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SUMMARY

The Bayesian theory of least squares is founded upon a weaker and more
tangible form of prior knowledge than the conventional assumption of
normality. The underlying assumption is a form of conditional uniformity
on spheres for the "actual errors" in the experiment. This provides a unified
theory appropriate for randomization models in the analysis of variance
as well as for classical least-squares analysis.

1. INTRODUCTION

THE purpose of this paper is to found the Bayesian theory of least squares on the
basis of weaker and more tangible forms of prior knowledge than the conventional
assumption of normality. This is done in terms of an assumption of conditional
uniformity on spheres for the "actual" errors in the experiment. Section 2 illustrates
the approach in some of its most pertinent applications, namely to 'randomization
models in the analysis of variance. Section 3 presents a coordinate-free formulation
in a unitary vector space, and explores the relationships between conditional uniformity
and conventional normality assumptions. Section 4 motivates the assumption of
conditional uniformity on spheres and discusses some general issues.

Results agree with but go beyond those of Jeffreys (1961, p. 147), Savage et al.
(1963) and Lindley (1965, Ch. 8), who do assume normality. There is also some
correspondence with more classical results. See, for example, Scheffe (1959, Chs. 1,
4, 9) and Fisher (1960, Ch. IV).

2. RANDOMIZED BLOCKS

In this section a method of analysis is proposed for randomized block designs,
with or without technical errors, but with no treatment-unit interactions. The analysis
is presented in a series of four cases, culminating in randomized blocks with blocks
random, which illustrate different aspects. Case A sheds light on the general problem
of inference when the number of "cells" is equal to the number of observations and
the variance is "unknown".

Case A. Completely randomized design, I treatments, one observation per treatment
Let TJiv be the conceptual "true" response when treatment i is applied to unit v,

and define TJ = TJ••, (Xi = TJi. - TJ, Eiv = TJiv - TJi.' so that TJiv = TJ + (Xi + Eiv' with (x. = Ei. = 0,
i, v = 1, ... ,/, where the dot notation indicates the simple average over all possible
values of the subscript replaced by a dot. Suppose that treatment-unit interactions
are zero, so that in fact Eiv = TJ.v-TJ= t: say, and define U2 = ~g~. Suppose also
for the time being that there are no technical errors, so that the observations can be
written Yi = TJ+(Xi+Ei, with Ei = ~vdivEiv, and div = 1 if treatment i falls on unit v
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(3)

and otherwise 0, Idi . = 1. The di • are assumed known and determined in such a way
that they are completely uninformative about {(Xi}, U2, in the sense that the personal
probability distribution for these quantities, given {di . }, does not depend upon {di . } .

This would be the case, for example, if the di • were determined by a physical
randomization. Then Y. = TJ and the marginal posterior distribution of {(Xi} is

Pr {(Xi IYi> di.} oc Pr {YiI(Xi' di.}Pr {(XiIdi.}

oc Pr {€i = Yi - Y. - (XiI(Xi' di.} Pr {(Xi}

OC Pr{€i = Yi- Y.- (Xii (Xi> di., U2 = ~(yi-Y. - (Xi)2}

xPr{U2 = ~(yi-Y.-(Xi)21(Xi}Pr{(Xi}' (1)

This determines Pr {U21 Yi' di. } by virtue of U2 = ~(Yi - Y. - (Xi)2 for the given data
{Yi}' Here the indices i, v run through the appropriate sets, and with an abuse of
notation I have used the same symbol to denote the random quantity and its value.
Also, although the above notation is ordinarily used only when the probability
distributions are discrete, so long as care is taken, particularly in regard to degeneracies
such as (x. = 0, Y. = TJ, ~(yi- Y. - (Xi)2 = U2, there is no harm in using this same notation
to represent density functions and even more general types of distributions.

I shall now assume that conditional upon U2, {(Xi,di.}, the vector; = (gl' ... , gI)'
is uniformly distributed on the intersection of the sphere of radius U centred at the
origin with the hyperplane f = °in I-dimensional Euclidean space. This last form
of assumption is at the heart of the present approach to least squares, and will be
referred to as a conditional uniformity assumption (C.U.A.). It will be discussed
in its most general form in Section 4. For the time being note that in the case of
densities C.D.A. is substantially weaker than the corresponding more customary
assumption of normality. Although discrete analogues are obvious, the remainder
of this article will deal explicitly only with density functions.

From (1) and C.U.A.,

Pr{(Xi IYi' dt.} oc [~(yi - Y. - (Xi)2]-U-S)/2 Pr{U2 = ~(yi-Y. - (Xi)21 (Xi} Pr{(Xi}' (2)

[With density functions it is necessary to distinguish between Pr{gil ~gn and, say,
Pr{gil (~g~)1/2}. C.U.A. implies Pr{gil ~g~} o: (~g~)-(I-S)/2, where g. = 0.]

In particular, if prior knowledge of {(Xi}, U2, is formally represented by the
improper prior density Pr{(Xi' U2}oc p(U2), then

Pr {(Xi IYi' di. } OC [~(yi- Y.- (Xi)2]-U-S)/2 P[~(yi- Y._~)2],)

Pr{giIYi' di.} OC (~g~)-U-S)/2 p(~g~) OC Pr{gi},

Pr {U21 Yi' di.} OC p(U2).

In so far as it is possible to draw inferences about {(Xi} based upon vague prior
knowledge, I believe (3) is the appropriate posterior distribution. This is meant in
the sense that for a wide class of prior distributions for {(Xi}, U2, each of which is
suitably gentle in the vicinity of (Xi = Yi - Y.' and not too large elsewhere, the posterior
distribution can be adequately approximated by (3). This can be made precise after
the fashion of Savage et al. (1963, pp. 201 f.). Note, however, that

[~(yi- Y. - (Xi)2]-U-S)/2
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has an infinite integral with respect to IIdlY.i so that the above posterior distribution
of {lY.i} is not proper unless the factor P[~(yi - Y.-lY.i)2] is such as to tame it. Since

f[~(yi - Y.-lY.i)2]-U-3)/2 P[~(Yi - Y.-lY.i)2] IIdlY.i o: fooo
p(U2)dU2,

all that is required in order that the posterior distribution of {lY.i} be proper is that the
prior density of U2 be proper. Finally, the fact that the data are totally uninformative
about {'i} and U2 is not surprising. That there is information about {lY.i} stems from
the conditional uniformity assumption about the "error" vector ;, and the prior
distributions.

Now suppose that a technical error Ii is added, so Yi = 7]+ lY.i+ Ei+ Ii' There do
exist situations in which it is possible to draw inferences about both U2 and character
istics of the distribution of the technical errors. In general, however, it is not possible
to untangle the Ei and the Ii-I., and it seems appropriate to let C.U.A. apply instead
to Et = Ei+li-I., given {lY.i,div} and (U*)2 = (~Et)2. But Yi-Y. = lY.i+Et, and if
inference about {lY.i} were based solely upon the data {Yi-yj, then the posterior
distribution of {lY.i} could be evaluated just as in the case of no technical errors. Since
Y. = 7] + I. ordinarily carries only slight and indirect information about all parameters
other than 7] (which is of little interest in a comparative experiment), this procedure
is intuitively plausible. The general treatment of technical errors is elucidated in
Section 3.

Case B. Completely randomized design, J observations on each of I treatments
Let 7]ijv be the conceptual "true" response when treatment i is applied to unit jv,

(the vth unit in the jth block), and define 7] = 7]..., lY.i = 7]i..-7], Eijv = 7]ijv -7]i..' so that
7]ijv = 7] + lY.i + Eijv' with IY.. = Ei.. = 0, i, v = I, ... ,I,j = 1, ... ,1. Suppose that treatment
unit interactions vanish, so that Eijv = 7].jv-7]...='jv' say, and define U2 = ~,~v'
Suppose also for the time being that there are no technical errors, so that the observa
tions can be written Yij = 7] + lY.i + Eij, with Eij = ~dijv Eijv' dijv = I if treatment i falls
on unit jv, dijv = °otherwise, and Idij. = 1. The dijvare again assumed to be known
and totally uninformative about {lY.i}, U2. A natural form of C.D.A. is now that
conditional upon U2,{lY.i' dijv}, the vector; = (,u, ... , 'JI)' is uniformly distributed on
the intersection of the sphere of radius U centred at the origin with the hyperplane
f. = 0, in IJ-dimensional Euclidean space. Then Y.. = 7], and

Pr{lY.i \Yij, dijv} o: Pr{Eij = Yij-Y..-lY.i IlY.i' dijv} Pr{lY.i Idijv}

oc [~(yij-Y ..-lY.i)2]-UJ-3)/2Pr{U2 = ~(yij-Y..-lY.i)21IY.i}Pr{lY.i}' (4)

In particular, if vague prior knowledge of {lY.i} is formally represented by the improper
prior density Pr{lY.i' U2} a: p(U2), then

Pr {lY.i IYij, dijv} cc [~(Yij - Y..-lY.i)2]-UJ -3)/2 P(~(Yij- Y..-lY.i)2)

o: [1+ [{J~(yi. - Y..-lY.i)2}j{~(Yij - Yi)2}]]-(IJ-3)/2 P[~(Yij- Y..-lY.i)2],

(5)

Pr{U2Iyij, dijv} a: p(U2)(U2)-(IJ-3)/2[U2_ ~(Yij-Yi)2]U-3)/2

a: p(U2) U-I(J-l)[I-{~(yij-Yi)2/U2}]U-3)/2
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for U2> ~(Yij - Yi)2, and is otherwise zero. Note that it is no longer necessary that
p(U2) be proper in order that the posterior distribution of {IXi} be proper, as it was
in Case A, namely J = 1. If in fact p(U2) oc (U2)-1, then the posterior distribution
of {IXi} is identical with that based upon conventional normality assumptions and
Jeffrey's prior distribution, as is shown in substantial generality in Section 3. Similarly,
although (IJ _1)-1 U2 does not have the same meaning as the variance of the errors
under normal theory, the posterior distribution of this quantity is very much like
the usual posterior distribution for such a variance (Lindley, 1965, p. 101). This will
be discussed further in Sections 3 and 4. Finally, if a technical error lij is added, and
if C.D.A. applies to €t = €ij+lij-l.., given {lXi' dijv} and U*2 = ~€tl, then often
inference about {IXi} can be based upon the data {Yij - yJ alone just as if there were
no technical errors. Clearly Y.. = TJ +1.. carries only slight and indirect information
about all parameters other than TJ.

Case C. Randomized blocks, blocks fixed
Let TJijv be the conceptual "true" response when treatment i is applied to unit Iv

and define TJ = TJ...' IXi = TJi..- TJ, (3j = TJ.j. - TJ, Yij = TJij. - TJ - IXi - (3j, Eijv = TJijv - TJij., so
that IX. = (3. = Yi. = Y.j = Eij. = 0, i, v = 1, ... ,1, j = 1, ... ,J. Assume that treatment-unit
interactions vanish so in fact

Eijv = TJ.jv - TJ.j. == gjv,

say, and define U~ = ~g~v' U2 = ~U~. Again suppose first that there are no technical
errors, so that the observations can be written

Yij = TJ+ IXi+(3j+Yij+€ij,

where €ij = ~dtjv Eijv' with dijv = 1 if treatment i falls on the vth unit in the jth block,
dijv = °otherwise, and Idij. = 1. The dijv are assumed known and totally uninforma
tive about {TJij., Uj}. Note that Y.. = TJ, Y.j = TJ +(3j'

There are two different versions of C.D.A. which seem of general interest. First,
suppose that conditional upon hij., U~, dijv}, the vector ;j = (gj1' ... , gjl)' of errors
in the jth block is uniformly distributed on the intersection of the sphere of radius U,
centred at the origin with the hyperplane gj. = °in I-dimensional Euclidean space,
and furthermore that the vectors ;j for different blocks are conditionally independent.
Then

Pr{TJij.IYij, dijv} ex: Pr{€ij = Yij - TJij.1 TJij., dijv}Pr{TJijJ

ex: IIj [~(yij- TJij)2]-11-3)/2 Pr {U~ = ~(yij - TJij)2} Pr hiJ, (6)

and Pr{U~IYij,diiv} is obtained from Uj = ~i(Yij-TJij)2. This version of C.D.A.
allows one to express different opinions about the U~ for different blocks. The
remainder of this discussion concerns a more specific version of C.D.A. which builds
in symmetry of opinion about the U~.

In this second version of C.u.A. it is assumed that given U2, the vector
; = (gn, ... , gJI)' is conditionally uniformly distributed on the intersection of the
sphere of radius U centred at the origin with the J hyperplanes gj. = 0, in IJ
dimensional Euclidean space. Then

Pr {TJij.1 Yij, dijv} ex: Pr {€ii = Yij - TJij.1 TJij., dijv} Pr {TJijJ

ex: [~(yij-TJij)2]-[J(l-1)-2J/2Pr{U2 = ~(yij-TJij)2}Prhij,}. (7)
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In particular, if prior knowledge is formally represented by the improper prior
density Pr{"7ii.' U 2}ex: p(U2), then

Pr {"7ii.1 Yii' diiv} ex: [~(yii - "7ii)2]-[J(I-l)-2]/2 P[~(yii - "7iil], } (8)

Pr {U21Yii' diiv} ex: p( U2).

This is much like the corresponding result in Case A, with the data supplying no
information about U2, and [~(Yii-"7ii)2]-[J<I-l)-21/2having an infinite integral with
respect to "7ii.' "7.i. = Y.i· Recalling that fJi = Y.i - Y.., "7ii. = Y.i + CXi +')Iii'

Pr{cxiI Yii' diiv} ex: fn d')lii[~(Yii - Y.i- CXi-')Iii)2]-[J<I-l)-2]/2 P{~(Yii - Y.i- CXi-'Yii)2}.

Since ~(Yii-Y.i-CXi-')Iii)2 = ~(yii-Y.i-Yi.+Y..-')Iii)2+J~(Yi. -Y..- CXi)2,

Pr{cxiIYii' dii v}ex: feX) dU2 p(U2) U-[J(I-l)-2] (U2- U~){<I-l)(J-ll-2}/2
U 0

2

ex: UO(I-S) (ldzp ( Ug) z{<I-1)(J-1)-2}/2(I_z)(I-5)/2, (9)
Jo l-z

where U~ = J~(yi. - Y..- cxi)2. If in fact p(U2) ex: U-2 then

Pr{cx·IY·· d... }ex: ["'(y. -Y _cx.)2]-(I-1)/2
t t}' t}V "" t. •• t ,

agreeing with (3). This posterior distribution is of course improper, whereas (8) and
(9) are proper if p(U2) is proper.

The above posterior distributions are appropriate when Pr{"7ii.' U2} is a suitably
gentle function. Often, however, it is natural to regard the ')Iiias small relative to the CXi'
If in fact the interactions vanish, and if Pr{cxi' U2} ex: p(U2), then from (8),

Pr {cxi IYii' diiv} ex: [~(Yii - Y.j - CXi)2]-[J(I-1)-2]/2 P[~(yii - Y.i - cxJ2]

ex: [1+ [(J~(yi. - Y..- cxt)2}/{~(yii-Yi. - Y.i+yY}]]-[J(I-1)-31/2

X P(~(yii-Y.i-cxi)2), (10)

Pr{U2IYii' diiv} ex: p(U2) U-(I-1)(J-1) [1- [{~(yii-Yi. _Y.i+yY}/U2](I-Sl/2

if U2> ~(Yii-Yi.-Y.i+YJ2, and is otherwise zero.
Technical errors can be dealt with by basing inference upon the Yii-Y.i alone,

as in Case D below.

Case D. Randomized blocks, blocks random
Let the J blocks in the experiment now be viewed as a sample from some population

of blocks. Then the observations can be written

Yii = "7+ cxi+bi+ cij+€ii+ lij,

with cx. = c.j = E.i = 0 and lij as technical error. See, for example, Scheffe (1959,
p.266). Now Y.i = "7+bi+l.i and thus carries only indirect information about {cxi}'
Although a more refined analysis is possible and sometimes necessary, the primary
aim here is to evaluate the posterior distribution of {cxi}, and ordinarily this can be
done with only slight loss by basing inference upon {Yii - Y.i}' But

Yii - Y.j = CXi + Cii+ Eii+ Iii -1.i'

4
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(12)

and often, I believe, it will be natural to assume C.D.A. for

E~= Eij+cij+lij-l.j,

given (U*)2= (~E~)2, {ai' di jv}' This leads to a posterior distribution for {ai} much
as in Case C.

3. A GENERAL THEORY OF LEAST SQUARES

A general theory of least squares which includes most of the earlier examples as
special cases (and can easily be extended to include all) will now be presented. The
approach is coordinate-free.

Let us suppose that a vector Y of observations in an n-dimensional real vector
space V can be written Y = l)+1;, where l) lies in a known linear manifold S of
dimension s, I; lies in a known linear manifold T of dimension t, and let Ps, PT
denote the orthogonal projection operators on Sand T, respectively. We shall suppose
also that the purpose of the experiment is to draw inference about l) and U 2 = II 1;112,

where the norm or length of a vector is defined in terms of the inner product, as
usual. Since l) - PT(l) = Y- PT(Y) is observable, so that it is only necessary to
consider inference about U2 and PT(l) = PT(Y)- I;ET, there is thus no real loss in
generality in supposing SC T to begin with, and we shall do so henceforth.

The form of C.D.A. which I adopt is to suppose that given l), U2, I; is condi
tionally uniformly distributed on the intersection of T with the "sphere" II 1;112= U2.
Thus Pr {I;Il), U2} ex: ep(U2) for some function ep of U2, and I; in the intersection.
The posterior distribution of l) is therefore given by

Pr{l) IY}ex: Pr{YIl)} Pr{l)}

ex: Pr{1; = Y-l) Il)}Pr{l)}

ex:ep(1I Y-l) 112) Pr{U2 = II Y-l)h21l)}Pr{l)}, l) ES, (11)

where Pr {l), U2} denotes the prior distribution of l), U2. Since U2 = II Y-l) 112, this
determines the posterior distribution of U2. In particular, if V is R"" (n-dimensional
Euclidean space), the inner product is the usual inner product for R"", and prior
knowledge is formally represented by the improper density Pr {l), U2} ex: p(U2), l) ES,
then

Pr{l)IY}ex: II Y-l) 1I- (t- 2)p(1I Y-l) 112), l)ES, }

Pr{U2IY}ex: p(U2) U-(t-2)[U2_IIY _Ps<Y>1I2](S-2)/2

ex: p(U2) U-(t-S)[I_{IIY - ps<Y)1I2/U2}]'s-2)/2

for U2>lIy-ps<Y)112, and otherwise zero.t I believe these posterior distributions
will be appropriate in a wide variety of real situations, as is discussed further in
Section 4.

Note that (12) agrees with the corresponding posterior distributions based upon
conventional normality assumptions. Indeed, suppose that I;~ N(O, a2 I), where
I;ETas before, I is the txt identity matrix, and I am using the same notation for
the vector I; and for its coordinates relative to an orthonormal basis for T. Clearly

Pr {I;III I;112} ex: II I;1I-(t-2),

t It is to be understood that densities are densities with respect to Lebesgue measure restricted
to the appropriate manifold, and S'" 1.
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p(U2)OC U'-2 fooo
a-t exp [- (U2j2a2)] h(02)da2.

Thus C.U.A. follows from conventional normality assumptions, and with the indicated
choice of p(U2) the corresponding posterior distributions of l) and U2 are identical.
Under normality, in addition

Pr {a2IY} cc h(a2) a-(t-s) exp- [IIY - ps(Y) 1I2j2a2].

If in fact h(a2) o: (a2)-1, then also p(U2) oc (U2)-1, and Pr{l) IY} o: Ill)- YII-I, the last
agreeing with the results of others (Jeffreys, 1961, p. 147; Lindley, 1965, p. 222).

Another aspect of the relationship between C.U.A. and normality is revealed if
T = V = Rn, and if the components of I; are regarded as a sample from a population
of errors {iI' ... , IN}' Let a2 = (N_1)-1 'i:.N(/i _1)2, and suppose that conditional upon
a2, l; the vector 1 = (/1' ... , IN)' is uniformly distributed on the sphere of radius
[(N -1) a2]1/2centred at I. = (l; ... , I)' in N-dimensional Euclidean space. Let gI' ... , gn'
be any n<Ncoordinates ofl. Then for 'i:.n(gi-l)2~(N-l)a2,

Pr{gI' ... , gnl/., a2} o: a-IN-2)[(N-1) a2_ 'i:.n(gi-!J2]IN-n-2)/2

o: a-n[l-{'i:.(gi-l)2j(N-1) a2}]IN-n-2)/2,

or, if N - n is large, approximately

a-nexp -t[{(N-n-2)j(N-1)}{'i:.(gi-l)2jo2}].

Thus C.U.A. for I as above implies both approximate normality and a form ofC.U.A.
for the vector of errors I; = (gI' ... , gn)"

Now return to the general model in Rn and superpose a technical error f, so
Y = l)+I;+f. For example, f may represent a sample from a larger population of
errors {II' ... , IN}, as in the last paragraph, and where now 1. = O. Then PT(Y) = l) + 1;*
and Y -PT(y) = f-PT(f), where 1;* = I;+PT(f). But it is easily shown that the sum
of independent random quantities each satisfying C.U.A. (for spheres centred at the
origin) will also satisfy C.U.A., so it follows that C.U.A. will be appropriate for 1;*
as well as for I; and PT(f). This suggests that the posterior distribution of l) and
111;* 112 might be evaluated as before based only upon the data PT(Y) and the posterior
distribution of a2 based only upon the data Y - PT(Y). Although there exist states
of mind (that is, of prior knowledge) under which this would be misleading, I believe
that ordinarily the posterior distributions determined in this way will be good
approximations to the corresponding posterior distributions given all the data.

4. CONDITIONAL UNIFORMITY ON SPHERES

Some aspects of the mathematical relationship between conventional forms of
normality assumption and the assumption of conditional uniformity on spheres have
been explored in Section 3. In particular, it has been seen that C.U.A. for a large
population of errors implies approximate normality for a small sample from the
population. In general, however, normality is a substantially stronger assumption.
Thus, in the notation of Section 3, normality implies both C.U.A. and also that given
a2, the quantity U2ja2 has the X2 distribution with t degrees of freedom. Still another
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sense in which C.D.A. is weaker than normality is implied by Maxwell's theorem,
which states that spherical symmetry, together with independence of the components,
implies normality. Here independence is meant in the frequentist sense, which is
equivalent to conditional independence given all parameters for the Bayesian, as is
clarified by deFinetti (1964, Ch. III).

The fact that C.u.A. is mathematically weaker than normality and yet leads to the
same posterior distribution and therefore the same inference for Y) would itself be
sufficient reason for interest in C.U.A. What seems to me to be more important,
however, is that in practice C.U.A. will often be a great deal more natural and
plausible as a description of the knowledge or opinions of a person than the corre
sponding assumption of normality. It is implicit here that I would not necessarily
regard the components of the error vector as independent, or the quantity U2/a2 as
having a X2 distribution. Consider, for example, the completely randomized design
of Case B, Section 2. Then in the first place there may be no natural larger population
from which to imagine that the IJ units in the experiment have been sampled, and so
a2, the variance of such a population, would be fictitious. But even if such a population
did exist one might prefer to assess directly a prior distribution for U2 based upon
the total perception of the actual units in the experiment, and then draw an inference
about {(Xi} using C.U.A., rather than to draw such an inference indirectly and implicitly
in terms of a normality assumption and the parameter a2. The essential point is that
if the purpose of the experiment is to make an inference about treatment comparisons,
then there is no need to introduce the parameter a2 unless it is useful in evaluating the
prior distribution of U2, or is of interest in its own right. This leads to a more flexible
analysis. (On the other hand, it might be objected that such an approach does not
provide estimates of the standard error. This is a side-issue so far as the present
paper is concerned, since from the Bayesian viewpoint the whole of the inferential
problem regarding the {~} is contained in the evaluation of their posterior distribution.
It is true of course, as can be seen immediately from equation (5), that the degree of
concentration of this posterior distribution may be largely determined by much the
same kind of sample quantities that others would regard as estimates of the standard
error. However, for the Bayesian such quantities are relevant to inference and decision
making about the {~} only indirectly through their effect upon the posterior distri
bution. This is not to say that U2 and a2 may not be of interest in their own right,
but only to point out that this would be another matter entirely. I am aware, of
course, that most statisticians would disagree with me on this question. However, to
the best of my knowledge the only serious attempt to justify such a viewpoint is that
of Fisher (1960, p. 64), who argues that only randomization provides a valid estimate
of the standard error and a valid significance test. Thus he argues that a reduction
of the true errors, unaccompanied by their elimination in the statistical analysis,
yields an inflated estimate of the variance (which is certainly true), and is therefore
of no value. Is it unreasonable of me to insist that his argument carried to its logical
conclusion implies that even if one could entirely eliminate all sources of error by
means of judicious allocation of treatments to units, and thus determine with certainty
all contrasts between treatments, this would be of no value because there would then
be no valid test of significance?)

The foregoing discussion is intended to show only that C.U.A. constitutes some
thing of an improvement over conventional normality assumptions as a basis for
inference. Supposing that this be granted, the question still remains as to how C.U.A.
can be justified. It must be understood here that from the standpoint of personal
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probability, c.u.A. does not imply that ~ is in any literal sense sampled conditionally
uniform on the sphere, but is rather meant as an approximate description of the
opinions of a person, given all available evidence. As such it is clearly a way of
expressing ignorance or vague prior knowledge, and to me it seems to stand virtually
alone as the only general way of doing so which commands any real credibility. I
cannot hope to prove this, any more than I can hope to prove that any other coherent
way of evaluating probabilities is the "right" way to do so. I can hope that others
will find C.U.A. as compelling as I do. It is my belief that in fact an underlying
attitude of conditional uniformity for errors is at the heart of the willingness of many
people to assume the normal law of errors, and as a consequence to adopt least-squares
methods of analysis of data. In this sense conditional uniformity provides a foundation
for the theory of least squares. Other attempts to justify least squares and the analysis
of variance have been made on the basis of randomization, the Gauss-Markoff
theorem, and the like, but these do not seem to be entirely satisfactory even from the
frequentist viewpoint, and in any case are hardly appropriate for a Bayesian. The
enormously appealing normality assumption, on the other hand, remained more or
less ofa mystery, since it had not been related to any plausible state of prior knowledge.
Thus the famous remark to the effect that "everybody believes in the law of errors,
the experimenters because they think it is a mathematical theorem, the mathematicians
because they think it is an experimental fact". I am proposing that conditional
uniformity for errors is often a plausible state of prior knowledge and lies at the
heart of the theory of least squares.
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