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ABSTRACT
Species eomposition and community structureganopical forestdhavebeen
severely affectely increase inclimate changand disturbance. Among the most

conspicuous changes is the proliferation of liafhgseincrease haveaffectednot
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only thecarbon storage capacity of forests but &lee dynamics by reducing tree
growth andncreasing mortalityDespte theimportance of lianas ineotropical

foress, mostof the studies on lianas have focused on adult stages, ignoring dynamics
atthe seedlingstage Here,we asked whether observed increases in liana abundance
are associated with a degraphicadvantage that emergearlyin lianaontogenyand
with decreasegrecipitationandincreasedlisturbance. To test this,ecompared
patterns of growth and survival between liana seedangstree seedlings using a
longterm dataset of seedling plots from a subtropical wet forest in PuertoTRien,

we examined the effect of precipitati@md land use history on these demographic
variables We found evidenctr lianaseedling survival advantage over trees, but no
growthqadvantages. This survival advantagkibited significant temporal variation
linked with patterns of rainfalhs well as differences associateith land-usehistory

in the study area. Furthermore, we found that neighborhood density has a negative
effect onlianasurvival and growthOur resultandicatethatliana proliferation is

likely related toa survival advantage that emerges in early stagess influened

by climatie.eonditionsand past disturbancBredicted climatic changés rainfall
pattensyincluding more frequeandsevere droughtspgether withincreases in
disturbance, coulave a significant effect on seedling tropical communities by
favoring lianas.

KEY WORDS: Community dynamics, growth, land use history, precipitation,
seedlings crowding, survivalentropical forest.

INTRODUCTION

The high levels of species diversity found in tropical ptaomhimunitiesare in part
represented bs high numbeof liana species that reach thpaak diersity in
tropicalregions(Gentry 1992) Duringthe lastfew decadesthe proportiorof lianas

has increaseih the tropicsespecially in the America®hillips et al. 2002, Wright et

al. 2004772015b, Schnitzer and Bongers 2011, Schnitzer 2015) (Kingibeet al.
2017forssmallsized teeg resulting inalterations of forests structure andmposition

as well.ageductions ircarbon storage capacity of the forg&bave et al. 2008,

Ingwell'etal. 2010, Schnitzer and Bongers 2011, van der Heijden et al. 2015, Lai et al.

2017).Despite the evident changes thrapical plant communities have been
experiencingelated to liana proliferatigrexplanations fotherelative success of

lianasin these environmentemainunclear.
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Previous studie have suggested ththesucces®f lianasis causedy their

superior competitive ability that reducthe recruitment and survival of adult trees

(Schnitzer and Bongers 2002, Schnitzer 2005, Schnitzer and Carson 2010, Tobin et al.

2012).Given that lianasre structural parasites nées(Stevens 1987hey do not
need- g invest in structure to support the main stestehdlianas may invest more
in photosynthetic andascular tissues that improve their wated antrient uptake
efficiency(Putz 1983, Schnitzer 2005). In adult stadesyesof lianaseasilyinvade
the canopyby extendng longbranches kkeraly that take advantage of the good light
conditions in the canopy (Schnitzer and Bongers 2002). In addition, it has been
suggested that lianas may suffer @es water stress and thus grow better than trees
during dry‘periods (Schnitzer 2005). Althoutdpe majority of thestudiesassasing

the regative effects dianasand their demographic succésse been focused on
adultstagesf lianas (Schnitzer and Carson 2010, Wright et al. 201%a3tW have
little evidence owhether the demographic advantagdiaiasis evident even at their
earliest.stagesf ontogeny(but seéNright et al. 2004; Hogan et al. 2017) .

Sincellianas are freestanding individudising early ontogenypiomass
allocation ‘for seHsupporting structures is necessary and the obsedexhtages at
adult stages may not be reflected at seedling sthigegever, lianas may still have
physiologieal traits, such as large and wide vessels accompanied with thick xylem
walls, andgreaterstomatal control compared to trees, that wquitvide advantages
for wateruptake strategies independently of the ontogenetic fEagers 185,

Ewers et al. 1990, Angyalossy et al. 20I8)esephysiologicaltraits might benefit
lianaspeciesaver treesluring dry periods, anid areas of higliisturbancehat are
usually drier and sunnier than the shaded underfBazzaz and Wayne 1994,
Laurance et al. 2001, Wright et al. 2004, Schnitzer and Bongers 2011), allowing
higher.growth and survival rates even at early stages of developgnused,
previoussstudies have fod that (adult) liana abundanicereases in disturbed areas
(PerezSalierup et al. 1998, Dewalt et al. 2000, Letcher and Chazdon 2009), yet, no
studiesshave shown this fearly ontogenetic stages.

At'thelocal scalejndividual crowdingmight also affect seedling performance
Previous studies have shown that density of neighboring seedlings influences
individual performancé€Packerand Clay, 2003Comita et al2014, Kobe and
Vriesendorp, 2011), and this effect could vacyoss speciedepending otheir life-

historystrategiesFor instancelargeseededpecies are less negatively affected by
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high density of conspecific neighbors thamallerseededpeciegLebrija-Trejos et
al. 2016).Given that lianas exhibit a set of stratedlest are different from trees
(Ewers 1985, Ewers et al. 1990, Angyalossy et al. 2@ié)se of resourcesay
overlapmoreamong liana individuals tharetween lianaand treesThis greater
overlapinresourcase couldesult in lower performancd banaseedlings where
higher @densiésof liananeighbors are present (Wright et al. 2015a).

In‘this studywe compared seedling performance between lianas and tree
species in guliropicalwetforest in Puerto Ricand linked it tdbiotic andclimatic
factors We combineda tenyeardemographic inventory of seedling pletgh local
rainfall'dataand neighborhood crowding tavestigatethe following questions: (i) Do
lianas havedvantageous demographic penfance(i.e., growth and survival)
relative to tfeeatthe seedling stag€®) Are lianaseedlingsesponding differentially
to abiotic factors such as local climatic conditiansl landuse historg (iii) How is
this potential advantage related with local neighborhood crowdieyRredict that
demographic advantages for lianas should emerge at early ontogenetidigelyges,
associated.witlphysiological characteristics that allow tharmore efficient use of
resourcegl.e, water availability) The variability in climatic and local abiotic
conditions should favor lianseedlingover tree seedlinga dry anddisturbed
conditions«In additionye expect aegative neighborhood denséffecton liana

survival and growth.

METHODS

Study site

We compiled seedlingnformation data from the 16-ha Luquillo Forest Dynamic Plot
(LFDP)(18°20°N, 65°49°W) located in northeasteriuerto Ricowhichis part of

the Smithsonian’s ForestE® network. This foress classified as a subtropicaét
forestwithramean annual temperatuné25.2 °C meanannual rainfalbf 3,500 mm
year', andwelevatiofirom 333 to 428 m.a.s.| (Thompson et al. 2004). In the past, the
plot wasaffected byatural(hurricanespnd human disturbanctsatseverely altexd
species compositioand dynamics. Wo major hurricaneghatimpacted the island
during the study periodbereHurricaneHugo in September 1988ome months

before the establishment of thEDP, and hurricane Georges in 19®8okaw and
Grear 1991, Zimmerman et al. 1994, Thompson et al. 2004). In addition,gartie

1900s, the north portion of the plot was greatly affected by agriculture based on
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coffeeand fruit plantationghat were lateabandoned after the hurricane $atpe I
1928,while selective loggingvas practiced on the south portion of the piatil 1944
(Thompson et al. 2002Based on aerial photographs taken in 1936 (Foster et al. 1999,
Thompson et al. 2002)e classified the H8a plot in twocategories: lowntensity

land use¥“80% of canopy cover) and high-intensity land use (< 80% of canopy

cover) to examine the role of past disturbance on liana seedling survival.

Seedling censuses

We uselinfermationfrom 120 seedling-plattatons distributed along tHeFDP.

Each station consisted of three seedling pbtsx 1 mestablished at a distanoé

~2 mfrom/each other. From 2007 to 20@garting in Januarypll the seedling plots
wereannuallymonitored for growth, recruitmenaind survival. Al freestanding
seedlingsx0to 100cm in height)were taggedidentified, andneasuredWhenplots
had new.recruits, these ineluals werancluded in thenewcensus following the
same methodolyy previously explainedVe classified alindividual seedlings across
the entirecensus according to their haagliana a tree. We found #otal of 15 liana
speciegCissampelos pareirh., Menispermaceacissus vertidiata (L.) Nicolson &
C.E."Jarvis VitaceaeDioscorea alatd_., Dioscoreacead)ioscorea polygonoides
Humb &Bonpl. Ex Willd.Dioscoreaceadiippocratea volubilid., Celastraceae;
Heteropteys laurifolia(L.) A. JussMalpighiacecaelpomoea repanda Jacg.
ConvolvulaceaeWarcgravia rectifloraTriana & Planch MaragyraviaceaePaullinia
pinnatal., Sapindancea®inzona coriacedMart. & Zucc, DilleniaceaeRourea
surinamensiMiqg., Connaracea&chlegelia brachyanth@riseb, Schlegeliaceae;
Securidacawvirgate SywPolygonacea&smilax coriace&preng. SmilacaceaeSmilax
domingensidVilld., Smilacacegeand77 species of tree@ppendix S1Table S1)

For the analyses, we combined seedling information at the station level, and our

sample size was 120.

Climatic data
We used infermation aboubcal daily precipitationthat has been measured at the El
Verde meteorological statidrom 1974 to 2014This station is situated less than 0.5

km to the south of the LFDRur analyses useannual precipitatiomaluesthat were
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computed from daily precipitation data from 2007 to 20#ese data werabtained
from the LTER website(http://lug.lter.network/).

Data analyses

We recorded annuaeedling survivahcross the 120 stations acamlculated relative

log(Hynt)— log (Hy)
At

growth ratesfor each individual seedli , Where H indicates

seedlingheight at successive time step¥hen, weassessethe proportion of liana
and tree . seedlings that survivateach station.

In order tocompare annual seedling survival between lianas and twees
built anullFmodel,in which we shuffled the hab(te., liana or treepf all the
individuals within onestation(three seedling plotskeeping theotal number of
lianas and.trees for eastation constant. Nexive recalculate the proportion of
survivinglianas. Becausehe local conditions within eadtationmay change from
site to site"we restricte@ndomizations teachstation In total, we used 999
randomizations such that theend we had 999 null estimatdstioe proportion of
survivinglianas in eachstationfor each year. We estimated the standardized effect
size (SES) fothe proportion of liana survival by subtracting the mean values of the
null distribution from the observed values and dividing by the standard deviation of
the nuliFdstribution. Positive SES values indicaténeher proportion of liana survival
over treesgiven observed individuals of lianas and tredsereas negative values
indicate the opposite.

Wesusel a similar null model to test whether the relative growth rat@né
seedlings was significantly higher than tree seedlings. We randomized the habit (liana
or tree)ffor-all individuals within each pl689 times and then we estimated mean
relative growth rate for lianas. Next, @ calculated SES mean relative growth rates
for lianas in thesame way it was described abpaad the meaning of positive and
negative values remathe same as well

To explore the role oktmporal variability in precipitatioand landdse effects
onliana seedlingurvivaland growth advantagere fit models for SES survival and
SES growthrespectivelywhichincluded as fixed effects the mean annual rainfall
from theyearprior to the census, and the lande category at the station level.
Station was modeled as a random effect to account for syatialion The data used

for theseanalysespan the period betweef@” and 2014given that rainfall
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199 information is only availalel for these year3o facilitate interpretatiorthe mean
200 annual rainfall variable was centered at its average and divided by its standard
201 deviation.

202 Considering that local neighborhood might influence the demographic
203 performance of seedlings we evaluatdtether the density of neighbor individuals
204 had asignificanteffect onliana seedlingurvival and growthTo accomplish thisye
205 fit models'in'whiclSESlianasurvival and SE8anagrowthwere modeled as a
206 function of liana seedling density total density includingree and lianaeedlings.
207 To accountfor spatialariation the variable station was modeled as a random effect
208 Census,was also modeled as a random efidicinodels werdit by implementing
209 linear mixedeffects models with normalistributed errors by using tthme4package
210 (Bates etali2015)in R 3.4.0 (R Development Qaam, 2017) Confidence

211 intervals for each parameter were computed by bootstrap.

212

213 RESULTS

214  Comparing.survival and growth between lianasand trees

215 We found'that during 2007-2016 the total number of seed{liaggs and trees)
216 increased from about 7,000 to 11,%0oss the 120 statiorla addition, he

217 proportionefhana seedlingscreasedrom ~0.4 to more than 0.@Fig. 1). Liana
218 survival wassignificantly higher thartreesurvivalduringthe firsttwo-yearintervals
219 (20072008 and 20020M), in 2012-2013, anih the last tweyear intervalg2014-
220 2015 and 2015-2016parginally significantn 2009-2010, non-significair 2013-
221 2014, and significait lower thantreesin 2010-2011 and 2011-201Rig. 2). On the
222 other handseedling growth rateserein general no differerfor lianas andrees
223 exceptin the time intervalsf 2008-2009 and 2010-201heregrowth rates were
224  significantly.lowerfor lianasthan trees (Fig2).

225

226 Effectsof-climate and land-use history on liana seedling survival

227 Weexamined whether the variation$iS liana survivehnd SESgrowthwere

228 influencediby mean annual precipitation from 2007 to 20idland-use history. We
229 found thatSESliana survival wasignificant anchegatively associateslith mean
230 annual precipitatioFig. 3). In addition, we found th&ES liana survival was

231 significantly lower in the portion of the glavith hightintensity landuse than in the
232 area that experienced lemtensity landuse(Fig. 4, Appendix S1Table ). Similar
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analyses for SES liana growth shoveatbn-significant effect of annual mean

precipitation and land use (Appendix Shble S).

Effects of neighborhood crowding on liana seedling demogr aphy

To evaluate'whetherariation intree andiana seedlinglemography waassociated

with neighborhood densityye examined the relationship betwe®ESliana values

of growth and survival witlthetotal density of neighbors and the densityiaha
neighbers. We found that tliensity oflianashad a significantnegative effect on

liana survival while the effect oftotal densitywasnot significant (Fig5; Appendix
S1:TablesS4 and S5). For the analyses considering growth rates and neighborhood
densityeffects wefound that high density of seedlings and high density of lianas
werenegativelycorrelated with liangrowth rategFig. 5, Appendix S1Tables &

and S7).

DISCUSSION

An increasing number of studibaveshown that tropical forests are experiencing
remarkable changes in structure and dynamics (Phillips and Gentry 1994, Condit
1998, Allenet al. 201,Enquist and Enquist 201 3yhich includes an outstanding
proliferation of lianasn theNeotropics (Phillips et al. 2002, Schnitzer and Bongers
2011, Delgado et al. 2016, Hogan et al. 20Déterminingwhether these changes are
alsopresent in earlier ontogenetic stages and linkebiotic and biotic factors a
central'goal in ecology and conservation biology. In this stweysought to
investigatewhetherlianasexhibita demographic advantage dursegdlingstages
therebyhelpng tofurther elucidate the drivers theincreasng abundance of lianas

in Neotropicalforess. Our findings suggest that liana seedlings exhibit a survival
advaptag@associateavith dry yearsand highintensityland-useportions of the forest
These results have important implicatidosforest structure, diversity, and dynamics
in the context of global climate changéjerein more severe and frequent extreme

droughtevents are predicted to occur in tropical environments (IPCC 2013).

Liana seedlingare increasing over time
By looking at thegererd patterns that describe the changes in seedling number and
proportion of liana individuals oveime (Fig. 1),a clear featuref the seedling

community in Puerto Rics a high and increasing proportion of liana individuals.
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Thistrend is consistent with patterns of adult lianas in other Neotropical forests
(Phillips et al. 2002, Schnitzer and Bongers 2011), and with a previous study in the
same site examining the recruitment success for §ameeand trespecies from

2008 to 201@Muscarella et al. 2013Yhe proportion of lianas during 2007 to 2016
ranged from‘approximately 40% to more than 60%, almost three times the proportion
of lianas fandin BarroColorado sland (BCI) Panama during eiglears of

monitoring (1994 to 2002) (Wright et al. 2004ig first resulthighlights, thenthat

lianas represent aimcreasinglyimportant component of the seedling community in

this forest.

Temporal @and spatial variability in liana seedlings demography is associated with
rainfall and'disturbance
The observed increaseliana seedlings is likely associatedh a survival advantage
that was evidenced in our results (Fig. )is patternhowever, was not consistently
found across the wholtudy period There wasmportantinter-amual variation in
lianademeographisuccess associatedth temporal seasonalitglatedto local
climaticeonditions, in whichianaseedling survival was enhancegring periods of
low annual precipitation (Fig. 3jlthough, br seedling stagesralght is perhaps
one of thekey causes of plant mortality in tropical forests (Bunker and Carson 2005,
Nepstad et al. 2007, Engelbrecht et al. 2007, Kraft et al. 2011, Saatchi et al. 2012,
Comita.and Engelbrecht 2014, O’Brien et al. 2017), our results suggest that liana
seedlings e less affected by dry conditiorihis demographic advantage of lianas
duringdry periods has been also reported iacent analysis usirggsubset of species
of the seedling community e LFDP(Uriarte et al. 2017)andin other tropical
foress for adultianas(Swaine and Grace 2007). Further, Wrighal.(2004) found
high variation in seedling densitissBarro Coloraddslandrelatedto dry and warm
periodstassaciatesith ENSOeventswherehigher recruitmendccurredduring the
ENSOyearsin our study, ENSO occurred during 2009-2010 and 2014-2015,
coinciding with the years whesurvival advantage was detected for liana seedlings
and when precipitation was particularly lokid 3). Nevertheless, longer time series
would be needed to thoroughly test the link between liana seedivantages and
ENSO evergin Puerto Rico

Theobserved superi@urvival of liana seedlings relative to trees suggests that

lianas might exhibit physiological and ecological characteristics tlwat #lem to
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301 attain better performance than trees at early ontogenetic stages. For example, recent
302 studies have shown that lianas haggeater stomatal control thia¢lps to regulate

303 water lossunderlow water conditiongCai and Bongers 2007, Cai et al. 2009%he&D

304 studies have found that lianas are desgted, which enables them to access water at
305 greatdepths'during dry periods (Restom and Nepstad 2004, discussed by Schnitzer
306 2005, Swaine and Grace 200Zianas are alsequipped with the largest and widest
307 vessels among the vascular plapécies, which allow great conductivity. This same
308 attribute also contributes to enhanced vulnerability (Ewers 1985, Ewers et al. 1990,
309 Angyalossy.et al. 2015); however, lianas have also thick xylem walls that help avoid
310 water transport failur@asrahi 2014). These characteristics are likely developed
311 during early stages and provide physiological benefits that allow liana seedlings to
312 performbetterunder drought conditions (Schnitzer 2005).

313 Another potentialdctorthatinfluencesthe success of lian@s Puerto Rico is

314 relatedto the history ohuman and natural disturbancktny studies have suggested
315 that adult lianas benefit from disturbar{@erezSalicrup et al. 1998, Laurance et al.
316 2001, Schnitzer and Bongers 2002) anelinked to successional processes (Letcher
317 and Chazdon 2009, Alves et al. 2012, Hogan et al. 2017). Currently, the plant

318 communityin theeFDP is recoveing from past disturbance after hurricaéisgo

319 and George&Zimmerman et all994, Thompson et al. 2002, 2004, Uriarte et al.

320 2009)and varied landise history that occurrdzbfore 1934We evaluatedhe

321 response of liana seedlings to lamgk and hurricane effects by integratiagd-use

322 informationbased on aerial canopy photographs taken two pfrhiuman

323 activities ceased in the plot. The results sugtpedthe spatialvariation in liana

324 seedlingsurvival throughouthe LFDPis explained bylifferencesn past disturbance
325 (Fig. 4), emphasizinthevariableroles of hurricanes and anthropogenic influenoas
326 the current proliferation of lianseedlingsn this forest. In agreement with these

327 findingsy"Hogan et al. (2017) found that abundasfcadult lianas antdanaseed rain

328 increased-after 2001, especially in the high laseintensity portion of thé.FDP.

329 Ourresults thereforejndicate that the gsitive effect of disturbance on lianasalso

330 evidenced.during early ontogenetic stages.

331 Our study also shows that growth and seedling survival are not necessarily
332 coupled. Overall, significant differences in survival between trees and lianas were
333 more fequent than differences in growth. One potential explanation for these results

334 s that differences in growth may occur at shorter temporal scales. For example

This article is protected by copyright. All rights reserved



335 Schnitzer2005) showed intra-annual variability in growth,ew liana species tend
336 to exhibit faster growth than trees during the dry season compared with the wet
337 seasonAnother explanation miglgimply be that growth rates are noisier than

338 survivalrates

339

340 Crowding effects on liana seedlings

341 The demographic adveagesof liana seedlings observed during ggars are

342 sendiive to liana crowding #ects which decreasdiana densityafteryears otigh

343 recruitment(Fig. 5). When analyzing the role of neighborhood density on liana
344  survival, wefound that lianseedling survival is negatively related to the total

345 numberiof'ana neighbors (Fig. 5). For growth, the results stitvat not only the
346 liana density bualsothedensity of all neighbors have negative effects on liana
347 growth.These negative crowding effects are likely assocmattddyears of high

348 recruitment that arfollowed by periods of high mortality (Appendix S1: Fig)S1
349

350 Conclusion

351 Our studyindicates théiinas exhibit ademographic advantagieat stars earlyin

352 ontogenyand isassociatedavith past disturbance ardtought Predictedincreases in
353 anthropagenic activitiesnd natural disturbance®gether withmore frequent severe
354 droughts in tropical forestayelikely to drive compositional changes plant

355 communities (Woods 1989, Enquist anaghist 2011, EsquiveVuelbert et al. 2016)
356 and potentially lead to continu@ttreases in liana abundanc€ke integration of

357 long-term information that considers fluctuations in climatic phenomena is key to
358 predictalterationsn structure and composition of tropical seedling communities in
359 response tenvironmental change. Futwstudiesshould nclude analysgof relevant
360 functional traitso provide additional insights into the underlying physiological
361 mechanisms

362
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593 Fig. 1. Bar-plot showingchanges irthe total number of seedlings across 120 sites in
594 LFDP,Puerto Rico from 2007 to 201®he gray line represents chaagethe

595 proportion of lianas ovdime.
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597 Fig. 2. Standarizedeffect size otheproportion oflianaseedlingsurvivaland liana
598 relativegrowthratesrelative to trees seedling communitiegver tenyears.White

599 boxplotsshow the resultbased on survival andatk-gray boxplotshow the results
600 based omelative growth rateslhe two lightgrayboxplots in the top figure show

601 ENSO.events that occurred during the study peRaoditive SES vales indicate

602 higher growth rates or higher proportion of lissegedlingsurvival over trees given
603 observed individuals of lianas and tremhereas negative values indicate the opposite.
604 The values on top of the boxplot indicate the level of significan®ilcoxon

605 signed-rank test where *** for p<0.001, ** for p<0.01 and * for p<0.05.
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Fig. 3. Relationship betweemeanannual precipitatiolat El Verde Field Statioand
SES liana survivalThe gayline shows the vaation in scaledannual precipitation
from 2007 to 2014The Hack dashedine shows the temporal variation in mean
annual SES liana survivatintervalsfrom 2007-20080 2014-2015. The plot at the
right shows-the resutif themodeltesting for the relationship betwesrean annual

precipitation (MAP)and SES liana survival. Each point represents a station.

Fig. 4. kanduse eféct on SES liana survival. Dots indicate seedling stations, the
black line represents the mean estimatetaadhaded gray area shotie 95%

credible,intervalsValues for this covariate are summarizedppendix S1Table .

Fig. 5. Crowding effect on liana demography. Top plots with gray dots show
relationshipsusin@ES liana survival. Bottom plots wittalgk points show
relationshipasingSES liana relative growth ratBlack lines show significant

relationshig, the dashed line shows a r&gnificant relationship
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