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Abstract11

The increasing complexity of Earth system models (ESMs) has inspired efforts to quantita-12

tively assess model fidelity through rigorous comparison with best-available measurements13

and observational data products. ESMs exhibit a high degree of spread in predictions of14

land biogeochemistry, biogeophysics, and hydrology, which are sensitive to forcing from15

other model components. Based on insights from prior land model evaluation studies and16

community workshops, the authors developed an open source model benchmarking soft-17

ware package that generates graphical diagnostics and scores model performance in sup-18

port of the International Land Model Benchmarking (ILAMB) project. Employing a suite19

of in situ, remote sensing, and reanalysis datasets, the ILAMB package performs compre-20

hensive model assessment across a wide range of land variables and generates a hierar-21

chical set of webpages containing statistical analyses and figures designed to provide the22

user insights into strengths and weaknesses of multiple models or model versions. De-23

scribed here is the benchmarking philosophy and mathematical methodology embodied in24

the most recent implementation of the ILAMB package. Comparison methods unique to a25

few specific datasets are presented, and guidelines for configuring an ILAMB analysis and26

interpreting resulting model performance scores are discussed. ILAMB is being adopted27

by modeling teams and centers during model development and for model intercompari-28

son projects, and community engagement is sought for extending evaluation metrics and29

adding new observational datasets to the benchmarking framework.30

1 Introduction31

As Earth system models (ESMs) become increasingly complex and observational32

data volumes rapidly expand, there is a growing need for comprehensive and multi-faceted33

evaluation of model fidelity. Process-rich ESMs pose challenges to developers implement-34

ing new parameterizations or tuning process representations, and to the broader commu-35

nity seeking information about the skill of model predictions. Model developers and soft-36

ware engineers require a systematic means for evaluating changes in model results to en-37

sure that developments improve the scientific performance of target process representations38

while not adversely affecting results in other, possibly less familiar, parts of the model. To39

advance understanding and predictability of terrestrial biogeochemical processes and their40

interactions with hydrology and climate under conditions of increasing atmospheric car-41

bon dioxide, rigorous analysis methods, employing best-available observational data, are42
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required to objectively assess and constrain model predictions, inform model development,43

and identify needed measurements and field experiments (Hoffman et al., 2017).44

Building upon past model evaluation work (Randerson et al., 2009), we developed an45

extensible model benchmarking package in support of the goals of the International Land46

Model Benchmarking (ILAMB; https://www.ilamb.org/) activity. ILAMB’s goals are47

to48

1. develop internationally accepted benchmarks for land model performance by draw-49

ing upon international expertise and collaboration;50

2. promote the use of these benchmarks by the international community for model51

intercomparison and development;52

3. strengthen linkages among experimental, remote sensing, and climate modeling53

communities in the design of new model tests, benchmarks, and measurement pro-54

grams; and55

4. support the design and development of a new, open source, benchmarking software56

system for use by the international community.57

Three ILAMB workshops have been held—in Exeter, United Kingdom, in 2009; Irvine,58

California, United States, in 2011 (Luo et al., 2012); and Washington, DC, United States,59

in 2016 (Hoffman et al., 2017)—to engage the modeling, measurements, and remote sens-60

ing communities in the identification of observational datasets and the design of model61

evaluation metrics. In this way, community consensus was sought for the curation of ob-62

servational data and the methodology of model evaluation and scoring, which are de-63

scribed below.64

Recognition that the capacities of the terrestrial and marine biosphere to store an-65

thropogenic carbon will weaken under climate warming (Cox et al., 2000; Friedlingstein66

et al., 2001; Fung et al., 2005; Denman et al., 2007; Randerson et al., 2015; Mahowald67

et al., 2017; Moore et al., 2018) and that uncertainties in carbon cycle feedbacks must68

be quantified and reduced to improve projections of future climate change (Friedling-69

stein et al., 2006; Gregory et al., 2009; Arora et al., 2013; Ciais et al., 2013; Friedlingstein70

et al., 2014; Hoffman et al., 2014) has inspired efforts to quantitatively evaluate model per-71

formance through comparison with in situ and remote sensing observations (Anav et al.,72

2013; Eyring et al., 2016). Multi-model simulation results from the third Coupled Model73
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Intercomparison Project (CMIP3; Meehl et al., 2007) and fifth Coupled Model Intercom-74

parison Project (CMIP5; Taylor et al., 2012), which informed the Intergovernmental Panel75

on Climate Change (IPCC) Fourth and Fifth Assessment Reports (AR4 and AR5), pro-76

vided opportunities for developing and testing model evaluation diagnostics, formal met-77

rics, and exploration of benchmarking concepts and techniques. Early work on coupled78

model evaluation and establishing formal metrics focused primarily on atmospheric vari-79

ables (Reichler and Kim, 2008; Gleckler et al., 2008). Following the first two ILAMB80

workshops, the land modeling community began exploring standardized and comprehen-81

sive benchmarking for terrestrial carbon cycle models (Cadule et al., 2010; Blyth et al.,82

2011; Abramowitz, 2012; Kelley et al., 2013; Dalmonech and Zaehle, 2013; Piao et al.,83

2013; Anav et al., 2013; Bouskill et al., 2014; Ghimire et al., 2016). While some researchers84

define benchmarking as a series of model tests based on a pre-defined expected level of85

performance (Abramowitz, 2005; Best et al., 2015), most of the systematic benchmarking86

strategies explored by the land modeling community to date do not depend upon the estab-87

lishment of an expected level of performance.88

The ILAMB software package, hereafter referred to as ILAMB, shares some of the89

same goals as existing model diagnostic and evaluation tools, such as the Protocol for the90

Analysis for Land Surface models (PALS; Abramowitz, 2012), the Program for Climate91

Model Diagnosis and Intercomparison (PCMDI) Metrics Package (PMP; Gleckler et al.,92

2016), the Earth System Model Evaluation Tool (ESMValTool; Eyring et al., 2016), the93

Land surface Verification Toolkit (LVT; Kumar et al., 2012), and a wide variety of often94

custom-developed diagnostic packages in use at international modeling centers. Some of95

these tools provide model-to-model comparisons, a large collection of standalone graph-96

ical diagnostics, or workflow infrastructure that allows one to regenerate analysis results97

from previously published studies but with new model outputs. In contrast, ILAMB was98

designed to compare multiple models or model versions with observations simultaneously,99

assess functional relationships between prognostic variables and one or more forcing vari-100

ables through variable-to-variable comparisons (e.g., gross primary production vs. precip-101

itation), and score model performance across a suite of metrics, variables, and datasets.102

Model performance is evaluated for variables in categories of biogeochemistry (Table 2),103

hydrology (Table 3), radiation and energy (Table 4), and climate forcing (Table 5).104

For every variable, ILAMB generates graphical diagnostics (spatial contour maps,105

time series line plots, and Taylor diagrams (Taylor, 2001)) and scores model performance106
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for the period mean, bias, root mean squared error (RMSE), spatial distribution, inter-107

annual coefficient of variation, seasonal cycle, and long-term trend. Model performance108

scores are calculated for each metric and variable and are scaled based on the degree of109

certainty of the observational dataset, the scale appropriateness, and the overall impor-110

tance of the constraint or process to model predictions, following a customizable rubric111

described below (Table 1). Scores are aggregated across metrics and datasets, producing a112

single scalar score for each variable for every model or model version. As shown in Fig-113

ure 1, these scalar scores are presented graphically. On the left side we use a stop-light114

color scheme to indicate aggregate performance for each model by variable. On the right,115

we show relative performance (i.e., Z-score), indicating which models or model versions116

perform better with respect to others contained in the overall analysis.117

We do not view these aggregate absolute scores as a determinant of ‘good’ or ‘bad’118

models. We envision the scores as a tool to more quickly identify relative differences119

among models and model versions which the scientist must then interpret. As in any eval-120

uation methodology, many of our choices are subjective and must be considered as the121

scores are interpreted. Where possible, the ILAMB implementation allows for users to122

customize weights and diagnostics in order to incorporate aspects of model performance123

relevant to their scientific goals. ILAMB may be thought of as a framework which may be124

expanded to incorporate community ideas regarding model benchmarking. Thus while our125

choices are subjective, they are informed by the preferences of a larger community and126

can be considered as an initial suggestion.127

The remainder of this paper describes the ILAMB methodology used to compute128

aggregate absolute scores. First we describe how we compare an individual observational129

dataset to model output (Section 2). Then we explain how scores are aggregated across130

datasets for each variable and present the datasets used in the land model evaluation (Sec-131

tion 3). In Section 4 we present some salient points about how the ILAMB software is132

designed. Finally, in Section 5 we discuss what ILAMB scores mean and how they should133

be used.134

2 Methodology135

In this section we describe the methodology used to assess how well a model cap-136

tures information contained in a reference (e.g. observational) dataset. For the purposes137
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Figure 1: The ILAMB top-level graphic uses stop-light colors to show how different models or

model versions (across the top) score with respect to each variable (down the left) in an absolute

sense (left rectangle) and with respect to each other (right rectangle). Grey boxes reflect missing or

unavailable data.
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of this section, we discuss the analysis of a generalized variable v(t, x) which we assume138

represents a piecewise discontinuous function of constants in space and time. This means139

that the temporal domain, represented by the variable t, is defined by the beginning and140

ending of time intervals and the spatial domain, represented by the variable x (bolded to141

emphasize it is a vector quantity), represents the areas created by cell boundaries or the142

areas associated with data sites. When necessary, we use the subscript ‘ref’ to reflect a143

variable whose source is a reference or observational dataset, and the subscript ‘mod’ for144

model datasets.145

While many statistical quantities may be computed, the goal of our initial methodol-146

ogy is to examine the mean state and variability around the mean over monthly to decadal147

time scales and grid cell to global spatial scales. While we intend to uniformly apply this148

analysis procedure to all variables, we also implement a mechanism to skip certain aspects149

when deemed inappropriate. For example, if a reference dataset only contains average in-150

formation across a span of years, the annual cycle is undefined and automatically skipped151

in our implementation. The implementation also allows users to skip aspects of the analy-152

sis that are deemed inappropriate even if it is possible to compute these metrics using the153

available data. For example, the interannual variability may be poorly characterized in a154

reference dataset even though the quantity could be computed.155

2.1 Preliminary Definitions156

Before presenting the specifics of the ILAMB methodology, we first present some157

definitions used throughout the paper. While the following definitions are widely used in158

the community, there are many subtle choices in their implementation that affect the inter-159

pretation of the results. We present them here with precise meanings to emphasize where160

a choice has been made and our reasoning for making it.161

2.1.1 Mean values over time162

When calculating mean values over the time period of the benchmark dataset, de-163

noted by a bar superscribing the variable, we use the midpoint quadrature rule to approxi-164

mate the integral,165

–7–This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

v̄(x) =
1

t f − t0

∫ t f

t0

v(t, x) dt (1)

≈
1

T(x)

n∑
i=1

v(ti, x)∆ti

where n represents the number of time intervals on which v is defined between the ini-166

tial time, t0, and the final time, t f , and ∆ti is the size of the ith time interval, modified to167

exclude time which falls outside of the integral limits,168

∆ti = min(t f , tif ) −max(t0, ti0) (2)

where ti0 and ti
f
are the initial and final time of each time interval. The average value is169

obtained by dividing through by the amount of time in the interval, t f − t0, replaced in our170

discrete approximation by the following function.171

T(x) =
n∑
i=1
∆ti if v(ti, x) is valid (3)

In words, Equation (3) addresses temporally discontinuous data by summing all the time172

step interval sizes only if the corresponding variable data is marked as valid. This means173

that if a function has some values masked or marked as invalid at some locations, we do174

not penalize the averaged value by including this as a time at which a value is expected.175

If an integral (or sum) is desired instead of an average, then we simply omit the division176

by T(x) in Equation (1).177

2.1.2 Mean values over space178

When computing spatial means over various regions of interest, denoted by a double179

bar over a variable, we use the midpoint rule for integration to approximate the following180

weighted spatial integral,181

v(t) =
1∫

Ω
w(x) dΩ

∫
Ω

v(t, x)w(x) dΩ (4)

≈
1

A(Ω)

n(Ω)∑
i=1

v(t, xi)w(xi)ai
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over a region Ω, also referred to as a area-weighted mean. Here the function w(x) is an182

optional generic weighting function defined over space. The summation is over n(Ω), that183

is the integer number of spatial cells whose centroids fall into the region of interest. A184

function evaluation at a location xi refers to the constant value which corresponds to that185

spatial cell. The value of ai is the area of the cell, which could be some fraction of the186

total cell area if integrating over land in coastal regions. We then divide through by the187

measure, the sum of the grid areas with the weights,188

A(Ω) =
n(Ω)∑
i=1

w(xi)ai if v(t, xi) is valid (5)

Note that if no weighting is required, this is a normalization by the sum of the area over189

which we integrate. As with the temporal mean, if an integral only is required, we simply190

omit the division by A(Ω). In cases where a mean over a collection of sites is needed, the191

spatial integral reduces to an arithmetic mean across the sites.192

If we are spatially integrating a variable from a single source, then its spatial grid is193

clearly defined and Equation (4) can be directly applied to compute the quantity of inter-194

est. However, if the integrand involves quantities from two different sources, as in comput-195

ing the global bias or RMSE, then there is likely a disparity in both resolution and repre-196

sentation of land areas. We address resolution differences by interpolating both sources to197

a grid composed of the cell breaks, the location at which two neighboring cells meet, of198

both data sources. Consider two spatial grids whose cells are defined by the outer product199

of 1D vectors representing the cell breaks in spherical coordinates,200

G1 := θ1 ⊗ ϕ1 (6)

G2 := θ2 ⊗ ϕ2 (7)

where θ refers to the latitude, ϕ to longitude, and ⊗ a operator which creates a two-dimensional201

grid from one-dimensional vectors. We address differences in resolution by defining a202

composite grid which consists of the outer product of the union of these two grids’ cell203

breaks,204

Gc := (θ1 ∪ θ2) ⊗ (ϕ1 ∪ ϕ2) . (8)
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Figure 2: When comparing two spatial variables of varying resolution, we interpolate both to

a common grid composed of the cell breaks of both variables over the intersection of what both

variables agree is land. (a) Interpolation of sample step functions defined on grids G1 and G2 both

interpolated to a composite grid Gc using nearest neighbor interpolation with zero interpolation

error. The vertical grid lines reflect the cell boundaries in each grid., (b) Differences in the repre-

sentation of land from a reference and model dataset zoomed into Central America for emphasis.

The red region represents where both sources are in agreement, the blue is land for the model but

not the reference and the green is land for the reference but not the model.

Once constructed, quantities defined on both G1 and G2 may be interpolated to Gc by205

nearest neighbor interpolation with zero interpolation error due to the nested nature of206

the grids. This can be seen visually by comparing the three plots shown in Figure 2(a). In207

each plot, the tick marks along the x-axis represent the cell breaks of the particular one-208

dimensional grid left coarse for illustration. The cyan curve represents a step function de-209

fined on the grid of a reference dataset G1 and the magenta curve on that of the model210

dataset G2. Both are interpolated to the composed grid Gc without loss of information, al-211

beit on a new grid containing more cells of variable size. Once on a composite grid, the212

quantities may be compared directly. As the ILAMB methodology has been envisioned for213

comparisions with model output from CMIP5, we have made an implicit assumption that214

each source grid, G1 and G2, is regular and can be represented by one-dimensional vec-215

tors. While the implementation does provide naive interpolation for non-regular grids, the216

user is encouraged to employ a conservative interpolation scheme of their choosing prior217

to applying the ILAMB methodology.218

In addition to resolution differences, we observe that data sources vary in the under-219

lying representation of the distinction between land and water. We illustrate this concept220
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in Figure 2(b) where we compare a fine scale representation of land L1 to a relatively221

coarse representation L2. This is a typical situation encountered when comparing high222

resolution observational data to lower resolution model output. The red region represents223

the intersection of land areas L1 ∩ L2, that is, where both sources report the presence of224

land. However, there are missed land areas from both sources, represented by the blue and225

green colors. As much of the disagreement over what is considered land occurs around226

islands in tropical regions (for example Central America and Equatorial Asia), these non-227

represented areas can constitute a nontrivial percentage of the total represented variable228

v.229

For transparency, the ILAMB implementation is built with the capability of report-230

ing integrals over each of these three land areas. Unless specifically stated otherwise,231

when spatially integrating a quantity from a single source, we use the original grid and232

land areas given by that source. This is to remain as true to the original intent of the233

provider as we can. However, when comparing two data sources of varying resolution and234

land representation, we perform this integration over what both report to be land, L1 ∩ L2235

(the red area in Figure 2(b)).236

2.1.3 Computing normalized scores from errors237

In the following sections 2.2 and 2.3, we detail how we compute errors and trans-238

form them into normalized scores on the unit interval. This approach is intended to syn-239

thesize model performance across a range of dimensions with respect to a given dataset.240

We achieve this by taking a measure of the relative error, generically represented here as241

ε, and passing it through the exponential function,242

s = e−αε (9)

where s is a score on the interval [0, 1] and α is a parameter which can be used to tune243

the mapping of error to score. The classic expression of relative error is prone to numer-244

ical instabilities for denominator values near or which cross zero. Furthermore the mag-245

nitude of the error can depend on the units selected. For this reason we depart from the246

standard definition of relative error and develop specialized expressions in Equations (13,247

18, 26).248
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Figure 3: Mapping function of relative error ε to a score s on the unit interval. Two choices of

α are shown: α = 1, shown in blue, which equates a score of 0.6 to a relative error of 50%, and

α = 2.3, shown in orange, which equates a score of 0.1 to a relative error of 100%.

While the choice of the exponential function is arbitrary, it was chosen because249

it maps zero error to a score of one and smoothly reduces the score as the error grows,250

never reaching exactly zero. This is important as we want to improve the score when the251

error improves, no matter how large of error we observe. If the user wants a relative error252

of ε̂ to equate to a score of ŝ, then253

α = −
ln(ŝ)
ε̂

(10)

In Figure 3 we plot this function with two choices for α, which illustrates how the relative254

error may be controlled. Unless stated otherwise, we use an implicit α = 1 throughout the255

manuscript.256

2.2 Mean State Analysis257

In this section, we describe the various metrics and plots that our methodology gen-258

erates. While presented in terms of the abstract variable v, we also include sample plots259

of a comparison of the GBAF (Jung et al., 2010) gross primary productivity (GPP) with260

CLM4.5 (Oleson et al., 2013) for the purpose of illustration. In practice, ILAMB pro-261
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duces thousands of such plots and scalars, which are browsable in a website designed to262

aid modelers in understanding the benchmarking results.263

2.2.1 Bias264

We find the mean value in time, vref(x), over the time period of the reference, as265

well as that of the model, vmod(x), over the same time period. These are spatial variables266

that are included in the standard output as plots, as shown in Figure 4(a-b). We also com-267

pute the bias,268

bias(x) = vmod(x) − vref(x) (11)

as well as its mean over a given region, bias(x). To score the bias, we need to non-dimensionalize269

it as a relative error. We have chosen to do this by using the centralized root mean square270

of the reference data,271

crms(x) =

√
1

t f − t0

∫ t f

t0

(vref(t, x) − vref(x))2 dt, (12)

which makes the relative error in bias given as,272

εbias(x) = |bias(x)|/crms(x) (13)

where the | · | operator represents the absolute value. The bias score as a function of space273

is,274

sbias(x) = e−εbias(x) (14)

and the scalar score275

Sbias = sbias(x), (15)

that is, the spatially integrated bias score. The motivation behind Equation (13) is to nor-276

malize the bias by the variability at any given spatial location. However, this also leads277

to the consequence that in areas where the given variable v has a small magnitude, sim-278

ple noise can lead to large relative errors. For example, in Figure 4(d) we observe a poor279
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score in the dry regions of Australia where GPP is small. Given the small contribution,280

it is undesirable that these errors induce a large negative contribution to the overall score.281

To address this issue, we introduce the concept of mass weighting. That is, when perform-282

ing the spatial integral to obtain a scalar score (Equation (15)), we weight the integral by283

the period mean value of the reference variable using Equation (4) with w = vref . In some284

instances the variable is truly a mass, but other times a flux or rate. The main motivation285

is to weight in areas where the variable is active. So while in our conceptual example,286

there is large relative error in GPP over deserts, these values will not negatively contribute287

to the overall score as the value of GPP is low in this area.288

We apply mass weighting when the variable v represents a mass or flux of carbon289

or water as in GPP or precipitation. For variables representing energy states or quantities,290

such as temperature and radiation, we omit the weighting and perform a spatial integral291

only. We report plots of the bias and its score as well as the scalar integrated mean val-292

ues.293

2.2.2 Root mean squared error294

For reference datasets with seasonal and interannual variability, we compute the root295

mean squared error over the time period of the reference dataset,296

rmse(x) =

√
1

t f − t0

∫ t f

t0

(vmod(t, x) − vref(t, x))2 dt (16)

and include plots and the scalar rmse(x) in the standard output (Figure 5(a)). To score the297

root mean square error, we normalize the centralized root mean square error,298

crmse(x) =

√
1

t f − t0

∫ t f

t0

((vmod(t, x) − vmod(x)) − (vref(t, x) − vref(x)))2 dt (17)

by the centralized root mean square of the reference dataset, Equation (12). This leads to299

a relative error of300

εrmse(x) = crmse(x)/crms(x) (18)

and a spatial RMSE score301
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(a) (b)

(c) (d)

Figure 4: Comparisons of GPP between the reference (GBAF) and the model (CLM4.5) dataset.

Each period mean is plotted over the original grid of the dataset. We highlight here that the refer-

ence (a) is not defined over Antarctica, Greenland, and part of the Sahara desert whereas the model

(b) is defined over all land areas. Yet when the bias (c) and its score (d) is reported, the area repre-

sented is what both the reference and model agree on as land. (a) Reference period mean, vref(x),

(b) Model period mean, vmod(x), (c) Bias, bias(x), (d) Bias Score, sbias(x)
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srmse(x) = e−εrmse(x). (19)

The scalar score is obtained by302

Srmse = srmse(x), (20)

where we again employ mass weighting when necessary. We score the centralized root303

mean squared error to decouple the bias score from the RMSE score. Computing the304

RMSE score by normalizing the RMSE would lead to a double counting of errors. That305

is, a large error in bias also leads to a large error in RMSE. By scoring the centralized306

RMSE, we remove the bias from the RMSE, allowing the RMSE score to focus on an or-307

thogonal aspect of model performance.308

2.2.3 Phase Shift309

We evaluate the phase shift of the annual cycle of many datasets that have monthly310

variability by comparing the timing of the maximum of the annual cycle of the variable,311

c(v) at each spatial cell across the time period of the reference dataset. We then approxi-312

mate the phase shift of the reference and model datasets by subtracting these two values,313

θ(x) = arg max
t
(cmod(t, x)) − arg max

t
(cref(t, x)) (21)

expressed in days. As the units for phase shift are consistent across all variables, no nor-314

malization is needed and we can remap the shift to the unit interval by315

sphase(x) =
1
2

(
1 + cos

(
2πθ(x)

365

))
(22)

and then spatially integrate the score over the appropriate region to find the scalar score,316

Sphase = sphase(x), (23)

where again mass weighting is employed when appropriate. We include plots of the phase317

shift and its score in the standard output and represent them here in Figure 5(c-d). In ad-318

dition to plots which show the time averaged variables as a map, we include line plots of319
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(a) (b)

(c) (d)

Figure 5: Comparisons of the RMSE and phase of GPP between the reference (GBAF) and the

model (CLM4.5) dataset. (a) RMSE, rmse(x), (b) RMSE score, srmse(x), (c) Phase shift, θ(x), (d)

Phase shift score, scycle(x)

the mean annual cycle and the spatially averaged variables, vref(t) and vmod(t) shown in320

Figure 6.321

2.2.4 Interannual Variability322

A score for the interannual variability is computed by removing the annual cycle323

from both the reference and the model,324

iavref(x) =

√
1

t f − t0

∫ t f

t0

(vref(t, x) − cref(t, x))2 dt (24)

iavmod(x) =

√
1

t f − t0

∫ t f

t0

(vmod(t, x) − cmod(t, x))2 dt (25)

εiav(x) = (iavmod(x) − iavref(x)) /iavref(x) (26)

325
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Figure 6: Spatial means of GPP of the reference (GBAF) shown in grey and the model (CLM4.5)

in maroon. (a) Spatially integrated mean, vref(t) and vmod(t), (b) Mean annual cycle, vref(t) and

vmod(t)

and then computing a score as a function of space,326

siav(x) = e−εiav(x). (27)

The scalar score is then obtained by327

Siav = siav(x), (28)

where mass weighting is used when necessary. We include plots of the variability and328

the score in the standard output and show them here in Figure 7. Note that while here329

we have shown the interannual variability of the GBAF product for illustration, in the de-330

fault ILAMB configuration, the interannual variability is currently omitted for the GBAF331

products because its representativeness is considered to be poor (see Figure 10 of (Kumar332

et al., 2016)).333

2.2.5 Spatial Distribution334

We score the spatial distribution of the time averaged variable by generating a Tay-335

lor (Taylor, 2001) diagram. We do this by computing the normalized standard deviation,336

σ =
stdev (vmod(x))
stdev (vref(x))

(29)
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(a) (b)

(c)

Figure 7: Comparisons of the interannual variability of GPP between the reference (GBAF) and

the model (CLM4.5) dataset. (a) Reference interannual variability, iavref(x), (b) Model interannual

variability, iavmod(x), (c) Interannual variability score, siav(x)

and the spatial correlation R of the period mean values vref(x) and vmod(x), and then as-337

signing a score by the following relationship338

Sdist =
2(1 + R)

(σ + 1
σ )

2
, (30)

where the main idea is that we penalize the score when R and σ deviate from a value of339

1. We include the Taylor plot in the standard output and represent it here in Figure 8.340

2.2.6 Overall Score341

The overall score for a given variable and data product is a composite of the suite of342

metrics defined above. We use a weighted sum,343

Soverall =
Sbias + 2Srmse + Sphase + Siav + Sdist

1 + 2 + 1 + 1 + 1
, (31)

where the RMSE score is doubly weighted to emphasize its importance.344
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Figure 8: Taylor diagram comparing the spatial distribution of GPP of the reference (GBAF)

shown as a black star to the CMIP5 models shown in colors.

2.3 Relationship Analysis345

As models are frequently calibrated using the mean state scalar measures described346

in Section 2.2, a higher score does not necessarily reflect a more process-oriented model.347

In order to assess the representation of mechanistic processes in models, we also evaluate348

variable-to-variable relationships. For example, we look at how well models represent the349

relationship that GPP has with precipitation, evapotranspiration, and temperature. For the350

purposes of this section, we represent a generic dependent variable as v, as before, and351

score its relationship with an independent variable u. We then quantify the variable-to-352

variable relationship of the time period mean, u(x) on v(x), derived from the combination353

of reference datasets to the relationship diagnosed in models. We use the mean values354

over the reference time period to establish relationships as they represent a logical starting355

point. In the future, we plan to extend the relationship analysis to include seasonal and356

interannual variability.357
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2.3.1 Functional Response358

We estimate a functional response by a 1D histogram, binned in terms of the in-359

dependent variable u(x) with a number of bins, initially set to nbins = 25. Then in each360

bin, we compute the mean value of the corresponding dependent variable, v(x) to approx-361

imate the functional dependence of u on v. We represent this binning with the operator F362

that operates on the dependent and independent variables. We use it to compute functions363

from both the reference and model datasets.364

fref(u) = F (vref(x), uref(x)) (32)

fmod(u) = F (vmod(x), umod(x)), (33)

where both curves are plotted in Figure 9(a) for the case of GPP compared to surface air365

temperature. These response curves are then scored by computing a relative error based366

on the RMSE,367

εufunc =

√√∫
( fref(u) − fmod(u))2 du∫

fref(u)2 du
, (34)

where the integrals are approximated by the midpoint rule over the bins of the indepen-368

dent variable u(x). Then we use Equation (9) to map this relative error to a score by,369

Su
func = e−ε

u
func . (35)

The superscript u reinforces that this score represents functional performance with respect370

to a given independent variable u. The ILAMB implementation allows for any number of371

independent variables to be studied. In terms of our sample, ILAMB scores the functional372

relationship of GPP with respect to each independent variable separately (precipitation,373

evapotranspiration, temperature, etc.) and then computes the mean of these scores for the374

overall relationship score.375

2.3.2 Hellinger Distance376

In addition to the one-dimensional histograms, we also build normalized two-dimensional377

histograms (nbins = 25 in both dimensions) from the time averaged data v(x) and u(x), rep-378

resented here by the operator D. We represent these distributions by,379
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dref(u) = D(vref(x), uref(x)), (36)

dmod(u) = D(vmod(x), umod(x)), (37)

as depicted in Figure 9(b–c). If we represent individual elements from these distributions380

dref(u) = (p1, ..., pn2
bins
) and dmod(u) = (q1, ..., qn2

bins
), we can compute the so-called Hellinger381

distance (Law et al., 2015)382

Su
dist =

1
√

2

√√√√n2
bins∑
i=1

(√
pi −
√

qi
)2

as a measure of how similar two distributions are to each other. While there are other383

choices, such as the Kullback-Leibler divergence, which are more commonly employed384

(Dirmeyer et al., 2014), the Hellinger distance comes with the added benefit of being al-385

ready normalized [0, 1] and thus, further normalization is not necessary to use this directly386

as a score.387

However, we only report the Hellinger distance as a scalar and do not include it388

in the scoring of the relationships. This is due to the fact that a bias in an independent389

variable can cause a density shift in the 2D distribution that would cause the score to un-390

reasonably decrease. In terms of our example, a bias in precipitation (e.g. arising from391

a coupled model) could result in a poor relationship score with GPP, even if there is no392

underlying deficiency in the land-model simulated precipitation versus GPP relationship.393

3 Datasets394

In this section we explain how we utilize the methodology presented in Section 2 to395

evaluate model performance with respect to a collection of datasets (Tables 2–5) assem-396

bled by the ILAMB community. Errors in measurements, lack of measured or reported397

uncertainties, and inconsistencies in measurement methodology or instrumentation leading398

to ambiguous confidence in derived or synthesized data products all represent challenges399

in using observational data for benchmarking. In addition, the spatial and temporal cover-400

age of different data products can vary substantially.401

To account for the lack of quantitative uncertainties and scale mismatches between402

observations and models, and to bring a quantitative objectivity to model–data compari-403
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Figure 9: Variable-to-variable relationship plots which are a part of the standard output from

the ILAMB methodology. (a) Functional responses, the reference fref(u) in black, and the model

fmod(u) in maroon. Data points reflect the mean for each independent value and the error bars

reflect the standard deviation range., (b) Reference distribution, dref(u), (c) Model distribution,

dmod(u)
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son, we developed a three-element rubric for weighting datasets as represented in Table 1.404

The first weight is based on a qualitative estimate of the certainty we have in a particu-405

lar dataset. This weight encompasses both our certainty in the process used to obtain the406

observational information as well as the presence of quantitative uncertainty in the mea-407

surements themselves. A second weight for each dataset reflects its spatial and temporal408

coverage. The datasets employed in ILAMB are diverse and include site-level data, re-409

analysis data products, and remotely-sensed data. As our aim is to provide insight in land410

model performance on global and decadal scales, we give more weight to global products411

which are time series that extend for several years. The weights are combined multiplica-412

tively to assign a total weight for each dataset. Then we normalize the weight by the sum413

of the weights of all the datasets for a given variable. For example, from Table 2 we see414

that there are two datasets used to benchmark GPP: Fluxnet and GBAF. For the Fluxnet415

product, we assign a certainy weight of 3 because while the collection is discussed in416

the published literature, there is no quantitative uncertainty provided. We assign a scale417

weight of 3 because the collection of sites covers multiple years of a substantial region of418

the globe yet has sparse coverage over important regions such as the tropics. The GBAF419

product is assigned a certainty weight of 3 for the same reason and a scale weight of 5420

as it provides global coverage spanning multiple years. Then the total weight for the GPP421

variable which the GBAF dataset carries is422

wGPP
GBAF =

3 · 5
3 · 3 + 3 · 5

≈ 63%.

We use these weights to blend the overall score (Equation (31)) from each dataset for each423

variable. In this way ILAMB remains flexible to adding datasets as they are developed,424

allowing more weight to be given to those that the community believes are more credible425

and that are more comparable in scale to models.426

A third weight reflects how useful the measured variable is in the focus of a model427

intercomparison project. Here, as an example, we show weighting for an analysis of model428

performance in representing the carbon cycle. We use these weights to blend the overall429

scores from each variable into a complete score across all variables for a given model.430

This allows ILAMB to include comparisons that are important for a complete understand-431

ing of the carbon cycle without necessarily allowing them to heavily influence the overall432

score. For example, the radiation and energy cycle datasets in Table 4 are all weighted433
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Table 1: The ILAMB rubric used to assign relative weights of a dataset. A score for each dataset

is assigned in each of three areas. These scores are then combined multiplicatively and used to

determine relative importance for a dataset with respect to a given variable.

Score Certainty Scale Process

1

No given uncertainty,

significant methodological

issues affecting quality

Site level observations with

limited space/time coverage

Observations that have

limited influence on the

targeted Earth system

dynamics

2

No given uncertainty, some

methodological issues

affecting quality

Partial regional coverage, up

to 1 year

Observations have direct

influence on the targeted

Earth system dynamics

3

No given uncertainty,

methodology has some peer

review

Regional coverage, at least 1

year

Observations useful to

constrain processes that

contribute to the targeted

Earth system dynamics

4
Qualitative uncertainty,

methodology accepted

Important regional coverage,

at least 1 year

Observations well-suited to

constrain important processes

5
Well-defined and relatively

low uncertainty

Global scale spanning

multiple years

Observations well-suited for

discriminating critical

processes among models

comparitively low because, while they help one understand the carbon cycle, they are not434

as influential in the overall behavior.435

We emphasize that this rubric is particular to our overarching goal of understanding436

the carbon cycle on global and decadal scales. However, the implementation is flexible437

and allows for an arbitrary weighting scheme to be developed that suits the needs of the438

user, community, or model intercomparison project that it serves.439
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The references and weights for each dataset that we have selected may be found in440

Tables 2–5. Each table represents a different aspect of the model: the ecosystem and car-441

bon cycle in Table 2, the hydrological cycle in Table 3, the radiation and energy cycle in442

Table 4, and the forcings in Table 5. For the majority of these datasets, we make a direct443

comparison of the observed quantity to model outputs, or algebraic combinations of model444

outputs using the methodology described in section 2. However, there are a few special445

cases which require specific handling which we describe in the next section.446

3.1 Special cases447

In general, a consistent methodology is applied to compare model output with each448

dataset. This consistency across variables and datasets is a strength of the ILAMB method-449

ology. However, this is not always possible, and here we enumerate a few exceptions and450

how they are handled.451

3.1.1 Evaporative Fraction452

To test the partitioning of surface energy, we compare the evaporative fraction de-453

rived from the GBAF (Jung et al., 2010) data product to that of the models. The evapora-454

tive fraction is an algebraic expression in terms of the latent heat Le(t, x) and the sensible455

heat Sh(t, x), given as456

457

ef (t, x) =
Le(t, x)

Le(t, x) + Sh(t, x)
. (38)

The expression can cause nonsensical results because in winter, the sensible heat flux can458

be negative, leading to a change of sign in the evaporative fraction. The expression can459

also lead to large evaporative fraction values since the magnitudes of both the latent and460

sensible heat can become small. For this reason, we apply a mask to ef , Le, and Sh only461

considering values for which Sh > 0, Le > 0, and Sh + Le > φ, where φ = 20 [Wm−2] is a462

surface energy threshold.463

Equation (38) is used to study how models partition the surface energy throughout464

the relevant season. Thus we use that expression when computing the RMSE or seasonal465

cycle. However, when comparing period mean values and the bias, Equation (38) leads to466

a combination of averaging methods. For this reason, when computing the mean evapora-467
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Table 2: References and weighting of datasets used to measure the ecosystem and carbon cycle.

Weights are chosen using the rubric in Table 1 and reflect a focus on understanding the carbon

cycle.

Variable/Dataset Certainty Scale Process

Biomass 5

Tropical (Saatchi et al., 2011) 4 4

NBCD2000 (Kellndorfer et al., 2013) 4 2

USForest (Blackard et al., 2008) 4 2

BurnedArea 4

GFED4S (Giglio et al., 2010) 4 5

GrossPrimaryProductivity 5

Fluxnet (Lasslop et al., 2010) 3 3

GBAF (Jung et al., 2010) 3 5

LeafAreaIndex 3

AVHRR (Myneni et al., 1997) 3 5

MODIS (De Kauwe et al., 2011) 3 5

GlobalNetEcosystemCarbonBalance 5

GCP (Le Quéré et al., 2016) 4 5

Hoffman (Hoffman et al., 2014) 4 5

NetEcosystemExchange 5

Fluxnet (Lasslop et al., 2010) 3 3

GBAF (Jung et al., 2010) 2 2

EcosystemRespiration 4

Fluxnet (Lasslop et al., 2010) 2 3

GBAF (Jung et al., 2010) 2 2

SoilCarbon 5

HWSD (Todd-Brown et al., 2013) 3 5

NCSCDV22 (Hugelius et al., 2013) 3 4
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Table 3: References and weighting of datasets used to measure the hydrology cycle. Weights are

chosen using the rubric in Table 1 and reflect a focus on understanding the carbon cycle.

Variable/Dataset Certainty Scale Process

Evapotranspiration 5

GLEAM (Miralles et al., 2011) 3 5

MODIS (De Kauwe et al., 2011) 3 5

EvaporativeFraction 5

GBAF (Jung et al., 2010) 3 3

LatentHeat 5

Fluxnet (Lasslop et al., 2010) 3 1

GBAF (Jung et al., 2010) 3 3

Runoff 5

Dai (Dai and Trenberth, 2002) 3 5

SensibleHeat 2

Fluxnet (Lasslop et al., 2010) 3 3

GBAF (Jung et al., 2010) 3 5

TerrestrialWaterStorageAnomaly 5

GRACE (Swenson and Wahr, 2006) 5 5
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Table 4: References and weighting of datasets used to measure the radiation and energy cycle.

Weights are chosen using the rubric in Table 1 and reflect a focus on understanding the carbon

cycle.

Variable/Dataset Certainty Scale Process

Albedo 1

CERES (Kato et al., 2013) 4 5

GEWEX.SRB (Stackhouse Jr. et al., 2011) 4 5

MODIS (De Kauwe et al., 2011) 4 5

SurfaceUpwardSWRadiation 1

CERES (Kato et al., 2013) 4 4

GEWEX.SRB (Stackhouse Jr. et al., 2011) 4 5

WRMC.BSRN (König-Langlo et al., 2013) 4 3

SurfaceNetSWRadiation 1

CERES (Kato et al., 2013) 4 5

GEWEX.SRB (Stackhouse Jr. et al., 2011) 4 5

WRMC.BSRN (König-Langlo et al., 2013) 4 3

SurfaceUpwardLWRadiation 1

CERES (Kato et al., 2013) 4 5

GEWEX.SRB (Stackhouse Jr. et al., 2011) 4 5

WRMC.BSRN (König-Langlo et al., 2013) 4 3

SurfaceNetLWRadiation 1

CERES (Kato et al., 2013) 4 5

GEWEX.SRB (Stackhouse Jr. et al., 2011) 4 5

WRMC.BSRN (König-Langlo et al., 2013) 4 3

SurfaceNetRadiation 2

CERES (Kato et al., 2013) 4 5

Fluxnet (Lasslop et al., 2010) 4 3

GEWEX.SRB (Stackhouse Jr. et al., 2011) 4 5

WRMC.BSRN (König-Langlo et al., 2013) 4 3
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Table 5: References and weighting of datasets used to measure the forcings. Weights are chosen

using the rubric in Table 1 and reflect a focus on understanding the carbon cycle.

Variable/Dataset Certainty Scale Process

SurfaceAirTemperature 2

CRU (Harris et al., 2014) 5 5

Fluxnet (Lasslop et al., 2010) 3 3

Precipitation 2

CMAP (Xie and Arkin, 1997) 4 5

Fluxnet (Lasslop et al., 2010) 3 3

GPCC (Schneider et al., 2014) 4 5

GPCP2 (Adler et al., 2012) 4 5

SurfaceRelativeHumidity 3

ERA (Dee et al., 2011) 2 5

SurfaceDownwardSWRadiation 2

CERES (Kato et al., 2013) 4 5

Fluxnet (Lasslop et al., 2010) 4 3

GEWEX.SRB (Stackhouse Jr. et al., 2011) 4 5

WRMC.BSRN (König-Langlo et al., 2013) 4 3

SurfaceDownwardLWRadiation 1

CERES (Kato et al., 2013) 4 5

GEWEX.SRB (Stackhouse Jr. et al., 2011) 4 5

WRMC.BSRN (König-Langlo et al., 2013) 4 3

–30–This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

tive fraction over time and the bias, we use a ratio of means in place of the mean of the468

ratio,469

470

ef (x) =
Le(x)

Le(x) + Sh(x)
. (39)

Beyond this change, the evaporative fraction is evaluated using the methodology defined in471

Section 2.472

3.1.2 Albedo473

We compare the abedo derived from observational data products (Kato et al., 2013;474

Stackhouse Jr. et al., 2011; König-Langlo et al., 2013) to that of models using the follow-475

ing expression,476

477

a`(t, x) =
Ru(t, x)
Rd(t, x)

. (40)

where Ru and Rd is the upward and downward shortwave radiation, respectively. As with478

the evaporative fraction in Section 3.1.1, the albedo expression can become numerically479

unstable when Rd approaches 0. Thus we again apply a mask, ignoring regions where no480

significant incoming radiation is observed, Rd < δ. Equation (40) is used when comparing481

the RMSE and seasonal cycle. When the period mean and bias are computed, we compute482

the period mean average albedo based on the ratio of averages,483

484

a`(x) =
Ru(x)
Rd(x)

. (41)

3.1.3 Global Net Ecosystem Carbon Balance485

The observational datasets for the global net ecosystem carbon balance (Le Quéré486

et al., 2016; Hoffman et al., 2014) represent global totals, yet models return this value as487

fluxes defined over space. To create a model quantity commensurate with the observa-488

tional data, ILAMB must integrate over the globe using Equation (4). As the observa-489

tional dataset is a time series, much of our scoring methodology does not apply. For this490

discussion we will represent the global rate of carbon as nbp [PgC yr−1]. We compute the491

accumulation of nbp492
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anbp(t) =
∫ t

t0

nbp(t) dt (42)

and score the difference in accumulated total at the end of the time period. The precise493

method differs slightly in each observational dataset.494

The Global Carbon Project (GCP) dataset is derived by taking the land sink (un-495

certainty of ±0.8 [PgC yr−1]) and subtracting the emissions from land-use change (uncer-496

tainty of ±0.5 [PgC yr−1]). This means that the total uncertainty of the accumulated nbp497

at the end of 2010 is
√

0.52 + 0.82 · (2010 − 1959) = 48.1 [PgC]. We use this uncertainty498

to normalize the difference in accumulation at the end of the time period as a measure of499

relative error,500

εGCP =

����anbpmod(2010) − anbpref(2010)
48.1

���� (43)

and then again Equation (9) to compute a score of the difference501

Sdiff
GCP = e−αnbpεGCP, (44)

where αnbp = 0.287 and is chosen such that if a model falls within the certainty bounds502

of the accumulated amount through 2010, the corresponding score is at minimum 0.75.503

We see this as an important first step in incorporating uncertainty into the comparison504

methodology. We use the uncertainty to tune the scoring methodology, giving a good505

score to models that fall inside this uncertainty bound. We also compare the global rates506

of carbon across the time period in the form of a Taylor score of the time series, Sdist
GCP507

Equation (30) where the correlation and standard deviation are taken across the temporal508

dimension. Then the overall score is509

510

Snbp
GCP =

1
2

(
Sdiff

GCP + Sdist
GCP

)
(45)

In the Hoffman et al. (2014) dataset, we only score the accumulated amount at the511

end of the observed period. We omit providing a Taylor scoring of the rates because there512

appears to be some smoothing of the rate data inherent in the process of producing this513

dataset. However, this dataset explicitly provides a lower and upper bound on uncertainty514

as a function of time throughout the dataset. So we determine the integrated uncertainty515

at the end of 2010 by accumulating the upper (52.4 [PgC]) and lower (−32.1 [PgC]) limit516
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of uncertainty, computing the difference, and then halving the value resulting in an uncer-517

tainty of 42.3 [PgC]. We then use the same approach to score the difference,518

εHoffman =

����amod(2010) − aref(2010)
42.3

���� (46)

Snbp
Hoffman = e−αnbpεHoffman (47)

3.1.4 Runoff519

We use the Dai and Trenberth (2002) river discharge dataset to assess model perfor-520

mance of runoff for the world’s 50 largest river basins. First, we compute the mean annual521

runoff from the model over the time period of the observational dataset. Then we take the522

river discharge data and distribute it over the area of the river basins and compare this to523

the mean runoff over the same basin. This simple approach was taken to allow us to com-524

pare runoff across models even if they do not have a river routing model.525

We include plots of the mean runoff of the reference and model over river basins526

and the bias, represented in Figure 10. We also include regional mean runoff plots for527

each of the river basins included, but only show that of the Amazon river basin in Fig-528

ure 10(d). The model performance is then scored using the bias (Section 2.2.1), the inter-529

annual variability (Section 2.2.4), and the spatial distribution (Section 2.2.5) metrics.530

3.1.5 Terrestrial Water Storage Anomaly531

We use the Gravity Recovery and Climate Experiment (GRACE) (Swenson and532

Wahr, 2006) dataset to assess the terrestrial water storage anomaly (twsa) in models. How-533

ever, there are a few challenges in producing a fair comparison. The first of those is that534

models report only the storage and so the anomaly must be computed. The more seri-535

ous challenge is that the resolution of this data is quite coarse (300–400 [km]) and thus,536

pointwise comparisons are not appropriate (Swenson, 2013). Instead we compare mean537

anomaly values over 30 of the world’s largest river basins. In this way the comparison is538

more fair as it is over large areas and automatically omits dry areas which are not of inter-539

est.540

We include plots of the magnitude of the mean anomaly of the reference and model541

over river basins and the RMSE, represented in Figure 11. We also include regional mean542

anomaly plots for each of the river basins, but show only that of the Amazon river basin543
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Figure 10: Comparisons of runoff between the reference (Dai and Trenberth, 2002) and the model

(CLM4.5) dataset. (a) Reference mean runoff, (b) Model mean runoff, (c) Mean runoff bias, (d)

Annual mean runoff for the Amazon river basin where the reference is shown in grey and the

model in maroon.
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Figure 11: Comparisons of the terrestrial water storage anomaly between the reference (GRACE)

and the model (CLM4.5) dataset. (a) Reference mean anomaly magnitude, (b) Model mean

anomaly magnitude, (c) Mean anomaly RMSE, (d) Annual mean anomaly for the Amazon river

basin where the reference is shown in grey and the model in maroon.

in Figure 11(d). The model performance is then scored using the RMSE (Section 2.2.2)544

and the interannual variability (Section 2.2.4) metrics.545

4 Software546

We have implemented the methodology described in Sections 2 and 3 into a soft-547

ware package that is freely available to the community. We previously developed a proto-548

type implementation (Mu et al., 2015) based on the NCAR Command Language (NCL).549

We then moved the algorithm into an open-source, openly-developed python package (Col-550

lier et al., 2016) in an effort to produce a product to which the community can more easily551

make contributions. The referenced digital object identifier (DOI) will lead to the software552

repository, where the source code and documentation can be found. The documentation553

includes the public interface as well as tutorials that span topics such as installation, basic554

usage, adding models or benchmark datasets, and formatting benchmark datasets.555
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The ILAMB package is designed to ingest datasets which follow the Climate and556

Forecast (CF) convention (Eaton et al., 2017). The CF website explains that the “conven-557

tions define metadata that provide a definitive description of what the data in each variable558

represents, and the spatial and temporal properties of the data. This enables users of data559

from different sources to decide which quantities are comparable, and facilitates building560

applications with powerful extraction, regridding, and display capabilities.” We have built561

the ILAMB package to embody this philosophy, making it directly useful to those who ad-562

here to this standard. While model intercomparison efforts, such as CMIP5, have encour-563

aged the use of these conventions among modelers, the observational community has not564

yet widely put them into practice. Much of the work in adding datasets to the collection is565

in encoding them to follow this convention.566

For the purpose of communicating how the ILAMB package works, consider the567

configure file shown in Figure 12, which defines a set of observational datasets that will568

be used to confront models. The ‘h1’ bracket is a heading used to categorize variables,569

represented by the ‘h2’ heading. This comparison involves the surface upward shortwave570

radiation and the albedo, both of which are variables belonging to the radiation and en-571

ergy cycle. Inside each ‘h2’ heading, we specify the variable name that will be compared572

(‘rsus’ is the netCDF variable name for surface upward shortwave radiation). However,573

we provide a mechanism for variable synonyms in this case by specifying alternate vari-574

able names. If the ILAMB system cannot find the main variable, it will try to find any575

alternates that the user specifies. This allows the software to encourage the use of stan-576

dard variable names, but accounts for modeling groups wanting to use ILAMB without577

pre-processing. Also note the ‘derived’ keyword in the albedo section. While the compo-578

nents of albedo are part of standard model output, the albedo is not. The ILAMB package579

allows for users to specify algebraic relationships in the configure file process. This makes580

the process automatic and transparent to those who may read this configure file.581

The ILAMB package will ingest this configure file and try to build commensu-582

rate quantities from model outputs. While observational datasets come in different forms583

(globally gridded remote sensing products, tower data collections, etc.), the ILAMB sys-584

tem reads the spatial and temporal information found in the file and uses it to trim, sub-585

sample, and/or coarsen the model data as appropriate.586
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[h1: Radiation and Energy Cycle]

[h2: Surface Upward SW Radiation]

variable = "rsus"

alternate_vars = "FSNS"

[CERES]

source = "DATA/rsus/CERES/rsus_0.5x0.5.nc"

[h2: Albedo]

variable = "albedo"

derived = "rsus/rsds"

[CERES]

source = "DATA/albedo/CERES/albedo_0.5x0.5.nc"

Figure 12: Sample ILAMB configure file defining comparisons to the surface upward shortwave

radiation and albedo variables from the CERES (Kato et al., 2013) product.
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5 Discussion587

The ILAMB framework is designed to be both powerful and flexible. While we have588

made choices in the default configuration, described above, focused on global analysis for589

decadal to centennial scale ESMs, ILAMB allows the user to customize selection of vari-590

ables, weighting of datasets, and spatial subsetting that make it useful for assessing results591

from mesoscale weather forecasting or other models. We envision developing a library of592

sample configuration files, targeting various well-known models and model applications.593

As much of the usefulness of ILAMB depends on the quality of the underlying ob-594

servational data, we recommend that data providers include explicit representations of the595

underlying spatial grids including the areas over which quantities have been averaged. Ob-596

servational datasets frequently report mean values in a cell taken over an area which may597

include land but also portions of lakes, rivers, and oceans. This leads to ambiguity with598

regard to the contribution of land cover types to the measurement itself and subsequently599

adds to the uncertainty when comparing values to model output.600

5.1 Interpreting the Overall Score601

The thrust of this paper is to detail a methodology for computing a single overall602

score that captures a model’s skill in reproducing patterns found in the observed record.603

However, we do not view the absolute value of the score as particularly meaningful be-604

yond the precise definition described in this paper. In general, no model can achieve a605

perfect score for any given variable for several reasons.606

First, there is measurement error and uncertainty in the observational data that makes607

a perfect score unlikely or undesirable against even a single dataset. This is what moti-608

vates some in the community (Abramowitz, 2005; Best et al., 2015) to pose that bench-609

marking requires an expectation of performance which is admitedly lacking in our ap-610

proach. Second, despite that every attempt is made to employ multiple independent datasets611

of high quality for confrontation with models, these datasets are inconsistent with each612

other, making a perfect score across all datasets impossible. We do this as comparisons613

with multiple observational and synthesized datasets for a single variable offer the user614

more information about the robustness of model predictions within the limits of observa-615

tional uncertainty at varying spatial and temporal scales. Third, a lower score with respect616

to a given variable is not necesarily a sign of a poor model. It may rather highlight the617
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need for better measurement campaigns or improved metrics (i.e., sometimes we learn that618

our measurements are incomplete or do not acknowledge important uncertainties, or our619

metrics are inappropriate for a given dataset).620

The overall score is meant to aid the scientist in discovering when meaningful changes621

have occurred in the model or across models. The holistic nature of the ILAMB suite of622

datasets and metrics helps provide a synthesis of model performance that directs the atten-623

tion of the user to relevant aspects. While we present Figure 1 as the main result of the624

ILAMB methodology, it is intended to merely indicate variables of particular interest for625

further consideration. ILAMB output is presented as a hierarchy of interactive webpages626

that employ JavaScript features to present information to users in a logical and intuitive627

fashion. From the graphical overview, the user can select individual variables and datasets628

from the “Results Table” tab to be led to pages which detail the contributing factors to the629

model’s overall score. On this new page, pre-defined spatial regions can be individually630

selected, causing the tabular data and diagnostics to be updated automatically to reflect631

information relevant only to that region. Although all the tabular information, scores, and632

graphical diagnostics are pre-computed and generated when ILAMB is run, the web-based633

interface is designed to facilitate discovery and understanding of model results. The over-634

all score does not replace the scientist, it guides her/him to the relevant plots and diagnos-635

tics.636

5.2 How is ILAMB Used?637

The ILAMB package is particularly useful for verification, i.e., during model devel-638

opment to confirm that new model code improves performance in a targeted area without639

degrading performance in another area, and for validation, i.e., when comparing perfor-640

mance of one model or model version to that of other models or model versions.641

In developing and applying the ILAMB package, we have incorporated a wide va-642

riety of representative observational datasets (see Tables 2, 3, 4, and 5), and we have fa-643

vored data that have the most open data policies. In many cases, these data have been av-644

eraged or remapped to be more directly comparable with model output. As this collection645

of datasets grows, maintaining and distributing the latest versions will be challenging and646

require community collaboration. For tracking the evolving performance of models over647

the long term, it may be necessary to maintain access to older versions of data as well648
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as the latest version since corrections to observational datasets can significantly impact649

model performance scores. Various technologies could fill this role, and the Observations650

for Climate Model Intercomparisons (obs4MIPs; https://www.earthsystemcog.org/651

projects/obs4mips/) activity shows promise as a potential solution to this challenge.652

The preferred solution would ideally support versioning and allow for long-lived versions653

associated with ILAMB releases. In the interim, we have implemented a simple scheme654

for sharing summarized and remapped datasets through a webserver.655

The ILAMB package is currently being used by individual model developers and656

international modeling centers. ILAMB offers developers a quick and easy method for657

checking the impacts of new model development before committing code changes. For658

modeling centers, ILAMB provides a systematic assessment of historical simulation ex-659

periments and enables tracking of performance of model revisions. ILAMB will also be660

useful for model intercomparison projects (MIPs) as a starting point for evaluating model661

variability and uncertainty. As a part of such MIPs, investigators may wish to develop662

custom metrics or incorporate datasets specific to their purposes. ILAMB could be exe-663

cuted automatically as model results are uploaded to a system like the Earth System Grid664

Federation (ESGF; https://esgf.llnl.gov/) to give users a “first look” at variation665

in results and to determine if output should be downloaded for a particular study. ILAMB666

diagnostics can also be useful for parameter sensitivity studies or for optimization experi-667

ments in combination with an automated modeling framework like the Predictive Ecosys-668

tem Analyzer (PEcAn; http://pecanproject.org/; LeBauer et al., 2013; Dietze et al.,669

2014). For the assessments community, the results of a multi-model ILAMB evaluation670

could be useful for understanding which model results would be appropriate for use in671

studying impacts and which models may poorly capture processes relevant to the impacts672

under consideration.673

5.3 Future Work674

Development of the ILAMB package is ongoing, and the terrestrial modeling and675

observational communities are being engaged to identify in situ and remote sensing datasets,676

to define additional evaluation metrics, and to use the package for a wide variety of MIPs677

(Hoffman et al., 2017). While most effort has been invested in global- and regional-scale678

model evaluation, new work is focused on improved benchmarking for site-level time se-679

ries, spatial transects, and seasonal and diurnal variability. Future development will in-680
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clude incorporation of experiment-specific model evaluation metrics derived from prior681

studies, including Free-Air CO2 Enrichment (FACE) (Zaehle et al., 2014; Walker et al.,682

2014, 2015), nutrient addition, rainfall exclusion, and warming experiments (Bouskill et al.,683

2014; Zhu et al., 2016). Partner activities, like NASA’s Permafrost Benchmarking System684

project and the Arctic-Boreal Vulnerability Experiment (ABoVE), are integrating addi-685

tional datasets and building metrics for specific regions, study areas, or processes of inter-686

est. We are applying the ILAMB methodology and code base to develop a marine biogeo-687

chemical model benchmarking tool, called the International Ocean Model Benchmarking688

(IOMB) package.689

Based on previous prototypes and community discussion, we developed the ILAMB690

model benchmarking package for evaluating the fidelity of land carbon cycle models.691

The package generates graphical diagnostics and computes a comprehensive set of statis-692

tics through model–data comparisons, and scores model performance for a wide variety693

of variables for a suite of observational datasets. Rigorously defined model evaluation694

metrics and strategies for handling multiple resolutions and land masks are documented695

above. The ILAMB package is open source and is becoming widely adopted by modeling696

centers and for informing model intercomparison studies. We are actively seeking commu-697

nity involvement in adding more evaluation metrics and new observational datasets.698
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