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SUMMARY

Samples from non-normal bivariate distributions are simulated and the
densities of the sample product-moment correlation coefficient, r, estimated
and compared with the corresponding normal theory densities. The results
are contrasted with the literature on the subject and an attempt is made to
reconcile some of the earlier conflictingconclusions regarding the robustness
of the distribution of r.
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I. INTRODUCTION

GIVEN a sample (X1'Yl)' ",,(xN,YN) from a bivariate normal distribution, the sample
product-moment correlation coefficient is given by

N /{N }Ir = r(Xi-X)CYi-ji) r(xi-x)2t: CYi-ji)2. (I)

Fisher (1915) obtained the exact sampling distribution of r for samples from a bivariate
normal distribution, showing that the density of r is

2N- 3(1 - p2)(N-ll/2(1_r2)(N-4l/2 00 (2r)1 .
fN(rlp) = r(N-2) ,~-,-, r 2{(N+J-l)/2}

7T ]=0 J.

for samples of size N. In the case p = 0, (2) reduces to

1: (rl = 0) = r{(N-l)/2} (l_r2) (N - 41/2
N p r{(N-2)/2}~7T .

If the observations are not normal, tests based on (2) may be misleading for (at
least) two reasons. Firstly, the distribution of r may then differ from its normal-theory
form and, secondly, we may be in a situation in which p is a poor measure of
association. Frechet (1959) and Smith (1959) gave good discussions of this second
point. The first point, that of the robustness of (2) with respect to non-normality,
is considered in the following section.

2. THE EFFECTS OF NON-NORMALITY ON THE DISTRIBUTION OF r

The result (2) is valid only when r is computed from a sample from a bivariate
normal distribution. The importance of studying the effects of non-normality was
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widely recognized and, shortly after the paper by Fisher (1915), a number of investi­
gators attempted to determine how closely the observed distribution of r, in non­
normal samples of known form, compared with the corresponding normal-theory
distribution. Most of these studies were based on a Monte Carlo approach to the
problem, but in several cases the exact sampling distribution of r was derived and
compared with (2).

A review of the literature revealed an approximately equal dichotomy of opinion.
For every study indicating the robustness of the distribution of r, one could cite
another claiming to show just the opposite. In one case (Rider, 1932) there arose
quite a difference of opinion on the implications of a given set of experimental
results. Before discussing the reconciliation of these apparently contradictory views
we outline the results of several of these studies. First we discuss the studies which
support the robustness of the distribution of r and then the negative results in this
connection.

2.1. A Historical Survey
E. S. Pearson (1929), after studying samples of sizes 20 and 30 from two "con­

siderably non-normal distributions" (each a mixture of bivariate normal distributions)
with respective correlation coefficients of 0·5346 and 0'4626, concluded that "the
normal bivariate surface can be mutilated and distorted to a remarkable degree
without affecting the frequency distribution of r", Two years later, Pearson (1931)
considered the distribution of r in samples from independent co-ordinate variables
and again reported good agreement: "The values of G r are in these cases in remarkably
close agreement with the normal theory values." He admitted that when pi' 0 the
situation is more complicated, but claimed his earlier (1929) study showed that "even
in this case the distribution of r is remarkably stable". In 1932, Pearson considered
the case where the independent co-ordinate variables were not identically distributed.
Summarizing the results of these studies, Pearson (1931) stated that "these results
emphasize the insensitivity of the distribution of r to change in the population form".

Dunlap (1931) studied samples of size N = 52 (a card-shuffling experiment) and
found "generally good agreement" with the normal-theory values for means and
variances as well as for the correlation coefficient. Hey (1928) sampled from four
non-normal populations and studied the correlation coefficient, regression coefficients
and the ratio of two independent estimates of variance for each population. On the
basis of his results Hey concluded "considerable non-normality in the original
distribution will not affect the distributions of correlation and regression coefficients".
Quensel derived the density of r in samples from a Gram-Charlier distribution and
found "good agreement" with normal theory, even for small values of N, but his
results are valid only when p = 0, as was noted by Gayen (1951). Nair (1941) con­
sidered 433 values of r computed from independent exponential variables and found
the distribution of r "fits normal theory fairly well". He found similar results for
260 values of r from another population of independent variables. Cheriyan (1945)
continued Nair's work, extending his investigation to the case when p was large. He
used samples from X2 distributions to construct three populations with correlation
coefficients of 0'50, 0·75 and 0·89. He considered the distribution of r in some 200
samples of size N = 5 from each of these populations. He found close agreement of
c; with its normal theory value for certain values of r, but noted that as p increased,
the agreement decreased. Rider (1932) studied the distribution of r in samples from
"rectangular" and "triangular" populations. He fitted Pearson-type curves to the
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observed distributions of r and applied X2 tests to evaluate the agreement with normal
theory. He agreed with Pearson, concluding that "the distribution of r is quite
insensitive to parental non-normality", despite the fact that most people (including
the editor of the journal in which the paper appeared) would interpret his Tables V
and VI as showing quite the opposite.

Despite the number of studies pointing to the robustness of (2) with respect to
non-normality, some people noticed that the distribution of r in samples from certain
populations did not attain the promised agreement with normal theory. This was
especially evident when Ipi was near unity. Haldane (1949) agreed with Pearson as
long as Ip I was small and as long as the "mutilations" were confined to skewness.
He gave an example showing that when IpIis large a slight change in kurtosis may have
a large effect on the variance of r, even for large values of N. Gayen (1951) derived
the distribution of r in samples from bivariate Edgeworth surfaces. He indicated that
when p = 0 the effect of non-normality is not serious, even for samples as small as
N = 11, but less agreement with normal theory is in evidence when pi=O.

Baker (1930) considered an example where non-normality led to a significant
value of r when the normal-theory test for independence was used, but where there was
good reason to believe that the variables were independent. He presented a detailed
description of his data, including a scatter diagram and histograms of the marginals,
and argued that this inconsistency could be attributed to the non-normal character
of the marginal distributions. His analysis was reviewed by Kowalski and Tarter
(1969).

Chesire, et al. (1932) sampled from two "triangular" distributions and noted that
the variance of r was always less (and often considerably less) than the normal-theory
value. They concluded that "there exist real differences between the distributions of
r from these two populations and those appropriate for the normal case". They
also discussed the inadequacy of p as a measure of association in the event of non­
linear regression and tied this new evidence to the implications of Pearson's earlier
studies.

More recently, Farlie (1960) examined the performance of some correlation
coefficients in samples from a general class of bivariate distributions. This class is
defined by the distribution function

H(x,y) = F(x) G(y) [1+exA{F(x)}B{G(y)}], (4)

(5)

where F and G are the marginal distribution functions, Iex I,,:;; 1 is a parameter measuring
association, A and B are bounded functions such that A(I) = B(l) = 0 and the
derivatives d(FA)jdF, d(GB)jdG are bounded. He showed that r provides an efficient
test for independence whenever A and B have the form

A{F(x)} = f:oo xdF/ L:dF, B{G(y)} = L:ydG/ f:oodG

but for other choices of the "disturbing functions" A and B other coefficients of
association are more efficient. For example, if A = 1-F and B = 1- G, Spearman's
rank correlation coefficient and Kendall's 'T are more efficient. This case was first
studied by Morgenstern (1956) and Gumbel considered the Morgenstern system for
various marginal distributions F= G: normal (Gumbel, 1958); exponential (Gumbel,
1960); logistic (Gumbel, 1961). Kowalski (1968) considered other choices of F = G
and, prompted by Pearson's (1932) study, situations in which Fi= G.
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(6)

2.2. Outline of the Methods Used to Re-examine this Problem
Everyone seems to agree that the distribution of r is quite robust to non-normality

when p = 0, but there is good evidence that this becomes less stable with increasing
values of Ip I, especially when kurtosis is in evidence. It is the variance of r which is
most vulnerable to the effects of non-normality and this variance may be either larger
or smaller than the normal-theory value, depending on the type of non-normality
under consideration.

The amount of disagreement exhibited above may be reduced by the observation
that the distribution of r is in fact quite robust to certain types of non-normality and
a realization of the difficulties (c.f., Teicheroew, 1965) inherent in simulating non­
normal distributions before the advent of electronic computers. Another important
factor was the difficulty of estimating the distribution of r. This was done either by
simple histograms or by fitting a Pearson-type curve to the observed distribution of
r. Only in rare instances could the distribution of r be derived explicitly and hence it
was necessary to rely on Monte Carlo experiments for the bulk of the theory at a time
when this approach required massive quantities of data to get a reliable estimate of
the density of r.

This reliance on a Monte Carlo approach to the problem is often still necessary
today, but now simulation presents few real difficulties and the art of density esti­
mation has been perfected to the extent that reliable estimates of the density of rare
readily available. Thus we propose to study the robustness of the distribution of r
using modern simulation and density estimation techniques. Good discussions of
bivariate simulation are given by Mardia (1967) and Tocher (1963). Further references
may be found in Shubick (1960) and Teicheroew (1965).

2.3. Density Estimation
Recently there have appeared a number of papers concerned with the estimation

of the density function of an absolutely continuous distribution on the realline. A
discussion of these procedures has been given by Kowalski (1968) and for reasons
given there the author feels that the "Fourier approach" to density estimation provides
accurate estimators of the densities considered in this paper. Other estimators may,
of course, be used but in this paper we employ only the Fourier estimator. This
method of estimation was developed by Kronmal and Tarter (1968). The form of the
estimator of the density f is

j,.{r) = 2(b~a) +~~1 {t\COS (k7T~=:) +sksin (k7T~=:)}'
where ck' Sk are the sample trigonometric moments, [a, b] is the (finite) interval over
which the density estimate is desired and m, the number of terms in the summation in
(6), is determined by a stopping rule designed to optimize the fit of (6) with respect
to the minimization of the mean-integrated-square-error of the estimator. For
details see Tarter et al. (1967) and Kronmal and Tarter (1968).

We use the estimator (6) to estimate the density of r in samples from a
variety of non-normal (X, Y) distributions. j(r) is reserved to denote the Fourier
estimator (6) based on 100 samples of size 30 from some non-normal distribution
(X, Y). We begin by reviewing Pearson's results for mixtures of bivariate normal
distributions.
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3. THE DISTRIBUTION OF r FROM A MIXTURE OF

BIVARIATE NORMAL DISTRIBUTIONS

It is clear that Pearson's conclusions concerning the insensitivity of the distribution
of r must be confined to the situation he considered, but one might hope that the study
provides evidence that the distribution of r is robust with respect to the class of
mutilations which may be introduced by mixing.

The (X, Y) densities obtained by mixing bivariate normal densities have the
structure h(x,y) = WI e,b1(X,y) + ... +wke,bix,y) where the wi are probability weights
and the e,bi are (standard) bivariate normal densities with respective correlation
coefficients Pi' The correlation coefficient of (X, Y) is

k

PXl' = ~WiPi'
i=l

(7)

Pearson considered k = 3 in his investigations and the mixtures he studied did lead to
distributions of r (as estimated by (6)) which agreed quite well with (2), but it is
an easy task to find mixtures for which this agreement is far from satisfactory. Fig. I
shows farlrIP = 0) and the estimated densities of r in mixtures where k = 2,
WI = w2 = t, PI = - P2 and it is easily seen that the goodness of fit deteriorates rapidly
with increasing values of IPII. Fig. 2 illustrates the estimated densities of r for several
other mixtures which have PXl' = 0, but not PI = - P2' Fig. 3 and 4 illustrate the
situation for several values of PXl'#O.

The goodness of fit of these estimated densities is a function of (WI' W2' PI' p~.

The choice of these parameters induces a distortion of the normal surface which may
or may not grossly affect the distribution of r. In particular, Fig. 1 shows that even
when PXl' = 0 the density of r may depart considerably from its normal-theory form.
Fig. 5 shows the sort of mutilation of the surface mixing can produce. The contour
map depicted there departs considerably from the equiprobable ellipses of the normal
model.

It appears, then, that Pearson's (1929) claim should be modified. The distribution
of r in samples from mixtures of bivariate normal distributions may depart consider­
ably from the corresponding normal density even when PXl' = 0 and even for large
sample sizes.

4. THE DISTRIBUTION OF r FROM OTHER SYSTEMS OF

BIVARIATE DISTRIBUTIONS

Fig. 6 shows the estimated density of r in samples of size 30 from the exponential
distribution defined by the distribution function

H(x,y) = l-exp( -x)-exp( - y)+exp(-x-y- Sxy), (8)

where 0;;; S;;;1 is a parameter measuring association. Gumbel (1960) studied the
relationship between PXl' and S and provided a graph from which one can read off
values of PXl' for given values of S. For Fig. 6 we have put S = 0'3; this corresponds
to PXl' = -0,2 so J(r) is compared with the normal-theory density 13O(rl P = -0'2).

Fig. 7 is the analogous treatment of the exponential distribution in the Morgenstern
system, that is (4) with A = 1- F, B = 1- G, where F, G are exponential distribution
functions. Here ex = I, which corresponds to PXl' = t by the relation PXy = ex/4.
Farlie (1960) showed that r was less efficient than Spearman's P and Kendall's T in
this case, even though the estimated density of r agrees quite well with normal theory.
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Fig. 8 compares j(r) and fso(r! P = 0,75) for samples of size 30 from Cheriyan's
(1945) bivariate X2 distribution with p = 0·75. Cheriyan claimed that he found good
agreement with normal theory for values of r in the interval (0'1,0'8) and samples as
small as 5, but this finding is not substantiated by Fig. 8.

Fig. 9 compares the estimated density of r in samples from the standard semi­
logarithmic surface (Yuan, 1933) with the corresponding normal theory density when
PXY = 0·57. Fig. 10 is the analogous treatment of the bivariate lognormal distribution
with PXY = 0·65. These distributions are examples of distributions generated from
the bivariate normal by the method of translation (Johnson, 1949). If P is the corre­
lation coefficient of the normal variables it is easy to show that for semilogarithmic
(X, Y), PXY = pj(e-l)t and for bivariate lognormal (X, Y),

PXY = {exp(p-l)}j(e-l),

where e is the base of the natural logarithms.
The graphs given here are only a representative portion of the work done on this

problem. Other (X, Y) systems have been considered as well as other sample sizes
(N) and values of px r : The conclusion reached by several of the earlier investigators
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FIGS. 1-4. Comparisons of the densities J(r) of the sample
product-moment correlation coefficient for various mixtures of
two bivariate normal densities, estimated from 100 samples of
size 30, with the corresponding normal-theory density fao(r I p)
given by equation (2) and having the same value of the corre­
lation coefficient PXy. The components of the mixtures have
correlation coefficients PI' P2 and probability weights WI' W2•
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of this problem that the distribution of r in samples from non-normal distributions
may differ substantially from the normal-based density (2), especially for large
values of 1p I, has been verified and extended. It has been further noted that even
when good agreement between the densities is in evidence, for example in Fig. 7,
other coefficients of association may be more efficient than r. The departure from
normal theory is less serious when p = 0 but there exist situations in which IN(r)
differs substantially from iN(r Ip = 0). Fig. 11 illustrates that even if X and Yare
independent the distribution of r may be skewed and differ considerably fromiN(rl p).

FIG. S. Contour map of the mixture of two bivariate normal densities with correlation
coefficients 0'9, -0,9 and probability weights 0'8, 0·2.
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This figure is based on (X, Y) independent exponential variables (compare Nair,
1941, who found better agreement in this case), and similar results have been noted
for other independent systems. The dashed line in the graph, corresponding to
J30(rZW)' is discussed in the following section.
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FIG. 10. The standard bivariate lognormal distribution with p = 0·75 and PXY = 0·65.
--fao(r I P = 0,65). x x x x lao(rxy).
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FIGS. 6-1 I. Comparisons of the densities J(rXY) of the sample product-moment correlation
coefficient from various systems of bivariate (X, Y) distributions estimated from 100 samples of
size 30, with the corresponding normal-theory density fao(r Ip) given by equation (2) and having
the same value of the correlation coefficient PXy. FIG. 11 also shows the density Jzw obtained
after transforming the marginal distributions of (X, Y) to normality.

5. SOME METHODOLOGICAL SUGGESTIONS

If (Xl' YI ) , ..• , (XN' YN ) are normal, a test of Ho: p = °is a test for independence of
X and Y. There is little argument over the propriety of basing this test on r when
(X, Y) is normal, but there is less agreement when normality is suspect. One possible
approach is suggested by Fieller and Pearson (1961)who showed that for any bivariate
distribution which is roughly normal under the transformation of its marginal
distributions to normality the Fisher-Yates (1938) rank correlation coefficient, rF'
can be used, when testing Ho: p = 0, as though it were the product-moment correlation,
r, of N pairs of independently distributed normal variables. Carrying this approach
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one step further the author (Kowalski, 1968, 1970) and Kowalski and Tarter (1969)
investigated the use of co-ordinate transformations to normality as a prelude to the
application of normal-based correlation analyses. Given non-normal (X, Y), the
technique consists of making the co-ordinate transformations

(9)

where <1>-1 is the inverse of the standard normal distribution function and t; G are
the Fourier estimators of the marginal distribution functions, and then using normal
theory to analyse the correlation structure of (Z, W). This method is based on the
assumption that co-ordinate transformations to normality produce bivariate distri­
butions which are "approximately normal". Otherwise stated, the assumption is that
normal correlation analyses are robust with respect to the kinds of non-normality
possible when the marginals are constrained to be normal. The author (Kowalski,
1968) assembled a list of non-normal bivariate distributions with normal marginals
and contrasted their correlation structures with the corresponding normal models,
compared (Kowalski, 1970) the performance of tests for bivariate normality before
and after applying the transformations (9) and showed (Kowalski and Tarter, 1969)
that the normal-based test for independence is generally more powerful if based on
TZW than if rXY is used. It seems clear as a result of these studies that (Z, W) is
generally "more bivariate normal" than (X, Y) and that if normal correlation theory
is going to be used, it is more properly based on rzw than on rXY' An example of the
agreement of rzw with normal theory is illustrated in Fig. 11: the dashed line is the
estimated density of t zw- For a wide class of (X, Y) distributions, t zw agrees more
closely with normal theory than does r XY and this agreement is exhibited for a wide
range of values of p. This stands in opposition to what is known about the distribution
of rF; while rF does agree quite well with normal theory when p = 0, the agreement
is less satisfactory when pi' 0 (e.g. E(rF) < E(r) in this case). Despite these advantages
there do exist examples of non-normal distributions with normal marginals whose
correlation structures differ substantially from that of the bivariate normal distri­
bution. Indeed, mixtures of normal distributions have normal marginals. See also
Vaswani (1947, 1950).

In the event, the examples considered in this paper serve to warn against the in­
discriminate use of normal correlation analyses. There may remain arguments as to
which alternative analysis should be applied, but it is hoped that there will no longer
be any doubt that alternative analyses are needed.

6. CONCLUSIONS

The literature on the subject of the robustness of the distribution of r with respect
to non-normality of the observations was reviewed in the light of new experimental
results based on modern simulation and density-estimation techniques. The general
conclusion is that the distribution of r may be quite sensitive to non-normality and
that normal correlation analyses should be limited to situations in which (X, Y) is
(at least very nearly) normal. The distribution of r need not agree well with normal
theory when p = 0 and even if the distribution of r is close to the normal theory
density alternative analyses may be more efficient.
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