increases 872 

the performance of the DL network on a target population still applies. 873 

 874 

3.B. Transfer learning and fine tuning 875 

Transfer learning is a technique in which a DL network trained on a large data set from one 876 

domain is used to retrain or fine-tune the DL network with a smaller data set associated with 877 

another domain.160 The limited size of the annotated medical image data sets, and the current 878 

trend of using deeper and larger structures increase the risk of overtraining and makes transfer 879 

learning more appealing in medical imaging.  880 

 Transfer learning in medical imaging commonly starts with a CNN that was already trained on 881 

natural images, i.e., a pre-trained model. The limited medical image data set is then used to fine-882 

tune the pre-trained model or, in some applications, no fine-tuning is performed at all. During 883 

fine-tuning, the DL architecture typically remains fixed, and only a subset of the weights may be 884 

re-trained.  885 
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A commonly used data set for pre-training of DL structures is ImageNet28 composed of natural 886 

scene images. It has been used in more than 75% of the reported transfer learning studies. 887 

Different data sets also used for pre-training include CIFAR-10,204 Places205,304 and texture data 888 

sets, such as ALOT, DTD, FMD, and KTH-TIPS-2b, as discussed in the literature.209  889 

Transfer learning within the same domain of the target task has also been performed. Kooi et 890 

al.202 pre-trained DCNN on a large mammogram data set and then re-trained the DCNN on a 891 

different smaller mammogram data set for the task of discriminating benign solitary cysts from 892 

malignant masses in digital mammography. Samala et al. first pre-trained a DCNN on 893 

ImageNet198 or a larger mammogram data set17 and then fine-tuned on a digital breast 894 

tomosynthesis (DBT) data set for classification and detection of masses on DBT. Zheng et al.254 895 

pre-trained on synthetic data and retrained on clinical data for two-dimensional to three-896 

dimensional (2D/3D) registration of preoperative 3D image data. Azizi et al.16 used 897 

radiofrequency (RF) ultrasound images as a source domain to pre-train the DCNN and fine-tuned 898 

it on B-mode images as a target domain for prostate cancer detection.  899 

A number of studies used pre-trained CNNs for extracting features, which are sometimes 900 

referred to as the off-the-shelf CNN features.305 A relatively small labeled data set can then be 901 

used to train a classifier such as an SVM for the problem at hand. A number of studies173, 181, 192, 902 

196, 306-308 extracted the outputs of the fully-connected layers of a DL network that has been pre-903 

trained ImageNet, and used those features as input to SVMs to build classification models, which 904 

suggests that a network pre-trained on natural images is useful for extracting features for medical 905 

image analysis purposes. 906 
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Many of the studies that use transfer learning fine-tune their models by performing additional 907 

training on all the network layers, thus using transfer learning like a weight-initialization step. 908 

With the assumption that the earlier layers perform more common filtering tasks and later layers 909 

(usually fully connected layers) focus more on semantic and high-level features for specific 910 

purposes, others have fine-tuned only a few of the last layers within the network.110 Samala et 911 

al.199 studied the effects of fine-tuning different layers of the AlexNet architecture, and found 912 

that fine-tuning different layer combinations resulted in different performance. For their task, 913 

they found that freezing the weights of just the first convolution layer achieved higher 914 

performance compared to freezing additional layers, or fine-tuning all the convolution layers. 915 

Similar trends were observed by Lee et al.309. However, the data set size for the fine-tuning may 916 

also need to be taken into consideration when using transfer learning, as Samala et al.310 saw a 917 

trend where the performance of the fine-tuned network increased with increasing data set size of 918 

the target task domain used for fine-tuning. 919 

3.C. Combining deep learning with radiomics approaches 920 

Before DL was applied to medical imaging, hand-crafted-features-based approaches were 921 

generally used to analyze the images. By using DL, it is expected that given enough data, the 922 

network will learn image descriptors useful for analysis. However, it is possible to combine the 923 

outputs of DL methods with the knowledge the field of medical imaging analysis has 924 

accumulated with computer-extracted, hand-crafted features.166 Several works, including 925 

Antropova et al.,197 Li et al.,192 Huynh et al.,196 and Ben-Cohen et al.,307 combined features 926 

extracted from the fully-connected layers of a DL architecture, with traditional hand-crafted 927 

features (morphology, intensity, texture). Feature selection was performed to reduce the number 928 

of features, then a machine learning classifier, such as SVM or RF, were used to generate a 929 
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model using the extracted features. These studies suggest that supplementing DL with 930 

information already known to be useful, may improve the performance of these DL models. 931 

3.D. Supervised / Weakly supervised / Unsupervised learning 932 

The majority of the DL applications utilize supervised learning: there is ground truth or labels 933 

that the system is trying to match. However, there are also unsupervised methods that attempt to 934 

draw inferences from unlabeled data, i.e., without the help of a supervisor (or label) that provides 935 

a degree of error for each observation, and weakly-supervised methods, that use noisy labels, or 936 

images labeled as positive or negative, without localization information, to train for a specific 937 

task. 938 

Unsupervised learning in DL is generally performed by auto-encoders or independent subspace 939 

analysis (ISA).249, 250, 311 The outputs of these networks may be further processed in a supervised 940 

manner, by extracting the features from the network and applying a machine learning classifier. 941 

In weakly-supervised learning, the reference standard used to train does not contain the full 942 

information.311, 312 For example, Feng et al.313 trained a system for lung nodule segmentation 943 

with a binary label if a nodule was present for a given image slice. Yang et al.167 used a weakly-944 

supervised network in a system that aimed to generate a cancer response map with each pixel 945 

indicating the likelihood to be cancerous. Both methods refined the initial results with additional 946 

deep learning networks. There are also methods that use a combination of weakly supervised and 947 

supervised methods.180, 314 Wang et al.180 and Rajpurkar et al.314 used supervised learning to label 948 

chest x-rays with one or multiple specific lung diseases, and used weakly-supervised learning to 949 

localize the region with the disease. 950 

4. EXPANDING DATA SETS FOR DEEP LEARNING  951 
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As discussed above, DL performs significantly better than previous shallow learning methods 952 

and hand-crafted image features. However, this comes at the cost of requiring greater amounts of 953 

training data compared to previous methods. In the medical domain, publicly-available large-954 

scale image data sets that contain images from tens of thousands of patients are not available 955 

(except the recently released ChestX-ray14 data set.180) Although vast amounts of clinical 956 

images/annotations/reports are stored in many hospitals' digital warehouse, e.g., picture 957 

archiving and communication systems (PACS) and oncology information system (OIS), 958 

obtaining semantic labels on a large scale medical image database is another bottleneck to train 959 

highly effective DL models for image analysis. 960 

It is difficult to directly borrow conventional means of collecting image annotations that are used 961 

for annotating natural scene images (e.g., Google image search uses terms from NEIL 962 

knowledge315 base followed by crowd-sourcing28) and apply them in medical images. Medical 963 

annotations are difficult to obtain from clinically untrained annotators. On the other hand, using 964 

well-trained radiologists is expensive. Moreover, the task of “assigning labels to images” is not 965 

aligned with their regular clinical routine, which can cause drastic inter-observer variations or 966 

inconsistency. There is a lot of definition ambiguity to assign image labels based on visible 967 

anatomic structures, pathological findings or using both cues. In addition, a high quality or large 968 

capacity medical image search engine is a prerequisite to locate relevant image studies. For 969 

example, the radiological data stored in the PACS server are only indexed with dates, patient 970 

names, and scan protocols, and it often takes extra effort to find all the cases with a disease 971 

pattern of interest. Natural language processing based systems that text mine radiology reports 972 

are just beginning to become available.316 973 
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A wide variety of techniques have been developed for tackling the data shortage problem for 974 

both the general computer vision and medical image analysis domain. Data augmentation is the 975 

most straightforward way to increase the size of a data set for training purposes. It has been 976 

proved to be extremely effective for currently existing data sets,160 which often contain a small 977 

number (hundreds of cases) of hand-labeled data. Others believe that DL and humans-in-the-loop 978 

inspection may have to be interleaved and integrated to construct labels for a large-scale image 979 

database, rather than being employed as two independent labeling processes. It can involve 980 

selectively labeling critical samples via active learning. A few recent works focus on transferring 981 

the tremendous number of imaging studies accompanied by radiological reports (i.e., loosely 982 

labeled samples) into machine trainable data format. Both image and textual features could be 983 

utilized for this retrospective and cost-effective process. In addition to using hand-labeled 984 

ground-truth, others317, 318 utilize the algorithm-generated ground-truth of existing image data for 985 

training the CNN models. They assume the model can learn from these less accurate examples 986 

and produce refined results in an iterative training process. Furthermore, approaches based on 987 

generative adversarial networks38 (GAN) can create image samples for training, either from 988 

random initialization or from more advanced clues for image generation. Recent results have 989 

shown examples of its promising and useful outcomes. In the following sections, we will 990 

summarize these techniques individually. 991 

4.A. Data augmentation 992 

Data augmentation creates new samples based on existing samples in a data set or according to a 993 

generative model. These new samples can then be combined with the original samples to 994 

increase the variability of data points in a data set. This class of techniques has become a 995 

common practice in DL based applications since it has been shown to be extremely effective for 996 
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increasing the size of training sets, reducing the chance of overfitting and eliminating the 997 

unbalance issue in multi-class data sets, which is critical for achieving generalizable models and 998 

testing results.  999 

Common data augmentation techniques adopted in medical image analysis applications84, 107, 319 1000 

include cropping, translation, rotation, flipping, and scaling of images. Instead of augmenting 1001 

whole images, Gao et al.206 randomly jittered and cropped sub-images as patches from each 1002 

original CT slice to generate more samples for classifying interstitial lung diseases. Pezeshk et 1003 

al.320 introduced an image blending tool that can seamlessly embed a lesion patch into a CT scan 1004 

or mammography. Furthermore, the lesion patches could be inserted with various types of 1005 

transformations to the lesion shape and characteristics. Improved classification performances 1006 

were presented even for small training data sets. Zhang et al.321 intended to tackle the unbalanced 1007 

data issue for common medical image classification tasks. They proposed a new data 1008 

augmentation method called unified learning of feature representation and similarity matrix. A 1009 

single DCNN was trained on the seed labeled data set to obtain image feature representations and 1010 

a similarity matrix simultaneously, which could be used for searching more similar images to 1011 

each class of colonoscopy and upper endoscopy images.  1012 

Another type of data augmentation involves synthesizing images or data using an object model 1013 

and physics principles of image formation. Depending on the ultimate purpose of the DL 1014 

algorithm, the degree of sophistication for the models and image formation approximations can 1015 

vary.322 Yang et al.240 created a synthetic CT data set through the use of the Radon transform for 1016 

a known object and modeled different exposure conditions through adding noise to the data, for 1017 

the purpose of training a CNN to estimate high-dose projections from low-dose ones. Cui et al.323 1018 

simulated dynamic PET emission data in order to train a stacked sparse autoencoder based 1019 
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reconstruction framework for dynamic PET imaging. Chen et al.237 synthesized noisy projections 1020 

based on patient images to generate training data for developing a DL algorithm for noise 1021 

reduction in reconstructed CT images. Miao et al.253 used synthetic data only to train a CNN for 1022 

2D/3D image registration.  1023 

4.B. Data annotation via mining text reports  1024 

Over the decades, large amounts of radiological data (e.g., images, clinical annotations, and 1025 

radiological reports) have accumulated in many hospitals' PACS. How to transform those 1026 

retrospective radiological data into a machine-learnable format has become a big challenge in the 1027 

DL era. A radiological report could contain many types of information. Generally speaking, it is 1028 

a free-text summary of all the clinical findings and impressions determined during examination 1029 

of a radiological image study. It can contain richer information than just the description of 1030 

disease findings, but also may consist of negation and uncertainty statements. In the ‘findings’ 1031 

section, a list of normal and abnormal observations is listed for each part of the body examined 1032 

in the image. Attributes of the disease patterns, e.g., specific location and severity, are also noted. 1033 

Furthermore, critical diagnosis information is often presented in the ‘impression’ section by 1034 

considering all findings, patient history, and previous studies. Additional or follow-up imaging 1035 

studies are recommended if suspicious findings are located. As such, reports consist of a 1036 

challenging mixture of information. A key for machine learning is extracting the relevant parts 1037 

for particular applications.324  1038 

Schlegl et al.325 relied on existing optical coherence tomography (OCT) volume data and 1039 

corresponding diagnostic reports to correlate image content and geometry with semantic 1040 

concepts described in the reports. Increasing classification accuracy for intraretinal cystoid fluid, 1041 
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subretinal fluid and normal retinal tissue was demonstrated while mining the voxel-level 1042 

annotation of class labels.  1043 

Following an initial work using MeSH (medical subject headings) manual annotations on chest 1044 

radiographs,326 Shin et al.33 extracted sentences from the original radiology reports describing 1045 

key images (images identified during clinical image interpretation as having important findings). 1046 

The authors used natural language processing (NLP) to analyze about 780,000 patients’ 1047 

radiology reports and found 215,786 key images mentioned in the reports from scans of 61,845 1048 

unique patients. The key images were then extracted from their institution’s PACS. 1049 

Corresponding image labels were then mined via unsupervised hierarchical Bayesian document 1050 

clustering, i.e. generative latent Dirichlet allocation topic modeling, to form 80 classes at the first 1051 

level of hierarchy. Zech et al.316 applied a similar methodology to a set of 96,303 head computed 1052 

tomography reports. While mining topic labels in a fully unsupervised manner,33 they adopted 1053 

latent Dirichlet allocation together with bag of words to compute the feature representation of 1054 

corpuses. Then, a regression model was trained using a small subset (1,004) of annotated reports 1055 

to initialize the clustering of those unlabeled text reports. 1056 

The purely text-computed information offers some coarse level of radiology semantics but is 1057 

often limited and disconnected from the associated image. First, the classes could be highly 1058 

unbalanced, which means that one dominating category may contain many more images while 1059 

other classes may contain few. Furthermore, the images in a class assigned purely by text 1060 

analysis may not be visually coherent since the image appearance is not considered in the 1061 

clustering process. Wang et al.327 exploited a combination of image features and textual 1062 

information extracted from reports to label groups of images to alleviate these limitations. Fig. 6 1063 

shows the flowchart of the framework. A CNN based joint mining framework was developed to 1064 
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iteratively improve the extracted CNN image features and clustering labels. Consequently, NLP-1065 

mined disease keywords were assigned to each image cluster. 1066 

 1067 

More advanced NLP techniques have demonstrated better performances in extracted disease 1068 

keywords for image labeling task in recent studies. Wang et al.180 introduced a two-stage 1069 

pathology extraction approach by first detecting all disease keywords mentioned in the report 1070 

using ontology-based tools and then building negation and uncertainty elimination rules on the 1071 

dependency graph of sentences. Fig. 7 shows sample disease categories mined from the 1072 

retrospective data. The authors publicly released their data set of 112,120 frontal-view chest x-1073 

ray images of 30,805 unique patients along with image annotations of 14 disease categories. 1074 

Subsequent research led to a 6% average improvement in the area under the receiver operating 1075 

characteristic curve through the use of a multi-level attention model in a DL pipeline that 1076 

included both CNNs and recurrent neural networks.328 1077 

Chen et al.329 applied a CNN based textual classification framework to find the presence, 1078 

chronicity, and location of pulmonary embolism in CT examination reports. A human-in-the-1079 

loop NLP annotation strategy was adopted to reduce the labeling cost for CNN training. The 1080 

final CNN model was trained using a total of 2,512 radiologist-annotated CT reports. 1081 

 1082 

Yan et al.330, 331 mined radiology reports and images to extract lesion measurements. The lesion 1083 

measurements were made in the course of routine clinical interpretation of CT scans. They were 1084 

bidimensional measurements performed for RECIST (Response Evaluation Criteria in Solid 1085 

Tumors) assessment, many as part of oncology clinical trials. Their data set, named 1086 
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“DeepLesion”, consisted of 32,120 axial CT slices, each containing a measured lesion, from 1087 

10,594 CT imaging studies of 4,459 unique patients. The data set consists of a large variety of 1088 

lesion types, including those involving lung, liver, kidney, pancreas and lymph nodes. The 1089 

authors’ deep learning algorithm, which used a triple network and ImageNet pretrained weights, 1090 

was able to retrieve images of specified type, location and size with an average accuracy of 1091 

90.5%. 1092 

Possibilities for text mining do not need to be limited to radiology reports but extend to other 1093 

clinical reports. The presence of electronic health records (EHR) yields the potential to collect 1094 

both imaging and clinical/pathology data in order to input to DL to predict diagnosis, outcome, 1095 

and guide treatments within a clinical workflow.332 Dai et al.333 proposed a clinical report guided 1096 

CNN which leverages a small amount of supervised information in clinical reports to identify the 1097 

potential microaneurysms in fundus images. During training, both fundus images and clinical 1098 

reports are presented to the network. In the testing stage, the input is a fundus image only, and 1099 

the output is a probabilistic map of the lesion types in the image. Zhang et al.334 proposed a 1100 

multimodal network that jointly learns from medical images and their diagnostic reports, in 1101 

which semantic information interacts with visual information to improve the image 1102 

understanding ability by teaching the network to distill informative features. Applied to bladder 1103 

cancer images and the corresponding diagnostic reports, the network demonstrated improved 1104 

performance compared to baseline CNN that only use image information for training. 1105 

4.C. Data annotation via active learning 1106 

Another approach for assembling large data sets for DL is to try to increase the efficiency of 1107 

collecting hand-labeled data to minimize the annotation cost. Active learning is one group of 1108 

methods for increasing number of annotated data points by including human annotators in the 1109 
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loop of incremental learning and performance improvement. Two key aspects are usually 1110 

considered for selecting candidate data for the expensive annotation process, uncertainty and 1111 

representativeness of the candidate data.  1112 

Different types of information could be utilized to measure the uncertainty and 1113 

representativeness in order to select samples. Top et al.335 computed the uncertainty values of 1114 

radius bone regions in the image for segmentation by considering boundary, regional, 1115 

smoothness and entropy energies of those image regions. Annotators were then required to label 1116 

those regions in a CT plane with maximum uncertainty. Zhu et al.336 leveraged the structured 1117 

information (e.g., data from individual patients) when selecting batch of candidate unlabeled 1118 

samples. The proposed learning framework enforced a set of specifically designed diversity 1119 

constraints for the histopathological image annotation task. The visual saliency of objects337 1120 

inside an image were considered as a measure for selecting samples. The similarities between 1121 

labeled and unlabeled data were computed and encoded in a graph. Then, random walks were 1122 

adopted for searching the most informative node (with largest classification uncertainty and 1123 

minimum overlap with labeled data). Lee et al.338 believe the most informative instances (hard 1124 

examples) are those closest to the SVM hyperplane. Together with balanced sampling, their 1125 

proposed learning framework was able to achieve a more than 40% classification performance 1126 

increase on the testing set. 1127 

A batch mode based active learning339 method was proposed and applied to medical image 1128 

classification applications. The Fisher information matrix was adopted to select informative 1129 

unlabeled samples in a group-wise manner. The framework developed an efficient greedy 1130 

searching algorithm to find a subset of the unlabeled data that can minimize the Fisher 1131 

information of remaining unlabeled set. The experiments demonstrated the effectiveness of this 1132 
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batch-mode based active learning approach. Konyushkova et al.340 trained a segmentation 1133 

classifier to decide if a set of supervoxels were most in need to be annotated in 3D image 1134 

volumes. Geometric priors were utilized in this process to compute geometric uncertainty for 1135 

each voxel, indicating whether a clear boundary was present. For segmenting electron 1136 

microscopy images, the model trained using 100 selected pixels with annotations (less than 1137 

0.03% of the total training set) achieved even higher classification performance than the one 1138 

trained with all available labeled training pixels. 1139 

Recent approaches further utilized DCNN features to compute and representativeness criteria. 1140 

Yang et al.341 presented a deep fully convolutional network based active learning framework to 1141 

reduce annotation effort in image that contain multiple instances, e.g., pathological images. The 1142 

uncertainty and similarity information computed from network activations is utilized to select the 1143 

most cost-effective annotation areas. Zhou et al.342 measured the uncertainty and diversity of 1144 

candidate image samples using the CNN classification prediction values computed for all the 1145 

image patches extracted from the candidate image. In comparison to previous methods, this 1146 

method has the advantage that no seed labeled sample is required. A newly-annotated sample 1147 

will further improve the candidate selection process after CNN mode is fine-tuned again based 1148 

on the new training set. They demonstrated that the CNN’s classification performance could be 1149 

incrementally enhanced by continuously fine-tuning the CNN in an iterative manner.  1150 

There are other methods that do not require even a small number of initial hand-labeled data. 1151 

Gaur et al.343 started the selection process with a deep model trained on a similar domain. Then, 1152 

they interpreted the active learning problem of increasing the size of limited labeled data set as 1153 

an optimization problem by maximizing both the uncertainty and abundancy. Only a minimum 1154 

number of data fulfilling both criterions were selected and annotated by a human expert. 1155 
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Mosinska et al.344 tailored the uncertainty sampling based active learning approach for the 1156 

delineation of complex linear structures problem, which significantly reduced the size (up to 1157 

80%) of training data set while achieving equivalent performance. Multiple samples inside the 1158 

same image were simultaneously presented to the annotator while the interactive annotation 1159 

framework kept the selected samples informative, representative and diverse. 1160 

4.D. Expanding the training data set via domain adaptation  1161 

Instead of manually annotating selective number of data, another strategy for training data-1162 

hungry DL paradigms is to leverage labeled data from a different domain, e.g., ImageNet 1163 

database of natural images, and then fine-tune based on the pre-trained CNN parameters in the 1164 

target domain via transfer learning, as discussed in Sec. 3B. The assumption is that the essential 1165 

pattern learned and recorded in CNN weights, especially in the earlier layers, to some extent are 1166 

shared by different kinds of images from different domains. Under this assumption, transfer 1167 

learning using a pre-trained model is rather straightforward, but the underlying differences of 1168 

structures and features in data cross domains are overlooked. In contrast to this straightforward 1169 

application of pre-training, domain adaptation attempts to alter a source domain to bring the 1170 

distribution of the source closer to that of the target. In-depth analyses have been conducted to 1171 

measure the distribution difference or nonlinear mapping of features between source and target 1172 

domains for domain adaptation.  1173 

Heimann et al.345 employed a discriminative learning based approach to localize the 1174 

transesophageal echocardiography transducer in X-ray images. Instance weighting was applied 1175 

on unlabeled fluoroscopy image samples to estimate the differences in feature space density and 1176 

correct covariate shift to align the data distribution cross domains. Wachinger et al.346 employed 1177 

a similar instance weighting strategy in a supervised domain adaptation problem with a small 1178 
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training set as supervision from the target domain. Conjeti et al.347 computed tissue-specific 1179 

back-scattering signal statistics for calcified, lipidic and fibrotic arterial plaques and used 1180 

decision forest based method to align the distribution shift of signal statistics between in-vitro 1181 

and in-vivo image domains. 1182 

Schlegl et al.205 trained a CNN in an unsupervised manner for learning more general low-level 1183 

image features for images from multiple sites (as domains). Then, another CNN model was fine-1184 

tuned based on the previous CNN model (with domain information injected) to classify lung 1185 

tissue in high-resolution CT data using a small set of annotated data from on site. Improved 1186 

classification performance was demonstrated by adopting unsupervised pre-training with data 1187 

cross domains. 1188 

Different acquisition and staining processes can cause large variability of microscopic brain 1189 

images even on the same part of brain.348 Normalized Cross Correlation was introduced to locate 1190 

image patches in the images from target domain, which shared the similar selected features with 1191 

an image patch from the source domain. Those located image patches will also share the same 1192 

label as their counterpart from the annotated source domain. Then, a multiple instance learning 1193 

based classification framework was used to utilize those newly labeled (and also possibly noisy) 1194 

patches for the image classification task. For the same problem, Becker et al.349 proposed to learn 1195 

a nonlinear mapping of the data features between two domains (acquisitions in this case), 1196 

together with decision boundary for the regression based classification.  1197 

Azizi et al.16 applied an unsupervised domain adaptation method based on DL for the prostate 1198 

cancer detection problem. A deep belief network was trained using both B-mode (target domain) 1199 

and radiofrequency (source domain) ultrasound images to effectively align features from two 1200 
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domains in a common latent feature space. The alignment was achieved by minimizing the 1201 

divergence between the source and target distributions through the training. Similar ideas were 1202 

presented for multiple sclerosis lesion segmentation in MR images using fully convolutional 1203 

networks.350 A modified U-Net architecture was designed to take both labeled (source domain) 1204 

and unlabeled (target domain) data and simultaneously minimize both the segmentation loss and 1205 

the discrepancy between embedded features from two domains. 1206 

4.E. Data synthesis via generative adversarial networks  1207 

Generative adversarial networks have attracted tremendous attentions and have grown into a big 1208 

family of methods in the past two years, from the original GAN framework38 to recent 1209 

CycleGAN.37 The quality of synthesized images also evolved rapidly from 32*32 snapshots to 1210 

high-resolution CT/MR images. There have been quite a few successful applications of GANs in 1211 

the medical imaging domain. Compared to the conventional generative models based method, 1212 

e.g., characteristic modeling,351 random walk sampling,352 and image decomposition,353 GANs 1213 

intend to produce better images from an image appearance perspective. However, these images 1214 

are often less meaningful from a clinical point of view since the image intensity on each pixel in 1215 

a real clinical image has semantic meanings, e.g., high values in PET image usually represent 1216 

high take-up tumor regions. To overcome such limitations, a variety of constraints and additional 1217 

information need to be included to help produce more clinically meaningful medical images. 1218 

Calimeri et al.354 cascaded the GAN models as a multi-scale pyramid based refinement 1219 

framework with different size image inputs at each level so that a high-resolution MR image 1220 

could be synthesized and then improved from coarse to fine. Frid-Adar et al.215 started with 1221 

standard data augmentation methods to create a larger data set that could be used to train a deep 1222 

convolutional GAN. The synthetic data samples created for each lesion class, i.e. cysts, 1223 
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metastases and hemangiomas, by the GAN were then inputted to the training process of the final 1224 

lesion classifier together with the enlarged training set from previous data augmentation. Lahiri 1225 

et al.355 extended the discriminator for classifying patches from multiple categories in addition to 1226 

answering the fake or real binary question. This design has proven to be more data efficient for 1227 

adversarial training. Zhang et al.356 applied the same strategy on the semantic segmentation task, 1228 

where the discriminator not only evaluated the segmentation results itself but also tried to 1229 

differentiate the labeled and unlabeled data. The segmentation results from unlabeled data was 1230 

weighted less (compared to the counterpart from labeled data) in the adversarial training 1231 

procedure to produce more accurate results for the next iteration. 1232 

Generating realistic images from scratch (initialized with noise vectors from the latent space) is 1233 

extremely challenging, especially for medical images. However, more meaningful images could 1234 

be synthesized if some prior knowledge was provided, e.g. an image similar to the target one but 1235 

in different modality.357 Costa et al.358 proposed to generate retinal images by using 1236 

corresponding vessel tree images. Different from the standard pair-wise GAN generative 1237 

framework, an auto-encoder was first trained to learn the distribution of realistic retinal vessel 1238 

trees and the retinal images were generated from the representations learned via the auto-1239 

encoder. 1240 

Instead of using paired images for training, Chartsias et al.359 adopted the CycleGAN framework 1241 

in synthesizing cardiac MR images and masks from view-aligned CT ones in a loosely 1242 

supervised manner. The pair-wise constraints (e.g. paired images with similar anatomical 1243 

structure) were eliminated in this case. A 15% increase in segmentation accuracy was 1244 

demonstrated by using both real and synthetic data compared to using real data alone. The 1245 

application of CycleGAN in the unpaired MRI to CT image synthesis was also demonstrated.360  1246 
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Although it is still in its early stage, GAN based medical image generation has provided a 1247 

promising alternative to other data augmentation approaches. Chuquicusma et al.361 reported a 1248 

visual Turing test that involved two radiologists (with different years of experience) to evaluate 1249 

the quality of the synthesized nodules. A mixed set of (benign or malignant) nodule patches was 1250 

shown to the radiologists individually for determining whether they were real or generated. The 1251 

results showed that the majority (67% and 100%, respectively) of the generated nodules were 1252 

recognized as real by the two radiologists.  1253 

 1254 

5. CHALLENGES, LESSONS LEARNED, AND THE FUTURE 1255 

As discussed in previous sections, recent advances in DL show that computers can extract more 1256 

information from images, more reliably, and more accurately than ever before. However, further 1257 

developing and optimizing DL techniques for the characteristics of medical images and medical 1258 

data remains an important and relevant research challenge. 1259 

5.A. Evaluation and robustness 1260 

As discussed previously, data augmentation is often used to alleviate the problem of limited data 1261 

set sizes. Data augmentation is powerful, but must be used correctly. One cannot train a network 1262 

on a set of images pertaining to a given case and then test this trained network on a different set 1263 

of images pertaining to that same case. Similarly, when dealing with 3D images, it might be 1264 

tempting to treat every image slice as an independent entity. This would be incorrect, however, 1265 

since slices of the same case are correlated and slices of a given case either need to be all in the 1266 

training/validation set or all in the test set. If not done correctly, the performance will be 1267 

substantially overestimated and not be generalizable. It is also important to keep in mind that 1268 
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performance needs to be evaluated ‘by case’, whether a ‘case’ is a lesion, patient, or whatever is 1269 

relevant to the clinical task at hand. No matter how one slices and dices the data, if there are 100 1270 

patients, there really are only 100 patients, and evaluation needs to be done accordingly. 1271 

 1272 

When DL is used as a feature extractor, even in transfer learning when a completely trained deep 1273 

net is applied to new images, the sheer number of extracted features poses a challenge. With the 1274 

use of data augmentation, one would hope that the number of features will not exceed the 1275 

number of data points so that dimension reduction or feature selection is possible in a meaningful 1276 

way before further classification with a different classifier such as a shallow neural net or 1277 

support vector machine. Feature selection, however, is likely to be a rather unstable undertaking 1278 

with different features being selected depending on how the data set is partitioned. Additionally, 1279 

it is common practice to use p-values to choose which of numerous features should be used, but 1280 

p-values themselves are highly variable.362, 363 P-values are data dependent statistics that vary 1281 

from sample to sample even when underlying effects, population, and sampling are the same.364 1282 

Hence, utmost care needs to be taken when using DL methods as feature extractors.  1283 

Robustness and repeatability are concerns with any machine learning approach,365 and even more 1284 

so with DL. Since medical image data sets are so difficult to come by compared to those of 1285 

natural images and generally are of limited size, researchers like to re-use the same data for 1286 

different tasks. Hence, correction for multiple comparisons366, 367 is crucial in the statistical 1287 

evaluation of performance. The requirement that data sets need to be of sufficient size and 1288 

quality is not unique to DL or medical imaging. It is, for example, reminiscent of issues observed 1289 

in genomics where lack of reproducibility was observed when looking for predictive gene lists in 1290 
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small data sets (~100s of cases).368, 369 There, thousands of samples are needed to generate a 1291 

robust gene list to predict the outcome in cancer.369 A 2012 study of 53 landmark papers in basic 1292 

cancer research was able to replicate the original results of just 6 of these studies.370 Moreover, a 1293 

study reviewing radiomics using texture features, i.e., ‘conventional’ radiomics, for the 1294 

prediction of survival, found that all of the results of 9 published studies failed to reach statistical 1295 

significance after properly correcting p-values for multiple comparisons and the use of an 1296 

optimal cut-off (if applicable) in Kaplan-Meier analysis.371 Results of DL-based methods, if 1297 

analysis is not performed correctly, may be even less likely to hold up to scrutiny. 1298 

5.B. Data sets and curation  1299 

Perhaps the most important challenge when it comes to medical imaging data sets is to obtain 1300 

data of a sufficiently large number of properly annotated cases. The bottleneck is not necessarily 1301 

obtaining the images, but obtaining annotations and reference standards. For segmentation tasks, 1302 

for example, the reference standard or ‘truth’ would be the manual outline of one, or preferably 1303 

more, expert radiologists. For cancer classification tasks, for example, the reference standard 1304 

would be the pathological truth as determined by biopsy or surgery which needs to be extracted 1305 

from pathology reports. The reference standard has to be of high quality, especially when used 1306 

for training but also for performance evaluation. Obtaining high quality image data, annotations, 1307 

and reference standards is expensive and time consuming. Patient privacy laws, while absolutely 1308 

necessary, further complicate data collection because all protected health information needs to be 1309 

removed from image data and corresponding radiology, pathology, and other reports. Moreover, 1310 

relevant information needs to be extracted from the radiology, pathology, and other text reports 1311 

which is time consuming and potentially error prone when done manually and not trivial when 1312 

performed automatically (section 4.B). There is immense value in sharing annotated image data 1313 
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and anonymized publicly accessible databases such as provided by the Cancer Imaging Archive 1314 

(www.cancerimagingarchive.net/).  1315 

Another challenge for medical image data sets is that imaging devices are not measurement 1316 

devices. Unlike a ruler or a Volt meter, which are calibrated and expected to give consistent and 1317 

correct results within the calibration accuracy, imaging devices generate images through often 1318 

proprietary image processing techniques. Images are usually not quantitative and primarily 1319 

designed to be interpretable by humans, not by computers. Robustness of ‘conventional’ and DL-1320 

based methods with respect to image manufacturer or image pre-processing methods needs to be 1321 

investigated. There has been effort investigating robustness of ‘conventional’ methods with 1322 

respect to manufacturer for breast cancer diagnosis on ultrasound,372, 373 the assessment of risk of 1323 

future breast cancer on digital mammography,374 and lung nodule features.375 Work has also been 1324 

done towards the harmonization of image data with respect to different CT scanners.376 One of 1325 

the advantages of DL-based methods, however, is that they may be less sensitive than 1326 

‘conventional’ methods to differences in images due to the use of imaging equipment of different 1327 

manufacturers. Having been designed for natural images in which, for example, a dog in the 1328 

shade is still a dog, may make them better able to deal with differences in image appearance and 1329 

quality.  1330 

Class imbalance is another challenge related to many medical imaging data sets, not only to DL 1331 

based methods but to ‘conventional’ methods as well. In screening mammography, for example, 1332 

the cancer prevalence is so low that developing a method to detect cancer without causing undue 1333 

false-positives is a formidable task. One approach to alleviate the problem of class imbalance in 1334 

the training of DL methods is to use data augmentation of the under-represented class only in 1335 

classifier training as explained in more detail in Section 4. 1336 
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5.C. Interpretability 1337 

When a deep neural net is used as a feature extractor thousands of features are extracted. Unlike 1338 

engineered hand-crafted features these features do not directly relate to something radiologists 1339 

can easily interpret. Engineered features often describe something directly related to 1340 

characteristics radiologists use in their clinical assessment, such as lesion size or shape. Such 1341 

characteristics can be described by multiple mathematical descriptors, i.e., engineered features. 1342 

For example, the ‘simplest’ feature of maximum linear dimension is both used by a radiologist 1343 

and can be automatically calculated by a radiomics method. It is then easy for a radiologist to 1344 

assess whether to trust the radiomics output. But even for ‘traditional’ approaches, this direct 1345 

interpretability diminishes for more ‘complicated’ features such as for the many that describe 1346 

texture. For features extracted from deep neural nets, this interpretability is almost completely 1347 

lost. Radiologists may not care about all the DL parameters and how an application works, 1348 

however, and it may be more a matter of human trust in the capabilities of the proverbial DL 1349 

‘black box’. The ‘believability’ of DL approaches – both as classifiers and as feature extractors – 1350 

then, relies on past performance reported for large independent test sets. For example, in 1351 

diagnosis of breast cancer, the believability of the probability of malignancy output by a DL 1352 

method relies on knowledge of past performance on independent test data. Acceptance of DL in 1353 

medical imaging may benefit from success of DL in other applications such as self-driving cars 1354 

and robotics. On the other hand, there may be legal implications to using DL in medical imaging 1355 

applications since it will be more difficult than for ‘conventional’ applications to pinpoint 1356 

exactly what went wrong if the output is incorrect (potentially negatively impacting patient care).  1357 

Recently, there has been increasing interest in making AI methods (including those involving 1358 

DL) transparent, interpretable, and explainable.377 This, in part, has been driven by the European 1359 
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general data protection regulation that will go into effect in May 2018 and will make ‘black-box’ 1360 

approaches difficult to use in business. These new rules require it to be at least possible to trace 1361 

results on demand.377 Whereas traditional approaches tend to be at least interpretable in the sense 1362 

that users can understand the underlying math of an algorithm, until recently, DL systems tended 1363 

to be more opaque offering little or no insight into their inner workings. However, there has been 1364 

increasing effort in making DL methods more transparent and methods have been proposed to 1365 

assess the sensitivity of the prediction with respect to changes in the input or to decompose the 1366 

decision in terms of the input variables.378  1367 

It is possible to provide visual ‘explanations’, for example, to show heat maps visualizing the 1368 

importance of each pixel for the prediction. These visualization techniques could help to further 1369 

optimize a CNN training approach and ensure that the CNN is ‘paying attention’ to the correct 1370 

regions of an image in analysis. For example, if a CNN were to be trained to detect 1371 

pneumothorax on chest X-rays it would be important to know whether the CNN correctly 1372 

‘looked at’ the pneumothorax region of images or instead focused on chest tubes that are often 1373 

present in patients with pneumothorax. Most popular visualization techniques are either 1374 

perturbation-based or backpropagation-based. Perturbation-based methods modify parts of the 1375 

image and study the effect on the CNN output.379, 380  Backpropagation-based methods propagate 1376 

either the output probability score, or the gradient of the output with respect to the input in order 1377 

to construct heatmaps. Some of the most popular backpropagation-based methods include the 1378 

saliency map,381 the class-activation map,382 and the gradient-weighted class activation map.383   1379 

Backpropagation-based methods are computationally cheaper because they use the fundamental 1380 

property of propagating signals through convolutions, instead of propagating each modification 1381 

through the network as in done in perturbation-based methods. 1382 
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5.D. Competitive challenges 1383 

There have been a number of competitive challenges in the field of medical image analysis 1384 

(https://grand-challenge.org/all_challenges/). The prevalence of DL based methods has clearly 1385 

increased over the last couple of years and DL methods have become top performers in medical 1386 

image analysis competitions. They often, but not always, perform as well as or better than 1387 

‘conventional’ methods. In a literature review on DL, Litjens et al.384 noted that the exact DL 1388 

architecture does not seem to be the most important determinant in getting a good solution. For 1389 

example, in the Kaggle Diabetic Retinopathy Challenge (https://www.kaggle.com/c/diabetic-1390 

retinopathy-detection), many researchers used the exact same architectures, the same type of 1391 

networks, but obtained widely varying results. Data augmentation methods and preprocessing 1392 

techniques seem to contribute substantially to good performance and robustness. It remains an 1393 

open question how results from these competitive challenges can be leveraged to benefit the 1394 

medical image analysis research community at large.  1395 

5.E. Lessons learned  1396 

Looking back into the history of medical image analysis, it appears that popularity of certain 1397 

methods fluctuated in time. For example, ANNs gathered a lot of attention in the early 90’s, were 1398 

replaced by support vector machines in many applications in late 1990’s and early 2000’s, only 1399 

to make a comeback in the form of DL in the 2010’s. Likewise, the popularity of wavelet 1400 

methods and feature extraction techniques such as SIFT evolved in time. The successes already 1401 

achieved by DL methods, many of them discussed above, are undeniable and well-established. 1402 

We believe that the application areas of DL will evolve in time like other methods, and will 1403 

likely be supplemented and complemented by newer methods. However, one important lesson 1404 

learned that will likely be maintained into the future is one about data quality, or the ‘garbage-in 1405 
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garbage-out’ principle. Quality of the image data and annotations is crucial and analysis needs to 1406 

be carried out correctly. Another important lesson is the difference between statistical 1407 

significance and clinical significance/relevance. Although establishing statistical significance is a 1408 

very important step in research and publications, we should never lose sight of what the 1409 

clinically relevant questions are, and just because there is a newer more complicated CNN, does 1410 

not necessarily mean that it will better help (or replace) radiologists. Expert knowledge about the 1411 

clinical task can provide advantages that go beyond adding more layers to a CNN, and 1412 

incorporating expert medical knowledge to optimize methods, for example through novel data 1413 

preprocessing or augmentation techniques, for a specific clinical task is often crucial in obtaining 1414 

good performance.  1415 

Plenty of challenges remain for ‘conventional’ medical image analysis and DL-based methods, 1416 

including computational and statistical aspects. We need to investigate and improve image data 1417 

harmonization, develop standards for reporting as well as experiments, and have better access to 1418 

annotated image data such as publicly available data sets to serve as independent benchmarks. 1419 

5.F. Future of deep learning in imaging and therapy 1420 

Machine learning, including DL, is a fast-moving research field that has great promise for future 1421 

applications in imaging and therapy. It is evident that DL has already pervaded almost every 1422 

aspect of medical image analysis. ‘Conventional’ image analysis methods were never intended to 1423 

replace radiologists but rather to serve as a second opinion. Likewise, DL-based methods are 1424 

unlikely to replace human experts any time soon. The performance of DL has equaled or 1425 

surpassed human performance for some non-medical tasks such as playing computer games385 1426 

and, as illustrated by the many cited publications in this paper, DL has also been quite successful 1427 

in a variety of medical imaging applications. However, most medical imaging tasks are far from 1428 
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solved386 and the optimal deep learning method and architecture for each individual task and 1429 

application area have not yet been established. Moreover, the integration of medical image 1430 

analysis methods and other patient data - such as patient history, age, and demographics - also 1431 

remains an area of active research that could further improve performance of clinical decision 1432 

making aids. 1433 

Three aspects that will drive the DL revolution are availability of big data, advances in DL 1434 

algorithms, and processing power. As discussed above, there is abundant new research aimed at 1435 

alleviating the limited data set size problem in medical imaging, and some of the custom DL 1436 

architectures and algorithms specifically designed for medical imaging have shown great 1437 

promise. There has been an explosion of research papers published on DL in medical imaging, 1438 

most within the past couple of years, and this trend is expected continue. The emergence of 1439 

conferences solely dedicated to DL in medical imaging (such as the ‘Medical Imaging with Deep 1440 

Learning Conference’ to be held in July 2018, https://midl.amsterdam/) is very telling. The 1441 

potential of DL in medical imaging has also not gone unnoticed by the healthcare industry. 1442 

Companies, both big and small, are taking big steps in developing and commercializing new 1443 

applications that are based on DL, and large medical imaging vendors have already made 1444 

significant investments. Deep learning is here to stay, and its future in medical imaging and 1445 

radiation therapy seems bright. 1446 
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Figure Legends 2647 

Fig. 1: CNN with two convolution layers each followed by a pooling layer, and one fully connected layer. 2648 

Fig. 2: Number of peer-reviewed publications in radiologic medical imaging that involved DL. Peer-2649 

reviewed publications were searched on PubMed using the criteria ("deep learning" OR "deep neural 2650 

network" OR deep convolution OR deep convolutional OR convolution neural network OR “shift-2651 

invariant artificial neural network” OR MTANN) AND (radiography OR x-ray OR mammography OR 2652 

CT OR MRI OR PET OR ultrasound OR therapy OR radiology OR MR OR mammogram OR SPECT). 2653 

The search only covered the first three months of 2018 and the result was linearly extended to the rest of 2654 

2018. 2655 

Fig 3: Use of CNN as a feature extractor.196 (a) Each ROI is sent through AlexNet and the outputs from 2656 

each layer are preprocessed to be used as sets of features for an SVM. The filtered image outputs from 2657 

some of the layers can be seen in the left column. The numbers in parentheses for the center column 2658 

denote the dimensionality of the outputs from each layer. The numbers in parentheses for the right 2659 

column denote the length of the feature vector per ROI used as an input for the SVM after zero-variance 2660 

removal. (b) Performance in terms of area under the receiver operating characteristic curve for classifiers 2661 

based on features from each layer of AlexNet in the task of distinguishing between malignant and benign 2662 

breast tumors. 2663 

Fig. 4: CNN-extracted and conventional features can be combined in a number of ways, 2664 

including a traditional classifier such as an SVM.196 2665 

Fig. 5: The use of training, validation, and test sets for the design and performance evaluation of a 2666 

supervised machine learning algorithm. 2667 

Fig. 6: A disease image categorization framework using both images and texts.327 2668 
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Fig. 7: Eight sample disease keywords and images mined from PACS.180 2669 

 2670 

Table Headings 2671 
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Table I: Organ and substructure segmentation summary and performance using DL. 

 

Region 
Segmentation 

Object 

Network 

Input 

Network 

Architecture 

Basis 

Data Set 

(train/test) 

Dice 

Coefficient 

on Test Set 

Abdomen Skeletal muscle89 Whole Image FCN 
250/150 

patients 
0.93 

 
Subcutaneous and 

visceral fat areas90 
Image Patch Custom 

20/20 

patients 
0.92 - 0.98 

 
Liver, spleen, 

kidneys91 
Whole Image Custom 

140 scans 5-

fold CV 
0.94 – 0.96 

Bladder Bladder76 Image Patch CifarNet 
81/93 

patients 
0.86 

Brain 
Anterior visual 

pathway92 
Whole Image AE 

165 patients 

LOO CV 
0.78 

 Bones86 Whole image U-net 
16 patients 

LOO CV 
0.94 

 Striatum93 Whole Image Custom 
15/18 

patients 
0.83 

 

Substructures94 Image Patch Custom 
15/20 

patients 
0.86 – 0.95 

Substructures95 Image Patch Custom 
20/10 

patients 
0.92 

Substructures96 Image Patch 

Deep 

Residual 

Network92 

18 patients 

6-fold CV 
0.69 – 0.83 

Substructures97 Whole Image FCN 
150/947 

patients 
0.86 – 0.92 

Breast 
Dense tissue and 

fat98 
Image Patch Custom 

493 images 

5-fold CV 
0.63 – 0.95 
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Breast and 

fibroglandular 

tissue85 

Whole Image U-net 
66 patients 

3-fold CV 
0.85 – 0.94 

Head and 

Neck 
Organs-at-risk83 Image Patch Custom 

50 patients 

5-fold CV 
0.37 – 0.90 

Heart 

Left ventricle79 Whole Image AE 
15/15 

patients 
0.93 

Left ventricle82 Whole Image AE 
15/15 

patients 
0.94 

Left ventricle99 Image Patch Custom 
100/100 

patients 
0.86 

Left ventricle100 Image Patch Custom 
100/100 

patients 
0.88 

Fetal left ventricle101 Image Patch Custom 
10/41 

patients 
0.95 

 Right ventricle78 Whole Image AE 
16/16 

patients 
0.82 

Kidney 

Kidney102 Whole Image Custom 
2000/400 

patients 
0.97 

Kidney103 Whole Image FCN 
165/79 

patients 
0.86 

Knee 

Femur, femoral 

cartilage, tibia, tibial 

cartilage81 

Whole Image Custom 
60/40 

images 
- 

Liver 

Liver80 Image Patch Custom 
78/40 

patients 
- 

Liver104 Image Patch Custom 
109/32 

patients 
0.97 

 Portal vein83 Image Patch Custom 
72 scans 

8-fold CV 
0.70 
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Lung Lung105 Whole Image HNN 
62 slices/31 

patients 
0.96 – 0.97 

Pancreas 

Pancreas106 Image Patch Custom 
80 patients 

6-fold CV 
0.71 

Pancreas107 Image Patch Custom 
82 patients 

4-fold CV 
0.72 

Prostate 

Prostate108 Image Patch AE 
66 patients 

2-fold CV 
0.87 

Prostate109 Image Patch Custom 
30 patients 

LOO CV 
0.87 

Prostate110 Whole Image FCN 
41/99 

patients 
0.85 

Prostate87 Whole Image HNN 
250 patients 

5-fold CV 
0.90 

Rectum Organs-at-risk111 Whole Image VGG-16 
218/60 

patients 
0.88 – 0.93 

Spine Intervertebral disk112 Image Patch Custom 18/6 scans 0.91 

Whole 

body 
Multiple organs113 Whole Image FCN 

228/12 

scans 
- 

Multiple 

organs 

Liver and heart 

(blood pool, 

myocardium)114 

Whole Image Custom 

Liver: 20/10 

patients 

Heart: 10/10 

patients 

0.74 – 0.93 

Note: A “-” on the performance metrics means that the authors report different segmentation accuracy 

metrics. Abbreviations: AE: Auto-encoder. FCN: Fully Convolutional Network. HNN: Holistically-

Nested Network. LOO: Leave-one-out. CV: Cross-validation. 
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Table II : Lesion segmentation summary and performance using DL. 

Region 
Segmentation 

Object 

Network 

Input 

Network 

Architecture 

Basis 

Data Set 

(train/test) 

Dice 

Coefficient 

on Test Set 

Bladder Bladder lesion77 Image Patch CifarNet 
62 patients 

LOO CV 
0.51 

Breast Breast lesion118 Image Patch Custom 
107 patients 

4-fold CV 
0.93 

Bone 

Osteosarcoma119 Whole Image ResNet-50 15/8 patients 0.89 

Osteosarcoma120 Whole Image FCN 

1900/405 

images from 

23 patients 

0.90 

Brain Brain lesion121 Image Patch Custom 
61 patients  

5-fold CV 
0.65 

 
Brain 

metastases122 
Image Patch Custom 

225 patients 

5-fold CV 
0.67 

 Brain tumor115 Image Patch AE 

HGG: 150/69 

patients, 

LGG: 20/23 

patients 

HGG: 0.86 

LGG: 0.82 

 Brain tumor117 Image Patch Custom 

HGG: 220, 

LGG: 54,  

5-fold CV 

HGG: 0.85 – 

0.91  

LGG: 0.83 – 

0.86 

 Brain tumor123 Whole Image Custom 
30/25 

patients 
0.88 

 Brain tumor124 Whole Image FCN 
274/110 

patients 
0.82 

 Brain tumor88 Whole Image HNN 
20/10 

patients 
0.83 
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Ischemic lesions125 Whole Image DeConvNet 
380/381 

patients 
0.88 

Multiple sclerosis 

lesion126 
Whole Image Custom 

250/77 

patients 
0.64 

 
White matter 

hyper-intensities116 
Image Patch AE 

100/135 

patients 
0.88 

 
White matter 

hyper-intensities127 
Image Patch Custom 

378/50 

patients 
0.79 

Head and 

neck 

Nasopharyngeal 

cancer128 
Whole Image VGG-16 

184/46 

patients 
0.81 – 0.83 

 Thyroid nodule129 Image Patch HNN 
250 patients 

5-fold CV 
0.92 

Liver Liver lesion130 Image Patch Custom 
26 patients 

LOO CV 
0.80 

Lung Lung nodule131 Image Patch Custom 
350/493 

nodules 
0.82 

Lymph 

nodes 
Lymph nodes132 Whole Image HNN 

171 patients 

4-fold CV 
0.82 

Rectum Rectal cancer133 Image Patch Custom 
70/70 

patients 
0.68 

Skin Melanoma134 Image Patch Custom 
126 images 

4-fold CV 
- 

Note: A “-” on the performance metrics means that the authoers report different segmentation accuracy 

metrics. Abbreviations: AE: Auto-encoder. FCN: Fully Convolutional Network. HNN: Holistically-

Nested Network. LOO: Leave-one-out. CV: Cross-validation. HGG: High Grade Glioma. LGG: Low 

Grade Glioma. 
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Table III: Organ and Anatomical structure detection summary and performance.  

Organ 
Detection 

Object 
Network Input 

Network 

Architecture 

Basis  

Data Set 

(train/test) 

Error 

(Mean± 

STD)  

Bone 

37 hand 

landmarks147 
X-ray images Custom CNN 

895 images 

3-fold CV 

1.19±1.14

mm 

Femur bone135 
MR 2.5D image 

patches 

Custom 3D 

CNN 

40/10 

volumes 

4.53±2.31 

mm 

vertebrae148 
MR/CT image 

patches 
Custom CNN 

1150 

patches/ 

110 images 

3.81±2.98 

mm 

vertebrae149 US/X-ray images U-Net 
22/19 

patients 
F1:0.90 

Vessel 

carotid artery150  
CT 3D image 

patches 

Custom 3D 

CNN 

455 patient 

four-fold 

CV 

2.64±4.98

mm 

ascending 

aorta139 
3D US Custom CNN 

719/150 

patients 

1.04±0.50

mm 

Fetal 

anatomy 

Abdominal 

standard scan 

plane136, 151 

US image 

patches 
Custom CNN 

11942/871

8 images 

F1:0.71136, 

0.75151 

12 standard 

scan planes137 
US images Custom CNN 

800/200 

images 

F1:0.42-

0.93 

13 standard 

scan planes138 
US images AlexNet 

5229/2339 

images 

Acc: 0.10-

0.94 

Body 

Body parts152 CT images 
AlexNet + 

FCN 

450/49 

patients 

3.9±4.7 

voxels 

Body parts153 CT images AlexNet 
3438/860 

images 

AUC: 

0.998 

Multiple 3D CT images Custom CNN 200/200 F1:0.97 
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Organ154 scans 

Body parts141, 

142 
CT images LeNet 

2413/4043 

images 
F1:0.92 

Brain 
Brain 

landmarks155 
MR images FCN 

350/350 

images 

2.94±1.58

mm 

Lung 
Pathologic 

Lung156 
CT images FCN 

929 scans 

5-fold CV 

0.76±0.53 

mm 

Extremities Thigh muscle157 MR images FCN 
15/10 

patients 

1.4±0.8 

mm 

Heart 
Ventricle 

landmarks143-145 
MRI images 

Custom CNN 

+ RL 

801/90 

images 

2.9±2.4 

mm 

Abbreviations: FCN: Fully Convolutional Network. RL: Reinforcement learning. F1: harmonic average 

of the precision (positive predictive value) and recall (sensitivity). AUC: Area under the receiver 

operating characteristic curve. CV: Cross-validation. 

 

Table IV: Lesion detection using DL. 

Detection 

Organ 
Lesion Type 

Data set 

(train/test) 
Network 

Input 

Network 

Architecture 

Basis 

Lung and 

Thorax 

Pulmonary 

Nodule 

888 patients 5-fold CV168 

Image Patch168, 

169, 173-177 

Whole 

Image178-180 

CNN168, 169, 173, 

175-180 

SDAE/CNN174 

888 patients 10-fold 

CV169 

303 patients 10-fold 

CV173 

2400 images 10-fold 

CV174 

104 patients 5-fold CV175 

1006 patients 10-fold 

CV176 

Multiple 35,038/2,443 
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Pathologies radiographs178 

76,000/22,000 chest x-

rays180 

ImageNet Pre-training, 

433 patients LOO CV181 

Tuberculosis 685/151 chest 

radiographs179 

Brain 

Cerebral 

Aneurism 

300/100 magnetic 

resonance angiography 

images 182 Image Patch182 

Whole 

Image170, 172 

CNN182 

FCN/CNN170, 

172 

Cerebral 

microbleed 

230/50 brain MR scans172 

Lacune 868/111 brain MR 

scans170 

Breast 

Solid Cancer 

40,000/18,000 

mammographic images64 

Image Patch17, 

64, 183 

Whole 

Image66, 161 

CNN17, 64, 66, 183 

FCN/CNN161 

161/160 Breast MR 

images183 

Mass Pre-training on ~2,300 

mammography images, 

277/47 DBT cases17 

ImageNet Pre-training, 

306/163 breast 

ultrasounds images161 

Malignant 

mass & 

Mirco-

calcification 

ImageNet Pre-training, 

3476/115 FFDM 

images66 

Colon Polyp 
394/792 CT 

colonography cases166 

Whole 

Image184 
CNN166, 184, 185 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

101 CT colonography 

cases;10-fold CV185 

Image Patch166, 

185 

Colitis ImageNet Pre-

training,160 abdominal 

CT cases; 4-fold CV184 

Multiple Lymph Node 

ImageNet Pre-training, 

176 CT cases; 3-fold 

CV160 
Image Patch160, 

166, 186 
CNN160, 166, 186 69/17 abdominal CT 

cases166 

176 abdominal CT cases; 

3-fold CV186 

Liver Tumor NA/37187 Image Patch187 CNN187 

Thyroid Nodule 
21,523 Ultrasound 

images; 10-fold CV188 
Image Patch188 CNN188 

Prostate Cancer 
196 MR cases; 10-fold 

CV189 

Whole 

Image189 
FCN189 

Pericardium Effusion 20/5 CT cases190 
Whole 

Image190 
FCN190 

Vascular Calcification 
ImageNet Pre-training; 

84/28191 
Image Patch191 FCN191 

Abbreviations: SDAE: Stacked Denoising Auto-encoder. FCN: Fully Convolutional Network. LOO: 

Leave-one-out. CV: Cross-validation. 

 

 

Table V: Characterization using DL. 

Anatomic 

Site 
Object or Task Network Input 

Network 

Architecture  

Data Set 

(train/test) 

Breast Cancer risk Mammograms Pre-trained Alexnet 456 patients LOO 
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assessment192 followed by SVM CV 

Cancer risk 

assessment193 
Mammograms Modified AlexNet 

14,000/1850 

images randomly 

selected 20 times 

Cancer risk 

assessment194 
Mammograms Custom DCNN 

478/183 

mammograms 

Cancer risk 

assessment195 
Mammograms 

Fine-tuned a pre-

trained VGG16Net 
513/91 women 

Diagnosis196 Mammograms 
Pre-trained AlexNet 

followed by SVM 

607 cases 5-fold 

CV 

Diagnosis197 
Mammograms, 

MRI, US 

Pre-trained 

VGG19Net 

followed by SVM 

690 MRI, 245 

FFDM  1125 US, 

LOO CV 

Diagnosis198 
Breast 

Tomosynthesis 

Pre-trained Alexnet 

followed by 

evolutionary 

pruning 

2682/89 masses 

Diagnosis199 Mammograms Pre-trained AlexNet 1545/909 masses 

Diagnosis200 MRI MIP 

Pre-trained 

VGG19Net 

followed by SVM 

690 cases with 5-

fold CV 

Diagnosis201 DCE-MRI LSTM 562/141 cases 

Solitary cyst 

diagnosis202 
Mammograms Modified VGG Net 

1,600 lesions 8-

fold CV 

Prognosis203 Mammograms 

VGG16Net 

followed by logistic 

regression classifier 

79/20 cases 

randomly selected 

100 times 

Chest - 

Lung 

Pulmonary 

Nodule 

Classification204 

CT patches ResNet 665/166 nodules 
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Tissue 

Classification205 
CT patches 

Restricted 

Boltzmann 

Machines 

training 

50/100/150/200; 

testing 

20,000/1,000/20,0

00/20,000 image 

patches 

 
Interstitial 

Disease206 
CT patches Modified AlexNet 100/20 patients 

 

Interstitial 

Disease207 
CT patches Modified VGG 

public: 71/23 scans 

local: 20/6 scans 

Interstitial 

Disease208 
CT patches Custom 480/(120 and 240) 

Interstitial 

Disease209 
CT patches Custom 

36,106/1,050 

patches 

Pulmonary 

Nodule 

Staging210 

CT DFCNet 11/7 patients 

 Prognosis211 CT Custom 
7,983/ (1000 and 

2164) subjects 

Chest - 

cardiac 

 

Calcium 

Scoring212 
CT Custom 1181/506 scans 

 
Ventricle 

Quantification213 
MR 

Custom (CNN + 

RNN +Bayesian 

multitask) 

145 cases, 5-fold 

CV 

Abdomen 

Tissue 

Classification214 
Ultrasound 

CaffeNet and 

VGGNet 
136/49 Studies 

Liver Tumor 

Classification215 

Portal Phase 2D 

CT 
GAN 

182 cases, 3-fold 

CV 

Liver Fibrosis216 DCE-CT Custom CNN 460/100 scans 
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Fatty Liver 

Disease217 
US 

Invariant Scattering 

Convolution 

Network 

650 patients, 5- 

and 10-fold CV 

Brain Survival218 
Multiparametric 

MR 

Transfer learning as 

feature extractor, 

CNN-S 

75/37 patients 

Skeletal Maturity219 
Hand 

Radiographs 

Deep Residual 

Network 

14036/ (200 and 

913) exams 

Abbreviations: FCN: Fully Convolutional Network. LOO: Leave-one-out. CV: Cross-validation. 

 

Table VI : Image processing and reconstruction with DL.  

Task 
Imaging 

Modality  
Performance Measure Network Output  

Network 

Architecture Basis 

Filtering 

CT234 

Chest X-

Ray235 

X-ray 

fluoro236 

MSE234, CAD 

Performance234 

PSNR235, 236 SSIM235, 236 

Runtime236 

Likelihood of 

Nodule234 

Bone Image235 

CLAHE filtering236 

Custom CNN234, 235 

Residual CNN236 

Residual AE236 

Noise 

reduction 

CT237-240 

PET241 

PSNR237-241 RMSE237, 238 

SSIM237, 238, 240 NRMSE239 

NMSE241 

Noise-reduced 

image237-241 

Custom CNN237-239 

Residual AE237, 238 

Concatenated CNNs241 

U-net240 

Artifact 

reduction 

CT242, 243 

MRI244 

SNR242, 243 NMSE244 

Qualitative243 Runtime244 

Sparse-view 

recon242, 244 Metal 

artifact reduced 

image243 

U-net242, 244 

Custom CNN243 

Recons MRI245-248 

RMSE245, 248 Runtime245 

MSE246, 247 NRMSE246 

SSIM246 SNR248 

Image of scalar 

measures245 MR 

reconstruction246-248 

Custom CNN245, 248 

Custom NN246 

Cascade of CNNs247 

Registration 
MRI249-252 

X-ray to 

DICE249, 250 Runtime250 

Target overlap251 SNR252 

Deformable 

registration 249-252 

Custom CNN249, 251-254 

SAE250 
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3D253, 254 TRE254 Image & vessel 

sharpness252 mTREproj253  

Rigid body 3D 

transformation253, 254 

Synthesis of 

one 

modality 

from another 

CT from 

MRI255-259 

MRI from 

PET260 

PET from 

CT261 

MAE255, 256 PSNR255, 259 

ME256 MSE256 Pearson 

Correl256 PET Image 

Quality257, 258 SSIM260 

SUVR of MR-less 

methods260 Tumor detection 

by radiologist261  

Synthetic CT255-258 

Synthetic MRI260 

Synthetic PET261 

Custom 3D FCN255 

GAN259-261 

U-net256, 257 

AE258 

Image 

quality 

assessment 

US262 

CT263, 264 

MRI265 

AUC262, 264 IOU262 

Correlation between TRE 

estimation and ground 

trutth263 Concordance with 

readers265 

ROI localization & 

classification262 TRE 

estimation263 

estimate of image 

diagnostic value264, 

265 

Custom CNN262, 265 

Custom NN263 

VGG19264 

Abbreviations: MSE: Mean-squared error, RMSE: Root MSE, NSME: Normalized MSE, NRMSE: 

Normalized RMSE, SNR: signal-to-noise ratio, PSNR: Peak SNR, SSIM: Structural similarity, DICE: 

Segmentation overlap index, TRE: Target registration error, mTREproj: mean TRE in projection 

direction, MAE: Mean absolute error, ME: Mean error, SUVR: Standardized uptake value ratio, AUC: 

Area under the receiver operating characteristic curve, IOU: Intersection over union, CLAHE: Contrast-

limited adaptive histogram equalization. 

Table VII: Radiotherapy and assessment of response to treatment with DL. 

Anatomic 

Site 
Object or Task Network Input 

Network 

Architecture 

Dataset 

(train/test) 

Bladder Treatment response 

assessment268 
CT CifarNet 82/41 patients 

Brain 

 

Glioblastoma multiforme 

treatment options and 

survival prediction218 

MRI Custom 75/37 patients 

Assessment of treatment 

effect in acute ischemic 
MRI CNN based on 158/29 patients 
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stroke269 SegNet 

Breast 

Response to neoadjuvant 

chemotherapy270 
MRI 

Pre-trained 

VGGNet 

followed by 

LDA 

561 exams 

from 64 

subjects LOO 

CV 

Response to neoadjuvant 

chemotherapy271 
MRI Custom 133/33 patients 

Segmentation of clinical 

target volume272 
CT 

Deep Dilated 

Residual 

Network 

800 patients 5-

fold CV 

Cancer cell 

lines 

Prediction of drug 

effectiveness in cancer cell 

lines273 

Multiple omics data 

from cancer cells 

(gene expression 

data, copy number 

variation data, 

mutation data, and 

cell line  

annotations) 

Deep 

autoencoder 

520/104 cell 

lines 

Head and 

Neck Organ segmentation274 CT 

U-Net based 

with shape 

retention model 

22/10 scans 

Kidney Renal segmentation275 CT Custom 89/24 patients 

Early detection of acute 

renal transplant rejection276 

 

DWI-MRI 
Stacked 

autoencoders 

100 patients 4-

fold, 10-fold 

and LOO CV 

Liver Hepatobiliary toxicity 

prediction after liver 

SBRT277 

CT and patient 

demographics, 

clinical information 

Custom CNN 

trained on other 

organs, fine-

tuned on liver 

125 patients 

20-fold CV 
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SBRT 

Lung 

Estimation of  dose 

protocols in 

Radiotherapy278 

FDG-PET/CT, 

clinical, genetic, 

imaging radiomics 

features, tumor and 

lung dosimetric 

variables, treatment 

plans 

Deep Q-

Network 

114 real train / 

4000 

synthesized test 

cases 

Dynamic tracking during 

therapy279 
DRRs from 4D CT DenseNet 1/9 volumes 

Prostate  Prediction of dose from 

patient image contours280 
IMRT U-Net 80/8 patients 

Prediction of dosimetric 

eligibility of prostate cancer 

patients undergoing 

IMRT281 

CT 
Fine-tuned 

AlexNet 

60 patients 5-

fold CV 

Pelvis Generating synthetic CTs 

from MR-only 

radiotherapy282 

MRI cGAN 123/59 patients 

Assessment of toxicity to 

normal organs and tissue283 

Rectum surface dose 

maps 

Fine-tuned 

VGG-16 

42 patients 10-

fold and LOO 

CV 

Rectum 

Segmentation of rectal 

tumors on T2-MRI and 

clinical target volume 

segmentation on CT272 

T2-MRI or CT 

Novel CNN 

involving 

cascaded atrous 

convolution and 

spatial pyramid 

pooling 

70 T2-MR and 

100 CT 5-fold 

CV 

 

Prediction of pathologic CT DNN Classifier 95 patients 5-
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complete response after 

chemoradiation284 

Custom 

Estimator  

fold CV 

Abbreviations: IMRT: Intensity-modulated radiation therapy. SBRT: Stereotactic body radiotherapy. 

DWI: Dif fusion-weighted MRI. DRR: Digitally reconstructed radiographs. LDA: Linear discriminant 

analysis. LOO: Leave-one-out. CV: Cross-validation.  
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