CONFLICT OF INTEREST: No conflict of interest has been declared by the authors.

FUNDING: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

ABSTRACT

Aims: To evaluate the prevalence of needle fear and summarize the characteristics of individuals who exhibit this fear.

Background: Injections are among the most common medical procedures, yet fear of needles can result in avoidance of preventive measures and treatment.

Design: Systematic review and meta-analysis.

Data Sources: MEDLINE (1966-2017), Embase (1947-2017), PsycINFO (1967-2017) and CINAHL (1961-2017) were searched, with no restrictions by age, gender, race, language, or country.

Review Methods: Prevalence of needle fear was calculated and restricted maximum likelihood random effects models were used for meta-analysis and meta-regression.

Results: The search yielded 119 original research articles which are included in this review, of which 35 contained sufficient information for meta-analysis. The majority of children exhibited needle fear, while prevalence estimates for needle fear ranged from 20-50% in adolescents and 20-30% in young adults. In general, needle fear decreased with increasing age. Both needle fear and needle phobia were more prevalent in females than males. Avoidance of influenza vaccination because of needle fear occurred in 16% of adult patients, 27% of hospital employees, 18% of workers at long-term care facilities and 8% of healthcare workers at hospitals. Needle fear was common when undergoing venipuncture, blood donation and in those with chronic conditions requiring injection.
Conclusions: Fear of needles is common in patients requiring preventive care and in those undergoing treatment. Greater attention should be directed to interventions which alleviate fear in high risk groups.

KEY WORDS: fear, phobia, anxiety, needle, injection, medical nursing, mental health

PROSPERO registration number: CRD42017070595.

SUMMARY STATEMENT

Why is this research or review needed?

- Patients often express a fear of needles or injection.
- Because the use of needles is ubiquitous in clinical settings, it is important to understand who is at higher risk of needle fear and the consequences of needle fear.

What are the key findings?

- Children exhibited the greatest fear of needles and the prevalence decreased with age.
- Women have greater needle fear than men, across all countries studied.
- Approximately 1 in 6 healthcare workers in long-term care facilities and 1 in 13 healthcare workers in hospitals avoided influenza vaccination because of the fear of needles.

How should the findings be used to influence policy/practice/research/education?

- Greater attention should be given to evidence-based approaches to alleviate fear during injections.
- Although some non-needle options are available, there is a need to expand possible non-needle alternatives for vaccination, fluid administration and drug delivery.

1 | INTRODUCTION
Certain medical devices are so valuable in the practice of nursing and medicine that they are used worldwide. The hypodermic needle is one such device. It is employed for vascular, intradermal, subcutaneous and intramuscular access, as well as for biopsy and drug delivery across an extensive range of tissues (e.g., epidural, intraperitoneal). While routinely used in clinical settings such as hospitals and medical offices, hypodermic needles are also frequently used in community settings for public health purposes and in home settings for patients with disabilities.

Across these settings, it is often the nurse who administers injections or who draws blood. Indeed, these procedures are among the skills taught in nursing schools throughout the world (Altman, Wcisel, & Kerestzes, 2010). Beyond the expertise required for the administration of injections, however, are the psychosocial aspects of such delivery which are experienced by the patient. Because fear of needles is one such emotion observed in some patients who may anticipate pain, we conducted a systematic review of the fear of needles to explore the prevalence of this condition.

1.1 | Background

In a World Health Organization study of 10 major regions in the world, the frequency of needle injections averaged from 2-11 per person each year (Hutin & Chen, 1999). Such injections are among the most common medical procedures, integral for both for preventive and treatment purposes. Yet, the fear of needles can delay or result in avoidance of preventive measures such as vaccination and may also deter blood donation, venipuncture during routine clinical evaluation and necessary treatment for various acute and chronic conditions (Wright, et al., 2009).

The terms “needle fear” and “needle phobia” both describe anxiety associated with needles and situations where needles or injections are used. However, needle phobia, as defined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), is a more extreme psychiatric disorder than generalized fear and often involves visual avoidance of the phobic stimulus, as well as a diphasic vasovagal response featuring an initial increase and subsequent precipitous decrease in blood pressure, which can result in fainting (Jenkins, 2014). Needle phobia per se occurs less often than the generalized fear or anxiety associated with needles (Wright, et al., 2009). Classical conditioning based on shared negative experiences of painful procedures may also invoke needle fear or phobia (Jenkins, 2014).
While fear may be acknowledged in practice, the extent of needle fear and the characteristics of persons affected have not yet been fully described. A better understanding of this condition may enable efforts to develop interventions to alleviate fear so that necessary procedures can be undertaken.

2 | THE REVIEW

2.1 | Aims

This systematic review was conducted to (1) assemble the body of literature available regarding the prevalence of needle fear and phobia; (2) summarize the prevalence of needle fear and phobia across demographic and clinical factors; and (3) assess the degree of vaccination avoidance because of needle fear.

2.2 | Design

A systematic review and meta-analysis was performed using established guidelines for observational research (Rogers, 2014; Stroup, et al., 2000; Joanna Briggs Institute, 2015), as well as the general procedures outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). The investigation was registered in PROSPERO, the International Prospective Register of Systematic Reviews (CRD42017070595).

2.3 | Inclusion/exclusion criteria

Eligibility criteria were: (1) scientific publication of original research; (2) fear or phobia of needles was investigated in the study; (3) data were included regarding the frequency of needle fear; and (4) the study was conducted in humans. We included articles that assessed fear of needles in general, as well as the blood-injection-injury subtype of phobia as classified by the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV).

2.4 | Search methods

Data emanated from original research studies where there were data regarding fear of needles. The bibliographic databases searched were Medical Literature Analysis and Retrieval System (MEDLINE, 1966-6/21/2017), Excerpta Medica dataBASE (Embase, 1947-
6/21/2017), PsycINFO (1967-6/21/2017) and Cumulative Index to Nursing and Allied Health Literature (CINAHL, 1961-6/21/2017). There were no language restrictions, nor were there restrictions by age, gender, race, or country of origin. The search terms included Boolean logic and controlled vocabularies to retrieve terms such as “injections” (MeSH Major Topic) and “needles” (MeSH Major Topic); the search strategy is listed in Appendix Table 1). We also conducted first-level backward chain-searching of review articles on needle fear (i.e., evaluation of review articles for information regarding original studies).

2.5 | Search outcome
Of the databases searched, there were 559 records retrieved and 357 records screened (flow diagram, Figure 1). Of the 227 full text articles assessed for eligibility, 119 satisfied eligibility criteria for this review. Study eligibility was ascertained independently by each author after review of the title and abstract. Differences in eligibility were flagged and resolved through discussion. This was followed by an independent review of eligibility by each author based on the entire research article. Reasons for exclusion were: (1) not an original research study (N=52), (2) prevalence of needle fear was not given (N=42) and (3) the study did not examine needle fear (N=14). Of the 119 studies included in this review, there were 35 articles that contained sufficient information to allow either meta-analysis of a summary measure or meta-regression.

2.6 | Quality appraisal
Because the outcome of interest was prevalence, quality assessment was evaluated using epidemiologic standards established for accurate assessment of prevalence (Rothman, Greenland, & Lash, 2012), as well as international standards for survey research (De Leeuw, Hox, & Dillman, 2012). The criteria were: (1) the response rate; (2) the use of population-based representative sampling; (3) employing a random sample of the target reference group; and (4) whether a standardized instrument was used to assess needle fear or phobia. Each of the four elements was determined independently by the two authors; when there was disagreement after review, the original article was re-reviewed for clarity.

2.7 | Data abstraction
This article is protected by copyright. All rights reserved
Data regarding study characteristics (e.g., first author, year of publication, location), study sample (e.g., age, gender, disease/condition), how fear/phobia was assessed and prevalence of fear were independently extracted by each author. Differences were resolved through discussion.

2.8 | Synthesis

Prevalence and 95% exact confidence intervals were calculated for each study. Data were grouped according to the specific type of outcome measured (fear, phobia) and by personal characteristics (e.g., gender, occupation). Heterogeneity was evaluated by using I^2 (inconsistency index) and τ^2 (between-study variance). For results that were heterogeneous (where a summary measure could not be pooled), data were plotted and meta-regression was performed. In meta-regression, between-study variance was modelled using random effects restricted maximum likelihood and p-values and confidence intervals were calculated using the Knapp-Hartung method. To pool prevalence, a restricted maximum likelihood random-effects model was used in meta-analysis and the Freeman-Tukey arcsin transformation was applied. Alpha was set at 0.05 (2-tailed) and results were conducted in Stata/MP 15.1 (College Station, TX).

3 | RESULTS

3.1 | Overall characteristics of the studies

The 119 eligible publications ranged from large population-based national surveys to small clinical studies (Appendix Table 2). The clinical studies generally included patients in whom injections were frequent such as children with type 1 diabetes and patients receiving routine dental procedures. There were also large population-based studies from several countries, including Australia, Germany, India, Mexico, the Netherlands, South Korea, Sweden and the United States.

In quality assessment, 36 of the 119 eligible studies (30%) had response rates of >80% (Appendix Table 3). Thirty studies involved a population-based sample and 22 extracted random samples from a targeted reference group. Of the 119 studies, 74.8% involved the use of standardized instruments to assess fear or phobia.

3.2 | Prevalence by age

This article is protected by copyright. All rights reserved
There was considerable variation in the fear of needles by age ($I^2=99.9\%, \tau^2=0.08$). Fear of needles was greatest in children, especially younger children and decreased with age (Figure 2). The results of meta-regression indicated that, for every decade increase in age (years), there was an 8.7% (95% CI: $6.0\%, 11.4\%$) decrease in the prevalence of needle fear ($p<0.001$). The majority of children exhibited a fear of needles, while prevalence estimates ranged from 20% to 50% in adolescents. For adults who were 20-40 years, the prevalence of needle fear approximated 20% to 30%. It is noticeable that this prevalence dropped appreciably with older age and was $<5\%$ at the oldest ages.

3.3 | Prevalence by gender

For both needle fear and needle phobia, the prevalence was greater in girls than boys and was greater in women than men. For studies that reported prevalence in both genders, the results were graphed by gender and the female:male prevalence ratio was calculated (Appendix Figure 1). In each of the studies, the point estimate was greater in females than males. For needle fear, the pooled female:male prevalence ratio was 1.4 (95% CI: $1.1, 1.8$) with I^2 of 89.8% and τ^2 of 0.067. For needle phobia, the pooled female:male prevalence ratio was 1.7 (95% CI: $1.3, 2.1$) with I^2 of 63.4% and τ^2 of 0.038.

Gender differences in the prevalence of needle fear were evident across different countries (Appendix Figure 1). Even with the gender differences, there was considerable heterogeneity in prevalence across different countries. Needle fear was particularly high in Saudi Arabia and Israel, but quite low in Sweden. For needle phobia, Mexico and India had greater prevalence, while South Korea and Germany had low levels.

3.4 | Prevalence by disease/condition

Many of the investigations reported fear of needles in patients with specific diseases or conditions. The results are shown in Table 1, with prevalence ranked within categories. Most of the studies were conducted in populations where injections were necessary for treatment. These included patients with cancer undergoing chemotherapy (prevalence of fear ranged from 15.7-84.0\%), individuals with diabetes (prevalence ranged from 1.3-41.7\%) and persons undergoing routine dental procedures (prevalence of fainting 1.7%; prevalence of needle fear 11.7-91.0\%). The prevalence of needle fear was also considerable for those with allergies, asthma, multiple sclerosis, spinal conditions, psychiatric disorders and those...
undergoing dialysis. There was also high prevalence of needle fear when people were surveyed in various settings such as primary care clinics and in the hospital, as well as in people who donate blood or who were planning to travel and required vaccination.

3.5 Avoidance of medical procedures due to fear of needles

The results showed evidence of vaccination avoidance for influenza because of the fear of needles or injections (Figure 3). The prevalence of avoidance due to fear was 27% in hospital employees, 18% in health care workers at long-term care facilities ($I^2=0.0\%, \tau^2<0.001$), 8% in health care workers at hospitals ($I^2=23.8\%, \tau^2=0.001$), 16% in adult patients ($I^2=0.0\%, \tau^2<0.001$) and 6% in older adult patients ($I^2=41.1\%, \tau^2=0.002$).

Results were similar for avoidance of other vaccines. In a nationally representative sample of the US adults, 19% did not obtain a pneumococcal vaccination and 20% did not obtain a tetanus vaccination because of dislike of needles (Johnson, et al., 2008). In a survey of 100 US physicians, 71% indicated that fear of needles was a contributing factor to not obtaining a tetanus vaccination; the figures were 71% and 69% for influenza vaccination and pneumococcal vaccination, respectively (Johnson, et al, 2008). In a nationally representative survey of individuals 65 years and older in the US, 2.6% did not obtain a pneumococcal vaccination because the person “didn’t like shots or needles” (CDC, 1999).

Non-compliance with immunization due to needle fear occurred in 8% of children and 7% of parents in a sample from Canada; moreover, the degree of non-compliance was positively associated with the degree of fear (Taddio, et al., 2012). For patients in Australia attending a general practice clinic, 64.1% of those with needle fear indicated avoiding future flu vaccination and 30.8% would avoid future tetanus vaccination; this compared to 19.5% and 7.0% for those without needle fear, respectively (Wright, et al., 2009). In these patients, needle fear was also associated with avoiding blood tests, avoiding pain relief and avoiding blood donation (Wright, et al., 2009). In a study of Japanese children, 52.2% of those with needle fear were unwilling to receive a vaccine at baseline which decreased to 27.5% after a participatory educational event (Kajikawa, et al., 2014).

Avoidance of other medical procedures was also demonstrated. Fear of needles was associated with avoiding having one’s blood drawn (Deacon & Abramowitz, 2006), avoiding insulin injections in patients with diabetes (Zambanini et al., 1999), avoiding undergoing amniocentesis while pregnant (Peters, 1984) and cancelling a dental appointment or avoiding
a dentist (Crawford, et al., 2005; Vika, et al., 2006; Kaakko, et al., 1998; Hakeberg & Berggren, 1997; Milgrom, et al., 1997).

4 | DISCUSSION

In this review, we found significant variation in needle fear by age and gender. Young children and women exhibited higher prevalence of needle fear and phobia, regardless of country of origin. Throughout the world, women have largely taken the responsibility for their children's daily health concerns (World Bank, 2012). Even in developed countries, the vast majority of children's medical visits are handled by the mother (Daly & Groes, 2017). Because vaccinations and medical procedures often involve needles, the fear of such needles by a disproportionate number of children and mothers could be an under-recognized impediment to preventive measures and treatment. Fadel et al., (2017) found that, in the United States, younger infants and infants with younger mothers were more likely to have received no vaccinations. The odds of infants having no vaccinations were 5 times greater in those with younger mothers (<20 years) compared to those with mothers ≥30 years of age (Fadel et al., 2017).

The degree of needle fear in patients who require injections due to the nature of their disease was striking. For example, 40.9% of children with type 1 diabetes were fearful of injections when they were first diagnosed in the hospital, although this declined to 9.5% at the third clinic visit which was 6-9 months after the initial diagnosis (Howe, et al., 2011). Caregivers of patients with type 1 diabetes also reported fear of injections or fear of infusion site changes for continuous subcutaneous insulin infusion; this occurred in 32.7% of caregivers in one study (Cemeroglu, et al., 2015). Moreover, they found that patients with type 1 diabetes who exhibited more fear had greater glycated haemoglobin levels. For some patients with long-standing type 1 diabetes, it may be difficult to discern whether the fear emanates from the injection itself or from anticipation of a hypoglycemic event. Fear of self-injection for pregnant women with gestational diabetes was also shown to be quite prevalent – 38.5% at 27 weeks gestation (Feitosa, et al., 2013).

Avoidance of preventive measures due to needle fear also occurred. We found that 8% of healthcare workers in hospitals and 18% of workers in long-term care facilities avoided influenza vaccination because of the fear of needles. There was also evidence of
avoidance of vaccination for tetanus and pneumococcal disease (Johnson et al., 2008; CDC, 1999). Relatively small reductions in vaccine coverage have been shown to result in significant increases in disease cases with appreciable rises in public sector costs (Lo & Hotez, 2017). Healthcare worker vaccination leads to less staff absenteeism due to illness (Van Buynder, et al., 2015) and greater nurse staffing levels have been associated with lower patient mortality (Aiken, et al., 2014).

4.1 | Limitations

This review is limited by the inherent characteristics of the underlying original research articles. For population statistics, not all samples were randomly chosen and, for clinical samples, some involved referrals while others included a small number of participants. Authors often used different scales or types of questions for assessing fear and, therefore, there is a need for studies to determine the accuracy and reliability of such patient-reported outcomes and to develop a more unified approach to assessment so that prevalence can be compared across settings and cultures. Moreover, relevant technologies continuously change so that review and evaluation of patient outcomes using these devices require constant updating.

4.2 | Implications for future research and practice

While needle fear is occasionally mentioned as a contributor to vaccine hesitancy, there are relatively few studies designed to address this problem (Salmon, et al., 2015). There is a lack of applied public health and clinical research on methods of delivery which target factors such as needle size, injection speed, or non-needle approaches (Noel, et al., 2015). It is perhaps not surprising that a routine childhood vaccine that does not involve a needle has the highest rates of vaccination (i.e., polio vaccination rate = 93.7% in year 2015 in the United States) (National Center for Health Statistics, 2017). Approaches meant to reduce vaccine hesitancy target communication strategies for notification, reminders, or incentives, but may not directly address the needle itself (Jarrett, et al., 2015). In a randomized trial, a needle-free jet injector was found to be non-inferior to the usual needle delivery system for influenza vaccination (McAllister, et al., 2014). Yet needle-free jet injectors are not in widespread use. Other examples of novel approaches to replace typical injection procedures include microneedles, mouth strips, nano-patches, mucosal administration and edibles

This article is protected by copyright. All rights reserved
Such needle-free methods could also potentially reduce needle-stick injuries which pose safety concerns in healthcare settings (Tarigan, et al., 2015).

There have been various approaches to confront the underlying fear. Because healthcare professionals sometimes underestimate patients’ needle anxiety (Liden, et al., 2012), improved assessment of symptoms may be necessary. There are guidelines for reducing pain during needle injections which is a reasonable starting point (Taddio, et al., 2015). McMurtry et al. (2015) found that some psychological interventions targeted to needle fear and various muscle tension techniques to avoid fainting may provide benefits, although the quality of the evidence was low. Lilliecreutz et al. (2010) conducted a trial in pregnant women who exhibited blood- and injection-phobia. In their study, cognitive behavioral therapy significantly reduced phobia as well as depressive symptoms. There is evidence that specific cognitive-behavioural interventions, hypnosis and distraction (with nurse coaching) during an injection may lower distress in children and adolescents (Uman et al., 2008).

5 | CONCLUSION

In conclusion, fear of needles occurs frequently in populations throughout the world, with higher prevalence at younger ages and in women. Fear of needles is common in patients requiring preventive care as well as those undergoing treatment. Greater attention should be given to alleviate this fear with an ultimate goal of improving health. We recommend implementation studies of non-needle approaches to standard needle injection, with direct application to public health and clinical settings. We also recommend randomized trials to assess specific cognitive and behavioral strategies to alleviate fear.

Author Contributions:

All authors have agreed on the final version and meet at least one of the following criteria (recommended by the ICMJE*):

1) substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data;

2) drafting the article or revising it critically for important intellectual content.
REFERENCES

Aiken, L.H., Sloane, D.M., Bruyneel, L., Van den Heede, K., Griffiths, P., Busse, R.,
Diomidous, M., Kinnunen, J., Kózka, M., Lesaffre, E., McHugh, M.D. (2014). Nurse
staffing and education and hospital mortality in nine European countries: a retrospective

Australian Dental Journal, **55**(4), 368-77.

Bahrmann, A., Abel, A., Zeyfang, A., Pettrak, F., Kubiak, T., Hummel, J., Oster, P.,
Bahrmann, P. (2014). Psychological insulin resistance in geriatric patients with diabetes

Benjet, C., Borges, G., Stein, D.J., Méndez, E., Medina-Mora, M.E. (2012). Epidemiology of
fears and specific phobia in adolescence: Results from the Mexican adolescent mental

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

Noel, M., Taddio, A., McMurtry, C.M., Chambers, C.T., Riddell, R.P., Shah, V. (2015). HELPinKids&Adults knowledge synthesis of the management of vaccination pain and
high levels of needle fear: Limitations of the evidence and recommendations for future research. The Clinical Journal of Pain, 31(Suppl 10), S124.

This article is protected by copyright. All rights reserved

Psychology, 54(1), 116.

FIGURES
FIGURE 1. Flow Diagram of Eligible Studies

FIGURE 2. Fear of Needles by Age

FIGURE 3: Forest Plot of the Proportion of Individuals who Avoided Influenza Vaccination because of Needle Fear
TABLE 1. Prevalence of Needle Fear or Phobia by Disease and Clinical Setting

<table>
<thead>
<tr>
<th>Category</th>
<th>First Author</th>
<th>Year of Publication</th>
<th>Prevalence</th>
<th>95% Confidence Internal</th>
<th>Description of injection fear or phobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions/Disease:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergy:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feireira</td>
<td>2013</td>
<td>11.0%</td>
<td>6.8%</td>
<td>15.2%</td>
<td>Fear of allergy shots.</td>
</tr>
<tr>
<td>Asthma:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeVos</td>
<td>2012</td>
<td>77.8%</td>
<td>58.6%</td>
<td>97.0%</td>
<td>Injection fear in children starting immunotherapy.</td>
</tr>
<tr>
<td>Cancer:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kettwich</td>
<td>2007</td>
<td>84.0%</td>
<td>69.6%</td>
<td>98.4%</td>
<td>Needle phobia of syringe. Children undergoing chemotherapy.</td>
</tr>
<tr>
<td>Kettwich</td>
<td>2007</td>
<td>68.0%</td>
<td>49.7%</td>
<td>86.3%</td>
<td>Needle phobia of butterfly needle. Children undergoing chemotherapy.</td>
</tr>
<tr>
<td>Kettwich</td>
<td>2007</td>
<td>64.0%</td>
<td>45.2%</td>
<td>82.8%</td>
<td>Needle phobia of syringe. Adults undergoing chemotherapy.</td>
</tr>
<tr>
<td>Kettwich</td>
<td>2007</td>
<td>52.0%</td>
<td>32.4%</td>
<td>71.6%</td>
<td>Needle phobia of butterfly needle. Adults undergoing chemotherapy.</td>
</tr>
</tbody>
</table>

Injection anxiety in women with breast cancer.

Patients with blood-injection-injury fear undergoing chemotherapy.

Fear of injections in patients undergoing intravenous chemotherapy.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Percentage1</th>
<th>Percentage2</th>
<th>Percentage3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox</td>
<td>2007</td>
<td>41.0%</td>
<td>30.1%</td>
<td>51.9%</td>
</tr>
<tr>
<td>Cox</td>
<td>2007</td>
<td>37.5%</td>
<td>30.9%</td>
<td>44.1%</td>
</tr>
<tr>
<td>Harris</td>
<td>2009</td>
<td>16.9%</td>
<td>10.8%</td>
<td>24.7%</td>
</tr>
<tr>
<td>Carey</td>
<td>2005</td>
<td>15.7%</td>
<td>10.7%</td>
<td>20.8%</td>
</tr>
</tbody>
</table>

Dental Patients:

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Percentage1</th>
<th>Percentage2</th>
<th>Percentage3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naidu</td>
<td>2010</td>
<td>91.0%</td>
<td>85.4%</td>
<td>96.6%</td>
</tr>
<tr>
<td>Taani</td>
<td>2001</td>
<td>82.6%</td>
<td>78.7%</td>
<td>86.5%</td>
</tr>
<tr>
<td>Taani</td>
<td>2001</td>
<td>82.1%</td>
<td>78.1%</td>
<td>86.0%</td>
</tr>
<tr>
<td>Earl</td>
<td>1994</td>
<td>81.0%</td>
<td>73.5%</td>
<td>88.5%</td>
</tr>
<tr>
<td>Boyle</td>
<td>2009</td>
<td>78.0%</td>
<td>71.4%</td>
<td>84.6%</td>
</tr>
<tr>
<td>Doebling</td>
<td>2000</td>
<td>68.1%</td>
<td>59.3%</td>
<td>76.9%</td>
</tr>
<tr>
<td>Doebling</td>
<td>2000</td>
<td>54.1%</td>
<td>44.7%</td>
<td>63.5%</td>
</tr>
<tr>
<td>Elmore</td>
<td>2014</td>
<td>42.6%</td>
<td>32.6%</td>
<td>52.5%</td>
</tr>
<tr>
<td>Berggren</td>
<td>1992</td>
<td>37.0%</td>
<td>27.9%</td>
<td>46.1%</td>
</tr>
<tr>
<td>van Maanen</td>
<td>2009</td>
<td>35.2%</td>
<td>26.9%</td>
<td>44.1%</td>
</tr>
<tr>
<td>Crawford</td>
<td>2005</td>
<td>26.0%</td>
<td>22.9%</td>
<td>29.1%</td>
</tr>
<tr>
<td>Elmore</td>
<td>2014</td>
<td>25.5%</td>
<td>16.7%</td>
<td>34.3%</td>
</tr>
<tr>
<td>Van Wijk</td>
<td>2012</td>
<td>25.5%</td>
<td>19.9%</td>
<td>31.1%</td>
</tr>
<tr>
<td>Milgrom</td>
<td>1997</td>
<td>18.9%</td>
<td>15.6%</td>
<td>22.6%</td>
</tr>
<tr>
<td>Vika</td>
<td>2006</td>
<td>16.5%</td>
<td>14.3%</td>
<td>18.7%</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Percentage 1</td>
<td>Percentage 2</td>
<td>Percentage 3</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Majstorovic</td>
<td>2004</td>
<td>16.0%</td>
<td>14.4%</td>
<td>17.6%</td>
</tr>
<tr>
<td>Kaakko</td>
<td>1998</td>
<td>14.7%</td>
<td>10.1%</td>
<td>19.2%</td>
</tr>
<tr>
<td>Armfield</td>
<td>2010</td>
<td>13.8%</td>
<td>12.0%</td>
<td>15.5%</td>
</tr>
<tr>
<td>Bajric</td>
<td>2015</td>
<td>11.7%</td>
<td>6.5%</td>
<td>18.8%</td>
</tr>
<tr>
<td>Vika</td>
<td>2008</td>
<td>11.3%</td>
<td>6.2%</td>
<td>16.4%</td>
</tr>
<tr>
<td>Crawford</td>
<td>2005</td>
<td>8.0%</td>
<td>6.1%</td>
<td>9.9%</td>
</tr>
<tr>
<td>Liddell</td>
<td>1998</td>
<td>7.8%</td>
<td>5.5%</td>
<td>10.2%</td>
</tr>
<tr>
<td>DeJongh</td>
<td>1998</td>
<td>5.5%</td>
<td>2.0%</td>
<td>8.9%</td>
</tr>
<tr>
<td>Milgrom</td>
<td>1997</td>
<td>4.6%</td>
<td>2.8%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Vika</td>
<td>2006</td>
<td>1.7%</td>
<td>0.9%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Diabetes:

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Percentage 1</th>
<th>Percentage 2</th>
<th>Percentage 3</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zambanini</td>
<td>1999</td>
<td>41.7%</td>
<td>32.7%</td>
<td>50.8%</td>
<td>Troubled by more injections. Types 1 & 2 diabetes taking insulin.</td>
</tr>
<tr>
<td>Howe</td>
<td>2011</td>
<td>40.9%</td>
<td>20.4%</td>
<td>61.5%</td>
<td>Fear of injections. Type 1 diabetes in hospital at time of diagnosis.</td>
</tr>
<tr>
<td>Feitosa</td>
<td>2013</td>
<td>38.5%</td>
<td>26.6%</td>
<td>50.3%</td>
<td>Fear of self-injection, pregnant women with diabetes at 27 weeks gestation.</td>
</tr>
<tr>
<td>Hanas</td>
<td>1997</td>
<td>34.2%</td>
<td>26.8%</td>
<td>41.6%</td>
<td>Phobia at the sight of a needle. Children and adolescents with type 1 diabetes.</td>
</tr>
<tr>
<td>Cemeroglu</td>
<td>2015</td>
<td>32.7%</td>
<td>25.2%</td>
<td>40.2%</td>
<td>Caregivers of children and adolescents with type 1 diabetes. Fear of injections or fear of infusion site changes for continuous subcutaneous insulin infusion.</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Fear of Injections</td>
<td>Fear of Injection Site Changes</td>
<td>Fear of Blood Glucose Testing</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Cemerglu</td>
<td>2015</td>
<td>22.0%</td>
<td>13.9%</td>
<td>30.1%</td>
<td></td>
</tr>
<tr>
<td>Zambanini</td>
<td>1999</td>
<td>13.9%</td>
<td>7.6%</td>
<td>20.2%</td>
<td></td>
</tr>
<tr>
<td>Simmons</td>
<td>2007</td>
<td>13.4%</td>
<td>6.0%</td>
<td>20.8%</td>
<td></td>
</tr>
<tr>
<td>Feitosa</td>
<td>2013</td>
<td>12.7%</td>
<td>4.5%</td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td>Simmons</td>
<td>2007</td>
<td>11.1%</td>
<td>4.3%</td>
<td>18.0%</td>
<td></td>
</tr>
<tr>
<td>Simmons</td>
<td>2007</td>
<td>10.0%</td>
<td>4.1%</td>
<td>15.9%</td>
<td></td>
</tr>
<tr>
<td>Howe</td>
<td>2011</td>
<td>9.5%</td>
<td>0.0%</td>
<td>22.1%</td>
<td></td>
</tr>
<tr>
<td>Hanas</td>
<td>1997</td>
<td>8.2%</td>
<td>3.9%</td>
<td>12.5%</td>
<td></td>
</tr>
<tr>
<td>Simmons</td>
<td>2007</td>
<td>1.4%</td>
<td>0.0%</td>
<td>4.3%</td>
<td></td>
</tr>
<tr>
<td>Mollema</td>
<td>2001</td>
<td>1.3%</td>
<td>0.7%</td>
<td>1.9%</td>
<td></td>
</tr>
</tbody>
</table>

Dialysis Patients:

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Fear of Injections</th>
<th>Fear of Injection Site Changes</th>
<th>Fear of Blood Glucose Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulder</td>
<td>2013</td>
<td>55.3%</td>
<td>44.7%</td>
<td>65.9%</td>
</tr>
<tr>
<td>Mulder</td>
<td>2013</td>
<td>41.2%</td>
<td>30.7%</td>
<td>51.7%</td>
</tr>
<tr>
<td>Mulder</td>
<td>2013</td>
<td>26.7%</td>
<td>17.2%</td>
<td>36.2%</td>
</tr>
</tbody>
</table>

Adolescents with type 1 diabetes. Fear of injections or fear of infusion site changes for continuous subcutaneous insulin infusion.

Avoid injections secondary to anxiety. Patients with types 1 & 2 diabetes taking insulin.

Needle fear when I have to inject myself. Children with type 1 diabetes.

Needle fear when I have to test my blood glucose. Children with type 1 diabetes.

Needle fear when my mom/dad injects me. Children with type 1 diabetes.

Needle fear when my mom/dad tests my blood glucose. Children with type 1 diabetes.

Fear of self-injection, pregnant women with diabetes at 37 weeks gestation.

Fear of injections. Type 1 diabetes at 6-9 months postdiagnosis.

Pronounced needle phobia. Children and adolescents with type 1 diabetes.

Needle fear when my mom/dad tests my blood glucose. Children with type 1 diabetes.

I feel afraid at the moment that the nurse comes to insert the needle.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Needle Phobia/Injection Anxiety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulder</td>
<td>2013</td>
<td>25.9% 16.5% 35.3%</td>
</tr>
<tr>
<td>Multiple Sclerosis:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mohr</td>
<td>2001</td>
<td>44.0% 34.3% 53.7%</td>
</tr>
<tr>
<td>Turner</td>
<td>2009</td>
<td>41.4% 31.2% 51.6%</td>
</tr>
<tr>
<td>Pregnancy/Prenatal counseling:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peters</td>
<td>1984</td>
<td>17.0% 9.6% 24.4%</td>
</tr>
<tr>
<td>Lilliecreutz</td>
<td>2008</td>
<td>7.2% 5.9% 8.6%</td>
</tr>
<tr>
<td>Psychiatric:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tompkins</td>
<td>2007</td>
<td>57.8% 42.2% 72.3%</td>
</tr>
<tr>
<td>Starcevic</td>
<td>1997</td>
<td>27.1% 16.4% 40.3%</td>
</tr>
<tr>
<td>Terra</td>
<td>2007</td>
<td>2.9% 0.0% 6.2%</td>
</tr>
<tr>
<td>Spina bifida:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royle</td>
<td>2008</td>
<td>19.0% 7.3% 30.7%</td>
</tr>
<tr>
<td>Spinal cord injury:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royle</td>
<td>2008</td>
<td>10.0% 5.7% 14.3%</td>
</tr>
</tbody>
</table>
559 records identified through database searches (MEDLINE, Embase, CINAHL, PsycINFO)

357 records after duplicates removed

357 records screened

130 records excluded

227 full-text articles assessed for eligibility

108 full-text articles excluded:
- 52 not original research
- 42 no prevalence
- 14 no needle fear

119 articles included in the review

35 articles included in meta-analysis
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>N</th>
<th>Weight (%)</th>
<th>Proportion (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital Employees (with & without patient contact)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watanakunakorn</td>
<td>1993</td>
<td>724</td>
<td>12.27</td>
<td>0.27 (0.23, 0.31)</td>
</tr>
<tr>
<td>Health Care Workers at Long-term Care Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas</td>
<td>1993</td>
<td>105</td>
<td>12.27</td>
<td>0.16 (0.10, 0.23)</td>
</tr>
<tr>
<td>Heimberger</td>
<td>1995</td>
<td>757</td>
<td>87.73</td>
<td>0.18 (0.16, 0.20)</td>
</tr>
<tr>
<td>Subtotal (I² = 0.0%; Cochrane Q, p = 0.63)</td>
<td></td>
<td></td>
<td></td>
<td>0.18 (0.16, 0.20)</td>
</tr>
<tr>
<td>Health Care Workers at Hospitals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nichol</td>
<td>1997</td>
<td>152</td>
<td>15.14</td>
<td>0.06 (0.02, 0.10)</td>
</tr>
<tr>
<td>Harbarth</td>
<td>1998</td>
<td>757</td>
<td>47.02</td>
<td>0.09 (0.07, 0.11)</td>
</tr>
<tr>
<td>Begue</td>
<td>1998</td>
<td>43</td>
<td>4.88</td>
<td>0.08 (0.02, 0.14)</td>
</tr>
<tr>
<td>Naz</td>
<td>2009</td>
<td>420</td>
<td>32.97</td>
<td>0.07 (0.05, 0.09)</td>
</tr>
<tr>
<td>Subtotal (I² = 23.8%; Cochrane Q, p = 0.38)</td>
<td></td>
<td></td>
<td></td>
<td>0.08 (0.06, 0.10)</td>
</tr>
<tr>
<td>Pediatricians</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heininger</td>
<td>2003</td>
<td>25</td>
<td></td>
<td>0.04 (0.00, 0.08)</td>
</tr>
<tr>
<td>Adult Patients (any age)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson</td>
<td>2008</td>
<td>2002</td>
<td>91.84</td>
<td>0.16 (0.14, 0.18)</td>
</tr>
<tr>
<td>Wright</td>
<td>2009</td>
<td>177</td>
<td>8.16</td>
<td>0.14 (0.10, 0.18)</td>
</tr>
<tr>
<td>Subtotal (I² = 0.0%; Cochrane Q, p = 0.55)</td>
<td></td>
<td></td>
<td></td>
<td>0.16 (0.14, 0.18)</td>
</tr>
<tr>
<td>Older Adult Patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drociuk</td>
<td>1999</td>
<td>4503</td>
<td>76.62</td>
<td>0.06 (0.05, 0.08)</td>
</tr>
<tr>
<td>Zimmerman</td>
<td>2003</td>
<td>225</td>
<td>23.38</td>
<td>0.08 (0.05, 0.11)</td>
</tr>
<tr>
<td>Subtotal (I² = 41.1%; Cochrane Q, p = 0.19)</td>
<td></td>
<td></td>
<td></td>
<td>0.06 (0.05, 0.08)</td>
</tr>
</tbody>
</table>