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Improving Hurricane Power Outage Prediction Models
Through the Inclusion of Local Environmental Factors

D. Brent McRoberts,1,∗ Steven M. Quiring,2 and Seth D. Guikema3

Tropical cyclones can significantly damage the electrical power system, so an accurate spa-
tiotemporal forecast of outages prior to landfall can help utilities to optimize the power
restoration process. The purpose of this article is to enhance the predictive accuracy of
the Spatially Generalized Hurricane Outage Prediction Model (SGHOPM) developed by
Guikema et al. (2014). In this version of the SGHOPM, we introduce a new two-step predic-
tion procedure and increase the number of predictor variables. The first model step predicts
whether or not outages will occur in each location and the second step predicts the number of
outages. The SGHOPM environmental variables of Guikema et al. (2014) were limited to the
wind characteristics (speed and duration of strong winds) of the tropical cyclones. This ver-
sion of the model adds elevation, land cover, soil, precipitation, and vegetation characteristics
in each location. Our results demonstrate that the use of a new two-step outage prediction
model and the inclusion of these additional environmental variables increase the overall ac-
curacy of the SGHOPM by approximately 17%.

KEY WORDS: Data mining; hurricanes; outage model; outage prediction; reliability; storm response
planning

1. INTRODUCTION

Severe weather events, such as hurricanes, cause
widespread and prolonged power outages. A key
part of preparing for, and responding to, hurricanes
is requesting and positioning resources in advance
of a storm. This decision has a significant impact on
how long it takes to restore power, as well as the
cost of the restoration effort. Forecasts of the num-
ber and locations of outages can help utilities balance
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the high cost of external resources with the need to
have enough resources to restore power quickly. Pre-
vious work has been done on power outage forecast-
ing for high-wind events, especially for hurricanes.
Past efforts include those by Reed,(1) who developed
a linear regression model for estimating power out-
ages during wind storms in Seattle. Liu et al.(2,3) used
generalized linear models (GLMs) and generalized
linear mixed models to estimate outages during
hurricanes, and in follow-up work, Han et al.(4,5)

used generalized additive models (GAMs). Nateghi
et al.(6) built on this previous work by employing a
random forest model(7) to achieve higher predictive
accuracy. All of these models used a wide range of in-
put variables, including data about the power system,
hurricane winds, land use, topographic information,
soil moisture levels, and other geographic and clima-
tological factors. These models provide strong pre-
dictive accuracy in the utility service area for which
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they were developed, supporting improved utility de-
cision making. However, these models do not pro-
vide outage estimates for areas outside of the util-
ity service area and are not available to emergency
and risk management personnel in local, state, and
federal governments.

Building on Nateghi et al.,(6) Guikema et al.(8) de-
veloped a spatially generalized hurricane power out-
age prediction model. This model can be used any-
where along the U.S. coastline because it is based on
publicly available information. However, one limita-
tion of the Guikema et al.(8) model is that it uses a
greatly simplified set of input variables (population,
maximum 3-sec wind gust, and duration of sustained
winds exceeding 20 m/sec) as compared to the utility-
specific models (e.g., Nateghi et al.(6)). This leads
to lower predictive accuracy relative to the utility-
specific models.

The purpose of this article is to improve the
predictive accuracy of the Spatially Generalized Hur-
ricane Outage Prediction Model (SGHOPM), which
was first introduced in Guikema et al.,(8) by adding
more explanatory variables, specifically elevation,
land cover, root zone (RZ) depth, precipitation, soil
moisture, and tree characteristics. The value of these
additional variables is evaluated by quantifying the
reduction in error relative to Guikema et al.’s(8) ver-
sion of the SGHOPM (hereafter called the baseline
model). Several different combinations of explana-
tory variables were explored using a cross-validation
procedure to determine the ideal covariate set for
predicting outages in the random forest model.

In addition to adding more variables, this article
introduces a two-stage version of the SGHOPM.
The two-stage approach to hurricane outage mod-
eling was introduced by Guikema and Quiring(9)

to account for the zero inflation of data sets that
is characteristic of past outage events. Traditional
statistical methods for dealing with zero inflation,
such as zero-inflated Poisson and zero-inflated nega-
tive binomial regressions, are unlikely to handle the
complexity of factors contributing to nonoutages in
hurricanes.(9) Instead of using traditional statistical
models, Guikema and Quiring(9) improved the
accuracy of outage predictions using a two-stage
classification tree/regression model approach. The
first stage of Guikema and Quiring’s(9) “tree-GAM”
model fits a classification tree to predict a zero or
nonzero response and the second stage makes a
quantitative prediction of outages using a GAM.
The use of classification trees provides an improved
assessment of power system responses to explana-

tory variable thresholds (i.e., maximum wind speed
at which are poles are likely to be blown over)
compared with traditional models.(9) In this article,
the first stage of the two-stage SGHOPM makes a
prediction with only two outcomes using a random
forest classification model: (1) zero outages or (2)
one or more outages. The second stage of the model
determines the number of outages using a random
forest regression model, conditional on the first stage
of the model predicting an outcome of one or more
outages.

This article is organized as follows. A descrip-
tion of the data is provided in Section 2. Section 3
provides an overview of the SGHOPM model and
Section 4 describes the methodology for selecting the
best set of covariates. Section 5 presents the results
and Section 6 examines the influence of individual
variables on outage predictions.

2. DATA AND METHODS

2.1. Data

Census tracts are used as the spatial unit of anal-
ysis in this article. Population data are used as a
proxy for the number of utility customers because
the SGHOPM only uses publicly available sources
of data. The SGHOPM predicts the fraction of the
population that will lose power (fractional outages)
in each census tract.

The SGHOPM is developed and trained using
the gridded outage data from a private utility com-
pany that wishes to remain anonymous. Its service
area covers parts of three states in the southeastern
United States. Outage data from six tropical cyclones
(TCs) are used in this article: Opal (1995), Danny
(1997), Georges (1998), Ivan (2004), Dennis (2005),
and Katrina (2005).

The explanatory variables that are evaluated
in this study can be divided into two categories.
One category contains variables related to geo-
graphic and environmental characteristics that are
invariant (static) in time. These variables include
various measures of topography, land cover, tree
characteristics, and soil characteristics in each census
tract. The second category contains variables that
are time dependent (dynamic) and represent the
antecedent conditions when a TC makes landfall.
These variables include various measures of soil
moisture and precipitation.

All of these variables originate from different
sources and each has a different spatial resolution.
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The data for the static variables are available at a
high resolution, so these data were rescaled to cen-
sus tracts by identifying the census tract centroid
that is closest to the grid cell. The soil moisture and
precipitation data used are at a coarser resolution
than most census tracts, so they are rescaled to the
census tracts using spatial interpolation. The remain-
der of Section 2 provides a description of all of the
predictor variables that are considered for inclusion
in the SGHOPM (Table I).

2.2. Response Variable

The response variable Ŷi in the SGHOPM is the
fraction of outages for a given census tract i; frac-
tional outages are more useful than the total num-
ber of outages due to the variability in census tract
populations.(10) In training the SGHOPM, both the
number of customers and number of customers with-
out power (which will be referred to as outages in
the rest of the article4) from the utility-specific data
were used to compute fractional outages. In some
instances, the number of customer outages reported
in the utility’s outage management system exceeded
the number of customers in the utility data set as
discussed in Guikema et al.(11) When this occurred,
the number of outages was set to the number of
customers.

2.3. Baseline Explanatory Variables

Guikema et al.(8) developed a SGHOPM that
used only three variables: census tract population,
the maximum 3-sec wind gust, and duration of sus-
tained winds exceeding 20 m/sec. This three-variable
version of the SGHOPM is referred to as the base-
line model. The only difference is that the baseline
model used in this article uses population density
rather than total population because a normalized
population metric (density) is more appropriate for
determining fractional outages.

2.4. Static Explanatory Variables

The static variables that are used include various
measures of topography, land cover, tree character-
istics, and soil characteristics. The value of includ-
ing topographical characteristics in utility-specific

4We define the term outages in this article as the number of cus-
tomer meters without power. Therefore, a “customer” is really a
customer meter.
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Table II. Eight Tree Characteristics from the National Insect and Disease Risk Map (NIDRM) Data Set

NIDRM Level (240 m Resolution) Census-Tract Level

Variable Metric Data Source Model Variable Model Variable Description

1 Trees Trees or no trees? 1,2,3,4,5 Xtreed, i Percentage covered by trees
2 Taproot Taproot or not? Xtaproot, i Percentage with taprooted species
3 Rooting depth Deep or shallow

rooted species?
Xdeep, i Percentage with deep-rooted species

4 Tree height Species maximum 6 Xhgt, i Census tract average
5 Diameter at breast

height
Xdbh, i

6 Wood density Species average Xdensity, i

7 Janka hardness Xjanka, i

8 Crushing strength Xcrushing, i

The NIDRM data were rescaled to census tracts by aggregating all NIDRM grid cells within each census tract. Information about each
individual tree species was compiled from the following sources: (1) Van Dersal,(20) (2) Burns and Honkala,(21) (3) Burns and Honkala,(22)

(4) Stoecklein,(23) (5) U.S. Forest Service Tree List,(24) and (6) Wood Database.(25)

power outages models was initially demonstrated
by Guikema et al.(12) and explored in more depth
by Quiring et al.(13) The topographical variables are
derived from a global 30-arcsec digital elevation
model (DEM) produced by the U.S. Geological Sur-
vey (see Danielson and Gesch(14) for details) and
include mean elevation (Xi, elev_mean), median eleva-
tion (Xi, elev_median), standard deviation of elevation
(Xi, elev_stdev), minimum elevation (Xi, elev_min), and
maximum elevation (Xi, elev_max).

Davidson et al.(15) found that the inclusion
of land cover (LC) types improved the accuracy
of hurricane-related outage predictions. Quiring
et al.(13) demonstrated that LC variables are par-
ticularly useful when utility-specific asset data (e.g.,
number of poles, transformers, etc.) is not avail-
able because certain LC variables can serve as prox-
ies for these data. The LC data used in this ar-
ticle are from the National Land Cover Database
2011 (NLCD 2011) (see Homer et al.(16) for de-
tails). There are eight major land cover classes in the
NLCD 2011, based on Anderson’s(17) classification
system. The fractional coverage of these eight LC
types was determined for each census tract: water LC
(Xi, LC_water), developed LC (Xi, LC_developed), barren
LC (Xi, LC_barren), forest LC (Xi, LC_forest), scrub LC
(Xi, LC_scrub), grassland LC (Xi, LC_grassland), pasture
LC (Xi, LC_pasture), and wetlands LC (Xi, LC_wetlands).

A variety of tree/vegetation-related variables
have been used in previous outage prediction mod-
eling. For example, Guikema et al.(18) and Nateghi
et al.(6) incorporated a measure of tree trimming fre-
quency, and Lui et al.(2) and Madeira(19) included

variables related to specific tree species. All of these
previous projects found that the inclusion of vege-
tation information can significantly enhance model
performance.

This article is the first to incorporate tree species
data and tree characteristics such as type of root sys-
tem, depth of the root system, tree diameter, tree
height, density of the wood, hardness of the wood,
and the crushing strength of the wood. The tree
species data are from the 2012 National Insect and
Disease Risk Map (NIDRM) (Krist et al.(20)). The
NIDRM identifies a single, dominant tree species in
each 240-m grid cell.(19) There are a total of 217 tree
species in our region. The eight tree-related variables
that are considered in this study are fractional area
of a census tract covered by trees (Xi, treed), percent-
age of trees with a deep root system (Xi, deep), per-
centage of trees with a taproot system (Xi, taproot),
maximum tree species height (Xi, hgt), maximum tree
species diameter at breast height (Xi, dbh), tree den-
sity (Xi, density), Janka Hardness Scale (Xi, janka), and
crushing strength (Xi, crushing). Details on the tree
species variables used in this study, and the source
of the data, are provided in Table II.(21–24)).

RZ depths are derived from the USDA Grid-
ded Soil Survey Geographic (gSSURGO), which
is available at 30-m resolution. The RZ is charac-
terized as the depth within the soil column from
which crop roots can effectively extract water(25).
Based on Dobos et al.,(27) the maximum RZ depth in
gSSURGO is 1.5 m. Quiring et al.(13) used a related
metric, the depth to bedrock, to characterize the ef-
fective depth of the soil layer. The three RZ depth
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metrics used in this study (mean RZ depth
[Xi, RZ_mean], majority RZ depth [Xi, RZ_majority], and
median RZ depth [Xi, RZ_median]) are based on a sum-
mary of all the 30-m gSSURGO grid cells that are
within each census tract. Because of the high resolu-
tion of the gSSURGO data set, it was first rescaled to
the same 240-m resolution as the tree species data,
using the majority value from 64 gSSURGO grid
cells.

2.5. Dynamic Variables

The dynamic soil moisture and precipitation
variables represent moisture conditions 3 days prior
to landfall. The 3-day lag was chosen because when
the SGHOPM is used for operational forecasts of
power outages, these forecasts are typically initial-
ized 3–5 days in advance of landfall. Soil moisture
and precipitation have been shown to be important
for power outage modeling because wetter soils can
increase the likelihood that trees and utility poles will
be uprooted/fail in strong winds.(4,6).

Both the precipitation and soil moisture are from
the North America Land Data Assimilation System
Phase 2 (NLDAS-2), which contains modeled param-
eters (including soil moisture) and forcing variables
(including precipitation). These data are available at
one-eighth degree spatial resolution and at an hourly
temporal resolution from January 1979 to present.
NLDAS-2 contains three different land-surface mod-
els (MOSAIC, NOAH, and VIC). In this study, we
use soil moisture data from the VIC model(28) be-
cause of its past performance in accurately assessing
variations in soil moisture.(4,5,8,12).

VIC-derived soil moisture is estimated for three
layers: 0–10 cm (Xi, soil1), 10–40 cm (Xi, soil2), and
40–100 cm (Xi, soil3). When the soil layers did
not match these standard depths, the volumet-
ric moisture content was converted to these stan-
dard depths using a simple linear interpolation.
Rather than using the fractional soil moisture val-
ues used in past studies,(4,5,12) we converted all
soil moisture data in this article to percentiles
based on the historical cumulative distribution func-
tion (CDF). The soil moisture CDFs used 36
years of historical data from 1979 through 2014
to compute nonparametric L-moment ratios (see
Hosking and Wallis(29) for details) that were trans-
formed to Pearson Type III distribution parameters.
This approach differs from that used by the Climate
Prediction Center (CPC), which uses an empirically
derived historical distribution.(30,31)

Precipitation is represented using the Standard-
ized Precipitation Index (SPI). The SPI uses a CDF
to normalize precipitation for a given time period us-
ing historical precipitation data.(32–34). We use Pear-
son Type III to fit the CDF, which is consistent with
Han et al.(4,5) Five different SPI time scales were
used to represent short-term (1-month [Xi, SPI1]),
medium-term (3-month [Xi, SPI3]), 6-month [Xi, SPI6]),
and long-term (12-month [Xi, SPI12] and 24-month
[Xi, SPI24]) moisture conditions in each census tract.

The NLDAS-2 data were rescaled to census
tracts by interpolating data from the four nearest
NLDAS-2 grid cells to the census tract centroid using
inverse distance weighting. NLDAS-2 soil moisture
and precipitation were interpolated to census tracts
prior to computing the soil moisture percentiles and
SPI.

The 1200 UTC soil moisture data were used
to fill a daily time series at each census tract from
January 2, 1979 to December 31, 2014. The hourly
precipitation was aggregated to daily data. Pearson
Type III parameters were computed for all three soil
layers and five SPI time scales for each census tract
and calendar date (i.e., July 30).

3. MODEL BACKGROUND

3.1. Random Forest Model

The SGHOPM is a nonparametric ensemble
data mining model that is based on the random for-
est method created by Breiman.(7) Random forest
models are insensitive to outliers and noise(35) and
have been proven to make accurate outage predic-
tions (e.g., Nateghi et al.(6)). The SGHOPM is coded
in the open-source R programming language, calling
on the “randomForest” library for model computa-
tions and can be run on any modern computer. The
random forest technique fits a large number (K) of
regression trees, each time using a bootstrapped sam-
ple from a training data set.(8) At each branch in the
regression tree, the data are recursively partitioned
into two groups based on a subset of the covariates
until the number of terminal nodes reaches a spec-
ified value.(35) The independence of each individual
tree within the forest is improved by randomly sam-
pling the training data before training a given tree
and randomly selecting the set of covariates allowed
to be used at each tree branch.(6) Therefore, the set
of K trees (in this article K = 500) are approximately
uncorrelated and unbiased.(8) For each tree, the
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Fig. 1. Histogram showing observed frac-
tional outages in the utility company data
set.

predictive power of each variable is computed using
the out-of-bag sample for that tree(35). The final pre-
diction, given a set of input covariates, is the average
of the individual tree predictions.

3.2. Cross-Validation Testing

We seek to minimize the prediction error of
the SGHOPM model through the addition of ex-
planatory variables to the baseline variables used by
Guikema et al.(8) Most regression models are built to
optimize goodness of fit for the data used to train the
model, and adding more variables increases model
performance. However, this does not optimize the
predictive power of the model. Random forest is
powerful as a predictive tool because model devel-
opment is based on the predictive performance of in-
dependent, out-of-bag samples.(35)

A holdout cross-validation analysis technique
was used to assess the predictive power of each set
of potential covariates in the SGHOPM on the basis
of the same methodology as used by Nateghi et al.(6)

Given a set of n census tracts, we hold out 20% of the
data, using random sampling without replacement,
and train the model using the remaining 80%. We
then test the out-of-sample predictive accuracy of the
model using the 20% of data not used to train the
model. We repeat this process N times (in this article
N = 30), each time using different data in the training
and validation groups.

Each training set uses 5,023 grid cell–storm com-
binations (performance of the power system in one
grid cell in one TC), which is 80% of the overall
data set. Both the training and holdout groups can

have data from the same TC (or the same census
tract). This allows for a robust evaluation of each
set of covariates. Model performance for a given set
of covariates is measured by the percent improve-
ment in mean absolute error (MAE) as compared
to Guikema et al.’s(8) version of the SGHOPM. It is
important to note that population density, maximum
wind gust, and duration of strong winds are included
in every set of covariates that are evaluated.

4. MODEL DEVELOPMENT AND TESTING

4.1. Overview

The overall procedure for choice of explana-
tory variables began with testing covariate sets within
each variable type (topography, land cover, tree
characteristics, soil characteristics, SPI, and soil mois-
ture). Each group of variables was evaluated using a
30-fold cross-validation procedure to determine the
three explanatory variables with the lowest predic-
tive error. A second 30-fold cross-validation was used
to evaluate whether adding these three variables re-
duced the model error as compared to the baseline
covariate set.

For each variable type (i.e., topography), nu-
merous covariate sets were tested to determine the
combination of variables that provided the largest
improvement over the baseline model. The result
was six different combinations of variables, one for
each of the six variable types that minimized MAE.
These six variable combinations were then blended,
with each blend containing variables of two or more
types (i.e., a blend of dynamic variables contains
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SPI and soil moisture variables). Three types of
blends were used: (1) a blend of all the static variable
types, (2) a blend of the two dynamic variables, and
(3) a blend of all six variable types. Additionally,
“reduced” blends were formed using no more than
three individual variables for each variable type.
Overall, there were 12 main covariate sets tested: six
using a single variable type and six using blends of
two or more different variable types.

4.2. Random Forest Response Variable

One of the challenges in predicting power
outages is the large number of locations with no
outages (i.e., zero inflation). For example, approx-
imately 30% of the census tracts in the training
data set have zero outages (Fig. 1), a percentage
that remains consistent even in the cross-validation
training data sets. However, the predicted fractional
outage is rarely zero. Therefore, in this article, the
prediction is done in two phases. First, we train
a random forest model to predict whether or not
outages will occur in a census tract (ĉi= 0 or ĉi= 1),
this is called the Binary Classification (BC) model.
Second, we predict the fractional outage prediction
(0 < f̂i � 1), if ĉi= 1 using a separate Non-Zero
Outage (NOZE) model. If ĉi= 0, then f̂i = 0, re-
gardless of the NOZE prediction Ŷi . This is the same
approach that was used in Guikema and Quiring,(9)

except they used a classification tree for the BC
portion and a GAM for the NOZE portion. In
this article, we use a random forest model for both
steps.

There can be a different set of optimal covari-
ates in each model, and the BC model was tested
independently of the NOZE model. The BC ran-
dom forest model response (ĉi ) is either a 0 or 1.
Therefore, census tracts in the training data set with
observed nonzero outage fractions were assigned ci

values of 1. The first choice in the model develop-
ment was to determine if the training data set used to
build the NOZE random forest model should include
census tracts with zero outages. A testing procedure
deemed that it was better to use all the training data
(fi � 0) in the NOZE model rather than just the sub-
set of training data with observed fractional outages
(fi > 0).

4.3. BC Model

Adopting a two-stage modeling process, without
adding additional variables, improves model perfor-

Fig. 2. Scatter plots of total predicted versus observed outages
based on the two-step SGHOPM: (a) NOZE model using base-
line + all additional variable types and (b) NOZE model using
baseline + all static variables. The perfect prediction line (1:1) is
plotted for reference.

mance by almost 4% (standard deviation of 0.78%
in the 30 holdouts) as compared to Guikema et al.(8)

Using the reduction in MAE relative to the Guikema
et al.(8) model as the performance metric, the BC
model with an optimized covariate set improves the
model by over 9% (standard deviation of 1.19%;
Table III). Several sets of covariates were evaluated
to determine the optimal set of covariates for the
BC model. After determining the set of variables
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Table III. Performance Metrics for the 14 Different Covariate Sets that Were Evaluated to Determine the Optimal Set of Explanatory
Variables in the BC Model

BC Covariate Sets Rank
Frequency Most

Improved Mean Improvement Standard Error

No BC model 14 0 0.00% (0.00%) 0.00%
Baseline 13 0 3.74% (−1.69%) 0.70%
Elevation 11 0 5.84% (−0.80%) 1.16%
Land cover 10 0 6.62% (-0.29%) 1.33%
Root zone 12 0 3.88% (−1.14%) 0.67%
Soil moisture 9 0 6.66% (−0.84%) 0.92%
SPI 5 2 7.73% (−0.08%) 1.20%
Trees 6 0 7.60% (0.26%) 1.20%
Static 1 18 9.04% (0.44%) 1.36%
Static reduced 2 2 8.47% (0.11%) 1.51%
Dynamic 4 2 7.88% (−0.14%) 1.08%
Dynamic reduced 7 1 7.56% (−0.29%) 0.98%
Full 3 4 8.24% (0.58%) 1.03%
Full reduced 8 1 7.53% (0.03%) 1.12%

Improvement is the reduction in MAE relative to Guikema et al.’s(8) NOZE-only model and is based on 30 replicates. Decrease in root
mean square error is in parentheses next to model improvement.

within each group having the most predictive power,
the best variables within each variable group were
combined in an additional cross-validation testing
procedure. Performance of the six covariate set
blends used in the BC model were compared to sim-
pler covariate sets (Table III); these included one
variable of each type and the baseline variables.
In general, using a larger number of covariates im-
proves the performance of the BC model. Our re-
sults indicate that the BC performs best when using
all of the static variable types (Table III). In 20 of the
30 repetitions, the static covariate set (Table II) out-
performed the other 13 covariate sets.

4.4. NOZE Model

The purpose of the NOZE model is to predict
how many outages will occur in the census tracks
that were identified as experiencing storm impacts
by the BC model. As with the BC model, we eval-
uate each of the variable types to determine which
variables should be included in the final, optimal set
of covariates (Table IV). The test results indicate
that the optimal NOZE model covariate set contains
23 variables and that multiple variables from each
group are included in the optimal model (Table II).
Overall, there is a 16.75% improvement in the per-
formance of the two-step SGHOPM with an en-
hanced set of covariates as compared to Guikema
et al.’s(8) model.

5. MODEL APPLICATION TO PREVIOUS
TROPICAL CYCLONES

After completing the holdout testing procedures,
the SGHOPM was used to forecast outages for each
of the six TCs with available data in a storm-specific
holdout procedure. Rather than randomly withhold-
ing 20% of the data across all storms as done in
Section 4, a storm-specific holdout was used (i.e.,
withhold all data from a single storm and use data
from the remaining storms to train the model).

The two-step SGHOPM developed in this article
does poorly in comparison to other models in the
storm-specific holdout testing (Table V). Using two
different NOZE model covariate sets, each predic-
tion of number of outages was plotted as a function
of the observed number of outages, using data from
all six storms (Fig. 2). It is apparent that the storm-
specific model predictions made using the covariate
set found optimal in Section 4 systematically under-
estimate total outages when both the observed and
predicted values are nonzero (Fig. 2a). Removing
the dynamic variables from that covariate set im-
proves the accuracy of the storm-specific predictions
(Fig. 2b); however, there is still a systematic un-
derestimation of predicted outages. In addition, the
slope of the nonzero outage pairs (fi and f̂i both
nonzero) is less than 1, indicating that the variance
in the predicted values is less than the observed
variance. The ratio of the variance of the predicted
outages to the variance of the actual outages can
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Table IV. Performance Metrics for the 15 Different Covariate Sets that Were Evaluated to Determine the Optimal Set of Explanatory
Variables in the NOZE Model

NOZE Covariate Sets Rank
Frequency Most

Improved Mean Improvement Standard Error

Baseline (no BC model) 14 0 0.00% (0.00%) 0.00%
Baseline 13 0 8.84% (0.37%) 1.23%
Elevation 11 0 11.35% (3.51%) 1.57%
Land cover 10 0 11.80% (3.96%) 1.73%
Root zone 12 0 9.90% (1.73%) 1.39%
Soil moisture 8 0 12.78% (3.25%) 1.78%
SPI 5 2 15.74% (4.17%) 1.71%
Trees 9 0 12.08% (4.53%) 1.79%
Static 7 0 13.66% (5.47%) 1.72%
Static reduced 6 0 13.99% (5.78%) 1.71%
Dynamic 3 1 15.91% (4.33%) 1.95%
Dynamic reduced 4 2 15.85% (4.55%) 1.96%
Full 1 15 16.75% (6.88%) 1.72%
Full reduced 2 10 16.62% (6.77%) 1.78%

Improvement is the reduction in MAE relative to Guikema et al.’s(8) NOZE-only model and is based on 30 replicates. The BC covariate set
uses variables that are in bold italics in Table I unless otherwise noted. Decrease in root mean square error is in parentheses next to model
improvement.

be denoted as Rvar = var( f̂i × Pi)/var(fi × Pi),
where Pi is the census tract population. Rvar = 0.52
for the NOZE model using baseline plus the set
of static variables and Rvar = 0.37 for Guikema
et al.’s(8) model (Table V). These Rvar values include
the locations with no outages and there are fewer
locations with no outages in the predictions than in
the observations. The BC model using only baseline
variables predicted that no outages would occur in
15.7% of census tracts, compared to 18.2% using
the covariate set with additional variables; both of
these values are well below the observed frequency
of 30.0%. This is one of the reasons that variance of
the predictions is much less than the observed.

For each covariate set used to build a NOZE
model, the ratio of the model prediction variance rel-
ative to the observed outage variance (Rvar) was also
computed using only nonzero outage pairs. A com-
parison using nonzero outage pairs gives a better idea
of the NOZE model influence on variance, and the
results indicate a reduction in model variance relative
to the observed outages for both the baseline (Rvar =
0.34) and static (Rvar = 0.48) versions of the NOZE
model (Table V). Although the predicted variance is
much lower than the observed variance, the two-step
SGHOPM used in this article is an improvement over
Guikema et al.’s(8) model.

The total number of outages (summed over all
census tracts) predicted over all six storms com-
pares favorably to the observed outages (Fig. 3a).

The inclusion of additional covariates generally
increases the number of model outages predicted,
with the exception of the antecedent precipitation
variables (e.g., SPI). Model performance is highly
variable when viewed on a storm-by-storm basis
(Fig. 3b). The model performed better for the three
storms (Opal, Ivan, and Katrina) with the largest val-
ues of observed outages. This agrees with our previ-
ous work, which shows that the SGHOPM does well
when there are strong storms that have large impacts
on the power system, but the performance is more
uneven for smaller storms.(13)

Fig. 4 compares Guikema et al.’s(8) model to the
two-step version of the SGHOPM developed in this
article. At each census tract in our domain, the to-
tal number of model-predicted outages was summed
over all six storms and this quantity was compared to
the summation of observed outages (Fig. 4). In over
71% of the census tracts, the two-step SGHOPM out-
performed Guikema et al.’s(8) model. The mean ac-
curacy of the outage predictions across the six storms
improved by more than 25% in more than two-fifths
of the census tracts; only 10% of census tracts had
a decrease in accuracy of more than 25%. Much of
this improvement is due to adoption of a two-phase
modeling approach.

In 113 of the 994 census tracts, there were zero
total outages for all six storms. The BC model cor-
rectly predicted zero outages for 78 of these census
tracts (nearly 70%); in these same 78 census tracts,
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Fig. 3. (a) Predicted number of outages (summed for all census tracts) for different covariate sets in the NOZE model. (b) Predicted number
of outages using the NOZE model with the covariate set including baseline plus static variables for each storm-specific holdout.

Guikema et al.’s(8) model predicted over 315,000
outages. Fig. 4 also shows that outage predictions
tend to be more accurate in census tracts that ex-
perience more outages (i.e., tracts with more than

10,000 observed outages over the six storms). This
shows that the model performs better in places
that experience more outages and for stronger
storms.
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Fig. 4. Comparison of model performance for Guikema et al.’s (2014) and two-step model versions of the SGHOPM (colors) for all six
storms in our study. The comparison metric is the percentage decrease in MAE of the “better” model relative to the other. The total
number of observed outages for all six storms is denoted by the given patterns.

6. PARTIAL DEPENDENCE OF RESPONSE
VARIABLE TO COVARIATES

6.1. Variable Importance

Every random forest model measures variable
importance (VI), which is computed as the data are
recursively split into two groups at each node using
a subset of the explanatory variables. For a given co-
variate set, VI for each explanatory variable repre-
sents its usefulness in splitting the data at each node.
A “pure” node does a better job in partitioning the
response variable than an “impure” node. For classi-
fication models (e.g., BC model), VI is measured by

the average decrease in the Gini Index g,(36) which is
a measure of node impurity. For a regression model
(e.g., NOZE model), VI is measured by the average
decrease in the residual sum of squares.

Table VI shows VI for all the explanatory vari-
ables used in the optimal BC model covariate set.
It is common practice to normalize VI by giving the
most important variable a score of 100 (in our case,
maximum wind gust). As expected, based on our
previous work, the duration of strong winds is im-
portant. The variable with the second highest VI
score in the BC model is the density of wood (i.e.,
a trait that is tree species specific). Further analysis
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Table V. Performance Metrics for the 16 Different NOZE Model
Covariate Sets Based on the Storm-Specific Holdout Testing

Model
Improvement

Ratio of Variance to
Observed Variance

(Rvar)NOZE
Covariate
Sets Rank Value Rank Value

Baseline (no BC
model)

9 0.00% 10 0.36

Baseline (BC
model w/ only
baseline)

12 −1.32% 7 0.40

Baseline 7 8.36% 8 0.39
Elevation 1 11.76% 4 0.42
Land cover 3 10.15% 5 0.41
Root zone depth 2 11.42% 9 0.38
Soil moisture 14 −3.84% 6 0.40
SPI 13 −2.48% 15 0.27
Trees 6 9.72% 3 0.48
Static 5 9.95% 1 0.51
Static reduced 4 10.03% 2 0.49
Dynamic 8 0.68% 14 0.28
Dynamic
reduced

15 −4.79% 11 0.33

Full 11 −0.87% 13 0.32
Full reduced 10 −0.84% 12 0.33

Improvement is the reduction in MAE relative to Guikema
et al.’s(8) NOZE-only model. The BC covariate set uses variables
that are in bold italics in Table I unless otherwise noted.

indicates that the mean of the average density
ρ̄0 for census tracts with no observed outages is
604.0, whereas ρ̄1= 614.0 in census tracts with
at least one observed outage. Based on a differ-
ence of means test, this is a statistically signif-
icant difference (p < 0.001). The wood density
variable may be indicative of the relative mix-
ture of softwoods and hardwoods within each cen-
sus tract. It appears that softwood species tend to
be associated with locations that experience lower
fractional outages. This may be because softwoods
are more flexible and therefore bend, but do not
break, under strong winds.

Other important variables are those related to
topography, which includes the mean, median, max-
imum, and minimum elevation of census tracts. El-
evation may serve as a proxy for the proximity to
the coastline. Census tracts that are located closer
to the coast are likely to experience higher wind
speeds and therefore are associated with more out-
ages. An additional consideration is that regions with
higher elevation may leave trees more exposed to
the impacts of high winds,(37) thus leading to more
outages.

Table VI. Variable Importance in the BC Model, Originally
Measured as the Decrease in the Gini Index (g)

Rank Type Variable VI

1 Baseline Max wind speed 100.00
2 Tree Average wood density 89.63
3 Baseline Strong winds duration 87.19
4 Elevation Mean elevation 85.77
5 Elevation Max elevation 76.54
6 Elevation Median elevation 71.91
7 Tree Average crushing strength 59.14
8 Elevation Min elevation 57.99
9 Land cover Wetlands land cover 55.14
10 Tree Percentage taproot 51.66
11 Baseline Population density 47.85
12 Tree Percentage deep 44.85
13 Elevation Elevation stdev 42.04
14 Land cover Developed land cover 41.83
15 Tree Average max tree height 39.09
16 Land cover Scrub land cover 37.78
17 Tree Average Janka hardness 36.99
18 Land cover Barren land cover 31.23
19 Land cover Pasture land cover 30.28
20 Land cover Forest land cover 29.15
21 Tree Average maximum DBH 28.26
22 Tree Grassland land cover 26.84
23 Root zone depth Root zone mean depth 26.70
24 Land cover Water land cover 25.98
25 Tree Percentage treed 24.61
26 Root zone depth Root zone majority depth 1.10

In the NOZE model, the two baseline variables
related to the TC winds have the highest VI scores
(Table VII), with population density ranked as the
fourth most important. Aside from the three baseline
variables, the six highest VI scores belong to vari-
ables describing antecedent SPI and soil moisture.
The VI scores are confirmation of the importance
of the dynamic variables in making fractional outage
predictions.

6.2. Partial Dependence

Partial dependence plots are used to illustrate
the marginal contribution of a single explanatory
variable to the random forest model response with
the rest of the explanatory variables averaged out.
Whereas VI is a single metric, partial dependence
plots show changes in the response variable as a
continuous function of a single explanatory variable
value. Partial dependence plots for the eight explana-
tory variables that were identified as important in the
holdout testing are shown in Fig. 5.
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Table VII. Variable Importance in the NOZE Model, Originally
Measured as the Residual Sum of Squares

Rank Type Variable VI

1 Baseline Max wind speed 100.00
2 Baseline Strong winds duration 87.45
3 SPI SPI12 70.16
4 Baseline Population density 41.05
5 Soil moisture Soil CDF 2 38.54
6 Soil moisture Soil CDF 1 38.42
7 SPI SPI3 37.75
8 SPI SPI24 35.69
9 SPI SPI6 33.33
10 Tree Average wood density 33.01
11 Soil moisture Soil CDF 3 30.38
12 SPI SPI1 30.32
13 Land cover Wetlands land cover 28.69
14 Elevation Max elevation 27.63
15 Tree Percentage deep 26.83
16 Tree Percentage taproot 26.83
17 Root zone depth Root zone mean depth 26.58
18 Tree Average Janka hardness 26.20
19 Tree Average max tree height 25.73
20 Land cover Forest land cover 24.52
21 Tree Percentage treed 23.64
22 Land cover Grassland land cover 22.89
23 Elevation Median elevation 22.19
24 Tree Average crushing strength 22.14
25 Tree Average maximum DBH 6.76

The partial dependence plots for the three base-
line variables (Figs. 5a–c) have similar shape, with a
sudden increase in predicted outages at lower val-
ues that asymptotes at larger values. More specifi-
cally, there is a large spike in outages when maximum
winds are above 20 m/sec (Fig. 5a). There is a signifi-
cant increase in predicted outages when strong winds
(�20 m/sec) last 4 hours or more relative to shorter
durations (Fig. 5b). The fractional outage prediction
increases sharply with population density (Fig. 5c) at
values less than 800 customers per square kilometer,
with a more gradual increase at larger values of pop-
ulation density.

Partial dependence plots are shown for three dy-
namic variables, which are the layer 1 (Fig. 5d) and
layer 2 (Fig. 5e) soil moisture percentiles and the
12-month SPI (Fig. 5f). The two soil moisture plots
show that soil moisture has little explanatory power
in drier soils. However, the partial dependence in-
creases in wetter soils. In general, the stability of soil
decreases with increasing wetness,(13) leading to an
increased susceptibility of trees in saturated soils be-
ing uprooted. The 12-month SPI plot (Fig. 5f) seems
to contradict these findings because it shows a dra-

matic increase in outages when Xi, SPI12 � –1 (which
should be associated with drier soils). However, neg-
ative 12-month SPI values are indicative of longer-
term drought stress on trees, which can lead to weak-
ening and increased susceptibility to being damaged.
Near-surface soil moisture (layers 1 and 2) is not nec-
essarily strongly correlated with long-term drought
conditions. Based on the analysis of the partial de-
pendence plots for the dynamic variables, trees are
most susceptible to being blown down by strong
winds when there are very wet shallow soils in re-
gions where trees have been weakened by long-term
drought conditions.

Average wood density (Fig. 5g) was the static
variable with the highest VI score in the NOZE
model and, as mentioned previously, it was impor-
tant in the BC model. In general, predicted out-
ages increase as census tracts have tree species with
higher wood density, particularly when Xi, density >

650 kg/m3. Loblolly pine (570 kg/m3) is by far the
most prevalent species in our testing region, and, de-
spite its lower wood density, it is more susceptible to
being wind-thrown than other pines. This likely ac-
counts for the increase in predicted outages with de-
creasing wood density values when Xi, density is below
600 kg/m3.

Topographic variables were relatively unimpor-
tant in the NOZE model compared to the other base-
line and dynamic variables (Table VII). However,
the partial dependence plot for maximum elevation
(Fig. 5h) shows that at very low elevations (<50 m),
there is an increase in outages followed by a sharp de-
crease in a minimum around 100 m. This suggests that
topographic variables may be proxies for distance to
the coast. At elevations of more than 100 m, there
is a gradual increase in outages, consistent with the
findings of Chapman.(37)

7. SUMMARY AND CONCLUSIONS

Our results demonstrate that the inclusion of
more variables and the use of a new two-step out-
age prediction model increases the overall accuracy
of the SGHOPM by approximately 17%. Approx-
imately half of this improvement (�9%) is due to
adopting the two-step outage prediction model. In
the first step, the BC model makes a categorical out-
age occurrence/nonoccurrence prediction and then
the NOZE model is used to predict the number of
outages. The addition of the BC model helps address
the zero-inflation issue in the outage data. These
improvements are important because power outages
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Fig. 5. Partial dependent plots for variables identified as being important in the holdout evaluations: (a) maximum wind gust (m/sec), (b)
duration of strong winds (hours), (c) population density (people per square kilometer), (d) soil moisture percentile in layer 1 (0–10 cm), (e)
soil moisture percentile in layer 2 (10–40 cm), (f) 12-month SPI, (g) average dried wood density (kg/m3), and (h) maximum elevation (m).
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due to landfalling tropical cyclones can be expensive
and difficult for utility providers to handle. Providing
an accurate spatial forecast of outages prior to land-
fall can help utility companies with resource alloca-
tion and power restoration.

One way to assess the value of the different types
of variables that we considered for inclusion in the
SGHOPM is to compare the improvement in model
performance when that variable type is added to the
baseline model. The mean improvement in model
performance shows that for the BC model the most
valuable variables (Table III), in order of impor-
tance, are tree characteristics, SPI, soil moisture, land
cover, topography, and RZ depth. For the NOZE
model, the most valuable variables (Table IV), in or-
der of importance, are SPI, soil moisture, tree char-
acteristics, land cover, topography, and RZ depth.
Therefore, it is clear that the inclusion of tree char-
acteristics and antecedent meteorological conditions
(SPI and soil moisture) are valuable and significantly
improve the accuracy of the SGHOPM. Land cover
and topography variables are also useful, but to a
lesser extent, and the inclusion of RZ depth had a
minimal impact on the model.

We have demonstrated that while the three vari-
ables used in Guikema et al.’s(8) version of the
SGHOPM are the most important for modeling
power outages, the inclusion of information on ele-
vation, land cover, soil, precipitation, and vegetation
characteristics improves the predictive accuracy. The
static variables (elevation, land cover, soil, and
vegetation characteristics) provide a general and in-
variant assessment of power failure vulnerability for
each census tract. In particular, the tree characteris-
tics help to identify locations that are susceptible to
outages due to the density and type of trees present.
The dynamic variables (precipitation and soil mois-
ture) determine how antecedent meteorological con-
ditions either increase or decrease the vulnerability
of trees being wind-thrown and lead to outages. The
results suggest that wetter soils reduce soil stabil-
ity, which, in turn, increases the probability of trees
being blow over. In addition, long-term precipita-
tion deficits associated with drought conditions also
weaken the trees and therefore are associated with
increased outages.
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