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Abstract:  

We examined the transport of mass and energy in Mercury’s plasma sheet (PS) using 

MESSENGER magnetic field and plasma measurements obtained during 759 PS crossings. 

Regression analysis of proton density and plasma pressure shows a strong linear relationship. We 

calculated the polytropic index γ for Mercury’s PS to be ~0.687, indicating that the plasma in the 

tail PS behaves non-adiabatically as it is transported sunward. Using the average magnetic field 

intensity of Mercury’s tail lobe as a proxy for magnetotail activity level, we demonstrated that γ 

is lower during active time periods. A minimum in γ was observed at R ~1.4 RM, which coincides 

with previously observed location of Mercury’s substorm current wedge. We suggest that the 

non-adiabatic behavior of plasma as it is transported into Mercury’s near-tail region is primarily 

driven by particle precipitation and particle scattering due to large loss cone and particle 

acceleration effect, respectively. 
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1. Introduction 

In situ magnetic field and plasma measurements observed by MESSENGER allowed us to 

understand the dynamics and structure of Mercury’s magnetotail [Slavin et al., 2012] and plasma 

sheet (PS) [DiBraccio et al., 2015a; Poh et al., 2017a; Rong et al., 2018]. Large-scale statistical 

studies have shown that processes occurring in Mercury’s magnetotail are qualitatively similar to 

Earth’s, despite the differences in spatial and temporal scales, upstream conditions and internal 

plasma compositions [Raines et al., 2011; Gershman et al., 2014; Poh et al., 2017b]. Mass, 

energy and magnetic flux are transported from Mercury’s dayside magnetopause to its nightside 

magnetotail via an Earth-like Dungey cycle [Slavin et al., 2010; Imber and Slavin, 2017]. The 

cycle is completed by the return flow of mass, energy and flux towards Mercury driven by 
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magnetic reconnection in Mercury’s PS [Slavin et al., 2009; Sundberg et al., 2012; Sun et al., 

2015; DiBraccio et al., 2015b; Smith et al., 2017; Zhong et al., 2018].   

In order to understand mass, momentum and energy transport through a planetary 

magnetotail, it is essential to understand the sunward convection of closed flux tubes and 

thermodynamic properties of particles within the PS [Siscoe, 1983; Baumjohann and 

Paschmann, 1989]. In magnetohydrodynamics (MHD) theory, the local plasma pressure (Pi) can 

be expressed as: 

𝑃𝑖 = 𝛼𝑛𝑖𝛾            (1) 

where ni is the proton number density. α is a constant related to the specific entropy of a 

particular flux tube. The polytropic index γ in Equation (1) determines the type of 

thermodynamic process a closed flux tube experience as it is transported sunward. In an ideal, 

adiabatic system where there is no particle source or loss (i.e. reversible process) and no heat 

transfer in and out of the PS, it should be the case that γ = 5/3 or (~1.67). Indeed, this is the value 

of γ is commonly used in MHD simulations [e.g. Jia et al., 2015]. If γ is less than 5/3, it means 

that the plasma behaves non-adiabatically (i.e., particle gain/loss or heat transfer or both). 

Equation (1) can be linearized: 

log 𝑃𝑖 = 𝛾 log 𝑛𝑖 + log 𝛼           (2) 

γ may then be calculated by performing linear regression analysis on log(Pi) and log(ni).  
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Baumjohann and Paschmann, [1989] first determined the overall value of polytropic index 

for the Earth’s PS using AMPTE/IRM plasma data under a wide range of conditions and regions, 

and found it to be ~1.69, which is close to 5/3, suggesting adiabatic plasma behavior. On the 

other hand, using ISEE-1 data, Huang et al., [1989] calculated a γ value of ~0.6, which would 

require that the plasma on a flux tube undergoing rapid contraction as it moves planetward to 

cool as opposed to heat due to compression. However, this value of 0.6 is closer to that 

determined by Schindler and Birn [1982] who produced a realistic variation of pressure with 

radial distance by inputting a value of γ = 2/3 in the equation of state. This avoided the 

unrealistic order of magnitude pressure increase in near-Earth magnetotail that arises when using 

γ = 5/3 from ideal MHD theory [Erickson and Wolf, 1980]. Spence et al., [1989] determined a 

similar result using statistical averages of plasma pressure observed in the near-Earth magnetotail 

region. The 2/3 value was also used by Kivelson and Spence, [1988] in their modified 

magnetotail model while investigating the effects of finite tail width. Borovsky et al., [1998] 

subsequently calculated γ to be ~1.52 using ISEE-2 data while Pang et al., [2015] found a range 

of γ values from ~0.1 to 1.8 using Cluster data. More recently, Frühauff et al., [2017] obtained a 

γ of ~1.72 using THEMIS data. Taken together, these results suggest that γ for Earth’s PS is 

highly dependent on the data set used in the analysis.  

MESSENGER’s measurements of ion temperature and density [Andrews et al., 2007] and 

magnetic fields [Anderson et al., 2007] during its 4 year orbital mission around Mercury provide 

the first opportunity to investigate the transport of mass and energy in Mercury’s plasma sheet. 
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Here, we will describe the method used to identify these intervals of MESSENGER’s encounter 

with Mercury’s PS. Using regression and statistical analysis of the plasma measurements, we 

calculated an average γ of ~0.687 and demonstrated a relationship between γ and substorm-

related phenomenon in Mercury’s PS. 

 

2. MESSENGER Dataset and Event Selection 

In this study, we analyzed the full-resolution one energy scan/10s plasma [Andrews et al., 

2007] and 20 vectors/second magnetic field [Anderson et al., 2007] measurements from 

MESSENGER’s Fast Imaging Plasma Spectrometer (FIPS) and Magnetometer (MAG), 

respectively. The accuracy of our calculated polytropic index is limited by our ability to observe 

the plasma in a given magnetic flux tube as it travels sunward. The assumption of constant 

specific entropy in each flux tube becomes a significant source of uncertainty since we do not 

know the flux tubes’ history [Zhu 1990]. As a result, noise and biases may be introduced which 

could influence our determination of γ at Mercury. Therefore, it is important to use the plasma 

measurements in its highest data resolution. However, due to its placement on the MESSENGER 

spacecraft, FIPS had limited field-of-view (FOV) of the full proton distribution (See Gershman 

et al., [2013] for more details). This poses a challenge to accurately calculate the moments of the 

bulk plasma sheet population (i.e., plasma density and temperature) at Mercury in FIPS native 

resolution of 10s per full scan of all energy levels. Therefore, we chose to use the 1-minute 

averaged plasma moments derived from FIPS data. 
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We chose the Mercury Solar Magnetospheric (MSM) coordinate system for analyses 

performed in this study. The MSM coordinate system is centered on Mercury’s internal offset 

dipole [Anderson et al., 2011]. The X-axis is positive in the sunward direction along the Sun-

Mercury line, Z-axis is positive northward parallel to Mercury’s magnetic dipole moment axis, 

and Y-axis completes the right-handed system. To account for solar wind aberration, we rotate 

the MSM X- and Y-axes by the solar wind aberration angle, which was calculated on a daily basis 

assuming a radial solar wind speed of 400 km/s, into the new aberrated MSM (or MSM’) 

coordinate system. 

Figure 1 shows an example of MESSENGER’s traversal of Mercury’s PS on February 18th 

2012. Panel 1 shows the energy-per-charge (E/Q) spectrogram observed by FIPS. Panel 2 shows 

the plasma β (i.e. thermal to magnetic pressure ratio) calculated using FIPS’ plasma moments; x, 

y and z-components and magnitude (|B|) of the magnetic field measurements are shown in Panels 

3 – 6, respectively. The interval starts with MESSENGER in the southern tail lobe, which is 

characterized by the low plasma β (~0.05), strong |B| (~50nT) and low levels of fluctuation 

predominantly in the negative BX’ direction. At ~UT12:53, MESSENGER entered the southern 

plasma sheet boundary layer (PSBL), which is identified by moderate |B| fluctuations of ~10nT 

[e.g. Slavin et al., 1985]. MESSENGER then entered the PS at ~UT12:58 shown by the further 

decrease of |B| to ~15nT, reversal of BX’ across the cross-tail current sheet, presence of 0.5 – 1 

keV protons and increase of β to ~10. Lastly, MESSENGER exited the PS into the northern 
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PSBL, and subsequently into the high latitude, northern part of Mercury’s dipolar, low β (~0.02) 

inner magnetotail region characterized by positive BX’ and strong |B| of ~100nT.  

We visually identified a total of 759 PS crossings over four years of MESSENGER data 

using the following selection criteria: 

1. Plasma β inside the PS and PSBL must be greater than 0.5. 

2. A crossing of the cross-tail current sheet, identified by a clear reversal in BX’ coincident 

with a depression in |B| must be present.  

Plasma β has been used extensively in many magnetotail studies to identify the boundary 

between the PS region (including the PSBL) and tail lobe. Terrestrial studies (e.g., Angelopoulos 

et al., [1994]) used a range of β cutoff values from 0.1 to 0.5 to identify the boundaries of Earth’s 

PS. In this study, we adopted the criteria used by Sun et al., [2016] to define Mercury’s PS as the 

region with β ≥ 0.5. The vertical lines in Figure 1 denotes the PS boundary set by this criteria.   

 

3. Analysis 

3.1 Polytropic Index 

Figure 2 shows all Pi vs. ni measurements observed during the 759 PS crossings identified in 

this study. Note that both Pi and ni -axes have logarithmic scales. As shown in Figure 2, 

MESSENGER measured a large range of Pi and ni during the PS encounters, ranging from 0.06 – 
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7nPa and 0.08 – 30cm-3, respectively. Note that the high pressure and density measurements 

correspond to measurements made in the PS, while the low pressure and density measurements 

correspond to those measured in the PSBL. Figure 2 also clearly shows a linear relationship 

between the logarithmic values of Pi and ni as indicated by the linearized equation of state 

(Equation 2). Correlation analysis yields a correlation coefficient (r) of ~0.684, which indicates 

that there is a linear relationship between log(Pi) and log(ni), consistent with a single, well-

constrained polytropic exponent.  

Since this is a two-dimensional data set, we performed the Deming regression analysis 

[Deming, 1943] on the Pi vs. ni measurements, which accounts for errors in both variables (Pi 

and ni) to compute the line of best fit. We also used the jackknife method [Linnet, 1990] to 

estimate the errors in the slope and y-intercept of the regression line. The regression analysis 

yields a regression coefficient (i.e., polytropic index γ) of ~0.687±0.008. Since the calculated 

value of γ is much smaller than 5/3 (~1.67), our result suggests that the plasma inside a 

contracting flux tube in the PS cools as it is transported sunward towards Mercury. This result 

also indicates that the plasma pressure in Mercury’s inner magnetotail is lower than that 

predicted from the equation of state with γ = 5/3. There appears to be a net energy and particles 

lost from the flux tube during the convection process in Mercury’s inner magnetotail. 

Implications of these results will be further discussed in the Discussion section.  

 

3.2 Dependence of Magnetotail Activity Level 
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We further examined the dependence of γ on the level of magnetotail activities. Earlier 

terrestrial studies on the determination of γ for Earth’s PS (Frühauff et al., [2017] and references 

therein) shows the importance of separating the Pi and ni data set according to the activity level 

(i.e., quiet and active times) of the terrestrial magnetotail. A similar index based on the level of 

magnetic fluctuations observed within Mercury’s magnetosphere was developed by Anderson et 

al., [2013]. Here, we used the average magnetic field intensity of Mercury’s tail lobe (|Blobe|) 

instead for each identified PS crossing event as a proxy for activity level in Mercury’s 

magnetotail. We assumed that |Blobe| does not have spatial or temporal dependence during each 

PS crossing. The use of |Blobe| as a first order approximation for Mercury’s magnetotail activity is 

suitable because |Blobe| tends to be higher during the growth and expansion phase (or active 

periods) of the substorm process and lower during quiet periods [e.g., Sun et al., 2015; Imber and 

Slavin, 2017].  

Figure 3a shows the Pi and ni diagram similar to Figure 2; the colors associated with each Pi 

and ni measurements represents |Blobe| for the corresponding PS crossing. It is clear that there are 

two different groups of measurements distinguished by |Blobe|. It is expected that higher magnetic 

field intensity in the tail lobe leads to higher plasma pressure in Mercury’s PS. Using a range of 

|Blobe| threshold values, we determined that a threshold value of 60 nT best define the two subsets 

of measurements representing quiet and active conditions. We separated the entire data set into 

two subsets for quiet (i.e. |Blobe| < 60 nT) and active (i.e. |Blobe| > 60 nT) magnetotail as shown in 

Figure 3b and 3c, respectively. The regression analyses yield a γ value of ~0.636 ± 0.008 and 
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0.58 ± 0.02 for the quiet and active data subsets, respectively. The correlation coefficient is 

~0.68 for both subsets, indicating successful regression analyses. Our results show that γ is ~13% 

smaller during active than quiet times, which suggests that planetward convection is less 

adiabatic and more particles and energy are lost from the flux tube when Mercury’s magnetotail 

is more active (i.e. during substorms).  

 

3.3 Downtail Variation of γ in Mercury’s Plasma Sheet 

We examined the radial distance from Mercury (R) dependencies of the polytropic index γ. 

Using only measurements within ± 1 RM centered on the noon-midnight meridian, we binned the 

plasma measurements into radial bins of 0.1 RM from R = 1.2 RM to 2.6 RM and compute 𝛾 for 

each bin using the regression technique discussed in Section 3.1. The calculated γ as a function 

of R is shown in the top panel of Figure 4. The error bars represent the standard errors of the 

calculated regression line parameters.  

Our results show that the value of γ remains constant at ~0.65 between R = 2 – 2.4 RM. 

However, γ decreases steadily with decreasing radial distance from Mercury between 1.5 ‒ 2 RM 

until it reaches a minimum at R ~ 1.4 RM with γ ~ 0.45 before increasing to ~0.75 at R ~ 1.2 RM. 

The relative size of the error bars and constant r for the measurements in all R bins (red line) at ~ 

0.7 indicates that the minima in γ is unlikely to be the results of observational bias. The location 

of the minima in γ coincides with the location of Mercury’s substorm current wedge (SCW) 
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identified by Poh et al., [2017b]. A similar minimum in γ as a function of R was also observed in 

the terrestrial study by Frühauff et al., [2017]. They suggested a connection between the 

decrease of γ and the flow-braking region typically observed at X ~ -15 RM (e.g., Shiokawa et al., 

[1997]). Our result also suggests a similar connection between the observed decrease in γ and the 

location of the flow-braking region in Mercury’s inner magnetotail.  

 

4. Summary and Discussion 

MESSENGER observations of 759 crossings of Mercury’s PS were examined and our results 

can be summarized as follows: 

I. We calculated the average value of γ for Mercury’s PS to be ~0.687.  

II. We demonstrated that γ is lower during active times than quiet times. 

III. The observed minimum in γ at R ~ 1.4 RM indicates a relationship between decreases in γ 

and location of the flow braking region in Mercury’s inner magnetotail. 

The polytropic index γ determines the thermodynamic process a closed flux tube experience 

as it is transported sunward. Our regression analysis of FIPS plasma measurements yielded a 

polytropic index γ of ~0.687 (or ~2/3) for Mercury’s PS, which is smaller than the adiabatic 

polytropic index of 5/3. This result suggests that the plasma within the contracting, planetward 

moving flux tube “cools”, indicating net particle and energy loss, as the flux tube is transported 

into Mercury’s low-β inner magnetotail region. Our calculated γ value is consistent with the γ = 
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2/3 value determined by some terrestrial studies based on their Earth’s magnetospheric model 

[Schindler and Birn, 1982; Kivelson and Spence, 1988] and observations [Spence et al., 1989; 

Huang et al., 1989]. Kivelson and Spence [1988] concluded that the effects of finite tail width 

and loss of particles through precipitation could account for the observed lower plasma pressure 

(i.e. γ = 2/3) [Spence et al., 1989] in the near-tail region under the condition of steady state 

convection occurring in the magnetotail. The agreement between both our observations and 

simulation results from the Kivelson and Spence, [1988] magnetospheric model strongly suggests 

that similar mechanisms might be occurring in Mercury’s PS that would result in our observation 

of γ ~ 0.687, which is not surprising considering the strength of Mercury’s global magnetic field 

and the typical ion gyroradius (~380 km [DiBraccio et al., 2015b]) relative to the system size.  

The two primary sink mechanisms for particles in Mercury’s PS are: (1) Particle precipitation 

due to large loss cone, and (2) non-adiabatic particle scattering due to strong acceleration 

processes. Earlier studies have shown that the loss cone for Mercury’s magnetospheric cusp is 

uniquely large (e.g., Goldstein et al., [1981]; Raines et al., [2014]). The equatorial loss cone for 

Mercury’s nightside magnetosphere ranges from ~13° to 23°, as compared to Earth’s loss cone 

of < 3° beyond geosynchronous orbit (~6 RE) [Baumjohann and Treumann, 1996]. As a result of 

Mercury’s large loss cone, particles with sufficiently small pitch angles are likely to precipitate 

onto Mercury’s high latitude nightside surface and become lost from the flux tubes, instead of 

mirroring at the high latitude mirror point and undergoing several bounce motions to become 

“trapped” within the flux tube, as in the case of Earth. This effect is further enhanced by 
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Mercury’s offset dipole magnetic field with more plasma sheet particle loss in the southern 

hemisphere surface [Korth et al., 2014]. Furthermore, at Earth, outflow from the terrestrial 

ionosphere serves as a significant source of magnetospheric plasma for the terrestrial PS 

[Chappell et al., 1987], continually replenishing flux tubes as they propagate earthward. In 

contrast, Mercury’s lack of an ionosphere means there is only a low flux of plasma, produced by 

photo-ionization and subsequent acceleration of exospheric ions, drifting into Mercury’s 

magnetotail. This source is insufficient to refill flux tubes depleted by constant precipitation as 

they propagate into Mercury’s inner magnetotail. Through this mechanism, Mercury’s large loss 

cone contributes to the non-adiabatic behavior of plasma within a closed flux tube observed in 

this study.  

Another reason for non-adiabatic plasma behavior at Mercury is scattering of particles due to 

the complex set of acceleration processes occurring in Mercury’s magnetotail [e.g. Zelenyi et al., 

2007]. Solar wind and planetary ions in Mercury’s PS are known to have large gyroradius 

relative to the scale length of magnetic field variations due to Mercury’s weak intrinsic magnetic 

field. The influence of centrifugal force on particle motion becomes important in Mercury’s 

plasma sheet due to finite gyro-radius effects [Delcourt, 1996], thereby accelerating particles and 

result in non-adiabatic Speiser-type orbits [Delcourt et al., 2003] across magnetospheric regions. 

At Mercury, particles were also observed to be energized and accelerated near the X-line by 

magnetic reconnection [Zhong et al., 2018], and reconnection-related phenonmena, such as 

dipolarization fronts [Sun et al., 2017; Dewey et al., 2017]. Particle acceleration could result in 

This article is protected by copyright. All rights reserved.



15 
 

the chaotic and non-adiabatic motion of particles [Buchner and Zelenyi, 1989], thereby resulting 

in the loss of particles within the flux tube during compressional convection and subsequent 

transport into another magnetospheric region, impact onto Mercury’s nightside surface or 

shadowing of the magnetopause. Therefore, the scattering of particles due to particle acceleration 

processes providing another plausible explanation of why γ ~ 2/3 (instead of 5/3) in Mercury’s 

PS. 

Our analysis also shows that γ is lower during PS crossings when higher |Blobe| were 

observed.  During active magnetic reconnection, particle scattering effects play an even more 

important role in the transport of particles from one magnetospheric region to another. Particles 

energized and accelerated by magnetic reconnection and dipolarization fronts [Sun et al., 2017; 

2018] execute a larger, more chaotic gyro-motion and are more likely to be lost from the flux 

tubes into other magnetospheric regions or shadowing of the nightside magnetopause. 

Furthermore, the increase of BZ in the PS during substorm expansion phase increases the 

nightside loss cone angle, resulting in more particles being lost due to particle precipitation onto 

Mercury’s nightside surface. The increased effects of particle scattering and loss cone 

precipitation during active reconnection contribute to enhanced loss of particles and hence, lower 

γ, during active time periods. 

Analysis of the polytropic index γ with radial distance shows a minimum in γ at R ~ 1.4 RM. 

Similar feature in the radial profile of γ at Earth was reported by Frühauff et al., [2017], who 

suggested a connection between γ and the flow-braking region in the near-Earth magnetotail 
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region. At Mercury, this minimum also occurs near the region where Poh et al., [2017b] reported 

observations of Mercury’s SCW. When the reconnection rate at Mercury’s dayside 

magnetopause [DiBraccio et al., 2013] is faster than the reconnection rate in the magnetotail, 

magnetic flux builds up in the two tail lobes. Substorm onset occurs during a sudden unloading 

of lobe magnetic flux [Slavin et al., 2010] in the highly-stretched, thin plasma sheet, which 

launches Alfvénic Bursty Bulk Flows (BBFs), carrying dipolarized flux tubes towards Mercury. 

The sunward fast flows brake due to the tailward pressure gradient force as it encounters 

Mercury’s low-β inner magnetotail region, resulting in the diversion of plasma flow and 

ultimately the loss of ions from the flux tubes. The additional loss of particles due to flow 

braking exacerbates the problem of particle loss due to scattering and large loss cone, hence 

explaining the observed decrease (and minima) of γ around the flow breaking region in 

Mercury’s magnetotail. These plasma-depleted flux tubes (or bubbles) [Chen and Wolf, 1993] 

with low specific entropy will continue to propagate further into Mercury’s inner-tail region until 

the increase (decrease) in plasma pressure (flux tube volume) stops its motion. This flux tube 

transport process is similar to that observed at Earth [e.g. Sergeev et al., 1996]. 

Looking into the future, the upcoming Bepi-Colombo mission, consisting of the Mercury 

Magnetospheric Orbiter (MMO) and Mercury Planetary Orbiter (MPO), will take our 

understanding of the transport of mass and energy in Mercury’s magnetotail to the next level. 

The Mercury Ion Analyzer (MIA) and Search for Exospheric Refilling and Emitted Natural 

Abundances (SERENA) instrument suite will be able to obtain the full 3-D distribution function 
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[Saito et al., 2010] and measures particle precipitation [Orsini et al., 2010], respectively, 

allowing us to accurately determine the plasma moments in each magnetotail regions. Advances 

in data sets measured by Bepi-Colombo will greatly improve our understanding of how mass and 

energy is transported in Mercury’s magnetotail. 
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Figure 1: FIPS E/Q spectrogram (Panel 1), plasma β (Panel 2) and magnetic field (Panel 3 – 6) 

measurements of MESSENGER crossing of Mercury’s PS on February 18th 2012. Panel 3 shows 

the fitted Harris current sheet. Red, blue and yellow color bars represent the PS, PSBL and tail 

lobe (northern/southern) regions, respectively. Vertical lines represent the PS interval identified 

using the criteria β ≥ 0.5.   

 

This article is protected by copyright. All rights reserved.



20 
 

 

Figure 2: Logarithmic values of Pi vs. ni measured in 759 Mercury’s PS crossings. The red line 

represents the orthogonal regression line. The purple and blue lines represents the Pi vs. ni 

relationship for γ = 1 (isothermal) and 5/3 (adiabatic).  
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Figure 3: (a) Logarithmic values of Pi vs. ni measurements. Colors represents average magnetic 

field intensity of Mercury’s tail lobe for each PS encounter. Pi vs. ni measurements during (b) 

active and (c) quiet time.  
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Figure 4: (top) Polytropic index γ and corresponding r versus radial distance R. Pi vs. ni 

measurements are sorted into bins of 0.1 RM from R = 1.2 to 2.6 RM.. (bottom) Histogram of 

number of measurements in each bins.  

 

 

 

 

This article is protected by copyright. All rights reserved.



23 
 

 

 

 

 

References 

Anderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin 
(2007), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417–450, 
doi:10.1007/s11214-007-9246-7. 

 
Anderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. 

Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen (2011), The global magnetic 
field of Mercury from MESSENGER orbital observations, Science, 333, 1859–1862, 
doi:10.1126/science.1211001. 

 
Anderson, B. J., C. L. Johnson, and H. Korth (2013), A magnetic disturbance index for 

Mercury's magnetic field derived from MESSENGER Magnetometer data, Geochem. 
Geophys. Geosyst., 14, 3875–3886, doi: 10.1002/ggge.20242 

 
Andrews, G. B., et al. (2007), The Energetic Particle and Plasma Spectrometer instrument on the 

MESSENGER spacecraft, Space Sci. Rev., 131, 523–556, doi:10.1007/s11214-007-9272-5. 
 
Angelopoulos, V., C. F. Kennel, F. V. Coroniti, R. Pellat, M. G. Kivelson, R. J. Walker, C. T. 

Russell, W. Baumjohann, W. C. Feldman, and J. T. Gosling (1994), Statistical characteristics 
of bursty bulk flow events, J. Geophys. Res., 99(A11), 21257–21280, 
doi: 10.1029/94JA01263. 

 
Baumjohann, W., and G. Paschmann (1989), Determination of the polytropic index in the plasma 

sheet, Geophys. Res. Lett., 16, 295–298, doi:10.1029/GL016i004p00295. 
 
Baumjohann, W., and R. A. Treumann (1996), Basic Space Plasma Physics, 329 pp., Imperial 

Coll. Press, London. 
 

This article is protected by copyright. All rights reserved.



24 
 

Borovsky, J. E., M. F. Thomsen, and R. C. Elphic (1998), The driving of the plasma sheet by the 
solar wind, J. Geophys. Res., 103, 17,617–17,639. 

 
Büchner, J., and L. M. Zelenyi (1989), Regular and chaotic charged particle motion in 

magnetotaillike field reversals: 1. Basic theory of trapped motion, J. Geophys. Res., 94(A9), 
11821–11842, doi:10.1029/JA094iA09p11821. 

 
 
Chappell, C. R., T. E. Moore, and J. H. Waite Jr. (1987), The ionosphere as a fully adequate 

source of plasma for the Earth's magnetosphere, J. Geophys. Res., 92(A6), 5896–5910, 
doi:10.1029/JA092iA06p05896. 

 
Chen, C. X., and R. A. Wolf (1993), Interpretation of high ‐speed flows in th   , J. 

Geophys. Res., 98, 21,409–21,419. 
 
Delcourt, D. C., J. ‐A. Sauvaud, R. F. Martin Jr., and T. E. Moore (1996), On the nonadiabatic 

precipitation of ions from the near ‐Earth plasma sheet, J. Geophys. Res., 101(A8), 17409–
17418, doi:10.1029/96JA01006. 

 
Delcourt, D. C., S. Grimald, F. Leblanc, J. ‐J. Berthelier, A. M illi lo, A. Mura, S. Orsini, and T. 

E. Moore (2003), A quantitative model of planetary Na+ contribution to Mercury's 
magnetosphere, Ann. Geophys., 21, 1723–1736, doi:10.5194/angeo ‐21‐ 1723‐ 2003. 

 
Deming, W. E. (1943). Statistical Adjustment of Data, New York: Wiley. 
 
Dewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. (2017). Energetic 

electron acceleration and injection during dipolarization events in Mercury's 
magnetotail. Journal of Geophysical Research: Space Physics, 122, 12,170–
12,188. https://doi.org/10.1002/2017JA024617 

 
DiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. 

Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon (2013), MESSENGER 
observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space 
Physics, 118, 997–1008, doi: 10.1002/jgra.50123. 

 
DiBraccio, G. A., J. A. Slavin, J. M. Raines, D. J. Gershman, P. J. Tracy, S. A. Boardsen, T. H. 

Zurbuchen, B. J. Anderson, H. Korth, R. L. Jr. McNutt, et al. (2015a), First observations of 
Mercury's plasma mantle by MESSENGER, Geophys. Res. Lett., 42, 9666–9675, 
doi: 10.1002/2015GL065805. 

 

This article is protected by copyright. All rights reserved.



25 
 

DiBraccio, G. A., et al. (2015b), MESSENGER Observations of flux ropes in Mercury’s 
magnetotail, Planet. Space Sci., 115, 77 – 89, doi:10.1016/j.pss.2014.12.016. 

 
Erickson, G. M. and Wolf, R. A. (1980), Is steady convection possible in the Earth's 

magnetotail?. Geophys. Res. Lett., 7: 897-900. doi:10.1029/GL007i011p00897 
 
Frühauff D., Mieth J. Z. D. and Glassmeier, K. H., (2017) Average plasma sheet polytropic index 

as observed by THEMIS, Annales Geophysicae, 35, 2, (253). 
 
Gershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. 

Baker, and S. C. Solomon (2013), Magnetic flux pileup and plasma depletion in Mercury's 
subsolar magnetosheath, J. Geophys. Res. Space Physics, 118, 7181–7199, 
doi: 10.1002/2013JA019244. 

 
Gershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. 

Baker, and S. C. Solomon (2014), Ion kinetic properties in Mercury's pre-midnight plasma 
sheet, Geophys. Res. Lett., 41, 5740–5747, doi:10.1002/2014GL060468. 

 
Goldstein, B. E., S. T. Suess, and R. J. Walker (1981), Mercury: Magnetospheric processes and 

the atmospheric supply and loss rates, J. Geophys. Res., 86(A7), 5485–5499, 
doi: 10.1029/JA086iA07p05485. 

 
Huang, C. Y., C. K. Goertz, L. A. Frank, and G. Rostoker (1989), Observational determination 

of the adiabatic index in the quiet time plasma sheet, Geophys. Res. Lett., 16, 563–566. 
 
Imber, S. M., & Slavin, J. A. (2017). MESSENGER observations of magnetotail loading and 

unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space 
Physics, 122, 11,402–11,412. https://doi.org/10.1002/2017JA024332. 

 
Jia, X., J. A. Slavin, T. I. Gombosi, L. K. S. Daldorff, G. Toth, and B.van der Holst 

(2015), Global MHD simulations of Mercury's magnetosphere with coupled planetary 
interior: Induction effect of the planetary conducting core on the global interaction. J. 
Geophys. Res. Space Physics, 120, 4763–4775. doi:10.1002/2015JA021143. 

 
Kivelson, M. G., and H. E. Spence (1988), On the possibility of quasi ‐static convection in the 

quiet magnetotail, Geophys. Res. Lett., 15, 1541–1544. 
 
Korth, H., B. J. Anderson, D. J. Gershman, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, S. C. 

Solomon, and R. L. McNutt Jr. (2014), Plasma distribution in Mercury's magnetosphere 

This article is protected by copyright. All rights reserved.



26 
 

derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer 
observations, J. Geophys. Res. Space Physics, 119, 2917–2932, doi: 10.1002/2013JA019567. 

 
Linnet K., (1990) Estimation of the linear relationship between the measurements of two 

methods with proportional errors. Stat Med, 9:1463-1473. 
 
Orsini, S., et al. (2010), SERENA: A suite of four instruments (ELENA, STROFIO, PICAM and 

MIPA) on board BepiColombo ‐MPO for particle detection in t   
environment, Planet. Space Sci., 58, 166–181, doi:10.1016/j.pss.2008.09.012. 

 
Pang, X., et al. (2015), Sci. China Earth Sci., 58: 1993. https://doi.org/10.1007/s11430-015-

5122-6. 
 
Poh, G., J. A. Slavin, X. Jia, J. M. Raines, S. M. Imber, W. ‐J. Sun, D. J. Gershman, G. A. 

DiBraccio, K. J. Genestreti, and A. W. Smith (2017a), Mercury's cross ‐tail current sheet: 
Structure, X ‐l ine location and stress balance, Geophys. Res. Lett., 44, 678–686, 
doi: 10.1002/2016GL071612. 

 
Poh, G., J. A. Slavin, X. Jia, J. M. Raines, S. M. Imber, W. ‐J. Sun, D. J. Gershman, G. A. 

DiBraccio, K. J. Genestreti, and A. W. Smith (2017), Coupling between Mercury and its 
nightside magnetosphere: Cross ‐tail current shee       
formation, J. Geophys. Res. Space Physics, 122, 8419–8433, doi: 10.1002/2017JA024266. 

 
Raines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. 

Korth, S. M. Krimigis, and R. L. McNutt Jr. (2011), MESSENGER Observations of the 
plasma environment near Mercury, Planet. Space Sci., 59, 2004–2015, 
doi:10.1016/pss.2011.02.004. 

 
Raines, J. M., D. J. Gershman, J. A. Slavin, T. H. Zurbuchen, H. Korth, B. J. Anderson, and S. C. 

Solomon (2014), Structure and dynamics of Mercury's magnetospheric cusp: MESSENGER 
measurements of protons and planetary ions, J. Geophys. Res. Space Physics, 119, 6587–
6602, doi: 10.1002/2014JA020120. 

 
Rong Z. J., Ding Y., Slavin J. A., Zhong J., Poh G., Sun W. J., Wei Y., Chai L. H., Wan W. X. 

and Shen C., (2018) The Magnetic Field Structure of Mercury's Magnetotail, Journal of 
Geophysical Research: Space Physics, 123, 1, (548-566). 

 
Saito, Y., J. ‐A. Sauvaud, M            

and BepiColombo MMO/MPPE team (2010), Scientific objectives and instrumentation of 
Mercury Plasma Particle Experiment (MPPE) onboard MMO, Planet. Space Sci., 58, 182. 

This article is protected by copyright. All rights reserved.



27 
 

 
Schindler, K., and J. Birn (1982), Self ‐consistent theory      

Earth's magnetotail, J. Geophys. Res., 87, 2263–2275. 
 
Sergeev, V. A., V. Angelopoulos, J. T. Gosling, C. A. Cattell, and C. T. Russell 

(1996), Detection of localized, plasma ‐depleted flux tu        
sheet, J. Geophys. Res., 101(A5), 10817–10826, doi: 10.1029/96JA00460. 

 
Shiokawa, K., W. Baumjohann, and G. Haerendel (1997), Braking of high-speed flows in the 

near-Earth tail, Geophys. Res. Lett., 24, 1179–1182, doi:10.1029/97GL01062. 
 
Siscoe, G. L. (1983), Solar system magnetohydrodynamics, in Solar ‐Terrestrial Physics, 

Principles and Theoretical Foundations, edited by R. L. Carovillano, and J. M. Forbes, pp. 
11–100, D. Reidel, Hingham, Mass. 

 
Slavin, J. A., E. J. Smith, D. G. Sibeck, D. N. Baker, R. D. Zwickl, and S.-I. Akasofu (1985), An 

ISEE 3 study of average and substorm conditions in the distant magnetotail, J. Geophys. 
Res., 90, 10,875–10,895. 

 
Slavin, J. A., et al. (2009), MESSENGER observations of magnetic reconnection in Mercury's 

magnetosphere, Science, 324, 606–610, doi:10.1126/science.1172011. 
 
Slavin, J. A., et al. (2010), MESSENGER observations of extreme loading and unloading of 

Mercury's magnetic tail, Science, 329, 665–668, doi:10.1126/science.1188067. 
 
Slavin, J. A., et al. (2012), MESSENGER and Mariner 10 flyby observations of magnetotail 

structure and dynamics at Mercury, J. Geophys. Res., 117, A01215, 
doi:10.1029/2011JA016900. 

 
Smith, A. W., J. A. Slavin, C. M. Jackman, R. C. Fear, G. ‐K . Poh, G. A. DiBraccio, J. M. 

Jasinski, and L. Trenchi (2017), Automated force ‐free flux rope identification, J. Geophys. 
Res. Space Physics, 122, 780–791, doi: 10.1002/2016JA022994. 

 
Spence, H. E., M. G. Kivelson, R. J. Walker, and D. J. McComas (1989), Magnetospheric 

plasma pressures in the midnight meridian: Observations from 2.5 to 35 RE, J. Geophys. 
Res., 94(A5), 5264–5272, doi:10.1029/JA094iA05p05264. 

 
Sun, W.-J., J. A. Slavin, S. Fu, J. M. Raines, Q.-G. Zong, S. M. Imber, Q. Shi, Z. Yao, G. Poh, 

D. J. Gershman, Z. Pu, T. Sundberg, B. J. Anderson, H. Korth, and D. N. Baker (2015), 

This article is protected by copyright. All rights reserved.



28 
 

MESSENGER observations of magnetospheric substorm activity in Mercury's near 
magnetotail. Geophys. Res. Lett., 42, 3692–3699. doi: 10.1002/2015GL064052. 

 
Sun, W. J., S. Y. Fu, J. A. Slavin, J. M. Raines, Q. G. Zong, G. K. Poh, and T. H. 

Zurbuchen (2016), Spatial distribution of Mercury's flux ropes and reconnection fronts: 
MESSENGER observations, J. Geophys. Res. Space Physics, 121, 7590–7607, 
doi:10.1002/2016JA022787. 

 
Sun W. J., J. M. Raines, S. Y. Fu, J. A. Slavin, Y. Wei, G. K. Poh, Z. Y. Pu, Z. H. Yao, Q. G. 

Zong, and W. X. Wan (2017), MESSENGER observations of the energization and heating of 
protons in the near ‐Mercury magnetotail, Geophys. Res. Lett., 44, 8149–8158, 
doi: 10.1002/2017GL074276. 

 
Sun, W. J., Slavin, J. A., Dewey, R. M., Raines, J. M., Fu, S. Y., Wei, Y., et al. (2018). A 

comparative study of the proton properties of magnetospheric substorms at Earth and 
Mercury in the near magnetotail. Geophysical Research 
Letters, 45. https://doi.org/10.1029/2018GL079181 

 
Sundberg, T., et al. (2012), MESSENGER observations of dipolarization events in Mercury's 

magnetotail, J. Geophys. Res., 117, A00M03, doi:10.1029/2012JA017756. 
 
Zelenyi, L., M. Oka, H. Malova, M. Fujimoto, D. Delcourt, and W. Baumjohann (2007), Particle 

acceleration in Mercury’s magnetosphere, Space Sci. Rev., 132, 593–609, 
doi:10.1007/s11214-007-9169-3.  

 
Zhong J., Wei Y., Pu Z. Y., Wang X. G., Wan W. X., Slavin J. A., Cao X., Raines J. M., Zhang 

H., Xiao C. J., A. M. Du, Wang R. S., Dewey R. M., Chai L. H., Rong Z. J. and Li Y., (2018) 
MESSENGER Observations of Rapid and Impulsive Magnetic Reconnection in Mercury's 
Magnetotail, The Astrophysical Journal, 10.3847/2041-8213/aaca92, 860, 2, (L20). 

 
Zhu, X. M. (1990), Plasma sheet polytropic index as inferred from the FPE 

measurements, Geophys. Res. Lett., 17, 2321–2324. 
 
 
 

This article is protected by copyright. All rights reserved.



2018GL080601-f01-z-.jpg

This article is protected by copyright. All rights reserved.



2018GL080601-f02-z-.jpg

This article is protected by copyright. All rights reserved.



2018GL080601-f03-z-.jpg

This article is protected by copyright. All rights reserved.



2018GL080601-f04-z-.jpg

This article is protected by copyright. All rights reserved.




