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SUMMARY

Marginal models provide a useful framework for the analysis of crossover experiments when the
response variable is categorical. In this paper we use the three-treatment. three-period crossover
experiment with a binary outcome variable to demonstrate how marginal models can be used to
perform a likelihood-based analysis of multiple-period crossover experiments. Other designs are
discussed in less detail. Maximum likelihood estimation is performed using a constraint equation
specification of the marginal model. Data from a crossover trial comparing treatments for primary
dysmenorrhoea are used to demonstrate the utility of marginal models in analysing crossover data.

Keywords: Carry-over effects; Constraint equations; Lagrange multipliers; Maximum likelihood;
Repeated measures; Treatment-by-period interaction

1. Introduction

The crossover design is frequently used to compare treatments for medical con­
ditions that are chronic in nature and subject to temporary relief; see, for example,
Jones and Kenward (1989), The most commonly used design is the two-treatment,
two-period design, but there are some limitations to this design. The main criticism
usually levelled against the two-period design is that three potentially important
effects, namely sequence group, carry-over and treatment-by-period interaction, are
aliased with one another. Several options are available for reducing or eliminating
the problem of aliasing. These include using more than two periods, using non­
crossover or partial crossover treatment sequences and taking run-in and wash-out
base-line measurements (Matthews (1988) and Jones and Kenward (1989), chapters
4-5). The first option, using more than two treatment periods, is what we focus
on in this paper.

The purpose of the present paper is to demonstrate how marginal models and
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likelihood-based inference can be applied to the analysis of crossover experiments
where the response variable is categorical. The three-treatment, three-period, binary
response experiment is used as the example for describing the models and the estima­
tion procedure. In this design patients are randomized to one of six possible
sequence groups: ABC, ACB, BAC, BCA, CAB and CBA. At the end of each
period, the response of each subject is classified as favourable (1) or unfavourable
(2). Let nijkl denote the number of subjects in sequence group I having response i,
i. k in periods 1, 2 and 3 respectively. Within each group, there are eight possible
response patterns over the three periods-(I, 1, 1), (1, 1,2), (1, 2, 1), (1, 2, 2), (2,
1, 1), (2, 1, 2), (2, 2, 1) and (2, 2, 2).

The data in Table 1 are from a three-period crossover trial which compared three
treatments (A, B and C) for the relief of primary dysmenorrhoea. A first step in
the analysis of such data is to compare the proportion of subjects who obtained
relief according to the treatment received. The relevant (univariate marginal) sample
proportions are given in Table 2. The values in Table 2 suggest that treatment A
is not as effective at providing relief from primary dysmenorrhoea as either
treatments B or C. Treatments Band C appear to be roughly similar. However,
it is not immediately clear from Tables 1 and 2 whether there are important asso­
ciations, sequence group effects, period effects, carry-over effects or other forms
of treatment-by-period interactions that need to be taken into account in analysing
these data.

Becker and Balagtas (1993) have shown that marginal models provide a useful
framework for the analysis of two-treatment, two-period, binary response crossover
experiments. They have shown that marginal models address important questions
directly, and they have shown that standard likelihood-based inference applied to
marginal models performs well when compared with so-called standard procedures
for the analysis of two-period studies. There are, however, modelling issues in the
analysis of studies with more than two periods that do not arise with two-period
studies, and the likelihood maximization algorithm employed by Becker and
Balagtas is not applicable to studies with more than two periods. In Section 2, we
describe models for analysing data from a three-treatment, three-period, binary
response crossover experiment, and we present a brief description of a procedure
for fitting the models by the method of maximum likelihood. Asymptotic theory
and a more detailed description of the model fitting algorithm are given in Appendix

TABLE 1
Data from a three-treatment, three-period crossover trial on primary dysmenorrhoeat

Group Response profile (period 1. period 2. period 3)

111 112 121 122 211 212 221 222 Total

ABC 7 2 4 1 23 7 5 4 53
ACB 6 3 2 0 22 12 6 2 53
BAC 4 1 14 7 5 3 14 5 53
BCA 4 17 6 9 3 4 1 4 48
CAB 4 2 29 5 1 0 6 7 54
CBA 2 23 2 4 2 8 1 5 47

tt, some relief; 2. no relief.



MODELLING OF CATEGORICAL DATA

TABLE 2
Observed univariate marginal proportions

65

Group Results for the following treatments:
ABC

ABC
ACB
BAC
BCA
CAB
CBA

0.26
0.21
0.25
0.29
0.13
0.15

0.74
0.68
0.49
0.75
0.74
0.74

0.74
0.81
0.70
0.58
0.74
0.66

A. The data in Table 1 are analysed by using marginal models in Section 3. We
conclude this paper with a discussion of designs other than the three-treatment,
three-period, binary response design.

2. Marginal Models for Three-period Crossover Design

In the three-treatment, three-period, binary response design there are six sequence
groups, seven (23 -1) linearly independent probabilities within each sequence
group and hence a total of 42 degrees of freedom (estimable parameters). In a
marginal model for this experimental design, 18 degrees of freedom pertain to
univariate marginal distributions (three in each of the six sequence groups), 18
degrees of freedom pertain to bivariate associations (again, three per sequence
group) and the remaining six degrees of freedom pertain to trivariate associations
(one per sequence group). The models presented here will be in terms of linear
models for univariate marginallogits, linear models for bivariate marginal log-odds
ratios and a linear model for a log-odds ratio contrast that measures three-factor
association. In presenting each set of models we begin with a saturated model and
then proceed to consider more parsimonious models that are of practical interest.

Let 7ijkl denote the cell probabilities (Ejj k 7ijkl =1), a a general effect, Pr the
effect due to period r, {,I the effect due to group 1 and (P{,)rl a parameter cor­
responding to group-by-period interaction. The group effects represent differential
effects which are associated with the order of treatment administration. The
treatment effect is aliased in the group-by-period interaction, but, as is shown
below, there are reparameterizations of this interaction that allow for the estimation
of treatment effects, carry-over effects and treatment-by-period interactions. For
the standard two-treatment, two-period crossover design, the group effects are
aliased with the carry-over effects and a treatment-by-period interaction. A
saturated model for the univariate marginal logits is

10g(71++ /) = a + {,I + PI + (P{,)11t
'lI"2++1

10g(7+1+/) = a + {,I + P2 + (P{,h/' (1)
7+2+1

log( 'lI"++1I) = a + {,I + P3 + (P{,h/' 1= 1, ... , 6.
'lI"++u
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(2)

Model (1) is overparameterized in that the parameters are not uniquely determined,
i.e. there are 28 parameters, but only 18 logits. The so-called box corner (or corner
point) restrictions (e.g. ~I = 0, PI = 0, (P~)II = 0, (P~)TI = 0) are used for identifying
model parameters in this paper.

More parsimonious models for the marginal logits can be derived by replacing
the group-by-period interactions in model (1) by terms corresponding to treatment
effects, carry-over effects and treatment-by-period interactions. Let a, ~I and PT be
as defined previously, and let Tt[T,/1 denote the direct effect of the treatment
administered in period r of group I, (Tp)t[T,/I,T a treatment-by-period interaction
and 'Yt[T,/1 the first-order carry-over effect of the treatment administered in period
r of group I. Formulating these terms into a model for the univariate logits we
obtain

10g(TI++/) = a + ~I + Tt[I,/) + PI + (Tp)t[I,/J,I'
T2++1

10g(:+I+/) = a + ~I + Tt[2,/1 + P2 + (Tp)t[2,I],2 + 'Yt[I,/I'
"+2+1

log( ;::~) = a + ~I + Tt[3,/1 + P3 + (Tp)t[3./1.3 + 'Yt[2,/).

There are 16 estimable parameters in model (2), and hence 2 residual degrees of
freedom corresponding to unspecified marginal logit contrasts. Hereafter, we
simplify our notation by dropping the portion of the subscript indicating period and
group; i.e. [r, I). The first-order carry-over effect is the treatment effect that lasts
no more than one period beyond the period of application of the treatment. In
contrast with the standard two-treatment, two-period crossover design, the present
design allows the estimation of first-order carry-over effects separately from a
general form of treatment-by-period interaction.

An alternative model for the marginal logits includes parameters for a general
effect, group effects, treatment effects, period effects and first-order and second­
order carry-over effects, as well as treatment-by-first-order carry-over interaction.
The second-order carry-over effect is the treatment effect that persists for two
periods beyond the application of the treatment. The treatment-by-first-order carry­
over interaction accounts for the possibility that the first-order carry-over effect
depends on the treatment received in the following period. Note that the second­
order carry-over effect cannot be added to model (1) because of an aliasing relation­
ship between this parameter and the first-order carry-over effect and the treatment­
by-period interaction (Jones and Kenward, 1987).

A saturated model for bivariate marginal associations can be specified in terms
of models for the association between responses in the mth pair of periods (m =1,
2, 3 for periods 1-2, 1-3 and 2-3 respectively). For each value of m there are
parameters for

(a) a general effect (",(m»,
(b) the uth pair of treatments (~~m), u=l, 2, 3, for treatment pairs AB, AC

and BC respectively),
(c) the order of the treatments within each pair of treatments (cf>~m), v= 1, 2,

e.g, v = 1 for AB and v = 2 for BA) and



MODELLING OF CATEGORICAL DATA

(d) the interaction of treatment pair and order «~</»£'::». i.e.

10g('lI"1l+,1l"22+') = 1/1(1) + ~~I) + </>~I) + (~</»~IJ.
'lr12+,'lI"21 +'

10g('lrI+II'lr2+2I) = 1/1(2) + ~~2) + </>~2) + (~</»~J,
'lrl +2I'lI"2+ II

10g('lr+11/'lr+221) = 1/1(3) + ~~3) + </>~3) + (~</»~J.
'lr+ 12I'lI"+2I'
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(3)

(4)1=1, ..., 6.

Several restrictions can be used to simplify model (2) in practically meaningful ways.
For example, in the analysis of Table 1 we consider models where the bivariate
marginal association does not depend on the pair of periods under consideration:
.1.(1) _ .1.(2) _ .1.(3) _ .1.. I: (I) _ I: (2) _ I: (3) _ 1:. ..1.(1) _ ..1.(2) _ ..1.(3) _ ..I.. (1:..1.)(1) = (1:..1.)(2) =
'I' - 'I' - 'I' - '1', 40u - 40u - 40u - 4Ou' 'l'v - 'l'v - 'l'v - 'l'v' 40'1' uv 40'1' uv
(~</»~J = (~</»uv' Further, or other, simplifications can be achieved by removing sets
of terms from model (3). A particularly interesting model for practical consideration
is the model specifying that all bivariate marginal associations can be summarized
in terms of the pair of treatments being compared, net of any effects related to
group, periods or ordering. This model is given as model AIV in the subsequent
analysis of Table 1.

There is not a set of parameters specific to sequence groups in model (3), as the
group effects are aliased with the effects for periods, treatments and ordering.
Alternative parameterizations of the bivariate marginal associations that do include
group effect parameters are possible. For example, where the only tenable model
for bivariate associations is the saturated model it is perhaps simpler to define 1/11m

)

as the mth bivariate association in group I, and then to interpret these as well as
is possible.

The model for the trivariate associations includes a general effect for within­
group association (f() and parameters that measure departures from this general
effect due to the Ith group n·,).

log ( 'lr1l1l 'lr1221 'lr2121 'lr22I1) = f() + r,;
'lr1121 'lr1211 'lr211/ 'lr2221

This association is interpreted just as a three-factor association is interpreted in a
conventional log-linear model; see, for example, Agresti (1990), pages 144-145. It
is quite common for the number of individuals per treatment sequence group to
be somewhat smaller than the approximately 50 observations per group in our
example. The power for detecting trivariate association is likely to be quite low in
sparse data situations, and Os can present problems for estimation (i.e. some
parameters are estimated to be ±oo). Two possibilities to consider when analysing
tables where Os are an issue are

(a) to add a small positive constant to each cell count (see, for example, Agresti
(1990), chapter 7) and/or

(b) to assume that t.=r for all I, and possibly O.

In Becker and Balagtas (1993), hypothesis testing and parameter estimation for
the two-period design were facilitated by a formula for inverting the model for
marginal logits and log-odds ratios into a model for cell probabilities in the full
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cross-classification. Note that that formula is the solution of a quadratic equation.
The difficulty in inverting models for the three-period crossover design is that
the roots of higher order polynomials are required, and, hence, the estimation
procedure is not as straightforward (Liang et al., 1992). An alternative strategy for
model fitting can be based on a constraint equations specification of the model.

A marginal model cannot be rewritten as a log-linear model for the vector of cell
probabilities 'I' in general, but there is a convenient matrix representation for the
marginal model when the models for logits, log-odds ratios and contrasts of log­
odds ratios are linear, i.e,

c~~~=~. rn
Here A is a matrix of Os and 1s such that the matrix product A'I' is the required
set of marginal distributions; C is a matrix of Is, -Is and Os such that the matrix
product C 10g(A'I'), where the logarithms are taken elementwise, is the set of logits
and log-odds ratios of interest; X is a model matrix, (j is the vector of model
parameters (i.e. (jT=(a, 0lt ...» and p is the number of parameters to be
estimated. In the example 'I'= ('I'1Il1t ..., 'l'2226)T is the 48 x 1 compound vector of
cell probabilities, A is a 156 x 48 matrix of Os and Is, C is a 42 x 156 matrix of
contrasts, X is a 42 x p matrix and (j is a p x 1 vector.

Assume that {nUk/}-ind mult(n+++/t {'I'Uk/}), 1=1, ..., 6. Let n and Jl. denote
the corresponding vectors of cell frequencies and expected cell frequencies respec­
tively, i.e, a typical element of n is nUkl and a typical element of Jl. is Jl.Ukl =
n+++I'I'Ukl. For the models considered in this paper, we can use the equivalence of
likelihood inference between the multinomial and Poisson distributions (Palmgren,
1981; Lang, 1992) to facilitate likelihood-based calculations. The maximum likeli­
hood estimates of 'I' can be obtained by maximizing the kernel of the Poisson
log-likelihood

(6)

subject to the constraints

h('I') = ore log(A '1') = 0, (7)
where U is a matrix whose columns span the subspace orthogonal to the range space
of X. Maximum likelihood estimation of parameters subject to constraints has been
discussed by Aitchison and Silvey (1958), Gokhale (1973), Wedderburn (1974),
Haber (1985), Haber and Brown (1986) and Lang (1992), among others. The
maximum likelihood estimate of (j can be derived from the maximum likelihood
estimate of 'I' as follows:

P= (xTX)-lxTClog(Ai). (8)

An algorithm for performing the constrained optimization is given in Appendix A,
along with statements of the asymptotic distribution theory for the maximum
likelihood estimators of 'I' and of (j.

3. Analysis

Our analysis proceeds by exploring the association structure for the repeated
measurements, and then exploring models for univariate marginal logits by using
the association structure elicited in the first part of the analysis.
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A summary of some of the association models that can be estimated with the
data in Table 1, along with the residual degrees of freedom and goodness-of-fit
likelihood ratio statistics (02 = - 2 x logarithm of the likelihood ratio test statistic
for testing that the model is correct versus the unrestricted alternative) for each
model, is presented in Table 3. The models are specified in terms of the restrictions
placed on the association parameters in equations (3) and (4). In comparing models,
(asymptotically) size a =0.01 tests are used to account for the fact that a fairly large
number of comparisons are performed.

In model A.. the trivariate log-odds ratios measuring the association of
responses for the three periods are assumed to be uniform across groups. The
likelihood ratio statistic for this model indicates that this assumption is tenable. In
model An, all trivariate log-odds ratios are set equal to O. This model implies that
the bivariate log-odds ratios measuring the association between any two periods (i.e.
[1, 2], [1, 3] or [2, 3]) are uniform across the levels of the third period. The
likelihood ratio statistic comparing models AI and An indicates that this additional
assumption is also tenable.

In addition to the restrictions of model An, model Am assumes equality of
marginal log-odds ratios for periods (1, 2), (1, 3) and (2, 3). The comparison of
models An and Am shows that this additional assumption is tenable. Model A IV
contains the restrictions of model Am and, in addition, sets the log-odds ratios
measuring the association between treatments in two different periods to be the
same for the two possible orders of administration of treatment. For example, the
association of responses for treatment A followed by treatment B is the same as
the association when treatment B precedes treatment A. The comparison of models
Am and AIV indicates that the additional assumption of model A IV is tenable.

The last model in Table 3 sets all bivariate and trivariate log-odds ratios equal

TABLE 3
Fit of various association models to the data in Table J t

Association model Restrictions Degrees of freedom d-

Av

r, = 0
'" = 0, r, = 0
'" = 0, r, = 0,

,y(l) = ,y(2) = ,y(3) = ,y,

~~l) = ~!,2) = ~~) = ~u,

I/l~l) = 1/l~2) = I/l~) = I/lv'

(~I/l)~~ = (~I/l)~2J = (~I/l)}JJ = (~I/l)uv
'" = 0, r, = 0,

,y(l) = ,y(2) = ,y(3) = ,y,

~~l) = ~~2) = ~~) = ~u'
I/l~l) = 1/l~2) = I/l~) = I/lv = 0,

(~I/l)~~ = (~I/l)~~ = (~I/l)~3J = (~I/l)uv = 0
'" = 0, r, = 0,

,y(l) = ,y(2) = ,y(3) = ,y = 0,
~~l) = ~!,2) = ~~) = ~u = 0,
1/l~1) = 1/l~2) = I/l~) = I/lv = 0,

(~I/l)~~ = (~I/l)~~ = (~I/l)~J = (~I/l)uv = 0

5
6

18

21

24

4.85
7.70

16.43

17.80

21.44

tl =I, ..., 6; u =I, 2, 3; v =I, 2.
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to 0, which is a model of statistical independence. The likelihood ratio statistic
comparing this model with model A1v suggests that the assumption of statistical
independence is tenable for these data. Assuming that model Av is an adequate
representation of the association structure, the results of fitting various marginal
logit models to the data are summarized in Table 4. Models are specified in terms
of the restrictions placed on the marginal logit parameters in model (2), and the
last two columns in Table 4 pertain to modifications that are described in the follow­
ing paragraph.

The fit of model (2) suggests that use of this model as a base-line model is tenable,
but the comparison of model (2) with model Av (Ga) - GrAv) = 13.22; 26 - 24 =2
degrees of freedom) indicates that there is some lack of fit in model (2) relative to
the saturated model for univariate marginallogits. There are several ways of param­
eterizing the two univariate marginal (logit) contrasts unaccounted for by model (2),
but potential sources of the lack of fit are easily traced by examining the sample
proportions in Table 2. For example, we can parameterize the two unused degrees
of freedom in terms of

(i) a parameter to account for the fact that the probability of success for treat­
ment A is consistently lower in groups where treatment C is administered
first (i.e. the CAB and CBA groups) and

(ii) a parameter to account for the fact that the probability of success for
treatment B is much lower in the BAC group.

Adding a single parameter to modify the effect of treatment A when C is admin­
istered first results in G2 =26.47 (25 residual degrees of freedom), and adding a
single parameter to modify the effect of treatment B in the BAC group results in
G2=29.80 (25 residual degrees of freedom, also). Adding both terms into model
(2) is equivalent to fitting the saturated model for univariate marginals, i.e. model
Av. The third and fourth columns of Table 4 report G2 and residual degrees of
freedom for each model when the two additional terms (i) and (ii) are added to
the model. Given that the groups were formed by randomization, the fact that the
probability of success with treatment B does not appear to be lower when treatment
C is administered first, and model (2) provides a reasonable overall summary of
the data, it seems reasonable to conclude that the lack of fit of model (2) relative
to model Av is due to sampling variability rather than to some form of systematic

TABLE 4
Fit of various marginal logit models to the data in Table 1t

Marginal logit
model

Restrictions Degrees of Modified Modified degrees
freedom (;2 of freedom

(TP),r = 0
"I, = 0, (TP),r = 0

T, = 0, "II = 0, (TP),r = 0
", = 0, "I, = 0, (TP),r = 0

Pr = 0, "1 = 0, "I, = 0, (TP),r = 0
T, = 0, Pr = 0, ", = 0, "II = 0, (TP),r = 0

34.66
37.35
41.34

243.14
46.33
47.18

248.72

26
30
32
34
37
39
41

21.44
28.54
29.90

123.45
30.73
30.79

168.65

24
28
30
32
35
37
39

t/=I, ..., 6; t=I, 2, 3; r=I, 2,3.
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variation that should be carried forwards in the analysis. However, both for com­
pleteness and to demonstrate that the main conclusions drawn from the data in
Table 1 are not sensitive to the aberrations noted, information about the fit of the
models accounting for the aberrant observations is provided below.

The comparisons of certain nested models in Table 4 indicate no evidence of
treatment-by-period interaction (model (2) versus MI ) , first-order carry-over
effects (model M I versus MIl) or period effects (model M IV versus M v). However,
the comparison of models MIl and MIllo as well as M, and M Vh indicates strong
evidence of treatment effects.

Estimates of the treatment effects for the final marginallogit model (M«) under
three different association structures,

(a) model Av (independence model),
(b) model AIV (bivariate marginal association) and
(c) model (3) (saturated model),

are given in Table 5. The parameter estimates and standard errors for all three
association models are similar. The estimate of the treatment difference for treat­
ments Band C is identical for association structures AIV and Av, and only slightly
different for the saturated model. Thus, neither parameter estimates nor associated
estimated standard errors are sensitive to the assumed association structure in the
present example.

The estimates of the treatment effects for the model M, indicate that the odds
of relief under treatment B are eight times (ef z= 8.1) larger than the odds
of relief under treatment A. Furthermore, the odds of relief under treatment C are
approximately nine times (e f 3 = 8.9) larger than the odds of relief under treatment
A. However, the odds of relief under treatment C are not significantly higher than
the odds of relief under treatment B (e f Z

-
f 3 = 0.91). The estimates of the marginal

probabilities of relief are 0.21, 0.69 and 0.71, for treatments A, Band C
respectively.

The estimates of (Y, 72 and 73 are -1.09 (0.16), 2.08 (0.21) and 1.98 (0.20)
respectively, when model Mv is modified to account for the two aberrations noted
previously; i.e. (i) and (ii). The estimates of the marginal probabilities of relief
are 0.25,0.73 and 0.71, for treatments A, Band C respectively. Hence, even though
accounting for the aberrations results in large changes in 0 2

, the estimated

TABLE 5
Parameter estimates for selected modelss

Parameter Results for the following association models:
Independence A,v Saturated

cP
Degrees of freedom

- 1.299 (0.139)
2.092 (0.186)
2.184 (0.187)

-0.093 (0.169)

47.18
39

-1.291 (0.136)
2.082 (0.190)
2.175 (0.186)

-0.093 (0.169)

43.69
36

- 1.322 (0.139)
2.121 (0.192)
2.197 (0.182)

-0.077 (0.166)

25.11
15

tStandard errors are given in parentheses.
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marginal probabilities change very little when the aberrations are taken into
account. Note that the estimated value for the change in the effect of treatment A
when it follows treatment C is -0.73 (0.33), and the estimated value of the
parameter accounting for the aberration noted for treatment B in the BAC group
is -1.03 (0.31).

4. Discussion

Although the focus of the present paper is on the three-treatment, three-period
crossover experiment, the methodology proposed is readily extended to other multi­
period designs such as the two-treatment, three-period design or the four-treatment,
four-period design. In all cases, the first step in model construction is the formula­
tion of models for the univariate marginal logits and the association structure of
the data. These models jointly determine the model for the cell probabilities.
Covariates, such as treatment centre and base-line measurements, may also be
entered into the marginal models through the X-matrix in equation (5). The pro­
posed fitting procedure based on the constraint equations specification of the model
can be used to compute the maximum likelihood fit of the model. The analysis
presented in Section 3 demonstrates that the full likelihood approach to model
fitting is feasible for higher order designs. All the computations for this paper were
performed with a Fortran program written by the third author. Anyone interested
in obtaining a copy of the program should contact Professor Lang directly. A more
complete treatment of the constraint equation approach to fitting marginal models
by the method of maximum likelihood is given in Lang (1992).

The marginal modelling framework can also be applied to the analysis of cross­
over experiments where the response variable takes on more than two levels. In the
setting where there are r unordered categories it is reasonable to model a set of r - 1
univariate logits that are defined by comparing each response category to a base-line
category. The full model is specified by models for the base-line category logits of
the univariate marginal probabilities along with models for the association structure
of the data. The association structure can be modelled by using local odds ratios
(Agresti (1990), p. 18) and contrasts of local odds ratios, much as is done in log­
linear modelling. If the r response categories are ordered, we have the option of
modelling the univariate marginals by using either cumulative logits, adjacent
category logits or continuation ratio logits; see section 9.3 of Agresti (1990) for
definitions of each of these logits. The selection of the type of Iogit used should
be based on the nature of the response measured. The association structure for
ordinal variables can be modelled by using either local odds ratios or global cross­
ratios (see, for example, Dale (1986». There are close connections between certain
models for association based on local odds ratios and the bivariate normal distribu­
tion (Goodman, 1981, 1985, 1991; Holland and Wang, 1987; Becker, 1989), which
suggests that modelling the association in terms of local odds ratios is sensible when
the assumption of an underlying multivariate normal distribution is tenable. No new
computational difficulties are introduced by moving from a dichotomous response
to a polytomous response, in that the algorithm described in Appendix A can
still be used to estimate the models described above by the method of maximum
likelihood.

Many other approaches to specifying and estimating marginal models have been
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published; see, for example, Liang and Zeger (1986), Prentice (1988), Liang
et al. (1992), Ratkowsky et al. (1993) and Fitzmaurice and Laird (1993). The
approaches vary in how associations are measured (correlations or odds ratios, and
conditional versus marginal), which associations are modelled (bivariate only, or
all possible orders of association) and the criteria used in deriving estimators (so­
called generalized estimating equations methods or maximum likelihood). The
approach taken here is to model all possible marginal associations by using odds
ratios (and contrasts of log-odds ratios) as the fundamental units for measuring
association, with the method of maximum likelihood being used as the basis for
inference. The full likelihood also provides a necessary part of the machinery for
Bayesian calculations, should they be desired (Ten Have and Becker, 1994). The
practical limiting factor in the constrained maximum likelihood approach to
marginal modelling is that the matrices A and C grow rapidly as the number of
response categories grows and/or as the number of study periods grows. For
example, if the response in our example had three categories (rather than two) the
matrices A and C would be of dimensions 378 x 162 and 156x 378 respectively
(rather than 156x 48 and 42 x 156 respectively).
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Appendix A: Distribution Theory and Algorithm for Computing Maximum
Likelihood Estimates

The algorithm presented in this appendix is based on the application of Newton's method
to an objective function that is simply the log-likelihood function augmented by a matrix
product involving Lagrange multipliers and constraints based on the model Clog(A'll') =XfJ.
The general algorithm was, to the best of our knowledge, first described by Aitchison and
Silvey (1958).

Let

I 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0

M 1=
1 1 0 0 1 1 0 0 M 2=

0 1 0 0 0 1 0 0
0 0 1 1 0 0 1 1 ,

0 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 0 0 0 1 0 0 ·0 1
0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

and
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

M 3 =
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

The matrix A can then be written as

rl(~'~))A= A 2(72 x 48)

A 3(48 x 48)

where

Al =MI ~/6'

A 2 = M2~/6'

A 3 =M3 ~/6

and ~ denotes the Kronecker product (D~E= {Deij})' The contrast matrix that produces
the required marginal logits, bivariate log-odds ratios and trivariate log-odds ratios can be
represented as

where

(

CI(18x36)

C = 0(18 x 36)

0(6 x 36)

0(18 x 72)

C2(18X72)

0(6 x 72)

0(18 x 48) )
0(18 x 48)

C3(6 x 48)

C I = [(1, -1) ~ 13] ~ 16,

C2 = [(1, -1, -1, 1)~/3] ~/6'

C3 = [1, -1, -1, 1, -1, 1, 1, -1] ~ 16,

Without loss of generality, assume that X is now of full column rank p, p < 42. The model
C 10g(A'II") =X~ can be expressed by using the equivalent specification

UTC 10g(A'II") = 0 (9)

where U is a 42 x q matrix whose columns span the subspace orthogonal to the range space
of X, i.e, UTX=O and rank(U)=q=42-p. .

Let Y denote the subspace generated by the columns of X and let yJ. denote its
orthogonal complement. In addition, let W be some 42 x q matrix with linearly independent
columns. The matrix U can then be obtained as the orthogonal projection of W onto yJ.
along ..sf, i.e.

where

U = (l-p)W (10)

p = X(XTX)-IXT (11)

is the orthogonal projector which projects onto Yalong yJ. (Rao (1973), pages 46-48).
Recall from Section 2 that the maximum likelihood estimates of 11" can be obtained by

maximizing the kernel of the Poisson log-likelihood
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f(T) = Oog",T)n - ",Tt
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h(T) = ore 10g(AT) = 0,

where {nUk/} - ind mult(n+++/o {TUk/}), / =1, ..., 6, and the "'Ukl are the corresponding
expected cell counts.

Following Haber (1985), define the objective function

Q(6) =f(T) - AT h(T), (12)

where 6T=(TT, AT) and A is a qx 1 vector of Lagrange multipliers. The constrained
maximum likelihood estimates are obtained by solving the system of equations

(6 = aQ(6) = (F(T) - H(T)A) = 0
g) se -h(T)

where

is the 48 x 1 vector

(13)

and

H( ) = ah(T)T = (ahl(T) ahq(T»)
T aT aT' ... , aT

is the 48 x q matrix

(14)

Let the Hessian matrix be denoted by

0(6) = a
2

Q(6)
a6a6T

where HfEH(T), B is the 48x48 matrix

= (B -H)
_HT 0

B = aF(T) _ aH(T) (A ~ [48)'

aTT aTT

Let 11 =A T and IC =eTUA. The matrix B can then be written as

B = diag(!') - AT diag(l1)A

where !'(48XI)={-nUkll~kil and l1(lS6xl) = {-ICs l 11; } .
The Newton-Raphson iterative scheme is defined by

6(t+l) = 6(t) _ O-I(6(t»g(6(t»

(15)

(16)

for (=0, 1, ... , where A(O) = 0 and T(O) = i', i'jjkl = njjkI1n+++1 can be chosen as convenient
initial values. The inverse of the Hessian matrix is obtained as follows (Aitchison and Silvey,
1958):
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where
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-I (R S)G (8) = ST T

(17)

T=- (HTB-IH)-I, ]

S = B-IHT,

R = B- 1 + SHTB- I.

Recall that the maximum likelihood estimate of ~ can be derived from the maximum
likelihood estimate of T through

~ = (XTX)-IXTClog(Ai).

Under the assumed sampling scheme for the crossover experiment, Lang (1992) showed that
as n+++I-+ CD in such a way that n+++I- n. = min{n+++h ..., n+++6},

n~2( i - T) .4N{O, E(T)},

where
6

E(T) = D(T) - ED T/T[ - D(T)H(HTD(T)H)-IHTD(T),
1=1

D(T) = diag{[diag(TI»), I = I, ..., 6},

6

D(T) - ED T/T[ = diag{[diag(T/) - T/TiJ, 1= 1, ..., 6},
1=1

and TI is the 8 x 1 vector of cell probabilities for the lth group. The delta method can then
be used to show that under the same limit conditions the asymptotic distribution of
n~2@ - ~) is likewise multivariate Gaussian with mean 0 and covariance matrix

(a~ ) (a~)T
E(~) = aT E(T) aT .

The required derivative is

where K= (XTX)-IXTC. Thus,

E(~) = K diag(AT)-IA E(T)AT diag(AT)-IKT•

(18)

(19)

(20)

On convergence of the fitting algorithm, one can estimate the asymptotic variance­
covariance matrices E(T) and E&) by replacing the vector T with the consistent estimator i.
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