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The study of predator-prey relationships has always been associated with the use 

of mathematical  models. Until recently these models, such as those of LOTKA and 

VOLTERRA, have had little basis in the real world. The more recent models of HOLLING 

(1965, 1966) and WATT (1959) have dealt primari ly with the mechanics of predation 

itself. Relatively few models of natural populations have been developed primari ly 

due to the complexity of such systems. The model developed in this paper, for a 

single predator and prey species system, can be used to simulate both predator and 

prey populations over a period of time, providing a means for predicting future 

populations, including equilibrium levels. Analysis of the system is possible by varying 

the parameters  in the system. In the present paper, the model is used to simulate 

the predator-prey system on Isle Royale, in which moose (Alces alces) are the only 

large herbivore and wolves (Canis lupus) the only large predator. 

We wish to acknowledge the assistance of R. L. PATTERSON in developing the 

model. Also, D. L. ALLEN and P. A. JORDAN were kind enough to allow the use of 

unpublished data from their studies on Isle Royale. We wish to thank R. G. SELFRIDGE. 

Director of the University of Florida Computer Center, for computer time. 

THE MATHEMATICAL MODEL 

Development of the Model 

In at tempting to model any natural system, we are faced with the problem of 

determining whether the model is a true reflection of the real world. A particular 

component or subsystem of the model can be tested under laboratory conditions, but 

this response should be observed in the field if it is to apply. On the other hand, the 

model could be based on data obtained in the natural system, but there it is not 

possible to measure the full range of any response. The present model uses both 

parameters  measured in the real world and models developed in the laboratory. 

The model consists of a set of difference equations, one for a predator population 

and a second for a prey population. Each equation contains individual te rms to express 

various components of the system. A model of this type is easily programmed for 

simulation on a digital computer. 

In general, the model takes the form:  
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Each term of equations (1) represents a component of the model and can be 

expressed as a time.dependent equation itself. 

The component equations will depend on the particular system being studied, the 

predator and prey species, and the form of the responses in the system. For further 

development of the model it is necessary to consider a particular application with its 

specific components. 

An Application of  the Model 

The predator-prey system of wolves and moose on Isle Royale National Park 

offers several advantages for applying a model of this type. The interspecies 

relationships are relatively simple with moose being the only large herbivore and 

wolves the only large predator on the island. Immigration and emigration are relatively 

insignificant in the present dynamics of both populations and are disregarded in this 

model. 

The present moose population became established by immigration from the 

mainland in the early 1900's (MEcH 1966:21). The population increased until, by 1928, 

estimates reach 5000 individuals (MEcH 1966:22) at which time the population crashed 

to a low of 171. The moose population continued to fluctuate until wolves became 

established in the early 1950's (MEcH 1966:24). Since then, the two populations have 

reached a dynamic equilibrium with moose numbering approximately 600 and wolves 

numbering 22. Each population is relatively stable, with fluctuations in one being 

compensated for by the other until equilibrium again is reached (MECH 1966:167). 

According to MECH (1966:114), natural mortality in moose on Isle Royale is 

insignificant compared to mortality due to predation, and since there is little information 

on this component before wolves became established on the island, it is not included 

in this first model. 

Two components are of particular importance. These are two interaction terms 

in which the response is a function of both predator and prey populations. 

One of these components, the mortality of prey due to predation, is the functional 

response described by HOLLING (1965). The best mathematical model of this response 



129 

to date is that of WATT (1959) which includes the concept of a limited attack rate 

and competition between predators. 

This model, in the case of mammals, follows: 

N a = P K l ~ l - e  -aNo2Pl-c] ( 2 ) 

where N , = n u m b e r  of prey attacked 

No=initial number of prey 

P = n u m b e r  of predators 

K l=max imum number of attacks that can be made per P 

and a and c are constants. In time dependent form equation (2) becomes 

N~(t) =P(t)Kl~l--e-aNo(t)2 P(t)'-c~ ( 3 ) 

Constants for equation (2) can be calculated as follows. If 227 moose were 

killed annually (MECH 1966:163), one moose is killed, on the average, every 1.6 days 

(or 0. 62 moose per day). This rate is undoubtedly less than the maximum possible. 

The maximum rate of predation, K1, can be estimated from rates o[ predation observed 

over short periods of time. MECH (1966:117, 143) observed 6 moose killed during a 

total of 68 hours of hunting by the large pack of wolves. This gives a value of 2. 9 

moose killed per day by the total wolf population, or a value of K~ of 48. 1 moose 

per wolf per year. Other estimates of /s can be obtained by similar observations 

of rates of predation. Once K~ has been estimated, the constants a and c can be 

determined by solving equation (2) using initial populations of 22 wolves and 600 moose 

and 227 moose killed. When equation (2) is solved for different prey density values, 

Na can be plotted against prey density to obtain the wolf functional response curve 

(Fig. 1). 
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The second interaction component is predator reproduction. In some predator 

species such as wolves (JORDAN et al. 1967), reproduction has a threshold response 

in that successful reproduction occurs mainly when the number  of prey is above a 

certain level. 

This observation is supported by laboratory studies of reproduction in dogs. 

SIEDLER and SCHWEIGERT (1954) found that reproduction performance of bitches was 

improved with the addition of animal fat to the diet provided dilution of other nutrients 

did not occur. Bitches fed a protein or liver supplement bore pups with higher birth 

weights and increased survival to weaning (ONTKO and PHILLIPS 1958). 

At present, there is no model available for this reproductive response. The 

models of fecundity which have been developed are primari ly a function of the predator 

population density (WATT 1968:295) and do not consider the density of the prey 

species or nutrition level of the predator. A model of this response can be obtained 

from a logical branching tree such as that published by WATT (1961). Equation (4) 

states that  all predators can produce a total of PK2 offspring and dPb/dNo gradually 

decreases as P~ approaches this maximum.  

d_P~ = P B ( P K 2 - P ~ )  ( 4 ) 
dNo 

where Pb=number  of predator offspring 

No =number  of prey 

P = n u m b e r  of predators 

B =bi r th  rate of predators, the P~ per P 

K 2 = m a x i m u m  number of offspring that can be produced per P 

However, the birth rate has been shown to be a density-dependent function of P in 

some mammals  (CHRISTIAN 1956), SO that, 

dB B 
d P =  - g  P ( 5 ) 

which integrates to 

B = f ' P - ~  

Substituting (6) in equation (4) 

dP~ , l 
dNoo = f P -~ (PK2 - Pb) 

and, upon integrating 

( 6 )  

Pb = P K ~ [ 1 -  e-f~NoPl-g~ ( 7 ) 

To allow for the threshold response the form of equation (7) is made S-shaped, 

P ~ = P K 2 [ 1 - e  -fNo2p'-g] ( 8 ) 

converting to a t ime dependent form, equation (8) becomes 

Pb (t) =P( t )  K2[1 - e  -f~Co(O2P(t)'-o~ ( 9 ) 

Predator reproduction will contribute to the numerical response (HoLLING 1961) 

of predators to prey density and the te rm P~ can be considered the reproductive 
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response to prey density. 

The max imum reproductive rate of wolves, Ks, in equation (8) depends not only 

on wolf fecundity but also on the sex ratio of the population. MECH (1966:87) believes 

there is a preponderence of males in the population and possibly as few as 5 females 

out of the 22 wolves. If we assume a possible litter size of 7 (YOUNG and GOLDMAN 

1944:96), our value of /(2 is 1.6 young per wolf per year.  However, if a 50:50 sex 

ratio existed the value is 3.5 young per wolf per year. Constants f and g in equation 

(8) are determined in the same way as constants a and c were in equation (2). 

Components, other than the above interaction components can be expressed as 

equations or approximated by constants. 

The particular model for the Isle Royale system then consists of the following 

equations: 

N0( t+ l )  =N0(t) +bNo(t) -Na(t) (10) 

for the prey population, and 

P ( t + l )  =P( t )  +P~(t) -dP(t) (11) 

for the predator population 

where N 0 ( t + l ) = p r e y  population at t ime t + l  

No(t) =prey  population at t ime t 

b= p rey  birth rate 

Na(t) =equation (3) 

P ( t + l )  =preda tor  population at t ime t + l  

P(t) =preda tor  population at t ime t 

Pb(t) =equation (9) 

d= dea t h  rate of predators 

Values for the parameters  in equations (10) and (11) now can be calculated. 

The prey birth rate b is determined by dividing the number  of offspring by the 

population size at  calving time. The number  of offspring is 227 (MECH 1966:162) and 

the population at calving t ime is 574 (SHELTON 1966:263) which give a value of b=  

227/574=. 395 for an estimate of birth rate in the moose population. 

Reproduction and adult mortal i ty  do not take place on an annual basis in the 

wolf population, although successful reproduction occurs only when there has been 

mortali ty in the adult wolves or an increase in the moose population (JORDAN, et al. 

1967). Since there is a balance between reproduction and mortality, equation (9) and 

a constant rate of mortali ty are each calculated on an annual basis of one wolf per 

year. 

The estimated value of wolf mortal i ty is d=1/22=.045,  based on an initial 

population of 22 wolves. 

After all parameters  have been determined, the components are assembled in 

equations (10) and (11) and programmed for simulation on a digital computer. To 

test  the assumption of stable populations, the program first was run using the estimated 
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populations of 22 wolves and 600 moose. Then the initial population levels and various 

parameter values were varied to analyze their effects on the dynamics of the system. 

RESULTS AND CONCLUSIONS 

Validation of the Model 

Validation of the model required testing the model's stability and determining 

how accurately the model represents the natural system. To test the stability of the 

model, a simulation was run using the assumed equilibrium populations of 600 moose 

and 22 wolves. Values for K1 and //'2 are 45.45 and 1.60 respectively. Under these 

conditions the population levels should remain constant. As seen in Fig. 2, the model 

reflects our assumed conditions quite well. The variation within the twenty year period 

probably is due to rounding errors in the parameter estimates being multiplied through 

each iteration. 
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Fig. 2. Simulated coaction of assumed~equibrium populations'iof 22 wolves and 600 
moose. The maximum annual predation rate per wolf, K1, is 45. 45 the 
maximum annual predator birth rate per wolf, K2, is 1.60, and the prey 
birth rate, b, is 0. 395. 

In the natural world, inputs into the system, in the form of changes in the prey 

food supply, would cause fluctuations about this equilibrium and in other simulations 

as well. 

A series of simulations were run, varying the parameter values over a wide 

range, to determine the stability of the model. An attempt was made to cause both 

predator and prey populations to go to zero. By decreasing the predator mortality 

and prey reproduction, the two populations declined but could not be forced to zero 

regardless of the initial levels. The populations could be decimated, however, by 
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changing the functional response to prey density allowing a greater  rate  of predation 

at all population densities. This  required changing the response parameters  beyond 

the range of possible values inherent in the wolf-moose system of Isle Royale. This  

suggests that the stability in the model of the Isle Royale system is a function of 

the system parameters  and not a characteristic of the model. 

Testing the accuracy of the model is difficult because there are no reliable 

population estimates before the populations became stabilized. As the wolves and 

moose became integrated about 1957, there was an estimated minimum moose 

population of 300 (COLE, 1957) and a minimum population of 15 wolves (MECH, 1966:27). 

The results of the simulation of this coaction (Fig. 3), show the populations increase 

to a stable level as hypothesized. 
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Fig. 3. Simulated coaction of the estimated 1957 populations of 15 wolves and 300 

moose (Kt=45. 45, K2=l. 60, b=0. 395). 

In view of the stability and its ability to reflect the observed dynamics, the model 

is considered to be valid. However,  it is likely that the model 's accuracy can be 

improved when more data become available. 

Uses of the Model 

Once the model has been validated, there are many  useful analyses which can 

be made. 

Altering system parameters  such as birth and mortal i ty rates to examine their 

affects on the system can be particularly instructive. 

When the prey birth rate  is increased, the two populations reach a stable condition 

at correspondingly higher levels (Fig. 4). This reflects the biological situation in which 

there is a permanent  increase in the prey food supply, sustaining higher population 

levels. Otherwise natural  mortal i ty  would increase, bringing the populations back to 
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the original equilibrium levels. This does not occur in the simulation since natural 

mortality for prey is not included in the model. 
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Fig. 4. Simulated coaction of 22 wolves and 600 moose with the prey birth rate, b, 
increased to 0. 443. (K1-~45.45, K2~l. 60). 

A series of simulations was run altering values of K~ and Ks to determine the 

best estimates of these parameters. The value of//'1 used in the simulations included 

in this paper, 45.45, appears to be the best estimate of this parameter and is within 

the range of observed rates of predation (see page). As the value of K1 is decreased, 

the functional response is slowed, allowing the prey population to increase to higher 

levels. Although the prey population eventually declined to an equilibrium level in 

every case, they peaked at later times and reached unnaturally high levels. 

Changing the value of Ks had relatively little effect because although there may 

be a great change in the value of Ks, there is little change in Pb, the actual predator 

reproduction. 

Another important use of the model is the simulation of wolf-moose coactions 

with initial population levels that have not been observed. One such coaction pertinent 

to the Isle Royale system is one in which the predator population is below its stable 

level and the prey population is above its stable level. The results of this simulation, 

using 5 wolves and 1200 moose, are shown in Fig. 5. Here, as in previous simulations, 

the two populations stabilize as presumed by our model. At first, the prey increase 

because there are too few predators to limit the population. In response, the predators 

increase causing a decline in the prey population. With their food supply diminishing, 

the predator population decreases also, and an equilibrium results. 

This follows precisely MECH'S (1966:168) concept of the Isle Royale system: 

. . .  if the moose population increased significantly, the wolves would find easier 
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Simulated coaction of 1200 moose and 5 wolves with a maximum annual 
predation rate per wolf, KI, of 45.45, a maximum annual predator birth 
rate, K2, of 3.50, and a prey birth rath rate of 0. 395. 

hunting and might eat only preferred parts of their prey, as the wolves did in 

Minnesota when deer were more plentiful (STENLUND 1955). Increased predation 

then might reduce the herd to a level that again rendered hunting more difficult. 

Significantly, the moose population reaches a maximum level of 1600, which is 

less than the population estimates (MECH, 1966:22) at the time of the moose irruption 

around 1930. The ability of wolves to limit the moose population, most probably at 

lower levels than other limiting factors, is predicted. According to the model, the 

wolves are able to limit the moose population over a wide range of densities, indicating 

the wolves are functioning as a density-dependent regulatory mechanism. The 

mechanism operates primarily through the feed-back effect of prey density on predator 

reproduction and predation rate. 

In the process of modeling, the examination of the model components identifies 

specific gaps in our knowledge. In the present case, the effects of food supply on 

predator and prey reproduction should be studied, covering a wide range of 

densities. Laboratory studies can confirm these effects on an energy basis, 

provide data for the development of models of these components. Although 

the complexity of the present model is desirable, further validation is more 

at this time. Continued work in the study of any ecosystem should be closely integrated 

with the development of models to provide the greatest understanding of those 

systems. 
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