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Abstract 

PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which 

are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream 

transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated 

transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 

activity was unexpectedly enriched as a function of disease progression and was associated with poor 

outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote 

aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 

transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved 

in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus 
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acted to induce or enhance “BRCA-ness” These observations bring new understanding of PARP-1 function in 

cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting. 
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Introduction 

Poly (ADP ribose) polymerase 1 (PARP-1) is a multifunctional protein of importance in cancer. PARP-1 

is an abundantly expressed nuclear enzyme which uses NAD+ 

The DNA repair functions of PARP-1 have been targeted for anti-cancer effects through use of 

pharmacological PARP inhibitors (PARPi)(Lord & Ashworth, 2008), which have been approved of ovarian 

cancer, and are under clinical investigation in a number of other tumor types, including prostate cancer (PCa). 

It is thought that PARPi are especially effective in tumors that lack homologous recombination (HR) capacity 

through loss-of-function mutations in BRCA1 or BRCA2, in a phenomenon termed synthetic lethality(Lord & 

Ashworth, 2017, McCabe, Turner et al., 2006). However, clinical trial data in BRCA1/2 mutant-selected tumors 

indicate that objective response rates are only ~40%, suggesting that BRCA1/2 mutation is not sufficient for 

PARPi response(Audeh, Carmichael et al., 2010, Coleman, Sill et al., 2015, Fong, Boss et al., 2009, Gelmon, 

Tischkowitz et al., 2011, Kaye, Lubinski et al., 2012, Sandhu, Schelman et al., 2013). Additionally, a recently 

published clinical trial combining PARPi and androgen receptor (AR)-directed therapy in patients with 

as a substrate to poly (ADP ribose)-ylate 

(PARylate) nuclear proteins, including automodification of PARP-1 itself(D'Amours, Desnoyers et al., 1999, 

Krishnakumar & Kraus, 2010). PARP-1 plays key roles in several key biological processes: replication fork 

stability(Bryant, Petermann et al., 2009), cell death(Yu, Wang et al., 2002), DNA repair and genomic 

stability(Durkacz, Omidiji et al., 1980), telomere maintenance(Beneke, Cohausz et al., 2008), chromatin 

organization(Poirier, de Murcia et al., 1982), and transcriptional regulation(Kraus & Lis, 2003, Schiewer & 

Knudsen, 2014).  
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advanced PCa demonstrated clinical benefit, irrespective of HR status(Clarke, Wiechno et al., 2018). 

Furthermore, the TO-PARP trial(Mateo, Carreira et al., 2015) led to FDA Breakthrough Status for patients with 

BRCA2 or ATM mutant castration-resistant prostate cancer (CRPC). Olaparib responders were enriched for 

defects in DNA repair genes, such as biallelic loss of BRCA2 and ATM. However, while most responders 

(14/16) in this trial were categorized as biomarker positive for HR deficiency, the biomarker suite included 

single copy loss of DNA repair factors, as well as alterations to HDAC2, which is involved in transcriptional 

repression(Rountree, Bachman et al., 2000). While these studies that not all PARPi responders with PCa 

harbor HR-defective tumors, and not all PCa tumors that exhibit aberrant DNA repair are PARPi responsive, 

there is clinical evidence that PARPi resistance is associated with restored HR function in multiple tumor 

types(Barber, Sandhu et al., 2013, Christie, Fereday et al., 2017, Edwards, Brough et al., 2008, Kondrashova, 

Nguyen et al., 2017, Pishvaian, Biankin et al., 2017, Weigelt, Comino-Mendez et al., 2017), including 

PCa(Goodall, Mateo et al., 2017, Quigley, Alumkal et al., 2017). Additionally, PARPi resistance has been 

associated with differential DNA damage response (DDR) network functioning(Gogola, Duarte et al., 2018, 

Jaspers, Kersbergen et al., 2013, Johnson, Johnson et al., 2013). These mechanisms of resistance to PARPi 

indicate that for these tumors, DDR defects likely led to PARPi responses. These clinical findings indicate that 

further mechanistic understanding of PARP-1 functions is needed to develop useful clinical biomarkers of 

response to PARPi. 

Given the potential implications of PARP-1-mediated functions in human malignancies, and the need 

for biomarkers of PARPi response, it was imperative to discern the molecular basis of PARP-1 function and 

activity in the context of BRCA1/2 wild-type PCa, and determine the contribution of PARP-1-mediated 

transcriptional events on tumor phenotypes. 
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Results 

PARP-1 enzymatic activity is increased as a function of disease progression and is associated with 

poor outcome. 

To ascertain the impact of PARP-1 function on aggressive tumor behavior, PCa was utilized as a disease 

system. In this tumor type, the role of PARP-1 in transcriptional regulation of key transcription factors of PCa 

relevance has been demonstrated (ETS transcription factors and androgen receptor (AR))(Brenner, Ateeq et 

al., 2011, Schiewer, Goodwin et al., 2012), and AR is a key driver of PCa initiation and progression. 

Furthermore, PARPi has generated promising clinical trial data in advanced PCa(Mateo et al., 2015). Initially, 

human tissues from primary, hormone therapy (HT)-sensitive PCa and metastatic CRPC (mCRPC) were 

queried for PARP-1 enzymatic activity via immunohistochemistry (IHC) for PAR (Poly(ADP)-ribose, the product 

of PARP-1 enzymatic activity) (Figure 1A). PARP-1 enzymatic activity was elevated in mCRPC when 

compared to primary PCa (Figure 1B). These data give confirmation of predictions from preclinical models 

which showed elevated PARP-1 enzymatic activity in CRPC cell lines (including C4-2 and LNCaP-abl) 

compared to hormone therapy (HT)-sensitive cell lines (including LNCaP, LAPC4, and VCaP)(Schiewer et al., 

2012). To query the impact of elevated PARP-1 enzymatic activity on clinical outcomes, PARP-1 activity was 

assessed as a function of proliferative indices (Appendix Figure S1A) and cT stage at primary diagnosis 

(Appendix Figure S1B). No correlation was observed, indicating that higher PARP-1 activation status is not 

simply due increased cell proliferation or larger volume tumor. Furthermore, there were no correlations 

between PARP-1 enzymatic activity and molecular alterations that are frequent in PCa, including: 

TMPRSS2:ERG fusion status (Appendix Figure S1C), PTEN score (Appendix Figure S1D), or AR copy number 

(Appendix Figure S1E). However, enhanced PARP-1 activity was significantly associated with decreased 

progression-free survival (PFS) (Figure 1C). These data indicate that PARP-1 enzymatic function is not only 

elevated in CRPC, but also predictive of PFS, which is associated with disease specific mortality. 

To expand upon these data, multiplexed quantifiable immunofluorescent IHC was performed on non-

neoplastic prostate tissue, primary PCa, and mCRPC (Figure 1D top left, higher magnification at right). As 

measured through quantification of PAR immunoreactivity, PARP-1 enzymatic activity was elevated in primary 

PCa (median value 62.03) as compared to non-neoplastic prostate tissue (median value 51.52), and highest in 

mCRPC tissue (median value 69.10) (Figure 1D, bottom left). However, the observed increase in PARylation 

during disease progression cannot be simply attributed to total PARP-1 protein expression, as the ratios of 

PARP-1 and PAR expression levels differed across disease states (Figure 1D, bottom middle) (medians of 

PAR values 51.67, 54.29, and 47.81 for non-neoplastic, primary PCa, and mCRPC, respectively).  

Being intricately involved in DNA damage repair, PARP-1 enzymatic activity is induced by DNA 

damage(Durkacz et al., 1980). To determine if the elevated PARP-1 enzymatic activity in mCRPC observed 

above was associated with DNA damage repair, immunoreactivity of γH2AX, a measure of repair of DNA 

double-strand breaks (DSBs)(Podhorecka, Skladanowski et al., 2010), was performed. This analysis indicated 

that PARP-1 enzymatic activity as a function of disease progression was not associated with repair of DSBs 
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(Figure 1D, bottom right) (median values 44.20, 51.80, and 46.20 for non-neoplastic, primary PCa, and 

mCRPC, respectively), suggesting that PARP-1 activity is regulated by other factors in addition to DNA 

damage. Dual assessment of DSB repair and PARP-1 activity in each specimen revealed a positive correlation 

between PAR and γH2AX in non-neoplastic prostate tissues (r=0.2853), and primary PCa tissues (r=0.3573), 

but this association is lacking in mCRPC tissues (r=-0.03825) (Figure 1E), further indicating that elevated 

PARP-1 enzymatic function in mCRPC is not attributable to increased DNA DSB repair. Together, these data 

demonstrate that PARP-1 enzymatic activity is heterogeneous, increases as a function of PCa progression, is 

not associated with levels of either PARP-1 protein expression or of DNA damage repair in mCRPC, and may 

predict poor outcome in PCa. 

 

Identification of the PARP-1-regulated transcriptome and relevance for disease progression 

As demonstrated above, PARP-1 enzymatic activity is elevated as a function of PCa progression independent 

of DNA DSB repair. As such, other PARP-1 functions were analyzed. To assess PARP-1-mediated 

transcriptional regulation in the context of androgen signaling, hormone therapy-sensitive (HT-sensitive) PCa 

cells were deprived of steroids for 72 hours, then treated with PARP-1 inhibition (or control) followed by 16 

hours dihydrotestosterone (DHT) stimulation as depicted in Figure 2A (left) to assess the impact of PARP-1 

suppression in the presence and absence of AR activity. As expected, DHT altered the expression of a large 

number of transcripts (n=1358), and PARP-1 suppression resulted in differential transcript expression when 

compared to DHT (n=877) (Figure 2A, right), consistent with previous reports that PARPi alters the 

transcriptional effects of androgen signaling(Schiewer et al., 2012). This was further confirmed using a 

previously characterized set of AR/DHT-responsive target genes, the majority of these genes are oppositely 

regulated by DHT and PARPi in LNCaP (Appendix Figure S2A).  PARP-1 has also been found to regulate 

castration-resistant AR function(Schiewer et al., 2012). To assess the overall transcriptional effects of PARP-1 

in an unbiased manner in the context of CRPC, C4-2 cells were deprived of steroids for 72 hours, then were 

either treated PARPi (or control) as depicted in Figure 2B (left) for 16 hours. In total, 2011 transcripts were 

differentially regulated upon PARPi treatment when compared to control in CRPC cells, thus defining a PARP-

1 regulated transcriptome in CRPC. The overlap of differentially regulated genes in HT-sensitive vs. CRPC 

cells was derived, and the data indicate there are both overlapping and distinct transcriptional changes elicited 

by each condition and in the individual cell lines (Appendix Figure S2B). Gene lists are included in Dataset 

EV1. These data indicate that there may be a core transcriptional program regulated by PARP-1 in PCa cells, 

which includes a large number of DHT-responsive genes (n=169), but the transition to castration resistance 

likely expands the relevance of PARP-1 regulated transcription, given the larger number of transcripts that are 

altered upon PARPi (n=1810 unique genes regulated by PARP-1). Importantly, the transcripts associated with 

active PARP-1 (down-regulated by PARPi) in both HT-sensitive and CRPC cells significantly increased in 

expression from benign tissues, to primary PCa, to PCa metastases (Figure 2C) when these transcripts were 

queried against a publically available data set(Grasso, Wu et al., 2012). Furthermore, these data were 

validated using other publically available data sets(Lapointe, Li et al., 2004, Taylor, Schultz et al., 2010, Yu, 
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Cao et al., 2007) (Appendix Figure S3), thus indicating that the PARP-1 responsive transcriptome is elevated 

as a function of PCa progression. Together with immunohistochemical PARP-1 activity assessment (Figure 1), 

these collective data indicate that both PARP-1 enzymatic activity and PARP-1-sensitive transcriptional events 

are enhanced as a function of disease progression. 

 

PARP-1 regulates pro-oncogenic transcription factor signaling 

To assess the potential biological consequences of the observed transcriptional enhancement of PARP-1, 

Gene Set Enrichment Analysis (GSEA)(Mootha, Lindgren et al., 2003, Subramanian, Tamayo et al., 2005) 

Molecular Signatures Database (MSigDB) analyses was performed using the unbiased data generated as 

described above. Utilizing the generalizable KEG MSigDB demonstrated an enrichment for cell cycle-related 

and DNA damage repair-associated pathways (including homologous recombination) (Figure 3A, left). 

Analyses using the more specific Hallmarks MSigDB confirmed previous studies, in that the Androgen 

Response hallmark was enriched in and suppressed in CRPC cells (NES=-2.54) (Figure 3A, right bottom). The 

statistically highest enriched MSigDB hallmark was E2F Targets (HT-sensitive NES=-1.51, CRPC NES=-3.31) 

(Figure 3A, right top), which has canonical roles in the regulation of both the cell cycle and DNA damage 

repair(Biswas & Johnson, 2012). These data indicate that in addition to playing a key role in AR transcriptional 

activity, PARP-1 transcriptionally regulates processes associated with the cell cycle and DNA damage repair. 

The E2F family of transcription factors regulate critical processes of importance in cancer, including: 

cell cycle regulation, DNA repair(Biswas & Johnson, 2012), mitochondrial function(Goto, Hayashi et al., 2006), 

cell death(Polager & Ginsberg, 2009), tumor progression and metastatic development(Alla, Engelmann et al., 

2010), stem-ness(Chen, Pacal et al., 2009, Chen, Xu et al., 2008), and angiogenesis(Qin, Kishore et al., 2006). 

E2F1 is frequently deregulated in PCa(Sharma, Yeow et al., 2010), and deregulated E2F1 activity is 

associated with aggressive disease (McNair et al., in press, JCI). For validation, both HT-sensitive and CRPC 

cells were treated as depicted in Figure 2A and 2B above, RNA was extracted, and subjected to qPCR for 

canonical E2F1 target genes (E2F1, PCNA, MCM7, and CCNA2). As shown, each of these transcripts was 

diminished by treatment with the PARPi veliparib by 40-60% in both the context of HT-sensitive (Figure 3B, 

top) and CRPC cells (Figure 3B, bottom). Confirmation that these genes are E2F1 target genes was conducted 

by transiently knocking down E2F1, and subsequent gene expression analyses (Appendix Figure S4A). To 

explore the impact of exogenous E2F1 expression on PARP-1-regulated E2F1 activity, models of exogenous 

E2F1 were generated. Upon examination of E2F1 target gene expression after PARP inhibition (Appendix 

Figure S4B), it was determined that E2F1 target gene expression is no longer under the control of PARP-1. 

These data indicate that exogenous expression of E2F1 results in loss of E2F1 regulation by PARP-1. As 

such, amplified E2F1 may serve as exclusion criteria in future clinical investigation of PARPi in PCa. These 

data indicate that canonical E2F1 target gene expression is sensitive to PARP-1 function. 

To assess the impact of PARP-1 on E2F1 function, chromatin immunoprecipitation (ChIP) analyses 

were performed. In conditions that were identical to those utilized for the transcriptome analyses in Figure 2, 

these ChIP analyses indicate that PARP-1 suppression resulted in diminished E2F1 at the E2F1 locus by 
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~40% (Figure 3C, top left). This is important, given that E2F1 is a regulator of E2F1 gene expression. 

Additionally, PARP-1 was found at the E2F1 locus, and PARP-1 residency at this locus was reduced ~50% in 

response to PARPi (Figure 3C, top right). Furthermore, RNA polymerase II residency was reduced by ~50%, 

as was the active transcriptional mark, acetylated histone H4 by, ~66% (Figure 3C, bottom). These data 

indicate that PARP-1 enzymatic activity is involved in the biochemical regulation of E2F1 transcriptional 

function on chromatin.  

To assess the impact of PARP-1 on E2F1 function in vivo, CRPC (C4-2) xenografts were generated in 

castrated, immunocompromised mice. Tumor-bearing mice were then treated with the PARPi veliparib for 72h, 

sacrificed, and tumors were excised. As shown, the expression of canonical E2F1 target genes (E2F1, PCNA, 

MCM7, and CCNA2) was diminished in vivo upon PARP-1 suppression (Figure 3D). To further validate these 

findings, human tissues were utilized for an explant protocol that has been previously described(Centenera, 

Gillis et al., 2012, Centenera, Raj et al., 2013, Comstock, Augello et al., 2013, de Leeuw, Berman-Booty et al., 

2015, Goodwin, Kothari et al., 2015, Hartsough, Kugel et al., 2017, Schiewer et al., 2012). Briefly, fresh human 

PCa samples are obtained at the time of surgical resection, subdivided, and cultured ex vivo under conditions 

that retain the glandular architecture, stromal content, and clinicopathologic features of the original tumor. 

Explants were exposed to PARPi (or control), and the expression of canonical E2F1 target genes (E2F1, 

PCNA, MCM7, and CCNA2) was assessed. As shown, the response was heterogeneous, but these patient 

tissues demonstrated significantly diminished E2F1 target gene expression in response to PARPi (Figure 3E). 

These collective data identify PARP-1 as a major effector of E2F1 function in vitro, in vivo, and in human PCa 

tissues.  

 

PARP-1 effects on E2F signaling are independent of cell cycle phase and distinct from those elicited by 

CDK4/6 inhibition 

To assess the impact of cell cycle phase on PARP-1-mediated E2F1 regulation, HT-sensitive and 

CRPC cells were treated using conditions identical to those described in Figure 2, and subjected to a BrdU 

pulse and FACS analyses. As shown, there was no change in DNA replication at an early time point (3h) or at 

the time point at which the transcriptional effects of PARP-1 were assessed (16h), (Figure 4A), indicating that 

cell cycle phase cannot explain the decrease in E2F1 function after PARP-1 suppression, although at later time 

points, DNA replication is diminished upon PARPi. While E2F1 itself cannot currently be therapeutically 

targeted, the upstream kinases that positively regulate E2F1 function (cyclin dependent kinases 4 and 6, 

CDK4/6) can be inhibited(O'Leary, Finn et al., 2016), and CDK4/6 inhibitors (CDK4/6i) are under clinical 

investigation for a number of tumor types, including PCa (NCT02905318, NCT02494921, NCT02555189). The 

analyses above indicate that E2F function is under the control of PARP-1, and thus it was necessary to 

compare the transcriptional effects of CDK4/6i to PARPi to discern the transcriptional effects of PARP-1. To 

accomplish this, unbiased transcriptomic data generated in HT-sensitive cells treated with either the CDK4/6i 

palbociclib or the PARPi veliparib were compared. As shown in Figure 4B, left, there was no significant overlap 

in the genes up-regulated by CDK4/6i and PARPi (n=1), and minimal overlap in the genes down-regulated by 
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each treatment (n=45). However, these analyses indicate that the genes specifically down-regulated by PARPi 

were not only the most abundant (n=157), but GSEA MSigDB analyses indicate this gene set was enriched for 

DNA repair processes, including HR (Figure 4B, right). These data indicate that PARP-1 regulates a cell cycle-

independent E2F1 function, distinct from the transcriptional gene regulation by E2F associated with cell cycle 

control. 

 

PARP-1 controls of HR factor availability is associated with  modulation of the chromatin context of 

E2F1 function. 

As the data above identify PARP-1 as a positive regulator of E2F1 activity and subsequent expression of 

genes controlling HR, the impact of PARP-1 inhibition was compared to that of HR deficiency. Utilizing the HR 

gene set to generate heatmaps from the unbiased data derived above in Figure 2, it was determined that 

whether the comparator was DHT in HT-sensitive cells, or vehicle control in CRPC cells, the majority of HR 

gene expression was diminished with PARPi (Figure 5A, left). In fact, the majority of genes involved in most 

DNA repair pathways declined after PARPi treatment (Appendix Figure S5). Furthermore, comparison of the 

unbiased data generated above with a previously developed HR deficiency transcriptional signature(Peng, 

Chun-Jen Lin et al., 2014) demonstrated a significant overlap in both down-regulated (n=104/151) and up-

regulated (n=44/89) genes (Figure 5A, middle). This signature was generated by independently silencing 

BRCA1, RAD51, or BRIT1, followed by unbiased transcriptomic profiling. The intersection of these conditions 

serves as the HR-deficiency transcriptional signature. This intersection proved to be statistically significant 

using GSEA analyses (Figure 5A, right). These data suggest PARP-1 suppression reduces availability of HR 

factors by transcriptional regulation.  

The impact of PARP-1 activity on the expression of HR genes was validated at the transcript level (~20-

50% reduction) (Figure 5B, left) and at the protein level (~15-80% reduction) in vitro (Figure 5B right). 

Validation that these HR genes are E2F1-regulated was accomplished by transiently knocking down E2F1 and 

examining HR gene expression (Appendix Figure S6A). Transcriptional regulation of HR gene expression was 

found to be conserved across all PCa/CRPC models tested (Appendix Figure S6B). Furthermore, the 

dependence of HR gene expression on PARP-1 enzymatic activity was validated in vivo (Figure 5C). 

Additionally, utilizing the patient tissue explant process described in figure 3 in which prostatectomy tissues are 

cultured in the laboratory, the reliance of HR gene expression on PARP-1 enzymatic function could be further 

explored.. PARPi thus elicited a more robust and significant decrease of HR gene expression, than canonical 

E2F1 target genes as described above, but still with patient heterogeneity of response (Figure 5D). Together, 

these data indicate that PARP1 inhibition reduces expression of many genes involved in DNA repair 

(especially HR), suggesting that inhibiting PARP-1 enzymatic function may transcriptionally induce a state of 

“BRCAness”, or relative HR deficiency. 

To define potential mechanism(s) by which PARP-1 regulates HR gene expression, ChIP-qPCR 

experiments were performed at regulatory loci of HR genes known to be regulated by E2F1. While there was 

no clear pattern of altered E2F1 residency at three HR gene loci (BRCA2, RAD51, and TOP2A) after PARPi 
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(Figure 5E, top left graphs), in each case, PARP-1 was found to reside at each locus, and this residency was 

diminished upon PARPi by ~60-83% (Figure 5E, top right graphs). Thus, PARPi destabilizes PARP-1 function 

at HR gene regulatory loci, likely compromising E2F1 activity. As would be expected, RNA polymerase II and 

acetylated histone H4 levels were diminished at these HR gene loci in response to PARPi by 40-80% and 28-

60%, respectively (5E, bottom left and right graphs, respectively).  Furthermore, it was determined that PARPi 

alters the activation status the endogenous inhibitor of E2F1 function, the retinoblastoma tumor suppressor 

(RB) (Figure 5F), wherein PARPi resulted in enrichment of hypophosphorylated (active) RB, suggesting that 

the functions of PARP-1 suppression may be pleiotropic. Additionally, based on the observed decrease in the 

active acetylated histone H4 mark upon PARPi in Figure E, it was determined that this was associated with 

reduced CBP chromatin occupancy (Figure 5G). These congruous data are important, as CBP is a key histone 

acetyltransferase with known functions in PCa(Ianculescu, Wu et al., 2012, Santer, Hoschele et al., 2011). 

Combined, these data indicate that PARP-1 not only resides at HR gene regulatory loci and is diminished upon 

PARPi, but PARP-1 enzymatic activity appears to support E2F1 in the context of a coactivator, whose 

functions include modulation of RB. 

 

 

 

Altered HR factor expression is prevalent in human PCa, and is enriched during disease progression 

Data herein indicate that PARP-1 positively regulates E2F1-mediated HR gene expression in cancer, and that 

suppression of this activity can potentially induce a “BRCA-ness” phenotype. Given that PARP-1 activity is 

enhanced as a function of aggressive disease, patterns of HR gene expression were queried in human cancer. 

An assessment of the TCGA data set(Cancer Genome Atlas Research, 2015), which includes only primary 

PCa, demonstrated that when both RNA and DNA alterations are taken in to account, 50.45% of tumors in this 

data set harbored altered HR gene RNA or DNA (Figure 6A, left). The most frequent HR gene alteration found 

in primary disease was mRNA up-regulation (65%), while mutations only occurred in 6% (Figure 6A, right). 

Utilizing the portion of the TCGA data set(Cancer Genome Atlas Research, 2015) with matched normal and 

primary PCa tissues, several HR genes were significantly up-regulated in cancer (Figure 6B), suggesting that 

de-regulation of HR gene expression occurs during PCa tumorigenesis. Genes that either did not pass the cut-

off for statistical significance or did not increase are shown in Appendix Figure S7. In the PCF-SU2C data set 

of advanced mCRPC tumors(Robinson, Van Allen et al., 2015), there was an increased occurrence of HR 

gene defects, with 68% of tumors harboring either DNA or mRNA alterations (Figure 6C, left). The most 

frequent alteration was mRNA up-regulation (71%), while only 10% of these tumors harbored mutations in 

these HR genes (Figure 6C, right). These observations were supported by two other, independent data sets 

(Kumar, Coleman et al., 2016, Taylor et al., 2010) (94.74% HR gene alteration (Appendix Figure S8, top left), 

76% of which was mRNA up-regulation (Appendix Figure S8, top right); 67.65% HR gene alteration (Appendix 

Figure S8, bottom left), 26% of which was mRNA up-regulation (Appendix Figure S8, top right), respectively). 

However, the most frequent gene alteration in the second data set was gene amplification, not mutation, 
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further suggesting that HR gene upregulation is the predominant alteration present in human PCa. Assessment 

of individual tumor-level data indicate that HR alterations are not mutually exclusive, and the most frequently 

altered HR gene is NBN (22%), while BRCA1 and BRCA2 are altered in ~7% and 8% of these tumors, 

respectively (Figure 6D). Several studies have indicated that the frequency of DNA repair gene mutations is 

elevated in advanced PCa when compared to primary disease(Grasso et al., 2012, Pritchard, Mateo et al., 

2016, Robinson et al., 2015). Data presented herein confirm this, and also indicate that HR gene expression is 

also increased as a function of PCa progression. Combined, these data not only reiterate that HR gene defects 

occur at a higher frequency in advanced PCa, but the most frequent HR gene aberration is mRNA up-

regulation, rather than mutation. HR gene defects increase during prostate cancer progression, the most 

frequent of these defects is mRNA upregulation. Since the data presented herein demonstrate that HR gene 

expression is controlled by PARP-1, and that PARP-1 enzymatic activity is increased during prostate cancer 

progression, there is an association between PARP-1 activity and HR gene expression. These data identify HR 

gene deregulation as a common feature in advanced disease, further highlighting the potential importance of 

altered HR gene expression in disease development and/or progression.  

 

PARP-1 regulates DNA repair factor availability and DNA repair competency 

Based on the fact that PARP-1 transcriptionally regulates HR gene expression, and that the HR gene mRNA 

up-regulation that frequently occurs in advanced disease is meaningful for the response to PARP-1 inhibitors, it 

was imperative to assess the impact of exogenous expression of HR factors on functional and biological 

outcomes after PARP-1 suppression. To accomplish this, multiple model systems were transduced to 

extopically express the HR factors BRCA1 and BRCA2, followed by PARP-1 suppression and molecular and 

cellular readouts as depicted in the schematic in Figure 7A, top. Control transfected cells exhibited reduced cell 

proliferation in response to PARP-1 suppression (Figure 7A, bottom, white bars). However, these same cell 

lines first transduced to over-express either BRCA1 or BRCA2 displayed no cell growth inhibition in response 

to PARP-1 suppression (Figure 7A, bottom, light blue and dark blue bars). To define the potential mechanism 

underlying this lack of biological response to PARP-1 suppression with BRCA1 or BRCA2 over-expression, 

cells treated as per Figure 7A for and were utilized for immunofluorescent detection of γH2AX foci as a 

measurement of DNA DSBs. Control transfected cells treated exhibited an induction of DSBs upon PARP-1 

suppression (LNCaP ~2 fold; C4-2 ~1.5 fold; 22Rv1 ~2 fold) (Figure 7B, white bars), which was abolished with 

overexpression of either BRCA1 or BRCA2 (Figure 7B, light blue and dark blue bars). These data indicate that 

expression dosage of HR factors, which are reduced upon PARP-1 inhibition, have the capacity to alter the 

biological response to PARP-1 suppression by differential induction of DSBs. While data presented in Figure 

1F indicate that the correlation between DSBs and PARP activity is loss during disease progression, data in 

Figure 7B demonstrates that artificially de-coupling PARP-1 transcriptional regulation of DNA repair factors 

renders tumor cells unresponsive to PARP inhibition, thus demonstrating that transcriptional regulation of DNA 

repair factors by PARP-1 has an impact on both the biochemical and the biological response to PARPi. 
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Combined (as depicted in the schematic in Figure 7C), these analyses reveal that: PARP-1 enzymatic 

and transcriptional functions are elevated as a function of PCa progression, and that the PARP-1-regulated 

transcriptome includes key oncogenic transcription factors. Furthermore, PARP-1 plays both direct roles in 

DNA repair and indirect roles through transcriptional regulation of DNA repair gene expression, particularly HR 

genes. The transcriptional regulation of HR factors is clinically relevant, as the most frequent category of HR 

gene defects in PCa is mRNA up-regulation, indicating that PARP-1-mediated expression of HR factors holds 

clinical relevance. Finally, PARP-1-driven expression of HR factors may be a potential determining factor in the 

anti-cancer effects of PARP-1 suppression through enhancing or inducing BRCA-ness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

Discernment of the molecular mechanisms underlying tumor progression and therapeutic response are 

critical for the development and proper utilization of treatment strategies in the management of cancer. This 

study reveals that PARP-1 functions are associated with PCa progression, mediated in part by transcriptional 

events. Key findings include: 1) PARP-1 enzymatic activity is elevated as a function of PCa progression and is 

associated with poor outcome; 2) Elevated PARP-1 function in advanced CRPC is not associated with 

increased PARP-1 expression or correlated with DNA DSBs; 3) PARP-1 regulated transcriptional events are 

also elevated as a function of PCa progression; 4) PARP-1 was identified as a major regulator of E2F1 

signaling, distinct from those impacted by cell cycle modulation; 5) PARP-1 selectively regulates E2F1-
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mediated expression of factors governing HR; and 6) Suppression of PARP-1 can induce BRCA-ness through 

limiting DNA repair factor availability. Together, these data support a model in which both the enzymatic and 

transcriptional-regulatory function of PARP-1 are elevated as a function of PCa progression to support E2F1-

mediated HR gene expression. These studies not only further solidify PARP-1 as a therapeutic target in the 

management of PCa, but nominate PARP-1 activity as a potential biomarker, and PARP-1 inhibition as a 

mechanism to induce or enhance BRCA-ness 

Data reported herein indicate that both the enzymatic activity and transcriptional regulatory functions of 

PARP-1 are elevated as a function of PCa progression. These data are consistent with a previous observation 

that PARP-1 enzymatic activity is elevated in cell line models of CRPC when compared to HT-sensitive 

models(Schiewer et al., 2012). Additionally, these observations align with studies demonstrating that PARP-1 

and PAR are elevated in PCa compared to benign prostatic hyperplasia in a Chinese cohort(Wu, Zhu et al., 

2014) and that PARP-1 protein is elevated in cases of primary PCa as compared to normal controls(Salemi, 

Galia et al., 2013). In other tumor types, elevated PARP-1 mRNA is associated with poor prognosis in 

gliomas(Li, Yan et al., 2016), PARP-1 mRNA is elevated in colon carcinoma when compared to 

adenoma(Dziaman, Ludwiczak et al., 2014), PARP-1 gene expression is associated with lymph node spread of 

malignant pleural mesothelioma(Walter, Vollbrecht et al., 2016), and PARP-1 mRNA and protein are elevated 

in endometrial adenocarcinoma(Bi, Li et al., 2013). Both PARP-1 mRNA and protein are highly expressed in 

small cell lung cancer(Byers, Wang et al., 2012), but PARP-1 protein has been shown to associate with longer 

PFS in limited-stage small cell lung cancer(Kim, Song et al., 2014). High PARP-1 protein is associated with 

shorter survival in soft tissue sarcomas(Kim, Moon et al., 2016), poor prognosis in gastric cancer(Park, Jang et 

al., 2015), is an independent prognostic factor for decreased PFS and OS in high-grade serous ovarian 

carcinoma(Gan, Green et al., 2013), is associated with higher grade, ER negativity, and TNBC, as well 

disease-free and overall survival in operable invasive BrCa(Rojo, Garcia-Parra et al., 2012), and is associated 

with poor prognosis in oral squamous cell carcinoma(Mascolo, Ilardi et al., 2012). Additionally, PARP-1 protein 

is higher in triple negative breast cancer (TNBC) specimens than in non-TNBC breast cancers, and high 

PARP-1 expression is associated with worse PFS in TNBC(Zhai, Li et al., 2015). Combined, these studies 

indicate that elevated PARP-1 occurs in many tumor types, and may have prognostic value. Data shown 

herein provide some of the first evidence that PARP-1 hyperactivation is associated with disease progression, 

independent of DNA damage markers. 

The underlying mechanisms that lead to elevated PARP-1 function in CRPC do not appear to be 

associated with elevated DNA DSBs or increased PARP-1 protein expression, and as such, efforts are ongoing 

to determine the molecular drivers and biological consequence of elevated PARP-1 enzymatic activity in 

CRPC. One clue may lie in the observation that castration alters not only PAR levels, but also NAD+ and other 

PAR-related metabolites in murine kidneys(Gartemann, Bredehorst et al., 1981). Interestingly, high PARP 

activity is associated with platinum sensitivity and improved PFS in epithelial ovarian cancer (EOS)(Veskimae, 

Staff et al., 2016), PARP-1 positivity is associated with higher grade and complete response to first-line 

chemotherapy in EOS(Godoy, Mhawech-Fauceglia et al., 2011), further suggesting that assessing PARP-1 
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activity has potential as a meaningful biomarker. The underlying mechanisms that drive heightened PARP-1 

activity as a function of PCa progression may be due to deregulated NAD+ production, since NAD+ is the 

substrate for PARP-1 production. It has previously been reported that transcriptional regulation by PARP-1 is 

affected by recruitment of an NAD+ synthase enzyme (NMNAT-1)(Zhang, Berrocal et al., 2012). However, 

there are several other enzyme involved in NAD+ production, and each demonstrate some patient-derived 

alterations in human malignancy. There are also unexplored patient-derived alterations in PARP-1 itself, which 

may affect PARP-1 activity.  Furthermore, poly(ADP)-ribose glycohydrolase (PARG), which hydrolyzes PAR 

moieties, harbors patient-derived alterations of unknown relevance, which may impact PARP-1 activation 

status by differentially regulating PAR levels.  It has recently been reported that PARG impacts the response to 

PARPi in models of pancreatic cancer(Chand, Zarei et al., 2017). Irrespective of the mechanism(s) by which 

PARP-1 is hyperactivated in advanced PCa, studies described herein yield novel insights into the downstream 

functions of elevated PARP-1 activity.  

While the expression and enzymatic activity of PARP-1 are altered in several tumor types, delineation 

of the transcriptional targets of PARP-1 in PCa models revealed that not only is HR gene expression is 

regulated by PARP-1 activity, the expression of HR genes is elevated during prostate transformation. These 

data suggest that PARP-1-mediated HR gene expression may promote aggressive phenotypes. Conversely, 

PARP-1 inhibitors may induce BRCAness (in HR-competent tumors) or enhance BRCA-ness in HR-deficient 

tumors. This is consistent with a previous report that demonstrated that TGFβ signaling in wild-type BRCA1/2 

breast cancers down-regulates HR gene expression, and renders breast cancer cells more sensitive to 

PARPi(Liu, Zhou et al., 2014). There is also evidence that BRCA2 can be post-transcriptionally regulated in 

PCa by the lncRNA PCAT-1(Prensner, Chen et al., 2014). Another pharmacological approach to generating 

BRCAness through transcriptional regulation has been reported through use of histone deacetylase inhibitors 

in breast cancer cells(Wiegmans, Yap et al., 2015), which has also been examined in PCa(Chao & Goodman, 

2014). Furthermore, in response to hypoxia, a dynamic E2F switch occurs, in which E2F1 is replaced by E2F4 

at the BRCA1 promoter, thus causing gene repression and transcriptionally regulated BRCA-deficiency(Bindra, 

Gibson et al., 2005). Irrespective of the mechanism that leads to reduced HR gene expression, means to 

accomplish this may be of benefit given the frequency with which these genes are upregulated at the mRNA 

level as a function of PCa progression, and PARP-1 suppression appears to be capable of significantly limiting 

HR gene expression in BRCA wild-type PCa. Whether this is unique to either PCa in specifically, or BRCA1/2 

wild-type tumor cells in general is an area of active interest.  

Identification of PARP-1 as a regulator of E2F1 transcriptional function in PCa, specifically with regard 

to regulation of HR gene expression, sheds new light as to the molecular impact of PARP-1 function in cancer. 

PARP-1 regulation of E2F1 function is consistent with previous studies which demonstrate that PARP-1 

regulates E2F1 transcriptional activity with respect to driving cellular proliferation(Leger, Hopp et al., 2016, 

Simbulan-Rosenthal, Rosenthal et al., 1998, Simbulan-Rosenthal, Rosenthal et al., 2003). Furthermore, 

PARP-1 has been reported to be involved in the regulation of E2F1-induced apoptosis(Kumari, Iwasaki et al., 

2015). Data presented herein demonstrate that PARP-1 resides at regulatory loci of E2F1 target HR genes, 
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and blocking PARP-1 enzymatic activity consistently reduced PARP-1 residency consistently at each target 

locus investigated. The effect of PARP-1 function on E2F1 residency appeared to be context-dependent, but at 

each locus investigated, the recruitment of RNA polymerase II and enrichment of an epigenetic marker of 

active transcription (acetylated histone H4) were dependent upon PARP-1 enzymatic activity. Furthermore, 

PARP-1 suppression appears to regulate RB activity, either directly or indirectly, which may contribute to E2F1 

modulation. Ongoing studies are have been designed to investigate the mechanisms by which PARP-1 

impinges upon the transcriptional repressive functions of RB. These data suggest that PARP-1 functions to 

regulate a permissive chromatin state for transcriptional activation of HR genes by E2F1. This is likely based 

on the chromatin compaction/relaxation capacity of PARP-1 function, and subsequent function of epigenetic 

writers/readers, such as histone acetyltransferases. Future studies are designed to investigate the 

mechanisms by which PARP-1 regulates E2F1-driven transcriptional activation in PCa. 

Finally, findings herein provide insights into novel biomarkers of potential clinical use in PCa, which is of 

critical importance given the lack of clinical biomarkers with utility in predicting PCa progression or therapeutic 

response, and the clinical data that indicate that PARPi responsiveness is not necessarily linked to HR 

status(Audeh et al., 2010, Coleman et al., 2015, Fong et al., 2009, Gelmon et al., 2011, Kaye et al., 2012, 

Mirza, Monk et al., 2016, Sandhu et al., 2013), including in PCa(Clarke et al., 2018, Mateo et al., 2015). This 

held true in the Phase III NOVA trial(Mirza et al., 2016), in which patients with platinum-sensitive recurrent 

ovarian cancer receiving niraparib (a PARPi) maintenance therapy had increased progression-free survival 

(PFS) compared to placebo control, irrespective of BRCA1/2 mutational or HR deficiency status. Analyses of 

clinical samples demonstrated that PARP-1 enzymatic activity is elevated as a function of PCa progression, 

and that high PARP-1 activity strongly correlated with decreased progression-free survival, implicated PARP-1 

as a driver of lethal malignant phenotypes. Strikingly, this elevation in PARP-1 enzymatic activity in advanced 

CRPC was not associated with either higher expression of PARP-1 itself, or with increased evidence of DNA 

DSBs, which are known to activate PARP-1 enzymatic function, implying tumor cells may select for higher 

PARP-1 function through other mechanisms. Regardless, studies herein suggest that PARP-1 enzymatic 

output may be a novel biomarker of PCa aggressiveness or potential to progress to CRPC. Furthermore, 

defining the PARP-1-dependent transcriptome in PCa models revealed that the targets of PARP-1 

transcriptional regulation, including HR genes, are also elevated as a function of PCa progression in clinical 

datasets. These data suggest that a transcriptional profile of PARP-1 effectors has the potential to be a 

biomarker of PCa progression. Current investigation into whether this transcriptional profile, or PARP-1 

enzymatic output, have utility in predicting therapeutic response is ongoing. While PARPi is in clinical 

development for PCa management, the clinical value of targeting PARP-1 for prevention of CRPC 

development, and progression in other tumor types, should be evaluated. 

In sum, the studies herein reveal fundamental new knowledge of PARP-1 function in malignancy. The 

data presented are impactful in cancer, as PARP-1 activity is increased as a function of disease progression 

and is associated with poor outcomes. These novel findings have the potential to impact cancer therapy, based 
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on the discovery that PARP-1 suppression has the capacity to induce or enhance BRCA-ness through 

regulation of DNA repair factor availability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Materials and Methods 

Tissue microarrays (TMAs) of primary PCa were provided by Dr. Kelly (TJU), and the TMAs of mCRPC were 

provided by Dr. Visakorpi (U. Tampere). TMAs were deparrafinized in xylene, washed in decreasing quantities 

of EtOH, followed by a water wash. Antigen retrieval was done in sodium citrate buffer with boiling. 

Endogenous peroxidase was blocked using H

Standard Immunuhistochemistry 

2O2, background was blocked with mouse serum, and tissues 

were covered in a 1:500 dilution of mouse monoclonal anti-PAR antibody (Trevigen, Gaithersburg, MD, USA) 

then incubated overnight at 4°C. Slides were then washed with PBS, and developed using the Vectastain Elite 

ABC Mouse IgG (Vector Laboratories, Burlingame, CA, USA) Kit according to manufacturer’s specifications  

and the Liquid DAB Substrate Kit (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s specifications. 

Slides were then counterstained using hematoxylin by standard methods, washed in increasing EtOH 

concentrations followed by xylene, then coverslips were mounted. Slides were then scored blindly for both 

PAR intensity and PAR percent positivity by a board-certified pathologist (Dr. Parsons, TJU). 

Tissue microarray (TMA) slides were stained using the OPAL

Multiplexed, Fluorescent Immunohistochemistry 

TM multiplex fluorescent staining system from 

Perkin Elmer (Perkin-Elmer cat. no. NEL794B001KT). Immmunofluorescent detection of pγH2AX(Ser139) 
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(CST #2577) was carried out with the first using a 1:200 dilution, followed by PARP-1 (Active Motif #39559) 

using a 1:100 dilution and PAR (Trevigen Inc., 4335-AMC-050) using a 1:200 dilution. The TMA slide was first 

blocked with 3% H2O2 for 10 minutes, then treated with animal-free protein blocker (Vector Laboratories cat. 

no. SP-5030) for 15 minutes, and then incubated over-night at 4˚C with the pγH2AX primary antibody diluted in 

Antibody Dilution Buffer (Ventana Medical Systems cat. no. ADB250).  The next day, the TMA slide was 

incubated with EnVision+ System – HRP labeled polymer goat ant-rabbit secondary antibody (Dako cat. no. 

K4003) for 30 minutes at room temperature followed by incubation with OPAL-FITC fluorophore for 10 minutes.   

Next, the slide was loaded onto the Ventana autostainer using the Ventana reagents for the machine. 

The pγH2AX antibody was completely removed using heat retrieval with CC2 buffer, only leaving the FITC 

fluorophore behind that was crosslinked to the tissue. The PARP-1 antibody was applied manually, followed by 

manual application of the OPLA-Cy3 reagent. Next, the PARP-1 antibody was completely removed from the 

slide, leaving the Cy3 fluorophore behind as it was crosslinked to the tissue.  The final incubation occurred with 

the PAR antibody and the OPAL-Cy5 fluorophore. The slide was incubated with DAPI, washed and 

coverslipped using prolong gold as the mounting medium. No cross-reactivity in signals was observed between 

antibodies, demonstrating that the removal of the antibodies between staining cycles was complete.  

Individual cores were imaged on the VectraTM 2 quantitative slide imaging system.  Non-neoplastic and 

cancer areas were annotated by a pathologist resulting in 156 non-neoplastic areas, 277 primary cancer areas 

and 159 mCRPC areas. Missing cores and cores without glands were excluded from the annotation. The 

InFormTM software was used to obtain the grey-level staining images of individual fluorophores. The amount of 

nuclear staining in individual nuclei was measured for all 4 fluorophores (DAPI, FITC, Cy3, Cy5) and intensity 

levels were normalized across the 4 TMA slides. Normalized intensities of each fluorophore were dichotomized 

into positive or negative using as a cut-off the median intensity across all nuclei within the TMA. The percent of 

positive nuclei for every antibody was counted in benign and neoplastic glands. Alternatively, the average 

expression of each fluorophore across all nuclei in each annotated region was determined.  

LNCaP and C4-2 cells were maintained in minimum essential media (IMEM) supplemented with 5% FBS 

(heat-inactivated fetal bovine serum). 22Rv1 cells were maintained in Dulbecco’s modified Eagle’s media 

supplemented with 10% FBS. All media were supplemented with 2mmol/L of L-glutamine and 100 units/mL 

penicillin-streptomycin. Veliparib was obtained from Enzo Life Sciences (Farmingdale, NY, USA) and dissolved 

in DMSO and used at indicated concentrations. For steroid-depleted conditions, cells were plated in 

appropriate phenol red-free media supplemented with 5% or 10% charcoal dextran-treated FBS (CDT) as 

appropriate. DHT was dissolved in EtOH and used at indicated concentrations. Cell lines were not cultured for 

longer than six months after receipt from their original source, or no longer than 45 passages. Cell lines are 

authenticated by ATCC annually. 

Cell Culture and Treatments 

Cells were seeded at equal density in steroid-depleted (CDT) conditions then treated as indicated with as 

specified for 16 hours; RNA was isolated using TRIzol (Invitrogen) according to manufacturer’s specifications, 

Microarray analysis 
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and submitted for microarray analysis to the Sidney Kimmel Cancer Center Cancer Genomics Shared 

Resource. Gene expression was profiled using the Affymetrix Human Gene 1.0 ST microarray (Santa Clara, 

CA, USA), with hybridization performed using the GeneChip Hybridization Oven 645, followed by scanning on 

Affymetrix Gene Chip Scanner 3000. Data preprocessing was performed in Affymetrix Expression Console 1.1 

using iterPLIER summarization with PM-GCBG background correction and quantile normalization.  

Cells were seeded at equal density in steroid-depleted (CDT) conditions and were treated as specified; RNA 

was isolated using TRIzol and cDNA generated using SuperScript III (Invitrogen). Quantitative PCR was 

conducted with primers described in Appendix Table S1 and with an ABI StepOne machine and PowerSybr in 

accordance with the manufacturer's specifications. Fore gene expression analysis of  

Gene Expression Analysis 

Cells were cultured in media containing CDT for 72 hours and treated as indicated. ChIP analyses and qPCR 

were conducted as previously described (60), using primers described in Appendix Table S1. 

ChIP Analysis 

Four-week-old male BALB/c nu/nu mice were purchased from Charles River, Inc. C4-2 (2 × 10

Xenograft Analysis 

6cells) were 

resuspended in 100 μL of saline with 50% Matrigel (BD Biosciences) and were implanted subcutaneously into 

the flank of the mice. All tumors were staged for 4 weeks before starting the drug treatment. For assessment 

of in vivo gene expression, tumors from mice were treated with a single dose of veliparib (100 mg/kg via oral 

gavage) and harvested 72 hours after treatment. Tissue was harvested at indicated after six days RNA was 

isolated using TRIzol. No statistical methods were used for animal sample size estimate, and no blinding was 

done. Animals were randomized into the two treatment regimens via coin flip. Mice were housed in standard 

conditions. All animal work was done in compliance with the regulations set forth by the Jefferson University 

IACUC.  

C4-2 cells were treated with either 2.5uM veliparib or vehicle control, then harvested and processed 24 hours 

later as previously described(Schiewer et al., 2012).  

Chromatin tethering assays 

Human prostate ex vivo explant cultures were conducted as previously described(de Leeuw et al., 2015). 

Briefly, fresh tissue was obtained from a pathologist immediately following radical prostatectomy. The de-

identified specimens were processed under a laminar flow hood, using sterile technique, and transported to the 

lab in IMEM on ice. The Thomas Jefferson University Institutional Review Board has reviewed this 

procurement protocol and determined this research to be in compliance with federal regulations governing 

research on de-identified specimens and/or clinical data [45 CFR 46.102(f)]. The following procedures were 

conducted under sterile tissue-culture conditions. Veterinary dental sponges (Novartis Cat. #96002) were 

placed in 12-well plates and soaked in 500 mL media (IMEM supplemented with 5% heat-inactivated FBS, 

hydrocortisone, insulin from bovine pancreas, and 100 units/mL penicillin-streptomycin) and appropriate 

treatment (either vehicle control or 2.5µM veliparib) for 5 to 10 minutes at 37°C. Tissue was placed into the lid 

Human Prostate Tumor ex vivo Culture 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

of a 10-cm plate and dissected into 1 mm3 pieces with a scalpel. Three pieces of tissue were placed on each 

sponge, using sterile tweezers or forceps. Plates were placed in an incubator at 37°C and 5% CO2

While there was no clinical investigation reported in this study, informed consent was obtained from 

all subjects and that the experiments conformed to the principles set out in the WMA Declaration of 

Helsinki and the Department of Health and Human Services Belmont Report.  

. Media 

were replaced every day with appropriate treatment. Tissue was harvested at indicated after six days RNA was 

isolated using TRIzol. 

Cells were seeded at equal densities, treated as indicated, and harvested at 96 hours. At the time of harvest, 

cell number was determined using trypan blue exclusion and a hemocytometer. 

Cell Growth Assays 

Protein isolation and immunoblotting were conducted as previously described(Knudsen, Arden et al., 1998), 

using antisera described in Appendix table S1. 

Antibodies and Immunoblotting 

The datasets produced in this study are available in the following databases:  

Data Availability  

-Microarray data: Gene Exprssion Omnibus GSE118222 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118222) 
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The Paper Explained 

Problem: While the roles poly(ADP)-ribose polymerase-1 (PARP-1) performs in response to DNA damage are 

increasingly well understood, as are the roles of PARP-1 in other aspects of genome integrity (telomeric 

maintenance and replication fork stability), the other chromatin-associated function of PARP-1 (transcription) 

has not been fully explored as a means to regulate DNA repair. 

Results: Central findings are as follows: 1) PARP-1 enzymatic activity is increased as a function of disease 

progression and is associated with poor outcome. 2) Elevated PARP-1 enzymatic function in advanced 

disease is not attributable to increased DNA DSB repair. 3) Identification of the PARP-1-regulated 

transcriptome reveals relevance for disease progression. 4) PARP-1 regulates pro-oncogenic transcription 

factor signaling, including E2F1. 5) PARP-1 effects on E2F signaling are independent of cell cycle phase and 

distinct from those elicited by CDK4/6 inhibition. 6) PARP-1 regulates homologous recombination (HR) factor 

availability via modulating chromatin at E2F1 binding sites. 7) Altered HR factor expression is prevalent in 

human PCa, and is enriched during disease progression. 8) PARP-1 regulates DNA repair factor availability 

and DNA repair competency. 

Impact:

 

 These data establish three essential points. First, they provide the first evidence that PARP-1 

enzymatic and transcriptional functions are elevated as a function of disease progression, irrespective of DNA 

repair. Second, the data establish an unexpected role for PARP-1 in controlling DNA repair gene expression, 

and reveal a new paradigm for PARP-1 to function as an enhancer or inducer of “BRCA-ness”. Finally, these 

data demonstrate the clinical relevance of PARP-1-regulated E2F1-driven expression of HR factors, and 

provide striking new evidence for novel biomarkers of human disease. 
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Figure Legends 

 

Figure 1. PARP-1 enzymatic activity is increased as a function of disease progression and is 

associated with poor outcome.  

(A) Tissue microarrays (TMAs) from primary PCa (n=132) and CRPC (n=148) were stained via 

immunohistochemistry for poly(ADP-ribose) (PAR), and scored by a clinical pathologist (T. Parsons) for 
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intensity (0-3) and percentage (0-3). ((AUTHOR QUERY: Fig 1: The scale bars in panel (A) are labelled 

50um and 300um instead of 50 μm and 300 μm. The scale bars in panel (D) are labelled 20um and 

200um instead of 20 μm and 200 μm. Please supply a new figure in which this is corrected.)) 

(B) PAR score was generated via the equation: (intensity x 1) + (percentage x 2). PAR scores were compared 

between primary and CRPC. ****=p value<0.0001 by Chi-square test. ((AUTHOR QUERY: Fig 1B and C: 

Please indicate the number of replicates analyzed.)) 

(C) Manual PAR scores were divided in to quartiles and then were compared to progression-free survival in the 

CRPC TMAs. *=p<0.05, ns=not statistically significant by Log-rank (Mantel-Cox). 1st quartile vs. 2nd quartile, 

p=0.1482; 1st quartile vs. 3rd quartile, p=0.5794; 1st quartile vs. 4th quartile, p= 0.0160; 2nd quartile vs. 3rd 

quartile, p=0.3869; 2nd quartile vs. 4th quartile, p=0.2110; 3rd vs. 4th

(D) Top Left: Representative image of one TMA core after multiplex fluorescent IHC for γH2AX (green), PAR 

(red), PARP-1 (purple), with DNA (blue). Top Right: Insets of parent image at left. Numbers above inset 

columns coincide with numbers on image at left that were chosen for further magnification and representation 

(boxed areas). Bottom Left: Percent positive staining for PAR for the entirety of each TMA cohort. Bottom 

Middle: Percent positive staining for PARP-1. Bottom right: γH2AX for the entirety of each TMA cohort. Data 

was considered after a median intensity cutoff, and analyzed for statistical significance using two-tailed 

Student’s t-test for PAR, PARP-1, and γH2AX, respectively. Exact p values are indicated. ((AUTHOR QUERY: 

Fig 1D: Please describe the boxplot representation: what do the horizontal lines, box limits and 

whiskers represent? Additionally please indicate the number of replicates analyzed.)) 

 quartile, p=0.0201.  

(E) Two-tailed Spearman correlation test between PAR and γH2AX (% positive with a median intensity cut-off). 

Exact p values are indicated when available. 

 

Figure 2. Identification of the PARP-1-regulated transcriptome and relevance for disease progression.  

(A) Left: Schematic representing the conditions utilized for transcriptomic analyses (n=2) of HT-sensitive 

LNCaP cells. Cells were deprived of hormones for 72 hours, followed by either treatment with 2.5uM veliparib 

(PARPi) or vehicle control (DMSO) for 1 hour, then subsequently treated with either 1nM DHT or vehicle 

control (EtOH) for 16 hours. Middle: Immunoblot with the indicated antisera. Right: Volcano plots of transcripts 

found to be differentially regulated by DHT v. EtOH (left) or DHT v. PARPi followed by DHT (right). Red dots 

indicate transcripts that were both statistically significantly altered (p<0.05) and more than 1.5-fold changed. 

((AUTHOR QUERY: Fig 2A and B: “Top, left”, “Top, right” and “Bottom” were changed to “Left”, “Middle” and 

“Right, respectively. Please check and either approve or modify.)) 

(B) Left: Schematic representing the conditions utilized for transcriptomic analyses (n=2) of CRPC C4-2 cells. 

Cells were deprived of hormones for 72 hours, followed by either treatment with 2.5uM veliparib (PARPi) or 

vehicle control (DMSO) for for 16 hours. Middle: Immunoblot with the indicated antisera. Right: Volcano plots of 

transcripts found to be differentially regulated PARPi v. vehicle control. Red dots indicate transcripts that were 

both statistically significantly altered (p<0.05) and more than 1.5-fold changed.   
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(C) Genes found to be down-regulated by PARPi as described above (p value < 0.05, 1.5-fold change) in 

either HT-sensitive cells (left) or CRPC cells (right) were queried against the expression of these genes in the 

Grasso et al data set in Oncomine. Benign = grey, primary PCa = blue, metastases = orange. Boxplot was 

generated using the mean expression of the PARPi down-regulated genes in the indicated data sets. Statistical 

significance determined by two-tailed Student’s t test. ((AUTHOR QUERY: Fig 2C: Please describe the 

boxplot representation and indicate the number of replicates analyzed.)) 

 

Figure 3. PARP-1 regulates pro-oncogenic transcription factor signaling.  

(A) Left: Data generated as described above in Figure 2 was utilized for Gene Set Enrichment Analysis 

(GSEA) Molecular Signature DataBases (MSigDB) KEGG analyses. Cut-off for reporting was a false discovery 

rate q value of < 0.25, and normalized enrichment scores (NES) are shown, with darker colors indicating more 

enrichment. Middle: Data generated as described above in Figure 3 was utilized for Gene Set Enrichment 

Analysis (GSEA) Molecular Signature DataBases (MSigDB) KEGG analyses. Cut-off for reporting was a false 

discovery rate q value of < 0.25, and normalized enrichment scores (NES) are shown, with darker colors 

indicating more enrichment. Open circles indicate cell cycle-related hallmarks, closed circles indicate DNA 

damage repair-related hallmarks. Right: Selected GSEA MSigDB Hallmarks pathways are shown with NES 

and false discovery rate (FDR). ((AUTHOR QUERY: Fig 3: Please check the phrasing “Data generated as 

described above in Figure 3”. It is unclear what “above in Figure 3” means given that this description is in the 

Figure 3 legend.)) 

(B) Indicated cell lines were treated as depicted in Figure 2. Data are depicted as mean +/- standard deviation 

of three independent biological experiments. Statistical significance was determine by two-tailed Student’s t 

test where *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001. LNCaP: E2F1, p=0.0159; PCNA, p=0.0217; 

MCM7, p=4.0936e-6; CCNA2, p=0.0005. C4-2: E2F1, p=0.0074; PCNA, p=0.1258; MCM7, p=3.7471e-5; 

CCNA2, p=0.0031.  

(C) ChIP-qPCR after C4-2 cells were treated as depicted in Figure 2. Data are depicted as mean +/- standard 

deviation of three independent biological experiments. Statistical significance was determined by two-tailed 

Student’s t test where *=p<0.05, ****=p<0.0001. E2F1 ChIP, p=0.4610; PARP-1 ChIP, p=0.1773; Pol II ChIP, 

p=0.0305; AcH4 ChIP, p=7.4261e-5  

(D) Athymic nude mice were injected with C4-2 cell mixed with matrigel. Once tumors became 100mm3, mice 

were treated with either vehicle control or veliparib. 72 hours later, tumors were harvested, RNA was isolated 

and used for qPCR quantification of the indicated transcripts. Data are depicted as log2 absolute gene 

regulation of veliparib samples compared to control samples, +/- standard deviation of three independent 

xenograft tumors.  

(E) Prostatectomy tissue (n=6) was cultured as previously described, and treated with either vehicle control or 

veliparib for six days. RNA was then harvested from the tissues and used for qPCR quantification of the 

indicated transcripts. Data are depicted as log2 absolute gene regulation of veliparib samples compared to 
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control samples. Each individual tissue is depicted by a separate bar color. Statistical analyses were performed 

by Wilcoxon signed rank test. 

 

Figure 4. PARP-1 effects on E2F signaling are independent of cell cycle phase and distinct from those 

elicited by CDK4/6 inhibition  

(A) Indicated cell lines were treated as depicted in Figure 2, and labeled with bromodeoxyuridine (BrdU), 

harvested at indicated time points and utilized for FACS analyses. Data are depicted as mean +/- standard 

deviation of three independent biological experiments. *=p<0.05 as determined by two-tailed Student’s t test. 

LNCaP: 3h, p=0.9838; 16h, p=0.2197, 24h, p=0.0207. C4-2: 3h, p=0.4520; 16h, p=0.9446; 24h, p=0.4025; 

48h, p=0.3431.  

(B) Top: Data generated as described above in Figure 2 was compared to a separate microarray analysis in 

which the same cell line was exposed to 1uM palbociclib instead of veliparib. Cut-offs for comparison were a p 

value<0.05, and fold change of 1.5. Venn diagrams show the overlapping and non-overlapping genes of both 

down- (top) and up-regulated (bottom) genes in response to either treatment modality. Statistical significance 

was determine using the Chi-squared statistical test. Bottom: Genes found to be exclusively regulated by 

palbociclib, commonly regulated by palbociclib and veliparib, or exclusively regulated by veliparib were used 

for Gene Set Enrichment (GSEA) KEGG pathway analyses. Data indicate both FDR q value, where the darker 

colors indicates higher confidence (lower q). Numbers indicate q values. Blue arrow highlights the Homologous 

Recombination KEGG pathway.  

 

Figure 5. PARP-1 controls of HR factor availability is associated with modulation of the chromatin 

context of E2F1 function.  

(A) Left: Data generated as described above in Figure 2 was used to generate a  heatmap of homologous 

recombination (HR) gene expression after the indicated treatment regimens. Middle: Selected GSEA MSigDB 

Oncogenic Signature pathways are shown. Right: Data generated as described above in Figure 2 was 

compared to a previously described HR deficiency transcriptional profile (Peng et al., Nature Communications, 

2014). This profile was derived by independently silencing either BRCA1, RAD51, or BRIP1, followed by 

transcriptional analyses. The union of these three data sets was used to generate the signature. Cut-offs for 

comparison were a p value<0.05, and fold change of 1.5. Venn diagrams show the overlapping and non-

overlapping genes of both down- (top) and up-regulated (bottom) genes in the previously-defined HR 

deficiency signature, and the PARPi-responsive transcriptome.  

(B) Left: C4-2 cells were treated as depicted in Figure 2. Data are depicted as mean +/- standard deviation of 

three independent biological experiments. Statistical significance was determined by two-tailed Student’s t test 

where *=p<0.05, **=p<0.01. BRCA2, p=0.0046; RAD51, p=0.0151; XRCC3, p=0.0341; TOP3A, p=0.04988. 

Right: C4-2 cells were treated as depicted in Figure 2 and immunoblotted with the indicated antisera. 

Quantifications shown below each band.  
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(C) Athymic nude mice were injected with C4-2 cell mixed with matrigel. Once tumors became 100mm3

(D) Prostatectomy tissue (n=6) was cultured as previously described, and treated with either vehicle control or 

veliparib for six days. RNA was then harvested from the tissues and used for qPCR quantification of the 

indicated transcripts. Data are depicted as log2 absolute gene regulation of veliparib samples compared to 

control samples. Each individual tissue is depicted by a separate bar color. Statistical analyses were performed 

by Wilcoxon signed rank test.  

, mice 

were treated with either vehicle control or veliparib. 72 hours later, tumors were harvested, RNA was isolated 

and used for qPCR quantification of the indicated transcripts. Data are depicted as log2 absolute gene 

regulation of veliparib samples compared to control samples, +/- standard deviation of three independent 

xenograft tumors.  

(E) C4-2 cells were treated as depicted in Figure 2. ChIP was performed using the indicated antisera, and the 

subsequent DNA was isolated and used in qPCR reaction using primers designed to amplify the indicated 

genomic loci: BRCA2 enhancer, RAD51 promoter, or TOP3A promoter. Data are depicted as mean +/- 

standard deviation of three independent biological experiments. Statistical significance was determined by two-

tailed Student’s t test where *=p<0.05, **=p<0.01. BRCA2 locus: E2F1 ChIP, p=0.0308; PARP-1 ChIP, 

p=0.0488; Pol II ChIP, p=0.0471; AcH4 ChIP, p=0.0081. RAD51 Promoter E2F1 ChIP, p=0.7739; PARP-1 

ChIP, p=0.0366; Pol II ChIP, p=0.0767; AcH4 ChIP, p=0.1378. TOP3A promoter: E2F1 ChIP, p=0.0074; 

PARP-1 ChIP, p=0.0500; Pol II ChIP, p=0.0199; AcH4 ChIP, p=0.0158.  

(F, G) C4-2 cells treated with 2.5uM veliparib (Vel.) or vehicle control (Veh.) for 24 hours. Cells were then 

harvested, lysed, and differentially centrifuged as described in the material and methods section, resulting in a 

soluble fraction (Sol.) (GAPDH serves as control) or a chromatin-tethered fraction (Teth.) (histone H4 serves 

as control). Immunoblots were performed for the indicated proteins.  

 

Figure 6. Altered HR factor expression is prevalent in human PCa, and is enriched during disease 

progression.  

(A) The CBioportal was used to query the DNA and RNA HR gene alterations found in the TCGA primary PCa 

data set. HR genes queried were BRCA1, BRCA2, RAD51, MRE11A, RAD50, NBN, RBBP8, EXO1, RPA1, 

RPA2, RPA3, XRCC3, BLM, RMI1, RMI2, TOP3A, GEN1, SLX4. Default settings were used.  

(B) Expression levels of indicated HR pathway genes in primary PCa vs normal patient samples.  Violin plots 

represent FPKM normalized counts obtained from matched tumor and normal RNA-Seq data from 

TCGA  (n=52) with p-values generated using paired t-tests. ((AUTHOR QUERY: Fig 6B: Please describe the 

violin plot representation, in particular the meaning of the notches and heights of the whiskers.)) 

(C) The CBioportal was used to query the DNA and RNA HR gene alterations as above using the PCF-SU2C 

advanced PCa data set.  

(D) The CBioportal was used to query the DNA and RNA HR gene alterations as above using the PCF-SU2C 

advanced PCa data set, and the data are presented on a per patient basis. 
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Figure 7. PARP-1 regulates DNA repair factor availability and DNA repair competency.  

A, B (A) Indicated cell lines were transfected with indicated constructs, and treated with veliparib. Cell growth 

and (B) DDR via γH2AX was assessed. Data represent median +/- standard deviation of independent 

biological replicates. Control transfected and vehicle control treated cells are set to 1. *=p value<0.05, **=p 

value<0.01, ***=p<0.001. Statistical significance was determined by two-tailed Student’s t test. LNCaP cell 

growth: Control transfection, p=0.0220; BRCA1 transfection, p=0.67787; BRCA2 transfection, p=0.4676. C4-2 

cell growth: Control transfection, p=0.0354; BRCA1 transfection, p=0.1638; BRCA2 transfection, p=0.2519. 

22Rv1 cell growth: Control transfection, p=0.0039; BRCA1 transfection, p=0.1085; BRCA2 transfection, 

p=0.2781. LNCaP γH2AX: Control transfection, p=0.0008; BRCA1 transfection, p=0.9035; BRCA2 transfection, 

p=0.4685. C4-2 γH2AX: Control transfection, p=0.0009; BRCA1 transfection, p=0.6362; BRCA2 transfection, 

p=0.4217. 22Rv1 γH2AX: Control transfection, p<0.0001; BRCA1 transfection, p=0.4698; BRCA2 transfection, 

p=0.4937.  

(C) Graphical abstract of data presented herein. TF = transcription factor.  
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