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Key Points: 

• The Beer-Lambert Law effectively models Photosynthetically Active Radiation in 

Western Lake Erie, despite some systematic deviations.  

• Field-obtained water quality parameters can predict Photosynthetically Active Radiation 

attenuation with a high degree of confidence. 

• Suspended particle concentration is most predictive of Photosynthetically Active 

Radiation attenuation in this turbid, eutrophic basin.  
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Abstract 
Models of primary production in aquatic systems must include a means to estimate sub-surface 

light. Such models often use the Beer-Lambert law, assuming exponential attenuation of light 

with depth. It is further assumed that the diffuse attenuation coefficient may be estimated as a 

summation of scattering/absorbing constituent concentrations multiplied by their respective 

specific attenuation coefficients. While theoretical deviations from these assumptions have been 

documented, it is useful to consider the empirical performance of this common approach. 

Photosynthetically-Active Radiation (PAR) levels and water quality conditions were recorded 

weekly from 6-8 monitoring stations in western Lake Erie between 2012 and 2016. Exponential 

PAR extinction models yielded a mean attenuation coefficient of 1.55 m-1 (interquartile range = 

0.74 – 1.90 m-1). While more complex light attenuation models are available, analysis of 

residuals indicated that the simple Beer-Lambert model is adequate for shallow, eutrophic waters 

similar to western Lake Erie (R2 > 0.9 for 96% of samples). Three groups of water quality 

variables were predictive of PAR attenuation: total and non-volatile suspended particles, 

dissolved organic substances (dissolved organic carbon and chromophoric dissolved organic 

matter), and organic solids (volatile suspended solids and chlorophyll). Multiple regression 

models using these variables predicted 3-90% of the variability in PAR attenuation, with a 

median adjusted R2 = 0.86. Explanatory variables within these groups may substitute for each 

other while maintaining similar model performance, indicating that various combinations of 

water quality variables may be useful to predict PAR attenuation, depending on availability 

within a model framework or monitoring program.  
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1. Introduction 
Light penetration plays a critical a role in aquatic ecology, regulating phytoplankton and 

submerged aquatic vegetation growth, organic carbon production, hypoxia prevention, and the 

ability of visual predators to find prey (Karlsson et al. 2009, Kemp et al. 2005). Cyanobacterial 

buoyancy has been modeled as a function of light exposure (Medrano et al. 2013), as have the 

fate and transport of bacteria (Ge et al. 2012, Safaie et al. 2016). Physically, light penetration 

contributes to water column warming and stratification (Hondzo and Stefan 1993, Houser 2006). 

Therefore, light attenuation is an important component of many mechanistic freshwater and 

marine system models (Chen et al. 2003, Ji et al. 2008, Rowe et al. 2017). A light attenuation 

coefficient is often specified as a function of water quality constituent concentrations within such 

models (Christian and Sheng 2003, Dennison et al. 1993, Stefan et al. 1983, Xu et al. 2005).  

 

Light attenuation models range from simple to complex, and various approaches may be 

appropriate depending on the system being modeled and the model objective. Light attenuation 

differs by wavelength, water column depth, and concentration of absorbing or scattering 

constituents (Markager and Vincent 2000, Smith 1982, Stefan et al. 1983). In the visible 

spectrum, long and short wavelengths (red and violet) are absorbed or scattered over a relatively 

short distance, while intermediate wavelengths (green) penetrate most deeply (Gordon and 

McCluney 1975, Hutchinson and Edmondson 1957, Jerlov 1968). In addition to absorption and 

scattering by the water itself, particles can scatter light with wavelengths zero to four times the 
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particle diameter (Ensor and Pilat 1971). When modeling phytoplankton growth or primary 

production is the goal, as is common for eutrophic waters, a useful simplification is to aggregate 

across the wavelengths of photosynthetically active radiation (PAR, 400-700 nm (Kirk 1983, Xu 

et al. 2005)). A further simplification is to apply the Beer-Lambert law, in which exponential 

attenuation of light with depth is assumed (Hutchinson and Edmondson 1957, Ingle and Crouch 

1988). It is further assumed that the diffuse attenuation coefficient may be estimated as a 

summation of concentrations of scattering/absorbing constituents multiplied by their respective 

specific attenuation coefficients. While theoretical deviations from these assumptions have been 

documented (Gordon 1989, Stavn 1988), it is useful to consider the empirical performance of 

this approach, given its wide application in mechanistic models of aquatic systems (Bocaniov et 

al. 2016, Cerco and Meyers 2000, Ji et al. 2008, Rowe et al. 2017, Verhamme et al. 2016). In a 

purely physical model, water quality constituent concentrations may not be available as model 

state variables, while biophysical models differ greatly in the state variables that are included.  

 

Similarly, monitoring programs differ in the water quality and physical variables that are 

measured. Thus, it is useful to determine the best water quality and physical variable predictors 

of light attenuation, and also to consider the general applicability of the models, in terms of 

ability to substitute variables without losing predictive ability.  
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Because of its widely varying light attenuation and water quality conditions, western Lake Erie 

provides an ideal location to develop PAR attenuation models that may be representative of 

shallow, turbid, and productive systems. Western Lake Erie is a large, shallow, eutrophic, 

freshwater system, which exhibits heterogeneous water quality conditions due to mixing of 

waters from the Detroit and Maumee Rivers, and wave-generated sediment resuspension. A 

cyanobacterial bloom consisting mainly of Microcystis aeruginosa has occurred to a varying 

extent each summer for the past 15 years (Stumpf et al. 2012). Western Lake Erie is too shallow 

to seasonally stratify (Chandler 1942, Mortimer 1987), thus water quality variables are often 

vertically uniform. However, under calm conditions, buoyant Microcystis colonies often 

concentrate near the surface (Rowe et al. 2016).  

 

We aimed to characterize PAR attenuation in western Lake Erie and to determine whether the 

Beer-Lambert model, which is commonly used within mechanistic biophysical models, 

adequately describes the attenuation of PAR within the water column. We further determined the 

dependence of PAR attenuation on water quality constituents. Given that mechanistic 

biophysical models differ in terms of the water quality variables that are represented, we wanted 

to evaluate combinations of predictors, and determine the most parsimonious models without 

sacrificing prediction of the diffuse attenuation coefficient for PAR (kd(PAR)). Though these types 

of models have been developed for Lake Erie and other surface waters in the past (McMahon et 

al. 1992, Saulquin et al. 2013, Smith 1982, Stefan et al. 1983), the lake system is constantly 
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changing as a result of invasive species, changes to tributary inputs and nutrient/contaminant 

loading associated with sediment resuspension (Porta et al. 2005). Especially when mechanistic 

biophysical models rely on light attenuation estimates to predict primary productivity and 

biological conditions, periodic re-evaluation of existing models is necessary.   

 

2. Materials and Methods 

2.1 Field Data Collection 

Vertical profiles of PAR were collected using a Sea-Bird Electronics (SBE) 19plus SeaCAT 

Profiler Conductivity, Temperature, Depth instrument (referred to hereafter as “CTD”) and a 

Biospherical PAR sensor (Model QSP 2300). Profiles were collected weekly between June and 

November of 2012-2016, at six to eight stations in the western basin of Lake Erie (Figure 1). The 

CTD had a 4 Hz sampling rate for measuring conductivity, temperature, water pressure (depth), 

and PAR. The PAR sensor was located 0.435 m above the CTD pressure sensor, and all readings 

were depth-corrected accordingly. 

  

Additional water quality data were obtained from grab samples collected concurrently with PAR 

profiles at approximately 0.5 m below the surface. Samples were analyzed for Total Suspended 

Solids (TSS, mg L-1), Volatile Suspended Solids (VSS, mg L-1), Dissolved Organic Carbon 

(DOC, mg L-1), Chromophoric-Dissolved Organic Matter (CDOM, absorption at 400 nm, m-1), 

and chlorophyll-a (CHL, μg L-1).  TSS was measured gravimetrically after filtering samples 
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through a pre-dried, pre-weighed Whatman GFC 47-mm filter. The filter was then combusted for 

four hours at 450 °C, cooled, and re-weighed to measure VSS (APHA 1998). For DOC 

measurement, US EPA Method 415.3 (USEPA 2005) was followed, while CDOM was measured 

using absorbance at 400 nm instead of 254 nm, following Mitchell et al. (2003) and Mouw and 

Barnett (2014). Chlorophyll concentrations were determined by filtering 100 ml of sample 

through a 45-mm Whatman GF/F filter under low vacuum pressure. After filtration, filters were 

frozen in polypropylene tubes until extraction. Chlorophyll a was extracted from the filtered 

material using N, N-dimethylformamide (DMF) (Speziale et al. 1984).  DMF was added to the 

tubes and heated in a water bath at 65 °C for 15 min.  After agitation and centrifugation, the 

supernatant was analyzed on a Turner Design 10 AU fluorometer for Chl a using non-

acidification. In addition to water quality variables, hourly wind speed was interpolated from 

stations surrounding Lake Erie, according to methods developed for NOAA GLERL’s Great 

Lakes Coastal Forecasting System (Beletsky et al. 2003). 

 
2.2 Estimating kd(PAR) 
We used vertical PAR radiation (µmol m-2 s-1) profiles (Figure 2) to estimate the diffuse light 

attenuation coefficient, kd(PAR), by fitting the Beer-Lambert law for the exponential extinction of 

light in water (Equation 1, (Ingle and Crouch 1988)).  Using the Beer-Lambert law,  

ln(𝐼𝑧) = ln(𝐼0) − 𝑘𝑑(𝑃𝐴𝑅)𝑧                                                            (1) 

kd(PAR) and surface PAR, I0, were estimated for each CTD cast by linear least-squares regression 

of ln(Iz) versus depth, where Iz represents sub-surface PAR at depth z. Because I0 is obtained 
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from regression, rather than being measured independently, this parameter represents PAR just 

below the surface, and surface phenomena such as reflection or absorption by surface scums 

would need to be treated separately in order to calculate sub-surface PAR from incident PAR 

using the values of kd(PAR) estimated in this study.  

 

We used an iterative process to determine both the depth of the euphotic zone and the resulting 

kd(PAR) coefficient representative of the euphotic zone. The initial iteration calculated the depth of 

the euphotic zone, defined as the depth to reach 1% of surface PAR radiation, I0. Values 

associated with depths beyond the euphotic zone as well as depths less than 0.5 m were removed 

from profile data, and the Beer-Lambert law was fit over the remaining euphotic zone PAR 

values in the second iteration. PAR data collected at depths shallower than 0.5 m were ignored 

because the PAR sensor could not be fully submerged at such depths.   

 

2.3 Statistical Models for Predicting kd(PAR) 
Multiple regression models were developed to predict the estimated kd(PAR) as a function of water 

quality or physical variables. For quality assurance, we limited our regression analyses to kd(PAR) 

estimates whose Beer-Lambert models fit with R2 values greater than 0.9 (197 records, Table 

S1). Model performance was ranked using multiple metrics. Spearman correlation and regression 

tree analysis were used to identify candidate predictor variables that were most associated with 

kd(PAR). Regression tree analysis was used to rank the relative influence of multiple predictor 
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variables, allowing for non-linear relationships and interactions by partitioning the data into a 

series of significantly different (α = 0.05) groups of at least 10 observations. Relative model 

performance was screened using stepwise linear regression analysis of variable combinations.  

 

Variables representing the same group (total or non-volatile suspended particles, organic 

particles, dissolved organic substances) were not combined, to minimize problems arising from 

multicollinearity. Models that minimized the Akaike Information Criterion (AIC) were 

considered to be higher-performing, considering predictive ability within the training data as 

well as parsimony. We evaluated predictive skill of the models outside of the training data using 

a 10-fold cross-validation method; the data were randomly split into 10 groups, a model was fit 

using nine groups, and residuals were calculated using the one group that was left out of the 

initial fit. The cross-validation process was repeated until residuals were calculated on each of 

the 10 groups, then root mean square error (RMSE) was calculated from the residuals.   

3. Results 
The Beer-Lambert Law approximated PAR attenuation well, with 96% of profile models (691 

out of 719) yielding R2 values > 0.90. Despite these high R2 values, residuals plots of the Beer-

Lambert models occasionally showed systematic variation (Figure 3), indicating that the models 

may not have captured all of the variability in the data. The standardized residuals accumulated 

over all Beer-Lambert models indicated under-prediction of PAR at shallow and deep extremes, 
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and over-prediction of PAR levels at moderate depths in the casts (Figure 3a). This trend is also 

manifest in a typical residual plot for the Beer-Lambert approximation (Figure 3b). 

 

The six selected water quality predictor variables represented three major groups: total or non-

volatile particles, dissolved organic matter, and organic particles (Table 1). In most cases, VSS 

constituted a much smaller proportion of TSS than Nonvolatile Suspended Solids (NVSS), 

leading to greater correlations between TSS and NVSS than between TSS and VSS. Additional 

potential predictors included total phosphorus, particulate organic nitrogen, and particulate 

organic carbon. These additional variables were not found to be as highly correlated with PAR 

and kd(PAR) as TSS, VSS, NVSS, DOC, CDOM, and CHL, and were therefore removed from 

further analysis. The pairs of variables within each of the three main groups (total and non-

volatile suspended particles, dissolved organic matter, and organic particles) were highly 

correlated with one another (Figure 4). This supported the conceptual basis for the groups of 

variables; these pairs indicated similar influences on kd(PAR), and that predictors may substitute for 

one another in statistical models.   
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Water quality parameters in western Lake Erie exhibited a wide range of values. Relative 

standard deviations for suspended solids and chlorophyll concentrations were greater than for 

dissolved organic matter, with values of 134%, 119%, and 36% for NVSS, CHL, and DOC, 

respectively. (Figure 5).  

 

Single variable regression models and Spearman rank correlations indicated which individual 

water quality variables were most predictive of kd(PAR) (Table 2). Water quality variables that 

gave Spearman rank correlation coefficients, ρ, discernible from zero included TSS, NVSS, 

DOC, and CDOM. TSS and NVSS were most highly correlated with kd(PAR) (Spearman’s ρ = 

0.85 and 0.83, respectively), while CHL and VSS showed much lower correlation coefficients (ρ 

= 0.38 and 0.51, respectively). DOC and CDOM showed intermediate correlation coefficients (ρ 

= 0.62 and 0.60, respectively). Single-variable linear regression analyses resulted in a similar 

ranking. Regression analyses of kd(PAR) on TSS and NVSS yielded R2 values of 0.85 and 0.81, 

respectively. VSS and CHL were less predictive of kd(PAR) yielding R2 values of 0.09 and 0.03, 

respectively (Table 2). Regression tree analysis also identified TSS and NVSS as the most 

important contributors to kd(PAR) (Figure 6). The combination of TSS, NVSS, and CDOM 

explained 80.3% of the total variability in kd(PAR), with high levels of total suspended solids 

leading to the highest kd(PAR) values. 

 
Combining water quality variables into multiple regression models led to higher predictive 

ability than the use of single variable models or regression trees. After 10-fold cross-validation, 
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nine models were identified that gave similarly high adjusted R2 values (ranging from 0.87 to 

0.90), and at the same time gave the lowest RMSE values of the candidate models (from 0.42 to 

0.45 m-1; Figure 7, Table S2), indicating their predictive ability outside of the training data. 

 

The model that maximized adjusted R2 while minimizing RMSE, AIC score, and RSS value 

included NVSS, DOC, and CHL concentrations (AIC = -342.02, RSS = 33.33, Table S2, 

Equation 2).   

𝐾𝑑(𝑃𝐴𝑅) = 0.083(𝑁𝑉𝑆𝑆) + 0.184(𝐷𝑂𝐶) + 0.005(𝐶𝐻𝐿) − 0.096 + 𝜀                   (2) 

Despite the high R2 values of these models, they tend to capture less of the variance in the data at 

extreme kd(PAR) values than near the median (Figure 8). The optimized models over-predict at low 

kd(PAR) and under-predict at high kd(PAR) values. Model residuals (Figure 8a) indicate that variance 

increases with PAR attenuation coefficient value, and this change in variability is not fully 

captured by the models.  

 

We also investigated physical variables as candidate predictors for kd(PAR). Water depth and 

kd(PAR) were significantly correlated (ρ = -0.52, p <0.01), while time averaged wind speed values 

were less correlated with kd(PAR). The Spearman’s ρ correlation coefficient between kd(PAR) and 

wind speed averaged over a range of preceding time intervals was maximized for 120-hour (five-

day) averaged wind speed (ρ = 0.130, p <0.01) (Figure 9). The lowest-magnitude correlation 
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coefficients were observed for wind speeds averaged over four and 312 hours prior to the PAR 

attenuation observations (ρ <0.01 and 0.01, p = 0.51 and 0.42, respectively).   

 

Multiple regression models incorporating water depth and wind speed were not as effective as 

water quality parameters at predicting kd(PAR), with adjusted R2 values ranging from 0.284 to 

0.310. Corresponding RMSE values were relatively high, ranging from 0.764 to 0.781 m-1 (Table 

S3).  

4. Discussion 
Models using TSS, VSS, NVSS, DOC, CDOM, and CHL as predictor variables effectively 

captured up to 90% of the variation in PAR attenuation coefficients for the western basin of Lake 

Erie. Models using different combinations of variables representing total and nonvolatile 

particles, organic particles, and dissolved organic matter showed similar skill, providing a means 

to estimate kd(PAR) that would be suitable for use within more complex mechanistic models in 

which the availability of specific water quality variables may depend on the model framework. 

Beer-Lambert approximations of PAR attenuation (Equation 1) were highly predictive, with R2 

values above 0.90 in the majority of cases. However, residuals plots compiled over all profiles 

showed a systematic deviation. This suggests that there is autocorrelation in the data that may be 

better captured by more complex models. Some wavelengths of light attenuate faster than others, 

leading to greater curvature in the PAR profile than can be accommodated by Equation 1. 

Alternative forms of the Beer-Lambert law are available, for example those that combine two 

exponential terms to accommodate faster and more slowly attenuating wavelengths. For 
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example, Paulson and Simpson (1977) found that the transition between the faster and slower 

attenuation rate occurred between ~5-10 m depth in Type I, II, and III waters. In our data, depth 

was <10 m, so most of our euphotic zone depths would have captured only the shallower end of 

this transition zone, which is typical of turbid coastal waters. For more transparent waters, a 

double exponential or mixed model (Borsuk and Stow 2000) may be more appropriate. In our 

case, despite some indication of systematic deviation in residuals plots, the majority of 

standardized residuals were small in magnitude, relative to the PAR values that were modeled 

(Figure 3), suggesting that overall fits to the data were acceptable for our purposes. Therefore, 

these models can effectively predict PAR attenuation in western Lake Erie for use in mechanistic 

primary production, water quality and hydrodynamic modeling frameworks that require 

estimates of sub-surface PAR.   

 

PAR attenuation coefficients for western Lake Erie between 2012 and 2016 ranged from 0.12 to 

9.08 m-1, with an average value of 1.67 + 1.30 m-1. These attenuation values are twice as high as 

those observed by Fitzpatrick et al. (2007) and Dahl et al. (1995) for the northern and central 

regions of western Lake Erie, but are closer to kd(PAR) results from 1997 samples taken throughout 

the western basin (Smith et al. 2005). These differences may be associated with differences in 

sampling locations for each respective study within the basin. This is especially true considering 

the potential impacts of cyanobacterial blooms and agriculturally–dominated tributary loads that 

are often largely confined to the southern half of the western basin, while the relatively 
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transparent waters of the Detroit River influence the northern half of the western basin (Fig. 1). 

Turbidity and primary production conditions within Lake Erie have changed over time, and show 

a high degree of variability, even over short time periods (Binding et al. 2015, Dahl et al. 1995, 

Porta et al. 2005). Lakewide and nearshore water clarity in Lake Erie has generally increased 

between 1998 and 2014, despite year-to-year variability, while wind and storm events can 

influence sediment resuspension and turbidity on a day-to-day and seasonal scale. Primary 

production also showed an increase between 2002 and 2003 (Porta et al. 2005), coinciding with 

increases in both chlorophyll-a concentration and PAR attenuation coefficient and a potential 

decrease in water clarity (Binding et al. 2015). It is possible that kd(PAR) differences between 

studies can be attributed to the changing primary productivity, water clarity, and resuspension 

conditions within the western basin.  In comparison to other water bodies, the attenuation 

coefficients fall within a similar range of values as the lower and middle basins of Ireland’s 

Shannon Estuary (McMahon et al. 1992), but were found to be roughly twice as high as those 

observed in Delaware Estuary (Wang et al. 1996).  

 

The western basin of Lake Erie can be described as an example of Case II water (Mobley et al. 

2004, Morel and Prieur 1977, Twardowski et al. 2001) – shallow, coastal zone water for which 

light attenuation is generally governed by suspended mineral solids in the water. The models’ 

dependence on TSS and NVSS in predicting PAR attenuation (Spearman’s ρ = 0.85 and 0.83 

respectively) supports this classification. The optimal model, as determined by a stepwise 
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regression of kd(PAR) against TSS, VSS, NVSS, DOC, CDOM, and CHL, incorporated NVSS, 

DOC, and CHL (AIC = -342.02, RSS = 33.33, Table S2), as well as an error term (ε). This model 

(Equation 2, above) explains 89.7% of the variability in the kd(PAR) data across western Lake Erie. 

Residuals indicate that PAR attenuation is slightly over-predicted by the model at low values of 

kd(PAR) and underpredicted at high values (Figure 8). This has been observed in previous analyses 

(Xu et al. 2005), and may reflect some non-linearity in the influence of suspended mineral 

particles on scattering and attenuation, resulting from variables such as particle size, shape, and 

composition that may influence light scattering but are not reflected in a gravimetric 

measurement of concentration. 

 

The results of the multiple regression models developed here are similar to results from previous 

model development for natural waters, in both predictive capacity and significant predictor 

variables. Devlin et al. (2009) modeled kd(PAR) in coastal and transitional marine waters 

surrounding the UK using the Beer-Lambert Law and log-normal, linear, and gamma generalized 

linear models to predict kd(PAR). Similar models for kd(PAR) were developed for coastal waters in 

the Mediterranean Sea, English Channel, and Atlantic Ocean by Saulquin et al. (2013). These 

diffuse attenuation models yielded comparable predictive ability to those for western Lake Erie, 

explaining 76-99% of the variation in their respective data. Models from Devlin and Saulquin 

included CHL, CDOM and suspended particulate matter (SPM) as significant correlates with 

kd(PAR); these predictors align with those for western Lake Erie kd(PAR), indicating that PAR 
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attenuation depends on particulate matter, CDOM, and CHL concentrations, across locations. 

Single-variable regression analyses indicate that minerogenic suspended solids (NVSS) have the 

greatest impact on PAR attenuation, compared to the five other predictors. This supports the 

previous findings of Smith (1982) in northwest Africa, Xu et al. (2005) in Chesapeake Bay, and 

Swain (1980) and Stefan et al. (1983) for Lake Chicot in Arkansas.  

 

Comparisons of specific fitted predictor values between in the multiple regression models 

developed herein and those in previous work show high degrees of variability. The fitted values 

for suspended solids developed here are larger in magnitude than those from the literature. 

Relative to those fitted parameters for the similarly shallow and turbid lower basin of Lake 

Chicot from Stefan et al. (1983), the present models yield fitted suspended solids values 13.9-

55.4% larger in magnitude. Likewise, the model herein produces a fitted TSS value that is 22.4% 

higher than that produced for Chesapeake Bay by Xu et al. (2005). The fitted CDOM parameter 

for our model is 58% lower than that for a similar model for estuaries in the northeastern US 

(Branco and Kremer 2005). The fitted values for CDOM in the models herein fall in the same 

range (0.05 < CDOM < 0.5 m-1) as fixed CDOM values that maximize correct prediction of 

kd(PAR) in the Baltic Sea (Pierson et al. 2008). The variation between fitted parameters could be 

attributed to the inherent variability in CDOM between water bodies, due to terrestrial inputs, 

mixing processes, and differences between freshwater and estuarine coastal environments. The 

differences may also be associated with slight differences in the metric used for CDOM 
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characterization: Branco and Kremer (2005) presented a model of kd(PAR) using CDOM 

absorbance at 350 nm wavelength, while the present models and those used in Pierson et al. 

(2008) utilized CDOM absorbance at 400 nm.  

   

Interestingly, the comparison of CHL fitted values shows an opposite trend, with the fitted 

single-variable CHL value for the present model 80.0% lower in magnitude than that developed 

for Lake Chicot (Stefan et al. 1983). This is likely a function of the very small fitted parameter 

values for CHL in western Lake Erie. In Lake Chicot, fitted CHL values are always positive, 

while they can be positive or negative for Western Lake Erie, reinforcing differences in the 

impacts of CHL on PAR attenuation between water bodies and basins.  

 

PAR attenuation is a function of absorption and scattering, but it can be impacted by particle 

size, shape, or color within the water. The Beer-Lambert model does not account for these 

inherent particle characteristics, instead relying solely on particle mass concentration and 

perhaps overlooking local and regional effects on inherent optical properties. Further, impacts of 

one predictor may be transferred to other, cross-correlated predictor variables. Because the 

inherent optical properties of the particle mass concentration, and cross-correlations between 

variables can vary across systems (Kirk 1984, Siegel et al. 2005, Stramski et al. 2001), the 

dependence of these models solely on mass concentration is also not constant between systems. 
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Therefore, the lack of local effects within the Beer-Lambert and multiple regression models can 

be a limitation.        

 

Water quality variables representing minerogenic particles, organic particles, and chromophoric 

dissolved organic matter, respectively, were interchangeable within the models without 

sacrificing predictive power. For instance, a model utilizing VSS, NVSS, and DOC had an 

adjusted R2 value 0.001 lower, an RMSE 0.003 higher, and an RSS 0.4 higher than a model 

incorporating NVSS, DOC, and CHL. Models interchanging TSS and NVSS or DOC and 

CDOM resulted in differences in R2 and RMSE on the order of 0.01, and differences in RSS 

ranging from 0.1 to 3.0. As a result of these small differences in skill statistics, these models are 

accessible to researchers with a wide variety of available empirical water quality data.  

 Negative intercepts observed in 5 of the 23 multiple regression models indicate that these 

models may produce unrealistic values of kd(PAR) in water with lower concentrations of scattering 

and absorbing constituents than in our data. The majority of the negative intercepts determined 

by our models were not significantly different from zero, though three models with high 

predictive capability yielded statistically significant, negative intercepts. Incorporating a fixed 

positive intercept that represents a PAR attenuation coefficient for pure water is an approach 

sometimes used (e.g., Buiteveld 1995, Smith and Baker 1978). However, kd(PAR) for pure water is 

not a constant, but rather depends on euphotic zone depth and other variables (Gordon 1989, 
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Morel 1988, Pegau et al. 1997, Saulquin et al. 2013) and may not be necessary for turbid, case II 

waters such as western Lake Erie.  

 

In shallow case II waters, wind speed has a large impact on water movement and wave energy, 

leading to sediment resuspension and increased PAR attenuation. Thus, we evaluated prediction 

of kd(PAR) using physical variables alone. Models using water depth and 120- or 144-hour 

averaged wind speed explained the highest proportion of variance in the data. The observation 

that 120-hour (5-day) average wind speed was the most predictive time-averaged wind speed 

provides some insight into the time required for particles in the lake to settle after resuspension 

associated with a wind event. However, wind speed alone explained only a small fraction of the 

variance in kd(PAR) relative to water quality variables, so further examination of physical 

predictors of PAR attenuation is warranted.  

5. Conclusions 
The Beer-Lambert model of exponential decay of light with water depth was found to 

approximate PAR attenuation in the shallow, turbid waters of western Lake Erie well, with 96% 

of models capturing over 90% of the variability in PAR data over the water column. Even so, 

standardized residuals were greater than 1 for some depths, indicating some systematic error in 

the Beer-Lambert model. Such systematic error was likely associated with mechanisms not 

represented by the model, such as the varying attenuation of individual wavelengths of light 
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across the PAR spectrum. 

  

Light attenuation in natural waters is a result of scattering and absorption by inorganic particles, 

organic particles, and dissolved substances. Water quality variables representing these three 

categories were reliable predictors of kd(PAR) in western Lake Erie. Inorganic particles had the 

greatest impact on kd(PAR), with dissolved organic matter having an intermediate impact, and 

organic particles had the least influence on PAR attenuation. Single variable models explained 

up to 84% of the variance in kd(PAR), but combining predictor variables increased model 

predictive skill. Nine multiple regression models explained 87.3-89.8% of the variability in the 

kd(PAR) data and showed similar skill in prediction outside of the training data set (cross-validation 

RMSE range: 0.41 - 0.46 m-1). Thus several different combinations of predictor variables may be 

used to predict kd(PAR) will similar skill. 
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Table 1: Water quality variables used as predictors of PAR attenuation  
in western Lake Erie, 2012-2016 

Water Quality Predictor Variable Variable Group 

TSS Total or Non-Volatile Particles 

VSS Organic Particles 

NVSS Total or Non-Volatile Particles 

CDOM Dissolved Organic Matter 

DOC Dissolved Organic Matter 

CHL Organic Particles 
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Table 2: Single variable regression and Spearman correlation analysis results for PAR 
attenuation and water quality parameters. * signifies statistical significance at p = 0.05 

Dependent 
Variable 

Predictor Model 
Adjusted R2 

Model 
RMSE 

Correlation 
Coefficient 

Correlation 
p-value 

kd(PAR) CHL 0.03 1.28 0.32 0.16 

kd(PAR) VSS 0.09 1.24 0.52 0.06 

kd(PAR) DOC 0.13 1.21 0.62 <0.01* 

kd(PAR) CDOM 0.13 1.21 0.60 <0.01* 

kd(PAR) NVSS 0.81 0.56 0.83 <0.01* 

kd(PAR) TSS 0.85 0.51 0.85 <0.01* 
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Figure 1: Map of western Lake Erie study area and weekly monitoring stations, showing mean 
kd(PAR) by station from this study, 1-meter bathymetry contours (a), and satellite image showing 
typical spatial variation in water quality during summer in western Lake Erie (b; NASA MODIS 
Imagery and NOAA CoastWatch, taken 30 September 2014).  
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Figure 2: Example raw (a, left) and semilog format (b, right) vertical profiles of PAR in western 
Lake Erie (circles) and the fitted Beer-Lambert law (line). Filled circles represent data from the 
CTD cast that were either collected at <5 m depth or at depth exceeding the euphotic zone, and 
thus were not used in further analysis. 
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Figure 3: Standardized residual plots for Beer-Lambert approximations of PAR attenuation with 
depth, summarized for all CTD casts in Boxplot form (a, left) and showing a typical residual 
pattern observed for an individual cast (b, right). In panel a, depths were standardized to 1, with 
each bin representing 20% of the euphotic zone depth.  
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Figure 4: Correlation matrix for water quality variables and kd(PAR). Circle size and color 
represent the magnitude of the correlation coefficient between the variables.  
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Figure 5: Boxplots showing the range of values of kd(PAR) and predictor variables used in 
multiple regression models for PAR attenuation in western Lake Erie. Boxes show interquartile 
range for each variable, lines within the boxes indicate the median value, and whiskers extend to 
values + 2 standard deviations from the mean. Units for TSS, VSS, NVSS, and DOC were mg l-1, 
CHL units were μg l-1, and CDOM units were in the form of absorption at 400 nm wavelength 
(m-1). 
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Figure 6: Regression tree analysis results showing relative influence of TSS, VSS, NVSS, DOC, 
CDOM, and CHL on kd(PAR), showing significant impacts of TSS, NVSS, and CDOM. 
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Figure 7: Performance ranking of linear regression models for kd(PAR). Models were ranked by 
adjusted R-squared (bars) and 10-fold cross-validation RMSE (line) values. 
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Figure 8: a) Observed vs. model predicted kd(PAR) values, b) Residual boxplots binned by kd(PAR) 
level, binned into 5 groups of equal sample size and increasing kd(PAR). Both plots show that the 
model slightly over-predicts at low kd(PAR) and under-predicts at high kd(PAR) 
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Figure 9: Correlation coefficients for PAR attenuation and wind speed averaged over 2-336 
hours; filled circles represent significant correlations (at α=0.05), while open circles denote 
non-significant correlations. In all cases, water depth was an additional predictor variable.    
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