
J. R. Statist. Soc. B (1993)
55,/Vo. 2,pp. 423-433

Parametric Models for An: Splitting Processes and Mixtures

By BRUCE M. HILLt

University ofMichigan Ann Arbor, USA

[Received March 1990. Final revision January 1992]

SUMMARY
A class of parametric models, called splitting processes, is defined, by using de Finetti's
concept of adherent mass. Such splitting processes give rise to complex mixtures of
distributions. It is proved that the nonparametric Bayesian predictive procedure An' of Hill,
holds exactly for a member of this class called a nested splitting process. The connection
between An and the Dirichlet process is stated and proved. A multivariate version of An'
based on splitting processes, is proposed.
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1. INTRODUCTION

An and H; were proposed by Hill (1968, 1988) for prediction in the case of extremely
vague apriori knowledge about the form of the underlying distribution. See Aitchison
and Dunsmore (1975) for the theory underlying prediction. Let x , for i= 1, ..., n, be
the data values obtained in sampling from a finite population, and let the x(i) be their
ordered values in increasing order of magnitude. Let X, be the corresponding pre-data
random quantities, so that the data consist of the realized values, Xj=Xj, for i= 1,
..., n, In this paper An is defined as follows.

(a) The observable random quantities XI> ..., X; are exchangeable. By this we
mean that for each k ~ n the joint distribution function of ~I' ••• , Xj i does
not depend on the (distinct) indices li. ..., i«. (In Hill (1968, 1988)
exchangeability was not included in the definition of An' to include more
general situations, such as partial exchangeability.)

(b) Ties have probability O.
(c) Given the data Xi> i = 1, ... , n, the probability that the next observation falls

in the open interval I, = (x(j), x(i+I) is l/(n+ 1), for each i=O, ..., n, By
definition, x(O) = - 00, and x(n+ I) = + 00, unless explicitly stated otherwise.

The weak prior knowledge underlying An might be described in terms of 'data on a
rubbery scale'. For example, it is known that An can hold exactly when the
observations are only simply ordered, i.e. when there is only an ordinal scale of
measurement so that only relative magnitudes can be determined, as discussed in Hill
(1968), p. 678, and Hill (1988), p. 224; this suggests that it might hold approximately
even when there is something more than an ordinal scale of measurement. Earlier,
Fisher (1939, 1948)had succinctly suggested a version ofAn from the fiducial point of
view. Fisher (1948), p. 210, took as pivotal quantities the proportions ofthe unknown
population exceeded by the largest, second-largest, etc., order statistic of the sample
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and derived the joint fiducial distribution of successive differences to be uniform on
the appropriate subset of the unit cube. Hill (1968), p. 686, then proved that such a
specification of the fiducial distribution for all n was equivalent to An for all n.
Dempster (1963)elaborated and made more precise this fiducial insight of Fisher. Hill
(1980a) showed that An yields a robust form of Bayesian inference and provides
approximations to some real situations that arise in sampling from finite populations,
such as in multidimensional contingency tables and the species sampling problem.
Hill (1988) gave a new subjective Bayesian argument for An and, because of the
minimal and realistic assumptions underlying it, proposed An as a possible solu
tion to the problem of induction, as defined, for example, by Hume (1748). Lenk
(1984) discusses the relationship between An and use of the empirical distribution
function.

In this paper I shall attempt to provide further justification for An' showing that it
arises from simple parametric models, called splitting processes. It can ordinarily be
viewed as appropriate when the data arise from the process of sampling from finite
populations that can be represented as complex mixtures of distributions. Although
Hill (1968) proved that An cannot hold exactly for countably additive distributions,
for any n, it is known from Jeffreys (1961), p, 171, that AI and A z hold for
conventional parametric models with the usual improper a priori distributions for the
parameters, and from the work of Lane and Sudderth (1978, 1984)that An is coherent
in the sense of de Finetti for all n. Because of its practical importance for Bayesian
statistics, it is essential also to understand precisely how An' for all n, can arise from
simple conventional statistical models.

In Section 2 we define a nested splitting process and prove that this process satisfies
An exactly. In Section 3 a multivariate version ofAn is proposed. The primary purpose
ofthis paper is to provide further understanding of the nature ofAn by showing how it
arises from a simple parametric model. I only briefly allude to the various practical
applications of An. There are many such applications, e.g. the survival analysis of
Berliner and Hill (1988), the results of Hill (1979, 1980a) for inference about the
number of species or types in a finite population and the results of Hill (1968) for
inference about the percentiles of a population. See Smith (1988) for a discussion of
such applications. Perhaps because of the very subtle issues involved in the distinction
between countable additivity and finite additivity, some practitioners have felt uneasy
about such procedures.

My point of view is that these issues, although of theoretical interest, and of
importance to clarify, are only tangential with respect to applications of An. In real
problems the parameter space and the observation space can ordinarily be taken to be
finite, with nothing of any practical importance lost in so doing, since any statistical
analysis will necessarily be made on a computer with finite memory, or something
equivalent. But, for finite spaces, finite additivity and countable additivity are the
same, and so the important practical issues regarding finite versus countable
additivity concern the methods of approximation to be used in dealing with large but
finite sets. The two theories lead to quite different methods of approximation, with
the countably additive theory ruling out certain approximations that are valid in the
finitely additive theory. Thus An and the Dirichlet process provide different, although
closely related, ways of making such approximations, but in the countably additive
theory the methods based on An would automatically be ruled out. See Hill (1990a) for
a general discussion of issues about finite versus infinite partitions, with regard to the
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validity of the frequentist admissibility principle and countable additivity. See Hill
(1992), p. 90, for a simple example illustrating how An can arise as an approximation
in finite spaces.

The finitistic approach that I am recommending is related to the intuitionist and
constructivist positions regarding mathematics, as opposed to formalism. The
'intuitionist' school, founded by L. E. J. Brouwer, rejects the use of some of the
standard logic in dealing with infinite collections; for example, it rejects the principle
of tertium non datur, or the law of the excluded middle, and the axiom of choice.
Several other distinguished mathematicians, such as H. Poincare and H. Weyl, have
supported parts of the intuitionist and/or constructivist thesis regarding the nature of
mathematics and science. The distinguished mathematician-logician Ramsey (1950),
pages 80, 183, 204 and 252, eventually adopted a finitist point of viewthat is very close
to that of this paper. These considerations are perhaps even more important for
statistics than for pure mathematics and logic, since statistics purports to deal with
real problems. Ifstatistical methods are to have validity, they must be based on sound
logical grounds, rather than on hypothetical and highly questionable operations with
infinite sets. The finitely additive theory of probability is compatible with this view,
since it presumes nothing whatsoever about the validity of certain infinite operations,
such as the conventional evaluation of the probability of a non-finite union of disjoint
events, and is based on the logic of uncertainty for finite partitions. This theory was
founded by de Finetti (1937, 1974), who emphasized that probabilistic evaluations
must have a clear operational meaning. As observed by many distinguished mathe
maticians, operational meaning is often lost in attempting to deal with infinite
collections as though the customary finitistic operations were automatically valid.

2. SPLITTING PROCESSES

We begin by recalling that A I and A 2 can be obtained by the use of improper prior
distributions on the location, and on the location and scale parameters respectively of
a normal distribution. See Jeffreys (1961), p. 171, and Hill (1968), p. 688. For
example, for A l s if 1J. has an improper prior distribution represented by Lebesgue
measure, and ifthe distribution ofthe error isN(O, 1), then given XI = Xl the posterior
distribution of 1J. isN(XI, 1), and the posterior predictive distribution for X 2 isN(Xl' 2).
Hence the posterior probability that X 2 > XI is t. Similarly, for unknown 1J. and (J, if
these parameters are given the conventional improper joint prior distribution of
Jeffreys, then A 2 holds. For n > 2, until now An had not been obtained,
constructively, by means of parametric models and improper prior distributions.
Lane and Sudderth (1978) proved an existence theorem to the effect that finitely
additive distributions satisfying An for each n exist but did not explicitly model
such distributions. Here we give explicit parametric representations that can hold for
all n.

The first step in our construction is to introduce the concept of adherent mass at a
point. This is an extremely simple and useful concept, due to de Finetti (1974), p. 240,
that arises in the finitely additive theory of probability. Before making precise
definitions, we shall motivate this concept in connection with the joint distribution of
two variables XI and X 2 which will later represent the first stage in our iterative
construction of a splitting process satisfying An. Let XI have distribution 7r, where 7r is
any fixed distribution on the line. We now describe the conditional distribution ofX 2,
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given Xl = Xl' With probability t ,X 2 is given the distribution 11"; with probability t 'X 2
is adherent to Xl' with conditional probability t of being larger than Xl' conditional
probability t of being smaller than Xl> conditional probability 0 of being equal to Xl>

and with conditional probability 1 of being within any specified open interval
containing Xl' Such adherence can be obtained as follows. Imagine that, given Xl = Xl'

X 2 - Xl is equal to 1/K for some non-zero integer K, where K has a distribution
symmetric about O. IfK has a diffuse finitely additive distribution on the integers, so
that there is probability 1that K is larger in absolute value than any finite constant, the
result follows easily, since K must be some finite integer, so that X 2 - Xl cannot be 0,
and, with probability 1, 1/K will be smaller in absolute value than any positive
constant. The concept of adherence does not depend on symmetry, although this is the
primary case of interest in this paper.

Such distributions may at first sight appear rather exotic, but this is not really so.
They correspond to a situation where no possible measurement can differentiate
between a value and 0, for example, even though the quantity in question is known not
to be equal to O. See de Finetti (1974), p. 242. In this case neither empirically nor
theoretically can we rule out such adherent distributions. Thus we may know that a
particle has positive mass, but its mass may be so small that it is enormously beyond
the powers of our technology to determine the exact value. It may only be possible in
finite time to determine that the value is less than some specified positive f. Compare
also the discussion by de Finetti (1974), p. 242, of the indeterminacy of distribution
functions at jump points.

It is not necessary that we view adherent mass distributions as holding exactly in
real situations. Indeed, the primary purpose of the concept is merely to provide useful
approximations and ways of thinking about very common situations involving large
finite partitions. Clear understanding of the property ofadherence is necessary to deal
with ties and the grouping of data, such as in H n , and in understanding the behaviour
of the Dirichlet process. See Hill (1968), section 3, and Hill (1988)for the definition of
Hi, For our purposes at present it suffices to observe that such finitely additive
distributions are known to exist, so that the description that we have given for the
generation of Xl and X 2 is coherent in the sense of de Finetti, i.e. no Dutch book is
possible. If desired, they can equally well be represented in terms of improper prior
distributions. For example, a weight of 1 for each non-zero integer generates
adherence at 0 for the reciprocal of an integer selected 'at random' over the non-zero
integers. Mostly, we shall use the language of the finitely additive theory, which is
fully rigorous, and whose foundations were developed by de Finetti (1974)and Savage
(1972). See also Regazzini (1987), Schervish et 01. (1984) and Hill and Lane (1985).
Renyi (1970) and Hartigan (1983) provide rigorous theories of improper prior
distributions and conditional probability spaces.

Since most probabilists and statisticians accept the countably additive framework,
and therefore might immediately reject such concepts as that ofadherent mass, it may
also be useful to point out that according to Kolmogorov (1950) the axiom of
countable additivity (or continuity) cannot be justified other than by expediency.
Although expediency is important, it is hardly a matter of fundamental truth. For this
reason I ask the indulgence of the reader to pursue further some of these ideas, even
though at first glance they may seem unusual. The issues concerning countable
additivity have some important implications for the theory and practice of statistics.
For example, Ramakrishnan and Sudderth (1988) have shown that even in the
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simplest of all probability scenarios, that of flipping a fair coin, Borel's strong law
does not hold in the finitely additive context. These researchers show that with exactly
the same joint distributions for all finite sequences, i.e, probability lI2 k for any k
tuple of Os and Is, we can have the average converge everywhere to 0, converge
everywhere to 1 or fail to converge everywhere. This implies that no finite experience
with a coin can determine what happens in the limit as the number of trials goes to
infinity, except in terms of the weak law of large numbers. For the practice of
statistics, ultimately it comes down to a question of choice as to approximations. See
de Finetti (1974), p. 33, who describes countable additivity as a 'Procrustean bed',
and Hill (1990a), p. 520, for further discussion of such issues.

We shall now make a few definitions which will enable us to operate with adherent
distributions of mass, and to define a splitting process.

Definition 1. A probability distribution is said to have adherent mass at a point
(finite or infinite) if the infimum of probabilities of all open intervals containing the
point is greater than the probability of the point itself. It is said to have a purely
adherent mass at a point if it has an adherent mass at the point and the probability of
the point itself is O. Such language is also used for random quantities with such
distributions.

Definition 2. A random quantity is said to be negligible if the total mass either at,
or adherent to, 0 is 1.

Definition 3. Two random quantities are said to be equivalent if their difference is
negligible.

Definition 4. A distribution is said to be diffuse at 00 if it has a purely adherent
mass of t at each of + 00 and - 00. (When 11'" is diffuse at 00, and a random quantity X
has distribution 11'", we say that X splits from 00, or is generated from 00. When Xhas a
distribution for which all the mass is adherent to a point Xh we say that X splits from
Xl.)

It follows immediately that a finite sum of negligible quantities is negligible, and
that a diffuse distribution attaches probability 0 to any finite interval. Special diffuse
distributions are used by some Bayesians to represent a form of ignorance. The
improper uniform prior distribution for a location parameter, and for the logarithm
of a scale parameter, as in Jeffreys (1961), are familiar special cases. These can be
given a finitely additive interpretation as well. We can also strengthen the notion of
diffuseness by requiring that the conditional probability for a particular value,
conditional on a finite set of values, be uniform, as in Hill (1980b). There are some
subtleties that arise in the finitely additive theory that are worth mentioning explicitly.
Although a mass purely adherent to 0 is for many practical purposes indistinguishable
from a mass exactly at 0, the two associated random quantities are not logically
identical, since the first is certain not to be exactly O. In dealing with such things we
must therefore take greater care than is customary in the conventional countably
additive theory.

We now construct a splitting process. Let Xl and X 2 be defined as before. Given
Xl = Xl and X 2 = X2, we generate X 3 as follows. With conditional probability t, X 3 is
generated according to 11'"; with conditional probability t, X 3 is generated from a
symmetrical distribution purely adherent at Xl; with conditional probability t, X 3 is
generated from a symmetrical distribution purely adherent at X2. This procedure can
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be continued iteratively. After Xi=Xi' for i= 1, ... , n, have been realized, X n+ 1 is
equally likely, with common probability 1/(n + 1), to be generated from 7r or to have a
symmetrical distribution purely adherent to each of the n distinct values Xi already
generated. The observations are generated sequentially in time, so that we can speak
of Xi as the ith point generated. Finally, joint distributions of the Xi are defined to be
strategic in that probabilities for future observations can be evaluated as expectations
of conditional probabilities, given previous observations. See Lane and Sudderth
(1984)and Regazzini and Zaboni (1988). We call such a sequence Xl> ..., X n , for any
fixed 7r, a nested splitting process.

We shall assume, for simplicity, that the distribution 7r and the adherent mass
distributions have been defined for all subsets of the line. By virtue of de Finetti's
fundamental theorem of probability it is always possible, in principle, coherently to
extend any partially defined coherent evaluation of probability to all subsets; de
Finetti (1974), p. 111, and Lad et al. (1990).

Theorem 1. For a nested splitting process with 7r diffuse at 00, An holds exactly. If
7r is any distribution with neither adherent nor positive mass at finite points, then
exchangeability holds, and ties have probability O.

Proof. That ties have probability 0 follows immediately from the definition of
pure adherence and the fact that 7r has no adherent or positive mass at finite points.
That the conditional probabilities are in accord with A n when 7r is diffuse may be seen
as follows. LetXi=xi' for i= 1, ... , n, with all these values distinct, and consider the
conditional distribution of X; + I' (In the finitely additive theory all conditional
distributions automatically satisfy the axioms of probability, as with full conditional
probability distributions. See Hill and Lane (1985).) Now let I, be the open interval
between x(i) and x(i+ I)' for i = 0, ... , n, First take i to be between 1 and n - 1, so that
the Ii are finite intervals. Since I, is finite and 7r is diffuse, if X n + I is generated from 7r,

then there is probability 0 that X; + I will fall in Ii' Similarly, unless X; + I splits from
either x(i) or from x(i+ I)' there is probability 0 that X; + I will fall in L, Conditionally on
X n+ 1 splitting fromx(i)' the probability that it falls in Ijis t, and similarly ifX n + 1 splits
from X(i+ I)' Since there are n + 1 equally likely possible sources for X n+ l , including 7r,

it follows that the probability that X n + 1 falls in I, is exactly l/(n+ 1). When 7r is
diffuse, this is also true if i= 0 or i= n, in which case the interval Ijis semi-infinite. For
example, if i = 0, then (ignoring events of probability 0) for X n + I to be in 10 it must be
the case that either X; + I splits from X(I), or else that it is generated from 7r. In the latter
case, because 7r is diffuse at 00, there is probability t that X; + I will be smaller than x(l).
This yields l/(n + 1), as before, for the posterior predictive probability that X n + I will
be in 10 , and similarly for i = n. This completes the proof that the conditional
distribution for X n+ I is in accord with An when 7r is diffuse.

We now prove that XI' ..., X; + I form an exchangeable sequence, for any 7r which
has no adherent or positive mass at finite points.

By first conditioning on XI = U, and then using the fact that the distributions are
strategic, to integrate with respect to u, we have, for SI < S2,
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rS I

= Lao a1I"(S2)+t} 11" (du)

= t 11" (SI) 11" (S2) + t 1I"(SI),

where 1I"(s) is the mass attached to the closed interval from - 00 to S by 11". With a
similar evaluation for the case SI ~ S2, we obtain the joint distribution

Pr{ XI ~ Slo X 2 ~ S2} = t 1I"(SI) 1I"(S2) + t 1I"(SII\S2),

where SII\S2 is the smaller of SI and S2. This function is symmetric in its arguments,
proving that XI and X 2 are exchangeable.

By conditioning on the first k variables, similar evaluations can be made for the
higher dimensional distributions. Let F(k)(SIo .•• , sd be the joint distribution
function for the first k random quantities, for k = 1, ... , n + 1. Then it is easily
verified that

F (k + I)( ) - 1 r~ F(k)( 1\ )
Slo· •• , Sk+1 - k+ It ::t Slo· •• , Si-lo Si Sk+lo Si+h .•• , Sk

+ 11" (Sk + I) F(k)(SIo ••• , Sk)J
where for i= 1 in the above sum we take (Sh •.• , Si-h Sil\Sk+h Si+h ••• , Sk) =
(SII\Sk+ 10 S2, ••• , Sk)·

Using the iterative character of such functions, it is easy to see that the joint
distributions are symmetric functions of their arguments, which proves exchange
ability. In the diffuse case, the joint distribution functions are in fact constant at finite
points. For k = 1 the constant is t; for k = 2 it is i. If Ck is the constant for a k

dimensional joint distribution, then Ck+ I = ck(k + t)/(k+ 1).
The theorem shows that the probabilities specified by An can be realized exactly in

theory. In our construction of the splitting process the time order was relevant to the
realization of the process, or creation of the data. For example, X 2 could have split
from 00 or from the already realized Xh which requires the existence of XI before the
determination of X 2• But we have also proved that the process so engendered is
exchangeable, which implies that probabilistically this time order is immaterial in so
far as the joint distribution functions are invariant under permutations. For a related
situation consider the discussion of the relationship between the P6lya urn model and
the Bayes-Laplace model in de Finetti (1974), p. 220. Although two processes may be
structurally different, the expression of our probabilistic knowledge about them can
be precisely the same.

(The notion of exchangeability used in this paper, namely in terms of invariance
under permutations of the joint distribution functions evaluated at finite points, is
weaker in non-finite spaces than the definition in terms of such invariance for the joint
distributions themselves. In the countably additive framework the two definitions are
equivalent, but for merely finitely additive distributions such exchangeability is
weaker than exchangeability in the sense of invariance of the distributions themselves,
since in this context the probabilities for rectangle sets do not determine the joint
distributions uniquely. At present, little seems to be known about exchangeability in
the finitely additive case. There are some fairly subtle aspects to such exchangeability.



430 HILL [No.2,

For example, a distribution with a purely adherent mass at a point would not be
exchangeable with a distribution having all its mass exactly at that same point, even
though for some practical purposes the two are indistinguishable. The weaker
definition of exchangeability is the more useful when working in the finitely additive
context. In any event, for finite spaces there is no distinction between the two
definitions, and so from the finitistic perspective taken here the issue concerns how to
pass to certain limits which are at best of mathematical interest.)

In a large but finite space, such as would be appropriate for applications of the
model that I have proposed, the two concepts of exchangeability are identical, and so
we can forget the time ordering for the purpose of statistical inference and prediction.
Thus we can instead consider a population of values Xl' . . ., X N that originated from
a splitting process but now is simply an existing finite population of numbers. By
construction these values are necessarily distinct, so that the ordered values in the
population are X(l) < X(2) < . . . < X(N). Before the process is realized, we can
visualize the process as creating a random distribution, in which the probability
attached to a set is simply the random proportion of these Xi that fall in the set.
However, in the present context we shall imagine that the values have already been
generated, but unobserved. In the subjective Bayesian theory, as long as there is no
further information about the population values Xi' it is appropriate to use the same
distribution after, just as before, they were generated. See Hill (1990b) for discussion.
Now suppose that a simple random sample of size n, without replacement, is taken
from such a population, and the observed ordered values in the data are x(l) < X(2) <
••• x(n)·

Because of the exchangeability, for prediction of the value of the next observation
there is no harm in supposing that these values are the first n values created by the
process, so that An' and indeed A N - " is automatically satisfied in sampling from a
population X" . . ., X N that is created by a nested splitting process. It was proved in
Hill (1968), p. 688, that A k implies A j for j < k, so A j can hold for any j < N. If we
take seriously the notion ofgenerating an infinite number of points, as for example in
Lane and Sudderth (1978), then An holds for all n, There is a finitely additive version
of de Finetti's theorem for infinite sequences of exchangeable random quantities,
which suggests that the usual interpretation in terms of an 'unknown' distribution,
representing the limiting frequency of points in various sets, may still be valid,
although uniqueness of the de Finetti measure is lost, and in this context we must give
serious attention to the distinction between the two versions of exchangeability. Note
that the pre-data expected proportion of observations in a finite sample that fall in an
open interval is simply the 1r-mass attached to that interval. See de Finetti (1937),
Hewitt and Savage (1981), Lane and Sudderth (1978), Savage (1972), p. 53, Diaconis
and Freedman (1980) and Hill (1988) for some related discussion. Although mathe
matically interesting, I do not think that the infinite population case is of great
practical importance. The primary statistical problem considered in this paper is that
of inference about a finite population based on a random sample, with the adherency
assumption used to provide useful approximations.

We have seen that An holds exactly for a nested splitting process. It is an open
question whether there is a basically different model that generates An exactly. Hill
(1987) proves that H n , which allows for ties, can also be realized exactly.

Finally, it is interesting to compare the analysis from splitting models, or from H n ,

with that from the Dirichlet process. The Dirichlet process can be derived, as in
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Blackwell and MacQueen (1973), as the limiting distribution of proportions obtained
from a generalized P6lya process. In the notation of Blackwell and MacQueen, we
have

(1)

where

n

JLn = JL + ~ o(Xi),
i=1

P(XiE~) = JL(~)IJL(!!r),

o(X) denotes the unit measure concentrating at x and!!r is the space of observations.
Now generalize the nested splitting process to include an additional parameter TIn'

for the probability that the next observation is from 11", and with equal probability
(1- Tln)/n that the next observation splits from each of the n already realized z.. Then,
for any open interval ~, for a nested splitting process we have

Pr{Xn+IE~IXIt ..•,Xn} = 1I"(~)Tln + {Cn(~) + tDn(~)}(I-Tln)ln,
(2)

where Cn(~) is the number of observations among the first n that liein~ andDn(~)

is the number ofXithat are on the boundary of.ss. For 11"(~) = JL(~)IJL(!!r), and with
TIn = JL(!!r)/{n+JL(!!r)}, then for intervals ~ with Dn(~)=O this predictive
probability is identical with the probability given by equation (2) of the
Blackwell-MacQueen representation of the generalized P6lya process. If also
JL(!!r) = 1, we obtain the original nested splitting process. If JL(!!r) = 00, then the
above predictive probability is simply 11"(~).

If we now make one further generalization then both the nested splitting process
and the Dirichlet process become special cases of a single very general process. Define
rt,n to be the probability that the next observation ties x(i)' given that it splits from X(i)'
and given the first n observations. Given that X n+ 1 splits from xCi) but does not tie x(i)'
let the mass 1- Ti,n be symmetrically adherent to x(i). In my original construction
Ti, n= 0 for each nand i = 1, . . ., n, and TIn = 1/(n + 1). To obtain the Dirichlet process
of Ferguson (1973), p. 209, with Ferguson's parameters a and M =a (!!r), we need
only to set Ti,n= 1 for each nand i= 1, ..., n, take 11" = a/M and TIn =
a(!!r)/{n+a(!!r)}. In this case the term Dn(~) drops out of equation (2); this
equation then holds for all ~ and is identical with equation (2) of Blackwell and
MacQueen (1973). Ifwe thus choose the parameters to yield the Dirichlet process, and
if further we assume countable additivity for the sequence of variables that are
generated by the process, then the process is identical with that of Blackwell and
MacQueen. Thus both the Dirichlet process and An can be seen to arise from such
generalized splitting processes. We state these results as a theorem.

Theorem 2. Let Xi' for i= 1, ..., n, ... , be a generalized splitting process with
parameters TIn and Ti,n' Then for TIn = I/(n + 1), and Ti,n = 0 for i= 1, ..., n, the process
is a nested splitting process. For 'In = a (!!r)/{n +a(!!r)} and Ti,n= 1for i= 1, ... , n,
and under the assumption of countable additivity the process generates a
Ferguson-Dirichlet process with parameter a.
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3. MULTIVARIATE VERSIONS OF An AND CONCLUSIONS

The splitting processes that we have defined can immediately be generalized to
higher dimensional spaces, e.g. to the surface of a sphere, three-dimensional
Euclidean space, higher dimensional versions of these spaces and indeed to any
surface or space whatsoever. We need only to generate points from an appropriate
distribution 1f' and then to define adherency in an appropriate way, using, for
example, some metric in the space under consideration. Such generalizations lead to
multivariate versions of An. For example, in two-dimensional Euclidean space, we
can take 1f' to be diffuse in the sense of attaching probability 1 to the complement of
any bounded open sphere, and the adherent distribution of mass at a point can be
taken as spherically symmetric about the point, giving mass t to each of the four
quadrants formed with the point as origin. In this case there would be probability 1
that the next observation will be within any open sphere about a point, given that it
splits from that point. In n dimensions wewould attach probability 1/2n to each of the
2n quadrants formed by a point as origin, given that a split occurs from that point,
again using spherical symmetry, and take 1r to attach probability 1to the complement
of any bounded open sphere. We can proceed similarly on the surface of a sphere,
except that now the symmetry must be restricted to the surface of the sphere. For more
general surfaces and spaces there may be other notions of diffuseness and symmetry
that are of interest. Also, in Bayesian survival analysis, as in Berliner and Hill (1988),
there are a variety of ways to introduce a multivariate version of An to allow for
covariates.

In conclusion, we have here constructed a splitting process that yields An exactly. A
version of An was originally suggested from a fiducial point of view by Fisher. It also
has a confidence or tolerance interpretation, as proposed by Dempster (1963), p. 110.
It is simple, intuitive and coherent, and has several subjective Bayesian interpretations
and justifications. I hope that it will be used more widely by practitioners in situations
where there is a weak a priori knowledge than has hitherto been the case.
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