Appendix Table of Contents

pp2-9 Appendix Figures S1-S8
p10
Appendix Table S1

Appendix Figure S1. PARP-1 enzymatic activity is not associated with clinical parameters or molecular alterations that are frequent in PCa. PAR IHC score data from mCRPC specimens as described in Figure 1 was compared to (A) Ki67\% positivity, (B) cT at diagnosis, (C) TMPRSS2:ERG fusion status, (D) PTEN IHC score, and (E) AR copy number status. Statistical analyses (r and p values) were derived by Spearman correlation.

A.

 LNCaP
<0.66 Fold change >1.5
B.

Appendix Figure S2. PARP-1 regulates overlapping and distinct transcriptional programs in HT-sensitive PCa CRPC cells. (A) Previously defined androgen/AR regulated genes were used to examine the effect of PARPi in the data generated in Figure 2. (B) Genes found to be significantly different $\mathrm{p}<0.05$ and >1.5 fold change) in the indicated cell lines under the conditions described are depicted. DHT=dihydrotestosterone.

Lapointe Prostate

Taylor Prostate

Taylor Prostate

Appendix Figure S3. Multiple data sets demonstrate that the PARP-1 responsive transcriptome is elevated as a function of disease progression. The significantly PARPi downregulated gened in LNCaP (left) and C4-2 (right) were selected for analyses in the indicated prostate data sets utilizing Oncomine. Boxplot was generated using the mean expression of the PARPi down-regulated genes in the indicated data sets. Statistical significance determined by t test.

A.

Appendix FigureS 4. PARP-1 control of E2F1-driven cell cycle gene expression is lost in the context of exogenous E2F1 expression. (A) C4-2 cells were transfected with either scrambled siRNA (siControl) or siRNA targeted to E2F1 (siE2F1). Data are depicted as mean +/- standard deviation of at least three independent biological experiments. Statistical significance was determine by Student's t test where ${ }^{*}=p<0.05,{ }^{* *}=p<0.01,{ }^{* * * *}=p<0.0001$. (B) C4-2 cells were infected with either a control GFP-encoding adenovirus (AdGFP) or an E2F1-encoding adenovirus (AdE2F1). Left: Exogenous E2F1 expression was validated via qPCR. Right: Cells infected as described were either treated with vehicle control or 2.5 uM veliparib, and cell cycle gene expression was determined via qPCR.

A.

B.

Appendix Figure S6. E2F1-driven HR expression is reduced by PARPi. (A) C4-2 cells were transfected with either scrambled siRNA (siControl) or siRNA targeted to E2F1 (siE2F1). Data are depicted as mean $+/$ - standard deviation of at least three independent biological experiments. Statistical significance was determine by Student's t test where ${ }^{*}=p<0.05$, ${ }^{* *}=p<0.01,{ }^{* * * *}=p<0.0001$. (B) Indicated cell lines were treated as depicted in Figure 2. Data are depicted as mean $+/$ - standard deviation of at least three independent biological experiments. Statistical significance was determine by Student's t test where ${ }^{*}=p<0.05,{ }^{* *}=p<0.01$, ${ }^{* * * *}=p<0.0001$.

Appendix Figure S7. Expression levels of indicated HR pathway genes in primary PCa vs normal patient samples. Violin plots represent FPKM normalized counts obtained from matched tumor and normal RNA-Seq data from TCGA ($n=52$) with p-values generated using paired t-tests.

Homologous recombination (HR) genes

Fred Hutchinson data set ($\mathrm{n}=136$ tumors $w /$ RNA data) Homologous recombination (HR) genes

Appendix Figure S8. The most frequent type of HR gene alteration in PCa is mRNA up-regulation. The CBioportal was used to query the DNA and RNA HR gene alterations found in the MSKCC metastatic data set (top) and the Fred Hutchinson metastatic data set (bottom). Genes queried were BRCA1, BRCA2, RAD51, MRE11A, RAD50, NBN, RBBP8, EX01, RPA1, RPA2, RPA3, XRCC3, BLM, RMI1, RMI2, TOP3A, GEN1, SLX4. Default settings were used.

