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Abstract 

 Cells are mechanical units, and their ability to orchestrate forces across a tissue allows 

them to shape organisms. In adults, cellular forces drive a flux of cell generation and extrusion 

to replenish tissues. In diseases, such as cancer, the mechanical properties of the tumor drive 

disease progression. These facets make understanding how cells generate and respond to 

mechanical signals an important area of study.  

 Epithelial tissues act as barriers that protect organisms from dehydration, infection, and 

chemical damage. An unanswered question in epithelial biology is how or if epithelial tissues 

maintain their barrier as distortions in cell shape occur during cell division. To determine if cells 

maintain the epithelial barrier during cell division, we used a dye penetration assay in Xenopus 

laevis embryos and found that the epithelial barrier remains intact during cytokinesis. Using 

confocal microscopy, we determined that the contractile ring that drives cell division is coupled 

to the structures that adhere cells together, cell-cell junctions. Investigating the molecular 

dynamics of junctions, I found that adherens junction, but not tight junction, proteins are 

stabilized at the cleavage furrow. Using inhibitors, I demonstrated that forces from the 

contractile ring are coupled to adherens junctions, but not tight junctions. Finally, we found 

forces from the contractile ring recruit Vinculin to adherens junctions to reinforce the junctions 

during cell division. These results position adherens junctions as the load bearing junctions
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 during cell division, which may be important for maintaining the barrier function in 

proliferative tissues. 

 Understanding which proteins cells use to produce force and change their mechanical 

properties is critical for our understanding of development, tissue homeostasis, and disease 

progression. Previous work from our lab showed that Anillin, which is known to regulate 

cytokinesis, is also an important regulator of cell-cell junctions. Based on this work, we 

proposed that Anillin promotes tensile forces on junctions. Here, I tested this hypothesis by 

using two complementary methods to assess junctional tension in Xenopus laevis embryos. I 

found that increased Anillin expression correlated with increased Vinculin recruitment to 

junctions, indicating increased junctional tension; however, increased Anillin expression 

inversely correlated with junction recoil after laser ablation, consistent with reduced junctional 

tension. These seemingly contradictory results led us to hypothesize that Anillin transitions the 

load-bearing actomyosin structures from the junction-associated actomyosin to medial-apical 

actomyosin.  

 Using immunostaining and live imaging, I showed that Anillin organizes the contractile 

medial-apical actomyosin network across the apical surface of the cells. We hypothesized that 

Anillin functions to integrate force transmission throughout a tissue and embryo as a whole by 

organizing medial-apical actomyosin. Indeed, I found that when Anillin was depleted, tissues 

lost force transmission capabilities, and this loss of tissue-scale force coordination disrupted 

embryo-level coordination. Building on this, we measured the stiffness of explanted Xenopus 

tissue and found that tissue stiffness was reduced when Anillin was depleted. These results are 

of interest because changes in tissue stiffness are required for developmental morphogenesis 
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and significantly impact cancer prognosis. Our results highlight a new role for Anillin in 

regulating epithelial mechanics at both the cellular and tissue levels.  

 Together, our findings demonstrate that epithelia are not static structures, but 

heterogeneous mechanical environments that are continually changing. These findings have 

laid the groundwork for studies on how junctions mechanically respond to cell division and how 

Anillin-orchestrated force production impacts development, tissue homeostasis, and disease. 



Portions of this chapter were published in a review entitled “Rho GTPases and actomyosin: partners in 
regulating epithelial cell-cell junction structure and function.” (Arnold et al. 2017). Figure 1.2, 1.3, 1.4, 
and 1.6 are modified from (Arnold et al. 2017) Figure 1.5 is a modified version from (Higashi et al. 2016) 
  1 

Chapter 1 

Introduction 

 

Building cell and tissue complexity from simple structures 

 The complexity of a cell is mind-boggling! A cell contains 42 million proteins whirling 

around inside (Ho 2018) - building, holding, activating, and digesting each other - and proteins 

are only one type of macromolecule that makes up a cell. Now, imagine 37 trillion cells all stuck 

together, organized into tissues and organs, and cooperating to perform specialized tasks, and 

the complexity of a human being becomes apparent (Bianconi et al. 2013). Remarkably, this 

complexity of multicellular organisms originates from a single cell, which divides trillions of 

times, and different daughter cells differentiate to carry out specialized functions. How can 

such complexity originate from a single cell? There are many steps involved: cells must divide, 

adhere to one another, migrate, and produce mechanical forces to bend and fold tissues in 

order to make the organs, which must work together to maintain the life of the organism. If 

every animal starts as a single cell, then the first cell must contain all of the information needed 

to build an organism. How can something so tiny contain so much information? The simple yet 

complex, unique yet consistent six-pointed geometry of a snowflake provides an analogy. 

The six-pointed geometry of snowflakes emerges from the physical and chemical 

properties of water molecules. (Fig. 1.1 A). When frozen, the bent geometry and polar nature 

of water molecules forms a hexagonal crystal lattice resulting in the six-pointed structure of 
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snowflakes (Fig. 1.1 A). Atmospheric forces propel each snowflake through a unique 

path through a temperature gradient, causing melting and freezing to occur at different rates 

and giving each snowflake its unique shape. A tiny water molecule, just a mere 2.5 Angstroms, 

contains all the information necessary to provide the six-pointed ruleset for a snowflake, and 

because of forces acting on the snowflake, an infinite number of unique yet consistently six-

pointed snowflakes can be born (Fig. 1.1 A). Knowing this, it becomes, somewhat easier to 

comprehend how a cell, which is made up of trillions of molecules, with infinite possible 

arrangements and force production capabilities can provide the framework for something as 

simultaneously simple, complex, and unique as a human being. 

 The process of building a cell follows a similar template as building a snowflake; the 

physical and chemical properties of small building blocks direct the structure of larger 

macromolecules (Fig 1.1 B). Hydrogen-bonded nucleotides make up DNA, 20 different types of 

amino acids make up proteins, fatty acids, glycerol, and phosphate combine to make up lipids, 

and sugars link together to make up polysaccharides (Fig 1.1 B). The physical and chemical 

properties and the specific arrangement of these building blocks result in the elegant double 

helix of DNA, the diverse 3 dimensional shapes of proteins, the water loving and water hating 

structure of lipids, and the beautiful chain or branched array of polysaccharides (Fig 1.1 B). 

These macromolecules dictate the ruleset of cells, where a lipid membrane encases the other 

macromolecules to establish an internal environment for the cell that is different from the 

external environment.  Additionally, specific arrangements and interactions between polymer-

forming proteins of the cytoskeleton help shape cells, and these polymeric proteins can 

dynamically rearrange to drive cell shape change (Fig 1.1 B).  Just as snowflakes rely on external 
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forces to gain their unique shape, the mechanical outputs from cells pushing and pulling on one 

another coordinated across many cells give tissues and organs their shape. 

 The mechanical forces generated by proteins that shape cells and tissues is the focus of 

my dissertation: specifically, how cells respond to mechanical inputs and adjust their 

mechanical properties to make an effective tissue. I will examine how the structures that 

adhere cells together, cell-cell junctions, respond to the mechanical force generated by dividing 

cells and how the actin scaffolding protein Anillin regulates cell and tissue mechanics by 

organizing actomyosin contractility across the apical surface of epithelial cells.  
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Figure 1.1: From simple physical and chemical properties comes complexity 

A) (Top) Diagram of the geometry and charge of a water molecule. (Middle) Diagram of the crystal lattice water 

forms when frozen in ice. (Bottom) Pictures of snowflakes from “Annual Summary of the "Monthly Weather 

Review”" for 1902, Wilson Bently. B) (Top) The building blocks of macromolecules where nucleic acids build DNA, 

amino acids build proteins, fatty acids, glycerol, and phosphates build lipids, and sugars build polysaccharides. 

(Middle) Diagram of the cellular components, DNA from James Hedberg jameshedberd.com (CC), proteins, lipids, 

and sugar chains that store short term structural and charge information for the cell. Images inspired by artwork 

by David Goodsell. (Bottom) Diagrams of various cell types and shapes. 

  



5 
 

Mechanical forces drive cytokinesis 

 For a multicellular organism, the first cell division is a mechanical change that spans 

their entire being. Cytokinesis is the physical process of splitting a cell in two. This mechanical 

process has fascinated scientists for over a century, and we have unraveled many secrets of 

cytokinesis (Pollard 2010) (Fig. 1.2). In many eukaryotes - from amoebas to yeasts to frogs to 

humans - cytokinesis is driven by piconewton-scale forces generated by the motor protein 

Myosin II sliding actin filaments (F-actin), to pinch the cell in two. However, other organisms 

have found different methods to accomplish this task. For example, plants rely on membrane-

vesicle fusion and the addition of cell wall material to divide cells (Assaad 2001), while slime 

mold can use traction forces to drive cytokinesis (Reichl et al. 2008; Neujahr, Heizer, and 

Gerisch 1997). Other data indicate that filament sliding is not even required in all actomyosin-

based cytokinesis; yeast can divide with severely disabled myosin motors (Lord and Pollard 

2004), and cytokinesis can occur in vertebrates with Myosin II mutants that cannot slide actin 

filaments (Ma et al. 2012). While actomyosin contraction is often thought as the main driver of 

cytokinesis cells have found many different molecular solutions to pinch themselves in two.  

 Besides F-actin and Myosin II, there are many additional proteins involved in cytokinesis. 

The most robustly, quantitatively characterized eukaryotic cytokinesis is that of the fission 

yeast, in which over 150 different proteins are involved (Pollard and Wu 2010). Why does a 

seemingly simple process involve so many different proteins? A cell must overcome several 

obstacles in order to successfully divide. First, the cell must properly position the contractile 

ring. Second, the cell must assemble the actomyosin ring and connect it to the plasma 

membrane to generate the cleavage furrow. Third, contraction of the ring must be established, 



6 
 

tuned, and maintained even as the ring disassembles while contracting. Finally, the membrane 

must be fused to separate the daughter cells.  

 

Figure 1.2: A contractile ring of actomyosin drives cytokinesis 

Diagram of an isolated cell dividing. Zoom in (right) shows that the major components of the contractile ring are 

filaments of actin (F-actin) and the motor protein Myosin II. Contraction is generated through the sliding of actin 

filaments via the motor function of Myosin II. When connected to the plasma membrane, actomyosin contraction 

drives membrane furrowing during division. 

 

RhoA signals to build a contractile ring 

 The master regulator of contractile forces in cells is the small GTPase RhoA (Arnold, 

Stephenson, and Miller 2017). It is not simply the expression of RhoA that matters, but the 

precise, localized activation of RhoA that ensures successful cytokinesis. RhoA cycles between 

and active form facilitated by guanine nucleotide exchange factors (GEFs) and an inactive form 

facilitated by GTPase activating proteins (GAPs) (Arnold, Stephenson, and Miller 2017). When in 

the active GTP-bound conformation, RhoA associates with the plasma membrane and activates 

specific effector proteins, resulting in localized effects on the cytoskeleton. For example, active 

RhoA promotes formation of actomyosin contractile arrays via its key effector proteins: 
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formins, which nucleate unbranched actin filament polymerization, and Rho-associated coiled-

coil kinase (ROCK), which phosphorylates the regulatory light chain of Myosin II to activate 

Myosin II (Fig. 1.3). RhoA activity is properly positioned during cytokinesis through the delivery 

of GEFs and GAPs along microtubules to the division site. In brief, MLKP1, a motor protein, 

transports MgcRacGAP, which can bind and concentrate the Rho GEF Ect2 (Zhao 2005). The co-

accumulation and MgcRacGAP and Ect2 results in flux of RhoA between the active and inactive 

states at the division site, thus maintaining properly focused zone of RhoA activation (Miller 

and Bement 2009). This is a prime example of how gene expression is not the critical factor that 

drives the complex process of cytokinesis, but rather it is the tightly localized RhoA activity zone 

that initiates a cell-scale contractile array resulting in a major cell shape change. 

Figure 1.3: RhoA 

establishes a contractile 

array by promoting actin 

polymerization and Myosin 

II activation 

Diagram of how the small 

GTPase RhoA signals for 

actomyosin contractility. 

Active RhoA binds to and 

activates formins, which 

drive the polymerization of 

unbranded actin filaments. 

RhoA also binds to and 

activates Rho-associated 

coiled-coil kinase (ROCK), 

which phosphorylates 

Myosin II to activate it. F-

actin and Myosin II then 

form contractile bundles 
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Anillin fine-tunes and mechanically links forces from the contractile ring to the plasma 

membrane 

 Without a properly organized actomyosin ring that is connected to the plasma 

membrane and anchored in place, forces from cytokinesis would not appropriately pinch the 

cell in two, as the ring would aberrantly slide to one of the cellular poles (Straight 2005). Anillin 

is a scaffolding protein that plays a well-characterized role in cytokinesis (Piekny and Maddox 

2010). In Chapter 3 of this dissertation, I demonstrate a new role for Anillin in promoting cell 

and tissue stiffness by organizing contractile actomyosin across the apical surface of cells. 

During cell division, Anillin ensures successful cytokinesis by bundling F-actin, linking F-actin and 

Myosin II to the membrane, and fine-tuning RhoA activation at the contractile ring (Piekny and 

Maddox 2010) (Fig. 1.4). The N-terminal domains of Anillin participate in actomyosin 

binding/assembly, while the C-terminal domains include PH and C2 domains, which anchor 

Anillin to the membrane, a RhoA binding domain, which allows it to interact with active RhoA, 

and the C-terminus also contains binding sites for interacting with the GEF Ect2 and the GAPs 

MgcRacGAP and p190RhoGAP-A (Piekny and Maddox 2010; Frenette et al. 2012; Manukyan et 

al. 2014; Sun et al. 2015) (Fig. 1.4). Through direct binding to active RhoA, Anillin helps reset the 

clock on RhoA activation, acting as a buffer to extend the lifespan of active RhoA before passing 

it off to downstream RhoA effectors (Budnar et al. 2018). Early in cytokinesis, Anillin 

participates in a positive feedback loop, in which its accumulation at the contractile ring is both 

dependent on and enhances Rho activation (Piekny and Glotzer 2008). Later in cytokinesis, it 

interacts with p190RhoGAP-A in a tension-sensitive manner, inactivating RhoA in response to 

excessive force (Manukyan et al. 2014) (Fig. 1.4). Finally, Anillin’s bundling of F-actin also affects 

contractility in the ring, where moderate levels of Anillin promote efficient contraction 
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of actomyosin (Descovich et al. 2017). Thus, Anillin helps to promote efficient contraction by 

fine-tuning RhoA signaling, bundling F-actin, and linking the contractile ring to the plasma 

membrane (Fig. 1.4). 

Figure 1.4: Anillin fine-tunes RhoA signaling, bundles F-actin, and links the contractile ring to the plasma 

membrane 

Diagram of how in the contractile ring Anillin bundles F-actin and binds the plasma membrane, Myosin II, formins, 

active RhoA, and regulators of RhoA: Ect2 and p190RhoGAP-A. Anillin also functions to regulate the contractility of 

the ring. When tension is too high in the ring, Anillin binds to the negative regulator of RhoA, p190RhoGAP-A, to 

turn RhoA off. 

 

How do cells divide in an epithelial tissue? 

 Most of the research in the cytokinesis field has focused on the first division of 

multicellular organisms, division in single-celled organisms, or division of isolated cultured 

mammalian cells (Pollard 2010; Rappaport 1996; Green, Paluch, and Oegema 2012). From these 

studies, we have learned a great deal about the mechanisms of contractile ring constriction, but 

cells in multicellular organisms do not divide in isolation. Cells in tissues are connected to one 

another via cell-cell junctions, which mechanically link the cells together and can transmit force 
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between cells. In addition to the challenge of generating the force to cleave the cell in two, cells 

dividing in an epithelial tissue, which act as barriers to protect multicellular organisms from 

pathogens and other environmental insults and create specialized compartments within the 

body, must overcome additional challenges created by their neighbors, which raise interesting 

questions about epithelial cytokinesis (Fig. 1.5). Do dividing cells in a tissue communicate with 

their neighbors? Do neighboring cells actively participate in cell division? How does the dividing 

cell overcome the resistive force of neighboring cells? Do cells in a tissue need to produce more 

force than isolated cells to successfully divide, or do neighboring cells become more compliant? 

Is the barrier of an epithelium maintained during cell division and if so, how?  

 Early studies using electron microscopy and immunostaining showed that epithelial cells 

remain in contact with one another during cell division (Jinguji and Ishikawa 1992; Baker and 

Garrod 1993). This means that both the dividing cell and the neighboring cell undergo large 

shape changes during cell division (Fig. 1.5). How does each cell respond to these mechanical 

inputs? Three very exciting papers showed that in dividing cells in Drosophila epithelial tissues, 

the membrane at the cleavage furrow is decoupled from cell-cell junctions as it ingresses during 

cell division (Guillot and Lecuit 2013; Founounou, Loyer, and Le 2013; Herszterg et al. 2013). 

One of these papers even found that there was a loss of adhesion between the dividing cell and 

its neighbor (Guillot and Lecuit 2013). This raises several interesting questions: do the forces 

from cytokinesis disrupt cell adhesion? Or is cell adhesion regulated by a force-independent 

mechanism? Additionally, why does junction disengagement happen in some tissues (Guillot 

and Lecuit 2013), but not others (Jinguji and Ishikawa 1992; Baker and Garrod 1993; 

Founounou, Loyer, and Le 2013; Herszterg et al. 2013)? Is the barrier function of epithelial 
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tissues disrupted by forces from cytokinesis? If so, what impact does this have on the 

organism? For example, the cells lining the small intestine are dividing so rapidly that the 

epithelial lining turns over every 2-4 days. If the epithelial barrier is being breached during each 

cell division this could compromise the intestinal barrier, allowing toxins and pathogens to gain 

entry into the body. Chapter 2 of my dissertation addresses whether the epithelial barrier is 

maintained during cytokinesis in vertebrate frog embryos and how cell-cell junctions respond to 

the mechanical cues from cytokinesis.  

 

Figure 1.5: Division in an epithelial tissue requires large shape changes of both the dividing cell and its neighbors 

Diagram of a dividing epithelial cell. Dividing epithelial cells and neighboring cells undergo large shape changes at 

both their apical and basal surface and they are attached to each other via cell-cell junctions. Little is known about 

how cells overcome this challenges and whether or not the epithelial barrier function is maintained during cell 

division. 

 

Cell-cell junctions create barriers and mechanically link cells in a tissue 

 Without the ability of cells to adhere to one another, all life on this planet would be 

destined to be unicellular. To achieve multicellularity, life evolved the ability to mechanically 
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connect the two daughter cells generated by cytokinesis. Interestingly, many of the proteins 

that are found in the contractile ring during cytokinesis are also found at cell-cell junctions, such 

as RhoA, F-actin, Myosin II, Anillin, MgcRacGAP, Ect2, and p190RhoGAP-A (Arnold, Stephenson, 

and Miller 2017; Zaidel-Bar, Zhenhuan, and Luxenburg 2015). However, the functions of these 

cellular structures are very different; the contractile ring functions to cleave a cell in two, while 

cell-cell junctions function to mechanically link cells together and allow tissues to form barriers. 

Interestingly, some organisms, such as Choanoflagellates, the closest living relatives of animals, 

can live as a unicellular or multicellular organisms. They achieve multicellularity not with 

specialized cell-cell junctions, but by skipping the last step of cytokinesis, thus remaining 

connected via an intracellular bridge and sharing cytoplasm (Dayel et al. 2011), again 

highlighting the link between cell division and cell adhesion. To achieve multicellularity on a 

larger scale, cells had to evolve specialized adhesion structures which couple to the 

cytoskeleton so that epithelia could be robust enough to maintain tissue and barrier integrity, 

while being dynamic enough to maintain tissue homeostasis through the flux of cell 

proliferation and cell death.  

 Cell-cell junctions may have emerged around 600 million years ago (Chen et al. 2014), 

but the ultrastructure of vertebrate cell-cell junctions was first identified only a few decades 

ago in a seminal electron microscopy study by Farquhar and Palade (Farquhar and Palade 

1963). The authors described the apical junctional complex in vertebrates being composed of 

tight junctions (or zonula occludens), where the space between epithelial cells is almost 

completely obliterated, adherens junctions (or zonula adherens), located just basal to the tight 

junction, where the cell membranes are brought in close proximity (~20 nm apart), and 
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“conspicuous bands of dense material located in the subjacent cytoplasmic matrix”, which we 

now know to be junctional actomyosin (Farquhar and Palade 1963) (Fig. 1.6 A,B). The apical 

junctional complex in vertebrates plays the critical role of sealing the paracellular space and 

adhering epithelial cells to one another (Hartsock and Nelson 2008; Van Itallie and Anderson 

2014) (Fig. 1.6 A,B). 
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Figure 1.6: Cell-cell junctions establish the epithelial barrier, cell adhesion, and integrity of epithelial tissues.   

A) A side view schematic of epithelial cells showing the two types of cell-cell junctions connected to the actin 

cytoskeleton, the tight junction, which establishes the barrier function, and the adherens junction, which regulates 

cell-cell adhesion. In the enlarged view below, the architecture of core tight junction and adherens proteins is 

shown (see legend identifying key proteins). Transmembrane proteins facilitate interaction between cells, and 

scaffolding proteins connect the transmembrane proteins to bundles of contractile F-actin and Myosin II. Note that 

in this view, the bundles of actomyosin are oriented perpendicular to the plane of the cross-section. B) A top view 

schematic of epithelial cells. In the enlarged views below, one model for the organization of actomyosin is depicted 

with bundled antiparallel F-actin and decorated with Myosin II motors. 

 

Tight junctions seal the space between cells and regulate and respond to mechanical cues 

 Tight junctions are well known to be important determinant of epithelial barrier 

function (Zihni 2016); however, recent studies have also revealed that they can sense and 

regulate apical forces (Spadaro et al. 2017, Fanning, Van, and Anderson 2012; Choi et al. 2016, 

Hatte, Prigent, and Tassan 2018). Classically, tight junctions seal the intercellular spaces 

between adjacent epithelial cells and form regulated, selective (size- and charge-selective) 

barriers. Barrier function can be acutely regulated in epithelial tissues by signaling mechanisms 

– notably by changes in actomyosin contractility (Shen et al. 2011). To achieve these functions, 

the tight junction transmembrane proteins (Claudins, Occludin, immunoglobulin-like Junction 

Adhesion Molecules) form tight junction strands, which are linked to the underlying actomyosin 

cytoskeleton via cytoplasmic plaque proteins (Zonula Occludens (ZO) proteins, Cingulin, Afadin, 

etc.) (Van Itallie and Anderson 2014) (Fig. 1.6 A, B). ZO proteins are proposed to initiate the 

polymerization of Claudins into TJ strands (Umeda et al. 2006), and ZO-1 has the ability to 

stabilize Claudin strands (Van Itallie, Tietgens, and Anderson 2017).  

 In addition to their role in regulating the barrier of epithelial sheets, it is becoming clear 

that tight junctions are also important regulators of epithelial mechanics (Fig. 1.7). For example, 
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when ZO-1 and ZO-2 are depleted, F-actin and Myosin II dramatically increase at adherens 

junctions and generate high tension in line with the junction (Fanning, Van, and Anderson 2012; 

Choi et al. 2016, Hatte, Prigent, and Tassan 2018), indicating that tight junctions negatively 

regulate tension on adherens junctions. Additional work has shown that ZO-1 itself is 

mechanosensitive (Spadaro et al. 2017). Tensile force on ZO-1 opens it to reveal a binding site 

for the transcription factor DbpA, thus sequestering it at tight junctions to inhibit cell 

proliferation, with additional possible effects on barrier function and epithelial 

morphogenesis (Spadaro et al. 2017) (Fig. 1.7). These studies position tight junctions as 

emerging mechanical signaling centers in addition to their classic role in regulating epithelial 

barrier function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Mechanical signaling through ZO-1 regulates gene expression   

A top down view of one side of a tight junction. When under low tension ZO-1 is in a folded conformation which 

masks the binding site for the transcription factor DbpA. When actomyosin tension is applied across ZO-1, the 

binding site for DbpA is exposed, sequestering DbpA at the tight junction, thus inhibiting cell proliferation. 
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Adherens junctions mechanically integrate epithelial cells 

 Adherens junctions, located just basal to the tight junction, mediate cell-cell adhesion 

and transmit mechanical forces across epithelial cells (Fig. 1.6 A, B). Adherens junctions are 

functionally important for epithelial homeostasis and morphogenesis. For example, contraction 

of actomyosin coupled to adherens junctions can promote apical constriction of individual cells, 

which collectively leads to tissue folding (Coravos and Martin 2016; Takeichi 2014), or 

intercalation, during which cells remodel their cell-cell contacts through neighbor 

exchange (Lecuit and Yap 2015), leading to tissue elongation. Each of these functional roles of 

adherens junctions is dependent on regulated linkage of the core molecular components of 

adherens junctions to the actomyosin cytoskeleton.   

 The core AJ components include the transmembrane proteins (E-cadherin and Nectins) 

and cytoplasmic plaque proteins (β-catenin, α-catenin, p120-catenin, Vinculin, Afadin, 

etc.) (Quiros and Nusrat 2014; Ratheesh and Yap 2012) (Fig. 1.6 A, B). E-cadherin forms both 

small spot-like clusters along the lateral membrane as well as an apical belt-like structure (the 

zonula adherens), which is located just basal to the tight junction. F-actin plays an important 

role in corralling the small E-cadherin clusters (Wu, Kanchanawong, and Zaidel-Bar 2015), and 

actomyosin drives their coalescence and stabilization at the apical zonula adherens (Ratheesh 

and Yap 2012). The linkage of E-cadherin to F-actin is achieved via catenin proteins. β-catenin 

binds to the cytoplasmic tail of E-cadherin, and α-catenin binds to β-catenin. α-catenin can bind 

F-actin, but only under actomyosin-generated force (Buckley et al. 2014; Nelson and Weis 

2016). Furthermore, actomyosin-mediated tension promotes a conformational change in α-

catenin, which reveals a binding site for Vinculin (Yonemura et al. 2010) (Fig. 1.8). Vinculin is 
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only recruited to cell-cell junctions under mechanical tension to function in reinforcing cell 

adhesion and the linkage to F-actin in the face of mechanical force (le Duc et al. 2010; 

Yonemura et al. 2010) (Fig. 1.8). 

Figure 1.8: Mechanical 

signaling through α-

catenin reinforces 

junctions 

A top down view of one 

side of an adherens 

junction. When under 

low tension, α-catenin is 

in a folded 

conformation, which 

masks the binding site 

for Vinculin. When 

actomyosin-mediated 

tension is applied across 

ZO-1, the binding site 

for Vinculin is exposed.  

Vinculin reinforces the 

connection between the 

junction and the 

cytoskeleton.  

 

How are forces generated at the epithelial surface? 

 Without the ability to actively orient mechanical forces and adjust the mechanical 

properties, any attempt to achieve multicellularity would be destined to remain as one-

dimensional chain, a two-dimensional sheet, or a three-dimensional sphere of cells, depending 

on the orientation of cell divisions. The production of forces from individual cells coordinated 

across a tissue drives tissue bending and elongation events to sculpt organisms. These 

mechanical events, in conjunction with cell division and controlled cell death, allow organisms 

to take the variety of shapes we see in multicellular organisms.  
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 In addition to shaping organisms epithelial cell mechanics directly impact disease. For 

example, 80-90% of cancers are epithelial in origin and changes in the mechanical properties of 

epithelial tumors directly affect the prognosis of certain diseases, where tumor stiffness 

correlates with poor prognosis for the patient (Kumar and Weaver 2009). Cells within a tumor 

can deposit extracellular matrix components to influence tumor stiffness (Kumar and Weaver 

2009) and internal cellular mechanics also directly impacts tumor metastasis (Swaminathan et 

al. 2011; Guo et al. 2014). To fully understand the amazing process of development and how to 

treat and prevent diseases such as cancer, we need a comprehensive understanding of how 

epithelial sheets regulate their mechanical properties. 

Circumferential actomyosin is a contractile network attached to cell-cell junctions 

 A key mechanical change in epithelial cells during development is the constriction of the 

apical surface of cells. This constriction shrinks the apical surface, which causes the tissue to 

bend in on itself. This tissue shape changes is key step for gastrulation in order to form the 

primary tissue layers of the organism and for neurulation in order to form the spinal cord. Early 

electron microscopy studies in frog, salamander, and chick provided evidence that 

circumferential actin filaments directly associated with adherens junctions were likely driving 

apical constriction during neurulation (Baker and Schroeder 1967; Burnside 1971; Karfunkel 

1972) (Fig. 1.9 A). Later immunostaining work in brush border epithelial cells of the small 

intestine induced to apically constrict highlighted that Myosin associated strongly with cell 

edges before and after apical constriction (Hirokawa et al. 1983). Using quick-freeze deep-etch 

electron microscopy, Hirokawa and colleagues convincingly showed that brush border cells 

apically constrict by squeezing in at the adherens junctions (zonula adherens), leaving their 
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apical surfaces bulging out (Hirokawa et al. 1983) (Fig. 1.9 B). The contractile nature of the 

circumferential actomyosin network was demonstrated directly by isolating the actomyosin 

apparatus from chicken pigmented retinal epithelial cells (Owaribe and Masuda 1982). Upon 

addition of ATP to the purified actomyosin apparatuses, the rings of actomyosin 

constricted (Owaribe and Masuda 1982) (Fig. 1.9). Additional work on embryonic tissue wounds 

demonstrated the importance of supracellular junctional cables that from to close the wound 

via a purse string constriction method (Martin and Lewis 1992; Nodder and Martin 1997). With 

this evidence it is not surprising that circumferential actomyosin alone was thought to drive 

apical epithelial mechanics for over 50 years. 
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Figure 1.9: Seminal evidence that demonstrated circumferential actomyosin forms a contractile apparatus in 

epithelial cells 

A) Transmission electron microscopy in salamander epithelial cells revealed a dense meshwork of filaments found 

only at the apical circumference of cells, which we now know is actomyosin. Artistic rendering of (Burnside 1971). 

B) Use of quick-freeze deep-etch electron microscopy revealed that chicken brush border epithelial cells induced 

to apically constrict via addition of ATP constricted at their zonula adherens (adherens junctions). Artistic rendering 

of (Hirokawa et al. 1983). C) Circumferential actomyosin arrays were shown to be contractile units when purified 

from chick epithelial cells; after addition of ATP, they constricted into small rings. Artistic rendering of (Owaribe 

and Masuda 1982) 
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Medial-apical actomyosin is a contractile network that drives apical constriction 

 In addition to the band of circumferential actomyosin associated with junctions, there is 

another actomyosin network that produces mechanical forces in epithelial tissues. Probably 

because it is less conspicuous than circumferential actomyosin, it took much longer for 

researchers to appreciate the importance of the medial-apical actomyosin network (Fig. 1.10 

A). In fact, even when medial-apical actomyosin was directly observed, the more prominent 

purse string model was generally favored as the method epithelial cells used to constrict their 

apical surface. For example, the protein Shroom3 was shown to induce apical constriction for 

neural tube closure in both mice and frog (Haigo et al. 2003; Hildebrand and Soriano 1999; 

Nishimura and Takeichi 2008). Interestingly, the proposed mechanism for Shroom3-induced 

apical constriction was the accumulations of actomyosin around the circumference of cells, 

even though both junctional and medial-apical actomyosin increased (Haigo et al. 2003; 

Nishimura and Takeichi 2008).  

 Medial-apical actomyosin was first appreciated for its role in apical constriction when 

live imaging was performed on gastrulating Drosophila embryos (Martin, Kaschube, and 

Wieschaus 2009) (Fig. 1.10 B). This work found that a temporal bursts of Myosin II accumulated 

medial-apically to induce apical constriction (Martin, Kaschube, and Wieschaus 2009) (Fig. 1.10 

B). Outside of morphogenic events such as apical constriction, medial-apical actomyosin has 

been shown to be a load-bearing structure in stable epithelia (Ma et al. 2009) (Fig. 1.10 C). 

Laser ablation of both junctional and medial-apical F-actin revealed that epithelia act more as a 

continuous mechanical sheet rather than an array of contractile vertices (Ma et al. 2009) (Fig. 
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1.10 C). Even with these findings, epithelial tissues are still often thought of and modeled as an 

array of contractile vertices (Alt, Ganguly, and Salbreux 2017), and conclusions are made 

assuming the mechanical strain is stored only in circumferential actomyosin (Farhadifar et al. 

2007; Fernandez-Gonzalez et al. 2009; Ratheesh et al. 2012; Leerberg et al. 2014; Van Itallie et 

al. 2015; Rauzi and Lenne 2015: Choi et al. 2016; Priya et al. 2016; Bertocchi et al. 2017). 

Medial-apical and circumferential actomyosin have distinct localization and organization, but 

also very similar components and contractile funcitons, and there are still many unanswered 

questions about the functions and interplay between the two. How are the medial-apical and 

circumferential actomyosin populations regulated and differentiated from one another, do they 

make the same molecular connects to junctions, do they promote the same mechanical 

signaling pathways, does one feed into the other? 
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Figure 1.10: Medial-apical actomyosin regulates apical forces in developing and steady state tissues 

A) A medial-apical actomyosin array is found across the apical surface of epithelial cells in addition to 

circumferential actomyosin. B) Pulses of increased medial-apical actomyosin assembly drive apical constriction 

during Drosophila gastrulation. C) At steady state, tissues are often thought of as a network that is only contractile 

at cell edges; however, the medial-apical actomyosin array is also a contractile load-bearing structure even in non-

developing tissues. 
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Dissertation overview 

 In this dissertation, I investigate how epithelial cells respond to mechanical cues and 

regulate their cellular mechanics. In Chapter 2, I describe how vertebrate epithelial cells 

maintain the adhesion and barrier function of the tissue during cytokinesis by reinforcing their 

cell-cell junctions in response to forces generated by the contractile ring. In Chapter 3, I explore 

how the scaffolding protein Anillin contributes to epithelial cell and tissue mechanics. 

Preliminary experiments hinted that Anillin functions in generating tension in line with cell-cell 

junctions via the circumferential actomyosin belt; however, upon deeper investigation, I found 

a new role for Anillin in organizing medial-apical actomyosin, which has mechanical effects at 

the cell, tissue, and embryo level. In Chapter 4, I discuss the implications of my findings in the 

context of the field and propose future experiments that follow from my discoveries. 
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Chapter 2 

 Maintenance of the epithelial barrier and mechanical reinforcement 
of adherens junctions during epithelial cytokinesis 

Abstract 

 Epithelial integrity and barrier function must be maintained during the complex cell 

shape changes that occur during cytokinesis in vertebrate epithelial tissue. Here, we investigate 

how cell-cell junctions are maintained and remodeled during cell division in the Xenopus 

laevis embryo. We find that epithelial barrier function is not disrupted during cytokinesis and is 

mediated by sustained tight junctions. Using fluorescence recovery after photobleaching 

(FRAP), we demonstrate that adherens junction proteins are stabilized at the cleavage furrow 

by increased tension. We find that Vinculin, which is localized to adherens junctions under 

tension to reinforce their connection to the cytoskeleton, is recruited to the adherens junction 

at the cleavage furrow and that inhibiting recruitment of Vinculin by expressing a dominant 

negative mutant increases the rate of furrow ingression. Our data provide new insight into how 

epithelial integrity and barrier function are maintained throughout cytokinesis in vertebrate 

epithelial tissue.  
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Introduction 

 Polarized cells make epithelial sheets and maintain tissue homeostasis by serving as 

barriers that separate distinct compartments in the body. Cells in epithelial sheets exhibit high 

rates of turnover, and the number of dying cells must be balanced by the number of dividing 

cells (Eisenhoffer and Rosenblatt 2013). Epithelial sheets are dynamic and undergo cell shape 

changes such as cell division, extrusion, or intercalation and it is unknown if barrier function is 

maintained during these dynamic processes (Guillot and Lecuit 2013). Cell-cell junctions are 

essential for maintaining epithelial integrity and barrier function of epithelial sheets during 

homeostasis and morphogenesis.  

 Vertebrate apical junctional complexs consists of tight junctions, adherens junctions, 

and desmosomes (Hartsock and Nelson 2008; Van Itallie and Anderson 2014; Green et al. 

2009). Connections to the actomyosin cytoskeleton are important for the structural integrity 

and regulation of both tight junctions and adherens junctions (Rodgers and Fanning 2011). 

Tight junctions seal the intercellular spaces between adjacent cells and form a selective, 

regulated barrier. Tight junctions consist of Claudin-based strands (Furuse et al. 1998) and 

cytoplasmic plaque proteins, including ZO-1, which binds to the cytoplasmic tail of 

Claudins (Itoh, Morita, and Tsukita 1999) and links tight junctions to actin filaments. Adherens 

junctions mediate cell-cell adhesion and are important for epithelial tissue integrity, which is 

challenged when cells undergo shape changes (Lecuit and Yap 2015). Adherens junction 

structure is dependent upon E-cadherin; its extracellular domain mediates strong adhesion 

between adjacent cells, whereas its cytoplasmic tail is associated with the cytoplasmic plaque 

proteins β-catenin and α-catenin (Yonemura et al. 2010; Huveneers et al. 2012). Adherens 
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junctions can be linked to actin filaments via α-catenin (Buckley et al. 2015), as well other 

proteins, some of which help reinforce cell adhesion during mechanical stress (Leerberg et al. 

2014; Nowotarski and Peifer 2014; Choi et al. 2016; Ratheesh and Yap 2012). 

 Until recently, cell-cell junctions were considered highly stable protein complexes 

(Sasaki et al. 2003). However, fluorescence recovery after photobleaching (FRAP) experiments 

in cultured epithelial cells demonstrated that, whereas overall junction structure is maintained 

at steady state, individual tight junction and adherens junction proteins are, in fact, highly 

dynamic (Shen, Weber, and Turner 2008; Huang et al. 2011; Yamada et al. 2005). Importantly, 

changes in the dynamics of individual junction proteins can regulate epithelial function (Yu et 

al. 2010). This plasticity of cell-cell junction structure is likely important for maintenance of 

barrier function when cells undergo shape changes during morphogenesis or cell division. 

 Cell division helps shape the organization of epithelial tissues by generating a new cell 

interface and two new cell vertices with each cell division (Guillot and Lecuit 2013; Gibson et al. 

2006). During cytokinesis, an actomyosin-based contractile ring is formed at the cell equator 

and generates force to physically separate one cell into two daughter cells (Fededa and Gerlich 

2012; Green, Paluch, and Oegema 2012). In epithelial cells, both the dividing cell and its 

neighboring cells undergo shape changes, and, accordingly, cell-cell junctions must be 

dynamically reorganized. Pioneering work using electron or immunofluorescence microscopy in 

fixed epithelial tissues or cultured epithelial cells reported that cell-cell junctions are 

maintained throughout cytokinesis (Jinguji and Ishikawa 1992; Baker and Garrod 1993). 

However, junction maintenance and remodeling during cytokinesis has not been investigated in 

live vertebrate epithelial tissues, and it remains unclear how epithelial cells maintain barrier 
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function and epithelial integrity while at the same time dynamically changing shape during 

cytokinesis.  

 In this study, we used live-cell imaging of fluorescently tagged junctional proteins in the 

epithelium of gastrula-stage Xenopus laevis embryos to investigate how cell-cell junctions, 

including tight junctions and adherens junctions, are maintained and remodeled during 

cytokinesis. Further, I examined how tension generated by the contractile ring affects the 

stability of tight and adherens junction proteins, and we identified a mechanism that 

strengthens the adherens junction at the cleavage furrow. Together, these results shed new 

light on how barrier properties are maintained in proliferating vertebrate epithelial tissues. 

Results 

Epithelial barrier function is maintained during vertebrate epithelial cytokinesis 

 Although data from electron micrographs and immunostaining of fixed samples 

suggested that epithelial barrier function is maintained throughout cytokinesis (Jinguji and 

Ishikawa 1992; Baker and Garrod 1993), there has been no direct evidence of barrier 

maintenance during cell division in live cells. In order to evaluate barrier function during 

cytokinesis in live cells, we imaged fluorescein (332 Da) applied to the apical side of the 

epithelium of gastrula-stage Xenopus embryos expressing mRFP-ZO-1 and mCherry-H2B as 

markers for tight junctions and chromosomes, respectively. Embryos were mounted in medium 

containing fluorescein and imaged using time-lapse confocal microscopy (Fig. 2.1A). In dividing 

cells, fluorescein was restricted to the apical side of the tight junction (Fig. 2.1B). When the 

barrier function was disrupted by injecting embryos with EGTA, which chelates Ca2+ and results 

in adherens junction disruption and tight junction dysfunction (Takeichi 1995; Liu and Cheney 
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2012), fluorescein breached the tight junction, spreading to the basolateral side (Fig. 2.1C and 

D). These results indicate that epithelial barrier function is maintained throughout cytokinesis.   

Figure 2.1: Barrier function is maintained during Xenopus epithelial cytokinesis 
A) Experimental setup for fluorescent tracer penetration assay. Gastrula-stage embryos expressing mRFP-ZO-1 
(tight junctions) and mCherry-H2B (chromosomes) were mounted in 0.1X MMR containing 10 mM fluorescein 
(tracer dye) and observed. B) Fluorescent tracer penetration assay of a representative dividing cell. Three views of 
the same region of interest are shown: en face view (B), side view of the region indicated with yellow rectangles in 
(B), (B’), and 3D view (B”). Note that the tight junction labeled by mRFP-ZO-1 (red) is initially pulled basally, but 
fluorescein (green) at the apical side (top) does not breach through the tight junction (yellow arrowheads in B’) to 
the basal side (bottom). Time, mins. Asterisks in (B) and at 0:00 in (B’) indicate chromosomes (red), which are not 
visible at other time points in (B’). C) and D) Embryos expressing mRFP-ZO-1 (red) were injected with 5 nl of 0.1X 
MMR (C) or 100 mM EGTA (D) into the blastocoel, mounted in 10 mM fluorescein (green), and observed. Upper 
panels show 3D view; lower panels show side view. Note that fluorescein tracer breaches the tight junction in (D) 
(EGTA-treated), but not in (C) (control). Arrows and arrowheads indicate bicellular and tricellular junctions, 
respectively. Scale bars represent 20 µm. 
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Adherens junctions and tight junctions remain continuous and connected to the contractile 

ring during cytokinesis 

To understand how epithelial cells maintain barrier function during cytokinesis, we investigated 

how tight junctions are reorganized during cytokinesis by confocal imaging of embryos 

expressing mRFP-ZO-1 and Lifeact-GFP. Lifeact-GFP binds to F-actin and labels both the 

actomyosin contractile ring and apical actomyosin at cell-cell junctions (Fig. 2.2A). Before 

cytokinesis onset, ZO-1 and F-actin were present at cell-cell junctions surrounding the dividing 

cell, and cortical actin was visible at the apical surface (Fig. 2.2A). The contractile ring formed at 

the cell equator orthogonal to the junctional plane (Fig. 2.2A). Consistent with previous reports 

of polarized epithelial cell cleavage (Jinguji and Ishikawa 1992; Guillot and Lecuit 2013; Le et al. 

2011; Reinsch and Karsenti 1994), the contractile ring ingressed anisotropically where the basal 

side of the ring contracts more rapidly than the apical side. Importantly, tight junctions 

remained continuous and appeared to be connected to the contractile ring throughout 

cytokinesis (Fig. 2.2A). We then examined the behavior of adherens junctions during 

cytokinesis using E-cadherin-3xGFP (E-cad-3xGFP) as a probe. Notably, adherens junctions were 

also unbroken and maintained connection to the ingressing contractile ring throughout 

cytokinesis (Fig. 2.2B). We conclude that, in the Xenopus gastrula epithelium, tight junctions 

and adherens junctions remain continuous and connected with the contractile ring during 

cytokinesis, which likely contributes to maintenance of the epithelial barrier function. 
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Figure 2.2: Adherens junctions and tight junctions remain continuous and connected to the contractile ring 

during cytokinesis  
A) Live imaging of tight junctions and the cytokinetic contractile ring in embryos expressing mRFP-ZO-1 (red, tight 

junctions) and Lifeact-GFP (green, F-actin). Projected multi-plane en face images (A) and side views at the cleavage 

plane (A’) (yellow rectangle in the en face view) are shown. Note that the cytokinetic ring remains connected to 

tight junctions throughout cytokinesis. B) Live imaging of adherens junctions and the cytokinetic contractile ring in 

embryos expressing E-cad-3xGFP (pseudocolored red, adherens junctions) and Lifeact-mRFP (pseudocolored 

green, F-actin). Projected multi-plane en face images (B) and side views at the cleavage plane (B’; yellow rectangle 

in the en face view) are shown. Note that the cytokinetic ring remains connected to adherens junctions throughout 

cytokinesis. For side views, top is apical and bottom is basal. Scale bars represent 10 µm. 
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Adherens junction proteins, but not tight junction proteins, are stabilized at the cleavage 

furrow of dividing cells 

 Although the overall structure of tight junctions and adherens junctions remains intact 

during cytokinesis, and both junctions appear to be connected to the ingressing contractile ring 

by fluorescence microscopy (Fig. 2.2), it remained unclear whether the tension generated by 

the contractile ring affected the dynamics of individual junction proteins. To answer this 

question, I compared FRAP curves for the adherens junction proteins E-cadherin (E-cad-

3xmChe) and β-catenin (β-catenin-GFP) and the tight junction proteins Claudin-6 (mCherry-

Claudin-6) and ZO-1 (mRFP-ZO-1) in interphase cells and dividing cells at both the cleavage 

furrow and a polar region (Fig. 2.3A and S2.1A). There were no significant differences in FRAP 

between interphase cells and the polar region of cells undergoing cytokinesis, indicating that 

junction protein dynamics are not globally changed in dividing cells (Fig. 2.3B–2.3F and S1). 

Notably, the mobile fraction for E-cadherin was significantly reduced at the cleavage furrow 

compared with the polar region (41.0% ±2.2% versus 73.2% ± 2.6%, respectively; Fig. 2.3B and 

2.3C), indicating that E-cadherin is stabilized at the cleavage furrow. Similar results were 

observed for β-catenin; the mobile fraction was strongly reduced at the cleavage furrow 

compared with the polar region (39.5% ± 4.4% versus 62.4% ± 2.0%, respectively; Fig. 2.3D). In 

contrast to the adherens junction proteins, the mobile fractions of Claudin-6 and ZO-1 were 

unchanged at the cleavage furrow compared with the polar region (Claudin, 39.8% ± 3.3% 

versus 34.6% ± 2.0%; ZO-1, 67.9% ± 0.7% versus 70.9% ±2.0%; Fig. 2.3E, 2.3F, and S2.1). 
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Figure 2.3: Adherens junction proteins, but not tight junction proteins, are stabilized at the cleavage furrow of 

dividing cells 
A) Diagram depicting locations of FRAP measurements in interphase (purple circle) and dividing cells (green circle, 

cleavage furrow; orange circle, polar region). B) Representative examples of E-cad-3x mCherry FRAP. Cell images 

(left) show a frame taken from a time-lapse movie. The colored dashed circles indicate the bleached areas, the red 

lines indicate the locations used to generate the kymographs (right), and the white asterisks indicate the two 

daughter cells. A FIRE look up table was applied to the kymographs; time (horizontal axis) and bleach time points 

are indicated. Scale bars represent 10 um. C) E-cad-3xmCherry FRAP data fitted with a double exponential curve 

and graph of average mobile fractions. The numbers of cells (n) quantified are interphase cells (n = 23), dividing 

cells/furrow (n = 17), and dividing cells/polar (n = 12). D–F) FRAP data of β-catenin-GFP (D), mCherry-Claudin-6 (E), 

and mRFP-ZO-1 (F) fitted with a single exponential curve and graph of average mobile fractions. n = 21, 19, and 

14 (D); n = 23, 18, and 10 (E); and n = 34, 34, and 21(F). 
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Tension generated by the contractile ring stabilizes E-cadherin. 

 Our finding that adherens junction proteins are stabilized at the furrow during 

cytokinesis is consistent with previous studies showing that adherens junction proteins are 

stabilized under high tension and are more dynamic under reduced tension (Yonemura et al. 

2010; Priya, Yap, and Gomez 2013; Ratheesh et al. 2012). We tested this idea in Xenopus 

embryos by using pharmacological approaches to globally increase or decrease tension (Fig. 

2.4). Interphase cells in embryos treated with the phosphatase inhibitor calyculin A, which 

increases tension (Fernandez-Gonzalez et al. 2009; Ishihara et al. 1989), exhibited stabilized 

junctional E-cadherin compared to controls (mobile fraction, 56.1% ± 3.4%versus 73.5% ± 

3.1%; Fig. 2.4A). ZO-1 was stabilized in cells treated with calyculin A (mobile fraction, 62.8% ± 

1.0% versus 75.5% ± 1.2%; Fig. 2.4D), but not at the furrow (Fig. 2.3F), indicating that tension 

from the ingressing contractile ring is transmitted primarily to the adherens junction not the 

tight junction.  

 To reduce tension generated by the contractile ring, we injected embryos with the Rho-

associated protein kinase (ROCK) inhibitor Y-27632 to reduce Myosin II activity (Narumiya, 

Ishizaki, and Ufhata 2000). E-cadherin was more dynamic at the cleavage furrow in Y-27632-

treated cells compared to controls (mobile fraction, 59.3% ± 4.0% versus 40.3% ± 2.0%; Fig. 

2.4B). Treatment with the same concentration of Y-27632 did not affect E-cadherin dynamics in 

interphase cells compared to controls (mobile fraction, 80.2% ± 2.3% versus 80.5% ± 1.1%; Fig. 

2.4C). In line with our findings that E-cadherin is stabilized by tension from the contractile ring 

but ZO-1 is not, co-imaging of E-cad-3xGFP and mRFP-ZO-1 during cytokinesis also revealed that 

the adherens junction invaginated faster than the tight junction, with the tight junction 
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completing invagination around 10 min after the adherens junction (Fig. S2.2A). To confirm 

these results, we also examined GFP-Claudin-6 and E-cad-3xmCherry-expressing embryos (Fig. 

S2.2B). The invagination of Claudin-6 was also delayed compared with invagination of E-

cadherin (Fig. S2.2B). Likewise, when cells in late cytokinesis were examined by 

immunofluorescence microscopy, endogenous β-catenin had ingressed farther than ZO-1 (Fig. 

S2.2C). Together these data indicate that the adherens junction is the load-bearing junction for 

the contractile ring, and it completes invagination prior to the tight junction. 

 

Figure 2.4: Tension generated by the contractile ring stabilizes E-cadherin 
A) E-cadherin-3xmCherry FRAP data of interphase cells fitted with a double exponential curve and graph of 

average mobile fractions when treated with vehicle (dimethyl sulfoxide, DMSO) or 500 nM calyculin A. The number 

of cells (n) quantified is: DMSO (n=29), calyculin A (n=30). B) E-cadherin-3xmCherry FRAP data at the furrow of 

dividing cells fitted with a double exponential curve and graph of average mobile fractions when injected with H2O 

(control) or 1 ng of Y-27632. The number of cells (n) quantified is: control (n=19), Y-27632 (n=20). C) E-cadherin-

3xmCherry FRAP data of interphase cells fitted with a double exponential curve and graph of average mobile 

fractions when injected with H2O (control) or 1 ng of Y-27632. The number of cells (n) quantified is: control (n=30), 

Y-27632 (n=29). D) mRFP-ZO-1 FRAP data of interphase cells fitted with a single exponential curve and graph of 

average mobile fractions when treated with vehicle (dimethyl sulfoxide, DMSO) or 500 nM calyculin A. The number 

of cells (n) quantified is: DMSO (n=35), calyculin A (n=26). 
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Tension generated by the contractile ring recruits Vinculin to the cleavage furrow. 

 The adherens junction protein α-catenin is known to act as a tension transducer that 

senses increased junctional tension generated by pulling forces from adjacent cells and 

responds by strengthening the junction (Yonemura et al. 2010; Leerberg et al. 2014). High 

tension induces a conformational change in α-catenin and recruitment of Vinculin to adherens 

junctions (Yonemura et al. 2010). To confirm that Vinculin-3xGFP is recruited to adherens 

junctions in response to increased tension in Xenopus, we increased junctional tension globally 

in two ways. First, embryos treated with calyculin A exhibited a ~2-fold increase in Vinculin-

3xGFP recruitment to junctions, whereas the intensity of E-cad-3xmCherry was unchanged (Fig. 

2.5A). Second, upon addition of ATP, which also increases contractility (Joshi, von Dassow, and 

Davidson 2010; Kim et al. 2014), the embryo exhibited contraction within 60 s and a significant 

increase (~3-fold) in the intensity of Vinculin-3xGFP at junctions within minutes (Fig. 2.5B). 

Next, we tested whether fluorescently-tagged Vinculin is recruited in response to increased 

junctional tension generated during cytokinesis. Vinculin-3xGFP was significantly increased 

specifically at the cleavage furrow (Fig. 2.5C-J), whereas the intensity of a membrane 

marker (Fig. 2.5C-F) or a-catenin (Fig. 2.5G-J) was not. Together, these results suggest that 

elevated tension reinforces adherens junctions connected to the contractile ring by increasing 

the stability of individual adherens junction proteins and recruiting Vinculin to the cleavage 

furrow. 
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Figure 2.5: Tension generated by the contractile ring recruits Vinculin to the cleavage furrow 

A) Vinculin-3xGFP in embryos treated with DMSO or calyculin A. Quantification of Vinculin recruitment to junctions 

and E-cadherin-3xmCherry intensity with calyculin A treatment. Scale bar, 10 µm. B) Vinculin-3xGFP before and 

after addition of extracellular ATP. Quantification of Vinculin recruitment to junctions and E-cadherin-3xmCherry 

intensity after ATP addition. Scale bar, 10 µm. C) Vinculin-3xGFP in a dividing cell. White asterisks indicate daughter 

cells, yellow arrowheads indicate accumulation of Vinculin-3xGFP at the cleavage furrow, and blue brackets 

indicate magnified areas of Vinculin-3xGFP and mCherry-membrane shown below the cell view. D) Quantification 

of Vinculin-3xGFP at the cleavage furrow and polar region of dividing cells. The number of cells quantified is: 

(n=14). E) Quantification of a fluorescent membrane marker, mCherry-farnesyl, at the cleavage furrow or polar 

region of dividing cells. The number of cells quantified is: (n=14). F) Quantification of Vinculin-3xGFP and mCherry-

membrane intensity at the cleavage furrow of dividing cells (n = 14). Error bars represent SEM. G) Vinculin-3xGFP 

in a dividing cell. White asterisks indicate daughter cells, yellow arrowheads indicate accumulation of Vinculin-

3xGFP at the cleavage furrow, and blue brackets indicate magnified areas of Vinculin-3xGFP and mCherry-α-

catenin shown below the cell view. H) Quantification of Vinculin-3xGFP at the cleavage furrow and polar region of 

dividing cells. The number of cells quantified is: (n=9). I) Quantification of mCherry-α-catenin intensity at the 

cleavage furrow and polar regions of dividing cells. The number of cells quantified is: (n=9). J) Quantification of 

Vinculin-3xGFP and mCherry-α-catenin intensity at the cleavage furrow of dividing cells. The number of cells 

quantified is: (n=9) Error bars, S.E.M. Statistics, unpaired Student’s t-test, *p<0.05, **p<0.001, ***p<0.0001 

 

Dominant-negative Vinculin abolishes cell-cell junction reinforcement at the cleavage furrow 

and accelerates ingression  

 To test how reinforcement of adherens junctions at the cleavage furrow, in turn, affects 

the process of cytokinesis, we perturbed Vinculin-mediated adherens junction strengthening. 

For this purpose, we developed a dominant-negative Vinculin. Vinculin is localized at adherens 

junctions through interaction of its N-terminal D1 domain with α-catenin under tension, and 

Vinculin recruits F-actin through its C-terminal D5 domain (Fig. 2.6A) (Choi et al. 2012; Peng et 

al. 2012). We predicted that overexpression of the D1 domain alone, which localizes at 

adherens junctions (Fig. S2.2D), would competitively interfere with recruitment of full-length 

Vinculin to adherens junctions and might abolish tension-mediated reinforcement of adherens 

junctions. We tested the dominant-negative effect of Vinculin D1 by expressing full-length 

Vinculin-3xGFP uniformly and untagged Vinculin D1 with an injection marker in a mosaic 

manner. As predicted, the localization of Vinculin-3xGFP at both bicellular and tricellular 
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junctions was drastically reduced in Vinculin-D1-expressing cells (Fig. 2.6B). The recruitment of 

Vinculin-3xGFP to the cleavage furrow in dividing cells was also abolished when the cell 

neighboring the cleavage plane expressed Vinculin D1 (Fig. 2.6C). 

 We examined the effect of Vinculin D1 on the behavior of adherens junctions and tight 

junctions during cytokinesis by imaging embryos co-expressing E-cad-3xGFP and mRFP-ZO-

1 (Fig. 2.6). In control cells, signal intensity for both adherens junctions and tight junctions was 

maintained at the cleavage furrow throughout cytokinesis (Fig. 2.6D, 2.6D’, and S2.2A). In fact, 

early in cytokinesis (25% ingression), the intensity of ZO-1 and E-cadherin at the cleavage 

furrow was slightly but significantly increased compared with a polar region (Fig. 2.6H). In 

contrast, signal for both adherens junctions and tight junctions was reduced at the cleavage 

furrow in Vinculin-D1-expressing cells (Fig. 2.6E, 2.6E’, 2.6I, and S2.2E), suggesting that 

inhibition of Vinculin localization abolishes the reinforcement of adherens junctions at the 

cleavage furrow. Furthermore, Vinculin-D1-expressing cells ingressed much faster than control 

cells (Fig. 2.6F and 2.6G), likely due to a lack of counteracting force from the cells neighboring 

the cleavage furrow. These data indicate that Vinculin-mediated adherens junction 

reinforcement is involved in maintenance of both adherens junctions and tight junctions at the 

cleavage furrow of dividing cells. 
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Figure 2.6: Dominant-negative Vinculin abolishes cell-cell junction reinforcement at the cleavage furrow and 
accelerates ingression  
 A) Domain structure of Xenopus laevis Vinculin. Pro, proline-rich region. (B and C) Live imaging of Vinculin-3xGFP 
in interphase (B) and dividing (C) cells of embryos expressing Vinculin D1 in a mosaic manner. D1 indicates Vinculin 
D1-expressing cells, which are identified with a lineage tracer (mCherry-H2B; not shown). Note that Vinculin-3xGFP 
intensity at bicellular and tricellular adherens junctions is reduced in (B), and the localization of Vinculin at 
cleavage furrow (yellow arrowheads) is abolished when the neighbor cell expresses Vinculin D1 (white arrowhead). 
Asterisks in (C) indicate daughter cells. Scale bars represent 10 µm. (D and E) Live imaging of embryos expressing 
mRFP-ZO-1 (red, tight junctions) and E-cad-3xGFP (green, adherens junctions) without (D) or with (E) expression of 
Vinculin D1. Arrowheads show that ZO-1 (yellow arrowheads) and E-cadherin (white arrowheads) are maintained 
at the cleavage furrow in control cells (D) or reduced in Vinculin-D1-expressing cells (E). Scale bars represent 20 
µm. (D’ and E’) Kymographs of the furrow region shown by yellow rectangles in (D) and (E). Note that E-cadherin 
(green) completes invagination (white arrow) before ZO-1 (red) in (D’) and that both E-cadherin and ZO-1 are 
maintained (D’) or reduced (E’) at ingressing furrow region (yellow arrows). In (E 0), two vertices move apart after 
division (asterisk) because the dividing cell underwent a type I division (see Figure 7) (F and G) Time that it takes 
cells to reach 25%, 50%, 75%, and 100% ingression are shown for control (F) and Vinculin-D1-expressing (G) cells. 
Whiskers indicate the minimum and maximum, boxes indicate the 25 and 75 percentiles, and vertical line indicates 
the median. n = 12. (H and I) Normalized fluorescence intensity of mRFP-ZO-1 and E-cad-3xGFP at the furrow 
(green) and polar region (orange) in control (H) and Vinculin-D1-expressing cells (I). n = 12. Error bars represent 
SEM. Statistics: two-tailed paired Student’s t test. *p < 0.05; **p < 0.005; ***p < 0.0005. 
 

Discussion 

 Cell-cell junctions are crucial for maintaining tissue integrity and barrier function. Cell 

division presents a striking example of epithelial remodeling, where the dividing cell must form 

a new cell-cell junction after cytokinesis as well as maintain and remodel existing junctions 

during the major shape changes associated with cytokinesis. Tight junctions and adherens 

junctions must be stable enough to promote barrier function and tissue integrity during 

epithelial homeostasis but plastic enough to remodel when necessary. It has been unclear how 

this balance is achieved during cell division. This study provides novel insights into how 

epithelial integrity and barrier function are maintained during cytokinesis invertebrate 

epithelial tissues (Fig. 2.7). Our results indicate that elevated tension from the contractile ring 

reinforces the adherens junctions connected to the contractile ring by increasing the stability of 

individual adherens junction proteins and recruiting Vinculin to the cleavage furrow. The data 
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presented here also highlight important differences in how cell-cell junctions are remodeled 

during epithelial cell division in Xenopus versus Drosophila. 

 

Figure 2.7: Model of epithelial cell cytokinesis in Xenopus and Drosophila 

Model highlighting the difference in epithelial cytokinesis found in Xenopus (vertebrate) Drosophila (invertebrate). 

 

Comparison of epithelial cytokinesis in vertebrates and invertebrates  

 Recently, three labs described adherens junction behaviors during cytokinesis in 

Drosophila epithelia using live imaging (Guillot and Lecuit 2013; Founounou, Loyer, and Le 

2013; Herszterg et al. 2013). Notably, the structure and molecular composition of cell-cell 

junctions is distinct between vertebrates and invertebrates (Hartsock and Nelson 2008; Van 

Itallie and Anderson 2014; Tepass et al. 2001). Vertebrates, including Xenopus, have tight 

junctions and adherens junctions, whereas invertebrates, including Drosophila, have adherens 
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junctions and septate junctions (Tepass et al. 2001; Furuse and Tsukita 2006), which serve an 

analogous function to tight junctions while differing in ultrastructure. We identified a number 

of striking differences in Xenopus epithelial cytokinesis compared with Drosophila. 

 First, adherens junctions and tight junctions are maintained throughout cytokinesis and 

are persistently connected to the contractile ring. In fact, we observed a slight increase in 

fluorescence intensity of ZO-1 and E-cadherin at the cleavage furrow early in cytokinesis and 

increased recruitment of Vinculin at the furrow throughout cytokinesis. These observations are 

in clear contrast to the behaviors of adherens junctions in the Drosophila embryonic epidermal 

epithelium (Guillot and Lecuit 2013) or the dorsal thorax pupal epithelium (Founounou, Loyer, 

and Le 2013; Herszterg et al. 2013) (Fig. 2.7). In Drosophila epithelial cytokinesis, the adherens 

junction exhibits a break or reduction in E-cadherin at the point where the contractile ring 

connects to the adherens junction and then becomes disengaged from the contractile ring. In 

fact, in the embryonic epithelium, a gap appears between the dividing cell and its 

neighbors (Guillot and Lecuit 2013). 

  In Xenopus, inhibition of endogenous Vinculin recruitment to adherens junctions at the 

cleavage furrow by expressing dominant-negative Vinculin resulted in the reduction of both 

adherens junction and tight junction proteins at the cleavage furrow, mimicking the reduction 

of adherens junctions observed in Drosophila epithelial cytokinesis. The differences observed 

between the systems may arise from a unique adherens junction reinforcement mechanism 

present in the vertebrate epithelium. Notably, the Drosophila Vinculin gene is 

dispensable (Alatortsev et al. 1997), whereas Vinculin knockout mice have severe defects in 

heart and brain development, leading to embryonic lethality (Xu, Baribault, and Adamson 
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1998). It is possible that the adherens junction-reinforcing function of Vinculin may only be 

important in vertebrates, although further studies are required to directly test the function of 

Vinculin at adherens junctions in Drosophila. 

Mechanics of cytokinesis 

 Cytokinesis is driven by the assembly and constriction of an actomyosin contractile ring. 

We investigated the impact of mechanical force generated by the contractile ring on junction 

protein dynamics. Our FRAP data indicate that the adherens junctions at the cleavage furrow 

respond to increased tension generated by the contractile ring by locally stabilizing E-cadherin 

and β-catenin. Furthermore, perturbation of Vinculin-dependent adherens junction 

reinforcement by expressing dominant-negative Vinculin significantly increased the ingression 

rate of contractile rings. This suggests that cells neighboring the cleavage furrow provide 

counteracting tension to the force generated by the contractile ring, which is transmitted 

through the reinforced adherens junctions at the cleavage furrow. Therefore, local 

strengthening of the adherens junction may be important for maintaining an adhesive 

connection as the neighbor cells are pulled in by the ingressing contractile ring. 

 Taken together, our data provide novel insights into how epithelial integrity and barrier 

function are maintained throughout cytokinesis in a vertebrate epithelial tissue. Our results 

highlight important differences in how cell-cell junctions are remodeled during cell division in 

the vertebrate Xenopus versus Drosophila. This work also raises multiple questions for future 

studies. For example, it will be important to examine whether the Xenopus-type division 

described here is common in other vertebrate epithelial tissues, both developing and adult 

tissues. Specifically, it will be interesting to test epithelial tissues that represent different 
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physical cellular properties, such as tissues that are under different amount of apical tension or 

have different tissue compliance, to determine whether junctions are maintained or 

disengaged at the furrow, the impact of contractile ring mechanics on individual junction 

protein dynamics, and the effect on cytokinesis success. 
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Materials and methods 

Xenopus embryos and microinjection 

All studies conducted using Xenopus embryos strictly adhered to the compliance standards of the US 

Department of Health and Human Services Guide for the Care and Use of Laboratory Animals and were 

approved by the University of Michigan’s Institutional Animal Care and Use Committee. Xenopus 

embryos were collected, in vitro fertilized, de-jellied, and microinjected with mRNAs for fluorescent 

probes using methods described previously (Breznau et al. 2015; Reyes et al. 2014). Embryos were 

injected at either the two-cell or the four-cell stage and allowed to develop to gastrula stage 

(Nieuwkoop and Faber stages 10 to 11). 

DNA constructs, mRNA preparation 

cDNAs encoding human ZO-1 (pSK/ZO-1, Addgene plasmid #30316) (Willott et al. 1993), Xenopus 

laevis E-cadherin (pCS2+/xE-cadherin-3HA; gift from P.D. McCrea, University of Texas MD Anderson 

Cancer Center), Xenopus laevis β-catenin (Addgene plasmid #16389) (Miller and Moon 1997), Xenopus 

laevis claudin-6 (gift from E.M. De Robertis, UCLA) (Brizuela, Wessely, and De 2001) were amplified using 

PCR. The Vinculin D1 fragment was amplified by PCR using full-length Vinculin as a template. The 

resulting PCR products were cloned into the pCS2+ vector with or without EGFP (GFP), mCherry, or 

monomeric red fluorescent protein 1 (mRFP) tags as indicated in figure legends. The sequences of all 

coding regions were verified by DNA sequencing (GENEWIZ, South Plainfield, NJ). Lifeact-EGFP and 

Lifeact-mRFP were a gift from W.M. Bement (University of Wisconsin, Madison), and mem (membrane; 

2xmyristoylation signal)-TagBFP was a gift from J.B. Wallingford (University of Texas, Austin). 

MgcRacGAP-3xEGFP (Miller and Bement 2009) and mCherry-farnesyl (Reyes et al. 2014) were previously 

published. mRNAs were prepared as described previously [S5]. Linearization of plasmid DNA for in 
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vitro transcription was generally performed with NotI, except for mRFP-ZO-1, which was linearized with 

KpnI. 

Microinjection of Xenopus embryos and mRNA concentrations used  

Embryos were injected at either the 2-cell or the 4-cell stage and allowed to develop to gastrula- stage 

(Nieuwkoop and Faber stage 10-11). For mosaic expression of vinculin D1, vinculin-3xGFP was injected 

into both cells at the 2-cell stage and vinculin D1 was injected along with mChe-H2B (as a lineage 

marker) into two cells at the 4-cell stage such that vinculin D1-expressing cells could be compared to 

neighboring internal control cells. 5 nl of mRNA was injected into each cell at the following 

concentrations: mRFP-ZO-1 (50 µg/ml), GFP-claudin-6 (1 µg/ml), mCherry-claudin-6 (2 µg/ml), E-

cadherin-3xGFP (5 µg/ml), E-cadherin-3xmCherry (10 µg/ml), GFP-β-catenin (8 µg/ml), α-catenin-

mCherry (9 µg/ml), vinculin-3xGFP (10-25 µg/ml), vinculin D1-GFP (40 µg/ml), vinculin D1 (40 µg/ml), 

mCherry-farnesyl (6 µg/ml), GFP-tricellulin (0.4 µg/ml), mCherry-tricellulin (0.4 µg/ml), angulin-1-3xGFP 

(5 µg/ml), angulin-1-3xmCherry (5 µg/ml), Lifeact-GFP (5 µg/ml), Lifeact-mRFP (5 µg/ml), mem-TagBFP 

(10 µg/ml), GFP-H2B (5 µg/ml), mCherry-H2B (4 µg/ml), MgcRacGAP-3xGFP (0.4 µg/ml). 

Barrier Assay 

Gastrula-stage embryos expressing mRFP-ZO-1 and/or mCherry-H2B were mounted in 10 mM 

fluorescein (332 Da) and observed. As positive control of barrier failure, embryos were injected with 5 nl 

of 100 mM EGTA in 0.1X Marc’s modified Ringer’s (MMR) into the blastocoel and observed after 30 min. 

Immunostaining 

Gastrula-stage albino embryos were immunostained by methods described previously (Breznau et al. 

2015; Reyes et al. 2014) with the following changes: embryos were fixed with 2% TCA (for staining of β-

catenin and ZO-1) or 2% formaldehyde (for staining of Tricellulin, Angulin-1, and ZO-1) in 1Χ PBS for 2 hr, 

permeabilized with 2% Triton X-100 in PBS for 20 min, and blocked in Tris-buffered saline (50 mM Tris 
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and 150 mM NaCl [pH 7.4]) containing 10% fetal bovine serum (10082-139; Invitrogen) for 1 or 2 hr at 

room temperature. Embryos were incubated with 10 mg/ml DAPI (D1306; Life Technologies) and 

mounted in Vectashield mounting medium (H-1000; Vector Laboratories). 

Antibodies 

The rabbit anti-β-catenin antibody (ab2365) was purchased from Abcam (Cambridge, UK) and was used 

for immunostaining at 1:200. The mouse anti-ZO-1 antibody (T8-754) was a generous gift from Dr. 

Masahiko Itoh (Dokkyo Medical University, Japan) and was used for immunostaining at 1:500. Secondary 

antibodies used for immunostaining were Alexa Fluor 488-goat anti-rabbit IgG (A11008; Life 

Technologies) and Alexa Fluor 568-goat anti-mouse IgG (A11004; Life Technologies). Each secondary 

antibody was used for immunostaining at 1:500. 

Live and fixed confocal microscopy 

Fluorescent confocal images were collected on an inverted Olympus Fluoview1000 microscope 

equipped with a 60x super corrected PLAPON 60XOSCobjective (numerical aperture [NA] = 1.4; working 

distance = 0.12 mm) and FV10-ASW software. Live and fixed imaging was carried out as described 

previously (Breznau et al. 2015; Reyes et al. 2014). 

FRAP 

FRAP was performed on gastrula-stage albino embryos using the microscope described above. A 405-nm 

laser was pulsed in a circular region of interest (ROI) (35% laser power; 600 ms; diameter of 7.8 µm) to 

bleach junction proteins of interphase cells or the cleavage furrow or polar region of dividing cells. In 

dividing cells, bleaching was performed once the cleavage furrow was apparent, at ~10%–25% 

ingression. The apical surface (3 µm deep) of the embryos was imaged for all experiments. This allowed 

the tracking of the apical region of the cleavage furrow in the Z direction during cytokinesis. 
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Statistical analysis 

A two-tailed paired Student’s t test was used for statistical analysis unless otherwise specified. Statistical 

analysis of FRAP data was performed in GraphPad Prism version 6 (GraphPad Software). E-cadherin data 

were fit with a double exponential curve to derive the fast and slow halftime of recovery for FRAP(t1/2) 

and the plateau/mobile fraction. A single exponential curve was fit to data for β-catenin, Claudin-6, and 

ZO-1 to derive the t1/2 and the plateau/mobile fraction. Curves were constrained to y = 0 and the plateau 

to be less than 1. An unpaired Student’s t test with Welch’s correction was used for statistical analysis, 

and data ≥1.1 or % ≤-0.1 were removed from statistical analysis. 

FRAP image analysis  

FRAP data were analyzed using FIJI. A FIRE look up table was applied to average intensity projections to 

allow for easy tracking of the bleached area of the junction. The fluorescence intensity of a small circular 

ROI (diameter of 0.6 µm) was measured in three areas of the cell: the bleached region of the junction, a 

reference junction, and background signal in the cytoplasm. Reference ROIs were chosen as follows: for 

interphase cells, a different bicellular junction; for the furrow of dividing cells, the unbleached furrow of 

the same cell; and for polar regions of dividing cells, the opposite polar region of the same cell. ROIs 

were moved manually to account for cell movements and were measured using a custom macro that 

measured and advanced frames. Measurements were imported into Microsoft Excel and normalized 

first to background signal and fluctuations in the reference points using the following equation: 

�����(�) = � 
���� ���

����(�) − �����(�)
� �

���� ����(�) − �����(�)

����� ���
� 

Where Ifrap is the ROI tracking the bleached area, Iref is the ROI tracking the reference area, and Iback is the 

ROI measuring the cytoplasmic background. (t) indicates the specific time point, and pre indicates the 
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average intensity pre bleach. Then, the values were constrained between 1 and 0 with the following 

equation: 

�����(�) = � 
�����(�) − �����(�������)

����� ��� − �����(�������)
� 

Where Inorm indicates the normalized values from the first equation, (t) indicates the specific time 

point, tbleach indicates the bleached time point, and pre indicates the average intensity of the ROI pre 

bleach. 

Image analysis of fluorescence intensity at cleavage furrow of dividing cells.  

The fluorescence intensity of a linear ROI (width of 0.5 µm for ZO-1 and E-cadherin and 0.8 µm for 

vinculin, membrane, and α-catenin) was measured for each channel in three areas of the cell: cleavage 

furrow and polar region in the dividing cell and reference region in a non-dividing cell. The relative 

intensity at the cleavage furrow and polar regions was determined by dividing by the intensity at the 

reference region. 

 

Image analysis of the duration of cytokinesis.  

Relative furrow ingression percent at each time point after the onset of ingression was determined by 

dividing the distance between adherens junctions on either side of the furrow by the cell width prior to 

ingression. The time that it takes to achieve 25%, 50%, and 75% ingression was determined by curve 

fitting using the Rodbard option in ImageJ. 
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Supplemental figures 
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Figure S2.1: Adherens junction proteins, but not tight junction proteins, are stabilized at the cleavage furrow of 

dividing cells 

 A) Diagram depicting the approach used to measure FRAP at the furrow of dividing cells. This strategy was chosen 

to ensure that measured recovery was of the bleached region and not due to signal from either side of the furrow 

or due to basolateral signal coming into the focal plane. A circular ROI with a diameter of 7.8 µm (green circle) was 

used to bleach the furrow; a circular ROI with a diameter of 0.6 µm (red circle) was used to measure recovery 

during analysis. FRAP in interphase cells and the polar region of dividing cells was measured using the same 

method. B) Cell view and kymographs of mRFP-ZO-1 FRAP. Colored dashed circles indicate the bleached area, red 

line indicates the location used to generate the kymographs, and the white asterisks indicate the two daughter 

cells. A FIRE lookup table (above kymographs) was applied to the kymographs; time (horizontal axis) and bleach 

time points are indicated. Scale bars, 10 µm. C) E-cadherin-3xmCherry FRAP fast and slow t1/2s derived from the 

double exponential curve that was fitted to the data. The number of cells (n) quantified is: interphase cells (n=23), 

dividing cells/furrow (n=17), dividing cells/polar (n=12). D) β-catenin-GFP FRAP t1/2s. n=21, 19, 14. E) mCherry-

Claudin-6 FRAP t1/2s. n=23, 18, 10. F) mRFP-ZO-1 FRAP t1/2s. n=34, 34, 21. G) Table of mobile fraction and t1/2 

values of measured junction proteins. Error bars, S.E.M. Statistics, unpaired t-test, *p=0.014, **p=0.004, 

***p<0.0001. 
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Figure S2.2: Adherens junction complete invagination before tight junction and dominant-negative Vinculin 

abolishes cell-cell junction reinforcement at the cleavage furrow  

A and E). Detailed montage of the dividing control (A) and Vinculin D1-expressing (E) cells shown in Figures 6D and 

6E. Note that the adherens junction has completed invagination, whereas the tight junction is still apart at 13:47 

(white arrows) in A. Insets in A: Higher magnification of new interface between neighbor cells (yellow arrows). B) 

Live imaging of a gastrula-stage embryo expressing GFP-Claudin-6 (green, tight junction marker) and E-cadherin-

3xmCherry (red, adherens junction marker). Note that the invagination of the adherens junction precedes the tight 

junction. C) Immunofluorescence staining of four representative cells in gastrula-stage embryos using anti-ZO-1 

(tight junction marker, red), anti-β-catenin (adherens junction marker, green) and DAPI (DNA marker, blue). Note 

that adherens junction has invaginated further than tight junction (see cells b and c), supporting the live imaging 

results. D) Live imaging of an embryo expressing Vinculin D1-GFP and mRFP-ZO-1. Note that Vinculin D1-GFP 

uniformly labels cell-cell junctions. Asterisks and “n”s indicate daughter cells and neighbor cells, respectively. Scale 

bars, 20 µm. 
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Chapter 3 

Anillin regulates epithelial cell mechanics by structuring the medial-

apical actomyosin network 

Abstract 

 Mechanical forces from cells sculpt organisms during development, while misregulation 

of cellular mechanics can influence disease progression. Here, we investigate how the 

actomyosin scaffold protein Anillin contributes to epithelial mechanics in developing Xenopus 

laevis embryos. We find that junctional mechanosensitive recruitment of Vinculin is reduced 

when Anillin is depleted and increased when Anillin is overexpressed, suggesting that Anillin 

promotes junctional tension. Using junction recoil following laser ablation as a readout for the 

forces exerted on junctions, we show, unexpectedly, that junctions recoil faster when Anillin is 

depleted and slower when Anillin is overexpressed. Unifying these findings, we demonstrate 

that Anillin organizes and stabilizes the medial-apical actomyosin network. Finally, we show 

that Anillin’s effects on cellular mechanics impact tissue-wide mechanics. Together, these 

results reveal Anillin as a key regulator of epithelial mechanics and lay the groundwork for 

future studies on how Anillin may contribute to mechanical events in development and disease.
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 Introduction  

 During development, an organism takes its shape by generating forces and establishing 

mechanical properties at the cellular level (Davidson 2012). Forces produced by the contractile 

actomyosin cytoskeleton within cells are transmitted via mechanical properties between cells 

and through the tissue via cell-cell junctions. By coordinating which cells are contracting, 

elongating, or rearranging, tissues can bend, fold, or elongate allowing for the complex tissue 

organization found in many multicellular organisms. Understanding how cell-scale mechanical 

inputs result in tissue-scale changes requires a comprehensive knowledge of the proteins 

involved in controlling cellular mechanics.  

 Anillin is a scaffolding protein that was first characterized for its role in cell 

division (Field and Alberts 1995) and has since been shown to regulate cytokinesis in organisms 

ranging from yeast to humans (Piekny and Maddox 2010). Anillin localizes to the actomyosin 

contractile ring during cytokinesis and primarily to the nucleus during interphase (Field and 

Alberts 1995; Oegema et al. 2000; D’Avino 2009). Anillin anchors the contractile ring to the 

plasma membrane by binding to actomyosin through its N-terminal Myosin- and F-actin-binding 

domains and to lipids through its C-terminal C2 and PH domains (Straight, Field, and Mitchison 

2005; Piekny and Glotzer 2008; Liu et al. 2012; Sun et al. 2015). Anillin can both enhance and 

limit contractility during cytokinesis through binding to active RhoA, several of Rho’s positive 

and negative regulators, and by crosslinking F-actin (Piekny and Glotzer 2008; Frenette et al. 

2012; Manukyan et al. 2015; Descovich et al. 2017). Anillin promotes RhoA activity by binding 

to active RhoA (Piekny and Glotzer 2008; Sun et al. 2015) and the positive regulator of RhoA 

Ect2 (Frenette et al. 2012) and high contractility in the contractile ring promotes the interaction 
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between the negative regulator of RhoA P190RhoGAP-A and Anillin which in turn limits RhoA 

activity (Manukyan et al. 2015). 

 Recently, novel roles for Anillin in regulating epithelial cell-cell junctions have been 

reported. Our group showed that Anillin is localized to cell-cell junctions in frog embryos where 

it regulates cell-cell junction integrity, as both tight junctions and adherens junctions were 

disrupted when Anillin was knocked down (Reyes et al. 2014). Furthermore, we showed that 

Anillin scaffolds the contractile actomyosin machinery connected to epithelial cell-cell 

junctions (Reyes et al. 2014). Proteomic studies supported Anillin’s association with cadherin-

mediated adhesions in fly and human cells (Guo et al. 2014; Toret et al. 2014). Studies in human 

epithelial cells confirmed and expanded our understanding of Anillin’s function at cell-cell 

junctions. Anillin knockdown in cultured human epithelial cells resulted in junction disassembly 

and disorganized junctional F-actin and Myosin II (Wang et al. 2015). A recent study reported 

that Myosin II anchors Anillin to the apical cell cortex, and cycles of binding and unbinding to 

Anillin stabilize active RhoA by increasing its cortical residence time, thus promoting junctional 

actomyosin contractility (Budnar et al. 2018). Finally, in vivo studies in zebrafish demonstrated 

that barrier function in the kidney, which is mediated by tight junctions, was compromised by a 

mutation in Anillin that causes Focal Segmental Glomerulosclerosis, a leading cause of kidney 

failure (Gbadegesin et al. 2014).  

 Despite these emerging roles for Anillin in regulating actomyosin-mediated cell-cell 

junction contractility, very little is known about how Anillin contributes to the mechanical 

properties of epithelial tissues in development and disease. Notably, Anillin is expressed during 

developmental events that are controlled by mechanical inputs from cells and tissues, including 
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gastrulation and neurulation. Anillin is also overexpressed in multiple human cancers (Hall et al. 

2005). Increased tissue stiffness is frequently observed during tumorigenesis; tumor growth 

and metastases are sensitive to mechanical cues, which significantly affect cancer 

prognosis (Kumar and Weaver 2009). Changes in mechanical properties can be mediated by 

changes in the composition of the extracellular matrix as well as changes in the organization of 

the intracellular cytoskeleton. Changes in the actomyosin cytoskeleton are associated with 

increased expression or activity of proteins that promote intracellular contractility, such as 

RhoA and its downstream effector ROCK (Rho-associated protein kinase) (Butcher, Alliston, and 

Weaver 2009). Although there is little research on how Anillin may contribute to the 

mechanical properties of cancer, it is becoming clear that Anillin’s function goes beyond 

cytokinesis. Anillin resides not only in the nucleus of interphase cancer cells, but also in the 

cytoplasm, and Anillin expression can have either positive or negative outcomes for patients 

depending on the cancer type and Anillin’s subcellular localization (Hall et al. 2005; Suzuki et al. 

2005; Ronkainen et al. 2011; Liang et al. 2015; Magnusson et al. 2016; Wang et al. 2016; Idichi 

et al. 2017; Zhang et al. 2017). Based on Anillin’s demonstrated role in regulating cell-cell 

junction contractility and potential involvement in regulating development and disease, we 

sought to test whether Anillin affects epithelial cell and tissue mechanics.  

 In order to characterize how Anillin affects cell and tissue mechanics, we used the 

animal cap epithelium of developing Xenopus laevis embryos as a model vertebrate epithelial 

tissue. We identified a new role for Anillin in organizing F-actin and Myosin II at the medial-

apical surface of epithelial cells. The medial-apical population of actomyosin has previously 

been characterized, particularly in flies, and is critical for constricting the apical surface of 
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epithelial cells to drive tissue bending during embryonic development (Dawes-Hoang et al. 

2005; Martin, Kaschube, and Wieschaus 2009; Plageman et al. 2011; Martin and Goldstein 

2014). Here, we show that Anillin promotes a contractile medial-apical actomyosin network, 

which produces tensile forces that are transmitted between cells via cell-cell junctions. When 

Anillin is knocked down, medial-apical actomyosin is reduced and no longer forms a functional 

contractile network. When Anillin is overexpressed, medial-apical actomyosin is reorganized 

into thick bundles that span the apical surface. These bundles are contractile and increase the 

forces generated across the apical surface of epithelial cells. Finally, we show that cell-scale 

mechanical changes caused by modulating Anillin expression result in tissue-scale changes, as 

Anillin knockdown reduces tissue stiffness. Together, these results reveal that the scaffolding 

protein Anillin regulates epithelial mechanics.   

Results 

Anillin increases junctional tension but reduces recoil of junction vertices after laser ablation 

 Since Anillin can both promote and limit contractility at the cytokinetic contractile 

ring (Piekny and Glotzer 2008; Manukyan et al. 2015; Descovich et al. 2017), and Anillin 

localizes to cell-cell junctions where it maintains F-actin, Myosin II, and proper active RhoA 

distribution (Reyes et al. 2014), we sought to test whether Anillin affects junctional tension. As 

a readout of relative tension on junctions, we quantified the junctional accumulation of 

Vinculin-mNeon. High junctional tension induces a conformational change in α-catenin, which 

recruits Vinculin to adherens junctions to reinforce the connection to the actin 

cytoskeleton (Yonemura et al. 2010). We have previously vetted a tagged Vinculin probe 

in Xenopus laevis and used it to show that the cytokinetic contractile ring applies increased 
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tension on adherens junctions (Higashi et al. 2016). To test how Anillin affects junctional 

Vinculin recruitment, we knocked down Anillin with a previously characterized morpholino 

oligonucleotide (Reyes et al. 2014) or overexpressed a tagged version of Anillin (Anillin-

3xmCherry). In control embryos, Vinculin-mNeon accumulated weakly along bicellular junctions 

and strongly at tricellular contacts, which are sites of higher tension ( Fig. 3.1 A) (Choi et al. 

2016; Higashi and Miller 2017). When Anillin was knocked down, the intensity of Vinculin-

mNeon was reduced at junctions (Fig. 3.1 A, B). We also examined α-catenin-mCherry intensity 

because Vinculin intensity could vary based on the amount of its binding partner α-catenin 

available at junctions (Fig. S3.1 A-C). When Anillin was knocked down, α-catenin-mCherry was 

strongly reduced at junctions; therefore, the reduced Vinculin-mNeon intensity (Fig. 3.1 A, B, 

S3.1 A, B) does not simply indicate reduced tension, but also reduced α-catenin. Notably, when 

Anillin was overexpressed, the intensity of Vinculin-mNeon was significantly elevated (Fig. 3.1 

A, B, S3.1 A, B), and the intensity of α-catenin-mCherry was unchanged (Fig. S3.1 A, C), 

indicating that increased Vinculin-mNeon recruitment was due to a tension-induced 

conformation change in α-catenin. 

 Changes in cell shape also supported the conclusion that Anillin affects junctional 

tension. When Anillin was knocked down, cells became less polygonal and more rounded (Fig. 

3.1 A), a hallmark of reduced tension (Yonemura et al. 2010). This is consistent with our 

previous report that Anillin knockdown leads to effects associated with reduced tension 

including cell rounding, apical doming, and loss of F-actin and Myosin II from junctions (Reyes et 

al. 2014). In contrast, when Anillin was overexpressed, junctions exhibited a wavy, distorted 

shape compared to more linear control junctions (Fig. 3.1 A). Interestingly wavy junctions can 
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indicate either unbalanced high tension (Tokuda, Higashi, and Furuse 2014; Nowotarski and 

Peifer 2014), or uniform low tension along the junction (Nowotarski and Peifer 2014; Choi et al. 

2016). 

 As a complementary approach to test whether Anillin promotes junctional tension, we 

measured junction recoil after laser ablation. The amount of junction recoil (measured as 

distance between cell vertices over time) is reported to correlate with the relative junctional 

tension such that a junction under high tension will exhibit enhanced recoil (Farhadifar et al. 

2007; Fernandez-Gonzalez et al. 2009). We used a 2-photon laser to ablate a local site in the 

center of a bicellular junction in embryos expressing E-cadherin-3xGFP. To avoid potential 

contributions of junction length to recoil, junctions of a similar length were selected for 

ablation in controls, Anillin knockdown, and Anillin overexpression (Fig. 3.1 E). After laser 

ablation, control junctions recoiled 2.8 ± 0.2 µm after 18 s (Fig. 3.1 C, D). Based on our 

hypothesis that Anillin promotes junctional tension, we expected to see reduced junction recoil 

when Anillin was knocked down; however, recoil increased to 4.1 ± 0.4 µm after 18 s (Fig. 3.1 C, 

D & S3.1). When Anillin was overexpressed, we expected to see increased recoil; however, the 

recoil decreased to 1.6 ± 0.4 µm after 18 s (Fig. 3.1 C, D).  

 Taken together, the Vinculin recruitment data indicated that Anillin increased junctional 

tension, whereas the laser ablation showed that Anillin reduces junction recoil, which would be 

consistent with reduced junctional tension. Although the Vinculin recruitment and laser 

ablation results initially seemed to be at odds with one another, an interesting phenotype 

emerged in the laser ablation data when we observed the Anillin-3xmCherry channel in Anillin 

overexpression embryos, as Anillin highlights the apical surface of the cells as well as the cell-
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cell junctions. In several instances, we saw that the two cells adjacent to the junction that was 

ablated lost adhesion and recoiled perpendicular to the junction instead of in the expected 

recoil parallel to the junction (Fig. 3.1F, S3.1D). This unexpected result lead us to hypothesize 

that Anillin was somehow responsible for exerting forces perpendicular to the junction, possibly 

through the medial-apical cortex, which could both increase Vinculin intensity at junctions and 

reduce recoil after laser ablation in the expected parallel direction. 
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Figure 3.1: Anillin increases junctional Vinculin recruitment but reduces recoil of junction vertices after laser 
ablation 
A) Confocal images of live epithelial cells in gastrula-stage Xenopus laevis embryos with a probe for the plasma 
membrane (2x membrane localization signal of Src family tyrosine kinase Lyn tagged with TagBFP at its C-terminus) 
and Vinculin-mNeon when Anillin is knocked down (KD) or overexpressed (OE). B) Quantification of Vinculin 
intensity as a ratio to membrane intensity. Measurements were taken by tracing a bicelllular junction from vertex 
to vertex. Error bars, S.E.M. Statistics, unpaired t-test, n=number of junctions. C) Cell view images showing E-
cadherin tagged with 3xGFP prior to junction laser ablation. Blue boxes show the zoomed area for the ablation 
montage. Red lines indicate the initial location of junction vertices, green dashed lines indicate the location of 
junction vertices after ablation. D) Quantification of junction vertex separation over time during ablation 
experiments. Error bars, S.E.M. Statistics, unpaired t-test, n=number of junctions. E) Quantification of initial 
junction length from vertex to vertex for ablation experiments. Error bars, S.E.M. Unpaired t-tests between control 
and Anillin KD or Anillin OE resulted in no statistical significance, Control vs. KD p=0.49, Control vs OE p=0.69. F) 
Cell view of embryo overexpressing Anillin tagged with 3xmCherry. Blue boxes show the zoomed area for the 
ablation montage. Green dashed lines indicate the location of junction vertices during ablation, orange dashed line 
indicates the perpendicular separation between the two cells, and the grey dashed outline indicates the space 
forming between the two cells. Cartoon traces of the ablation data depicting the events during ablation are shown 
below. Pink circle indicates the site of laser ablation, orange line indicates perpendicular separation between cells, 
and pink arrows represent direction and intensity of forces where larger arrows represent larger forces. 
(Unannotated data can be found Supplemental Fig. 3.1 D). 

 

Anillin structures medial-apical F-actin and Myosin II 

 Based on our finding that Anillin promotes contractile forces perpendicular to the 

junction, we next tested whether Anillin affects the medial-apical population of F-actin and 

Myosin II, which could generate these perpendicular forces. To observe medial-apical F-actin, 

we optimized our fixation conditions to preserve this delicate network of F-actin and stained it 

with phalloidin. In control cells, we observed a dense meshwork of thin filaments of medial-

apical actin. Knocking down Anillin reduced the intensity of this network, while overexpressing 

Anillin drastically reorganized this network into thick bundles of F-actin that could span the 

entire surface of the cells (Fig. 3.2 A, E). We also observed thick medial-apical bundles of F-actin 

in live cells overexpressing Anillin using a probe for F-actin (Lifeact-GFP) and Anillin-3xmCherry 

colocalized with the F-actin bundles (Fig. 3.2 B). Varied F-actin bundle organization and 

dynamics were observed including linear arrays that spanned the apical surface of the cells, 
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aster like structures, and circular bundles that rotated or flowed from the junction towards the 

center of the cell (Fig. 3.2 A, B). 

 To determine whether these medial-apical F-actin bundles were decorated with Myosin 

II, we performed live imaging with a probe for Myosin II, the SF9 intrabody (Nizak et al. 2003; 

Vielemeyer et al. 2010; Hashimoto et al. 2015), which we tagged with mNeon. In controls, 

Myosin II accumulated on the medial-apical surface in patches that resemble previously 

described cortical waves of F-actin (Bement et al. 2015) (Fig. 3.2 C). Knocking down Anillin 

resulted in almost a complete loss of Myosin II from the apical surface of epithelial cells, and 

when Anillin was overexpressed Myosin II increased and decorated the large bundles of F-actin 

that formed (Fig. 3.2 C, D, & F). These data identify a new role for Anillin in establishing and 

structuring proper medial-apical F-actin and Myosin II, which may be important for epithelial 

cell mechanics. 
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Figure 3.2: Anillin structures medial-apical F-actin and Myosin II 
A) Confocal images of fixed epithelial cells from gastrula-stage Xenopus laevis embryos stained for Anillin (α-
Anillin) and F-actin (Alexa Fluor 488 phalloidin). Blue boxes show zoomed in areas. B) Confocal images of live 
epithelial cells expressing Anillin-3xmCherry and Lifeact-GFP to probe for F-actin. Blue boxes show zoomed in 
areas. C) Confocal images of live epithelial cells expressing probes for Myosin II (SF9-mNeon) and membrane 
(membrane-TagBFP). D) Confocal images of live epithelial cells expressing probes for Myosin II (SF9-mNeon) and F-
actin (Lifeact-RFP). Yellow boxes show zoomed in area. Notice how medial-apical Myosin II decorates the F-actin 
bundles. E) Quantification of medial-apical F-actin intensity from fixed embryos measured by a circular ROI 10 µm 
in diameter in the center of each cell. Error bars, S.E.M. Statistics, unpaired t-test. F) Quantification of medial-
apical Myosin II intensity measured by a circular ROI 10 µm in diameter in the center of each cell. Medial-apical 
Myosin II intensity was normalized by dividing by junctional membrane intensity. Error bars, S.E.M. Statistics, 
unpaired t-test. 

 

Anillin establishes a contractile medial-apical actomyosin network 

 When Anillin is knocked down, medial-apical actomyosin is dramatically reduced, and 

when Anillin is overexpressed, actomyosin is reorganized into large bundles, so we wanted to 

determine whether these populations of actomyosin are contractile. We added extracellular 

ATP, which leads to whole-embryo contraction driven by constriction of the apical surface of 

cells (Joshi, von, and Davidson 2010; Kim et al. 2014; Higashi et al. 2016) (Fig. 3.3 A), making 

this an effective method to test whether the medial-apical actomyosin is contractile when 

Anillin is perturbed. When ATP was added to one side of the animal hemisphere, control 

embryos contracted towards the site of ATP addition (Fig. 3.3 B). The contractile response 

could be observed and quantified in kymographs as a shift of the pigment towards the site of 

ATP addition (Fig. 3.3 B). When Anillin was knocked down, the contractile response was 

attenuated, and when Anillin was overexpressed, the contractile response lasted longer (Fig. 

3.3 B & C).  

 At the cellular level, addition of ATP to control embryos resulted in a large burst of F-

actin across the medial-apical surface that dissipated over time (Fig. 3.3 D). The burst of F-actin 

initially accumulated near the junctions then spread toward the center of the cell (Fig. S3.2 A & 
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B). When Anillin was knocked down, F-actin accumulated transient and locally at junctions, 

which we have previously reported as flares of active RhoA associated with local actin 

accumulation (Reyes et al. 2014). However, these local actin accumulations did not propagate 

onto the medial-apical surface and resulted in local junction contraction, but not whole-cell or 

whole-embryo contraction (Fig. 3.3 D-F). When Anillin was overexpressed, a burst of medial-

apical F-actin similar to controls was observed; however, the large bundles of F-actin appeared 

thicker and more dynamic (Fig. 3.3 D-F). When comparing the change in medial-apical F-actin 

before and after ATP (baseline and peak), knocking down Anillin significantly reduced the 

amount of F-actin accumulation compared to controls, while overexpressing Anillin resulted in 

no significant change in the amount of F-actin accumulation (Fig. 3.3 D & E). Of note, medial-

apical F-actin is already very high in Anillin overexpressing cells compared with controls before 

ATP addition, so it may not be possible to achieve a significant increase in F-actin above the 

already elevated level. Using another method to support Anillin’s role in organizing a contractile 

medial-apical actomyosin network, we induced apical constriction by overexpressing Shroom 3, 

which induces apical constriction events during neurulation (Haigo et al. 2003; Itoh, Ossipova, 

and Sokol 2014). In cells induced to apically constrict by Shroom 3 overexpression Anillin 

accumulated across the apical surface of the cell, first near junctions then emanating towards 

the center of the cell (Fig. S3.2 C). Taken together, these data support the idea that Anillin is 

required to establish a contractile medial-apical network. When Anillin is depleted, this network 

is not able to properly contract, and when Anillin is overexpressed, large bundles of actomyosin 

enhance whole-embryo contraction. 
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Figure 3.3: Anillin establishes a contractile medial-apical actomyosin network 

A) Diagram of whole embryo extracellular ATP addition experiments. 40 nl of 50 mM ATP was micropipetted onto 
one side of the animal hemisphere of gastrula stage embryos. A video was captured of the embryo over time and 
kymographs were generated by drawing a line across the entire embryo (red line). Black arrows represent the 
direction of contraction towards the site of ATP addition. B) Kymographs of the animal hemisphere generated from 
light microscopy videos. The fluctuations in grey scale intensity are caused by the variations in pigment of the 
embryos. Contraction towards the site of ATP can be observed as a shift in the embryo’s pigment towards the site 
of ATP addition. Yellow dashed lines represent periods of no contraction, and pink dashed lines represent 
contraction events. Brown dashed lines at the bottom of the kymograph represent movement of the whole 
embryo. C) Quantification of the contraction index measured from kymographs. Contraction index is the difference 
between the shift in a pigment over time (sum of the length of yellow and pink dashed lines in B) and the 
movement of the whole embryo over time (brown line in B). Statistics, unpaired t-test, n=number of embryos. D) 
Confocal images of live epithelial cells with F-actin probe Lifeact-GFP. After the addition of 500 µM ATP, notice the 
accumulation of medial-apical F-actin in controls and Anillin overexpressing cells, while F-actin only increases near 
the junctions in Anillin knockdown cells. The movement of cells across the field of view in controls and Anillin 
knockdown was caused by flow of solution when ATP was added. E) Quantification of medial-apical F-actin (Lifeact-
GFP) intensity over time measured by a circular ROI 10 µm in diameter in the center of each cell. Statistics, 
unpaired t-test, n=number of cells. F) Comparison of the change in medial-apical F-actin (Lifeact-GFP) intensity 
before and after ATP addition. The difference between peak and baseline F-actin intensity was measured for each 
embryo by averaging the peak 10 frames (from 60s to 195s) and subtracting the baseline 10 frames (-15s to -150s). 
Statistics, unpaired t-test, n=number of cells. 

 

 Taken together, our results indicate that Anillin not only regulates junctional 

actomyosin (Reyes et al. 2014), but also organizes a medial-apical contractile actomyosin 

network that, when mechanically integrated across cells in an epithelial tissue (the animal cap 

epithelium), can affect tissue-level contraction (Fig. 3.1-3). Based on our data, we speculate 

that Anillin can regulate the orientation of tensile forces applied on cell-cell junctions as shown 

in the model in Fig. 3.4. This model reconciles our initially surprising results that knocking down 

Anillin leads to decreased junctional Vinculin recruitment but increased recoil after laser 

ablation (Fig. 3.1 A-D). We propose that Anillin knock down weakens medial-apical actomyosin 

to the point where it is no longer a contractile network (Fig. 3.4 A). This results in decreased 

pulling forces perpendicular to junctions, allowing the parallel forces generated by junctional 

actomyosin to dominate (Fig. 3.4 B). In contrast, overexpressing Anillin results in increased 

medial-apical actomyosin and reorganizes the actin into thick bundles that connect 

perpendicular to the junction (Fig. 3.4 A). These actomyosin bundles are contractile and make 
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perpendicular forces on junctions dominant (Fig. 3.4B), consistent with our data that when 

Anillin is overexpressed, Vinculin recruitment is increased, and following laser ablation, vertex 

separation is reduced but separation in the direction perpendicular to the junction occurs. Thus, 

our model suggests that the level of Anillin expression regulates if junctional or medial-apical 

actomyosin is the primary load-bearing structure on the apical surface of epithelial cells. 

Figure 3.4: Model of how Anillin organizes medial-apical actomyosin contractility and regulates the orientation 
of tensile forces applied on junctions 
A) Diagram of the apical surface of epithelial cells showing junctional and medial-apical F-actin and Anillin in 
control embryos or when levels of Anillin are perturbed. When Anillin is knocked down, medial-apical F-actin is 
strongly reduced, and when Anillin is overexpressed, medial-apical F-actin is reorganized into thick bundles 
decorated with Myosin II that span the apical surface. B) Diagram depicting the changes in the orientation of 
actomyosin-mediated forces applied on cell-cell junctions when Anillin is perturbed. When Anillin is knocked down, 
the medial-apical actomyosin is not robustly contractile, reducing forces perpendicular to the junction. When 
Anillin is overexpressed, perpendicular forces on cell-cell junctions are increased due to the large contractile 
bundles of F-actin that connect perpendicular to the junction. 
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Anillin’s F-actin-binding domain and C-terminal domains are necessary for restructuring the 

medial-apical F-actin network 

 In order to build upon our proposed model (Fig. 3.4), we examined which of Anillin’s N-

terminal functional domains are necessary for organizing medial-apical F-actin. We made Anillin 

mutants that lacked the Myosin II-binding domain (Δmyo), the F-actin-binding domain (Δact), or 

both the Myosin II- and F-actin-binding domains (Δmyoact) (Fig. 3.5 A). When overexpressed, 

full length Anillin, and less intensely Δmyo localized to the medial-apical surface and Δmyo 

reorganized F-actin into long bundles that spanned the apical surface (Fig. 3.5 B-D). When 

overexpressed, Δact localized medial-apically but only reorganize F-actin into short bundles or 

no bundles at all (Fig. 3.5 B-D). Δmyoact did not localize medial-apically or reorganize F-actin 

robustly (Fig. 3.5 B-D). These results indicate that both the Myosin II and F-actin-binding 

domains contribute to localizing Anillin to the medial-apical surface, and the F-actin-binding 

domain is necessary for reorganizing medial-apical F-actin into long bundles.  

 We next examined which of Anillin’s functional C-terminal domains are necessary for 

reorganizing medial-apical F-actin. We made Anillin mutants that lacked the active RhoA 

binding domain (ΔRBD), the C2 domain which binds to the membrane and regulators of RhoA 

(ΔC2), and the PH domain which binds the membrane, septins, and regulators of RhoA 

(ΔPH) (Fig. 3.5 E). When overexpressed both full length and ΔRBD were able to robustly localize 

to the medial-apical surface while medial-apical localization of the ΔC2 and ΔPH was 

reduced (Fig. 3.5 F, G). Overexpression of ΔRBD, ΔC2, and ΔPH did not result in restructuring of 

medial-apical F-actin into long or short bundles (Fig. 3.5 F, H). Together these results indicate 

that Anillin’s F-actin binding domain and C-terminal domains are required for restructuring 
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medial-apical F-actin into long bundles that span the apical surface and Anillin’s medial-apical 

localization is facilitated by actomyosin binding with possible contributions from binding to the 

membrane, regulators of RhoA, or Septins. 
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Figure 3.5: Anillin’s F-actin-binding domain and C-terminal domains are necessary for structuring the 
medial-apical F-actin network 
A) Domain diagram of full length Anillin and N-terminal domain deletions. Full Length (FL), Rho Binding Domain 
(RBD), Pleckstrin Homology (PH). B) Confocal images of live epithelial cells from gastrula stage Xenopus laevis 
embryos expressing either full length Anillin or Anillin domain deletions tagged with 3xGFP and Lifeact-RFP to 
probe for F-actin. Blue boxes show zoomed in area. C) Quantification of Anillin construct intensity measured by a 
circular ROI 10 µm in diameter in the center of each cell. Statistics, unpaired t-test, *** = <0.001, n=number of 
cells D) Blinded categorization of medial-apical F-actin bundles organization in cells. FL, n=306; Δmyo, n=112; Δact, 
n=61; Δmyoact, n=57; control, n=110 cells. E) Domain diagram of full length Anillin and C-terminal domain 
deletions. Full Length (FL), Rho Binding Domain (RBD), Pleckstrin Homology (PH). F) Confocal images of live 
epithelial cells from gastrula stage Xenopus laevis embryos expressing either full length Anillin or Anillin domain 
deletions tagged with 3xGFP and Lifeact-RFP to probe for F-actin. G) Quantification of Anillin construct intensity 
measured by a circular ROI 10 µm in diameter in the center of each cell. Statistics, unpaired t-test, *** = <0.001, 
n=number of cells H) Blinded categorization of medial-apical F-actin bundles in cells. FL, n= 395; ∆RBD, n= 352; 
∆C2, n= 332; ∆PH, n=287; control, n=109 cells.  

 

Anillin regulates epithelial cell mechanics by stabilizing medial apical F-actin 

 Our findings demonstrated that Anillin’s actin-binding function is necessary to 

reorganize medial-apical F-actin, and previous work has shown that Anillin stabilizes F-actin by 

preventing Cofilin severing of actin filaments (Tian et al. 2015). This led us to ask if Anillin 

stabilizes medial-apical F-actin, and whether actin stabilization contributes to changes in 

epithelial cell mechanics. To test if Anillin stabilizes F-actin, we used Fluorescence Recovery 

After Photobleaching (FRAP) of actin-mNeon in controls cells and in cells overexpressing 

Anillin (Fig. 3.6 A). After photobleaching in control cells, actin-mNeon recovered to 81 ± 2%, 

whereas in cells overexpressing Anillin, actin-mNeon recovered to 66 ± 2% (Fig 3.6. A-C), 

indicating that Anillin stabilizes actin filaments. We attempted to perform FRAP of actin-

mNeon when Anillin was knocked down, but because Anillin knockdown drastically reduces 

medial-apical F-actin, we had to inject excessive amounts of actin-mNeon mRNA in order to 

visualize medial-apical F-actin. This high level of actin-mNeon led to abnormal cell and embryo 

morphology in control and Anillin overexpression embryos. In Anillin knockdown cells, the 

overexpressed actin-mNeon recovered to 96 ± 8%; however, these data cannot be directly 
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compared with control and Anillin overexpression data because of the differing levels of actin-

mNeon expression (Fig. S3.3 A).  

 Because the FRAP data revealed that Anillin not only reorganizes F-actin, but also 

stabilizes actin filament dynamics, we hypothesized that stabilizing F-actin using the drug 

jasplakinolide (Holzinger 2001) could produce changes in cell mechanics similar to Anillin 

overexpression. After treating embryos with jasplakinolide (20 µM, 1 hr), we observed 

increased F-actin bundles at the medial-apical surface (Fig. 3.6 D). These actin bundles were 

shorter than those observed when Anillin was overexpressed, didn’t span the apical surface, 

and didn’t flow towards the center of the cell (Fig. 3.6 D). We performed junctional laser 

ablation to test whether the effect observed when F-actin was stabilized by jasplakinolide 

would recapitulate Anillin overexpression (reduced parallel recoil and increased perpendicular 

recoil). Indeed, jasplakinolide treatment strongly reduced parallel recoil, from 2.7 ± 0.3 µm 

after 18 s in controls to 0.2 ± 0.1 µm after 18 s (Fig. 3.6 E & F). In support, jasplakinolide 

treatment of Anillin knock down embryos also reduced junction recoil after laser ablation (Fig. 

S3.3 B). Remarkably, following jasplakinolide treatment of control embryos, we observed 

several examples of increased cell separation perpendicular to the junction, similar to the effect 

when Anillin was overexpressed (Fig. 3.6 G). In some cases, for both jasplakinolide treated cells 

and Anillin-overexpressing cells, we observed that parallel vertex separation only occurred after 

perpendicular separation near the vertex occurred (Fig. 3.6 G, S3.3 C-E), indicating that forces 

perpendicular to these junctions were maintaining cell shape after laser ablation. Together, 

these results demonstrate that Anillin stabilizes medial-apical F-actin and suggest that F-actin 
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stability contributes to the mechanical changes observed in epithelial cells when Anillin is 

perturbed. 
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Figure 3.6: Anillin regulates epithelial cell mechanics by stabilizing medial-apical F-actin 
A) Single plane confocal images of live epithelial cells from gastrula stage Xenopus laevis embryos 
expressing Xenopus laevis actin tagged with mNeon (actin-mNeon) in control or Anillin overexpressing embryos. 
White dashed circle shows the medial-apical area bleached in the zoomed view montages on the right. Normalized 
percent of original fluorescence intensity is indicated for the zoomed view. B) Medial-apical actin-mNeon 
Fluorescence Recovery After Photobleaching (FRAP) data fitted with a two phase association curve. n=number of 
cells. C) Mobile fractions from FRAP data. Error bars, S.E.M. Statistics, unpaired t-test, n=number of cells. D) 
Confocal images of live epithelial cells expressing a probe for F-actin (Lifeact-GFP). Top image was taken before the 
addition of 20 µm jasplakinolide. The bottom image of the same field of view was taken 1 hour after the addition 
of jasplakinolide. E) Single plane confocal images showing E-cadherin tagged with 3xGFP (E-cad-3xGFP) prior to 
junction laser ablation for a control embryo (2% EtOH) and an embryo treated with 20 µm jasplakinolide. Blue 
boxes show the zoomed area for the ablation montage. Red lines indicate the initial location of junction vertices, 
green dashed lines indicate the location of junction vertices after ablation. F) Quantification of vertex separation 
over time after ablation. Error bars, S.E.M. Statistics, unpaired t-test, n=number of cells G) Confocal images of an 
embryo expressing E-cad-3xGFP and treated with 20 µm jasplakinolide before and after laser ablation. Blue boxes 
show the zoomed area for the ablation montage. Green dashed lines indicate the position of the vertices relative 
to the edge of the image, orange dashed line indicates the perpendicular separation between the two cells, grey 
dashed line indicates the space forming between the two cells, and blue arrows represent forces on junctions 
adjacent to the lower cell vertex. Notice that the lower vertex only begins to separate in the parallel direction after 
the forces perpendicular to the adjacent junction (blue arrows) lead to loss of adhesion between the two cells.  

 

Anillin promotes tissue stiffness 

 Since Anillin promotes medial-apical actin stability, and reduces junction recoil after 

laser ablation, we next asked whether Anillin promotes tissue-wide stiffness. To measure the 

effect that Anillin has on tissue stiffness, we utilized dorsal isolates from neurula stage 

(Nieuwkoop and Faber stage 15) Xenopus laevis embryos, as they are amenable to measuring 

tissue stiffness (Fig. 3.7 A) (Zhou, Kim, and Davidson 2009). First, we characterized the effects 

of Anillin knockdown on F-actin in the dorsal isolates by knocking down Anillin in half of the 

embryo, leaving the other half of the embryo as an internal control. Similar to our results in the 

gastrula stage animal cap epithelium (Fig. 3.2 A & E), regions of the dorsal isolates where Anillin 

was knocked down showed a marked reduction in junctional and medial-apical F-actin 

compared with internal control regions (Fig. 3.7 B,C & S3.4). Interestingly, transverse sections 

of dorsal isolates revealed that Anillin knockdown not only reduced apical F-actin but also 

enhanced accumulation of F-actin at the basal surface of these epithelial cells (Fig. 3.7 C & 
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S3.4). At the cellular scale, Anillin knockdown led to apical doming, similar to our previous 

report in gastrula stage epithelial cells (Fig. 3.7 C & S3.4) (Reyes et al. 2014). At the tissue level, 

defects in the morphology of presomitic mesoderm, notochord, and endoderm were observed 

upon Anillin knockdown (Fig. 3.7 A, C & S3.4).  

 To test whether Anillin promotes tissue stiffness, Anillin was knocked down throughout 

the embryo. Despite delayed gastrulation, the Anillin knock down embryos were able to 

develop to stage 15, and dorsal isolates were loaded onto a nanoNewton Force Measurement 

Device, which measures resistive forces generated by the dorsal isolate in response to 

compression (Fig. 3.7 D) (Zhou, Kim, and Davidson 2009). Stiffness (defined as the elastic 

modulus after 180 seconds of unconfined compression) is calculated using measured resistive 

force, compressive strain, and the dorsal isolate cross-sectional area (Fig. 3.7 D) (Zhou, Kim, and 

Davidson 2009). There was a significant reduction in the stiffness of dorsal isolates when Anillin 

was knocked down compared with controls (Fig. 3.7 E). Taken together, these results indicate 

that Anillin promotes tissue stiffness, which may be due to the strong reduction in medial-apical 

F-actin. It should be noted, however, that the loss of junctional F-actin or the defects in 

presomitic mesoderm, notochord, or endoderm may also contribute to the measured change in 

tissue stiffness. 
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Figure 3.7: Anillin promotes tissue stiffness 

A) Cartoons of stage a 15 Xenopus laevis embryo and dorsal isolate (reproduced from Nieuwkoop and Faber). 
Transverse view shows the Neural Ectoderm (NE), Presomitic Mesoderm (PSM), Endoderm (En), and Notochord 
(No). B) En face images of fixed dorsal isolates, z-projected (~50 microns deep). F-actin was stained using 
phallacidin tagged with BODIPY FL. Anillin morpholino was co-injected with Alexa Fluor 647-conjugated Dextran as 
a lineage tracer. Blue boxes represent zoomed in area below. Notice the reduced junctional and medial-apical F-
actin in Anillin-depleted neural ectoderm. C) Transverse section views of the dorsal isolates. Blue boxes show 
zoomed in areas below. Anillin knockdown epithelial cells exhibit an apically domed morphology and loss of F-actin 
on their apical surface (yellow arrowhead), enhanced basolateral F-actin (red arrow), and disrupted mesoderm 
organization (yellow asterisk). Control epithelial cells have a flat apical morphology with robust F-actin (green 
arrowhead) and little basal F-actin (pink arrow). D) Diagram of the nanoNewton Force Measurement Device, which 
measures resistive force generated by the tissue isolate in response to compression using a force-calibrated optical 
fiber. A computer-controlled stage compresses the tissue isolate against an anvil attached to the optical fiber and 
the resistive force is measured using the deflection of the optical force probe. E) Quantification of the stiffness of 
dorsal isolates. Tissue stiffness is significantly reduced when Anillin is knocked down. Statistics, 2-way ANOVA, 
n=number of dorsal isolates. 

 

Discussion 

 Anillin is a scaffolding protein with diverse binding capabilities, which it uses to organize 

the cytoskeletal elements including F-actin, Septins, and microtubules (Field and Alberts 1995; 

Sisson et al. 2000; Silverman-Gavrila, Hales, and Wilde 2008; D’Avino 2009), build actin 

structures by activating formins (Watanabe et al. 2010), and promote contractility by linking F-

actin and Myosin II to the plasma membrane and binding active RhoA and its 

regulators (Straight, Field, and Mitchison 2005; Piekny and Glotzer 2008; Sun et al. 2015; 

Manukyan et al. 2015; Descovich et al. 2017). With this diverse set of interactions, it is not 

surprising that Anillin functions in a range of cellular processes across the tree of life. It is 

required for cytokinesis in many organisms, from yeast to vertebrates, promotes cellularization 

in fly embryos, maintains bridges between germ cells in worms, and regulates migration in 

neurons (Field and Alberts 1995; Piekny and Maddox 2010; Amini et al. 2015; Sun et al. 2015). 

Furthermore, Anillin has an emerging role in regulating cell-cell junctions and promoting proper 

tissue barriers through maintaining the contractile actomyosin network connected to cell-cell 

junctions (Gbadegesin et al. 2014; Reyes et al. 2014; Wang et al. 2015; Budnar et al. 2018). 
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Here, we have discovered a new role for Anillin in organizing a contractile network of medial-

apical actomyosin in frog embryonic epithelia. We demonstrate that perturbing Anillin changes 

the mechanical properties of both cells and the tissue as a whole. 

Multiple factors contribute to junction recoil after laser ablation  

 Laser ablation has been a useful tool for inferring the relative amount of tension on cell-

cell junctions, leading to many insights about the proteins involved in generating tension on 

junctions (Farhadifar et al. 2007; Fernandez-Gonzalez et al. 2009; Ratheesh et al. 2012; 

Leerberg et al. 2014; Van Itallie et al. 2015; Choi et al. 2016; Priya et al. 2016; Bertocchi et al. 

2017). Generally, laser ablation is thought to measure the amount of line tension or tension in 

the direction parallel to the edge of a cell (Rauzi and Lenne 2015). However, there is evidence 

that the medial-apical actin network can also contribute significantly to load bearing within the 

cell (Ma et al. 2009). Here, our laser ablation experiments produced unexpected results with 

respect to the prevalent line tension paradigm (Fig. 3.8 A) and led us to characterize a new 

function for Anillin in organizing contractile medial-apical actomyosin structures.  

 Taken together, our results indicate that Anillin is important for establishing medial-

apical actomyosin, which acts as a load-bearing structural network in epithelia. By stabilizing 

and organizing medial-apical F-actin and Myosin II, Anillin promotes a contractile network that 

produces tensile forces that act perpendicular to cell-cell junctions (Fig. 3.8 B). These 

perpendicular forces can reorient the direction of junction separation after laser ablation, 

causing the cells to separate in the direction perpendicular to the junction. If we had performed 

either the Vinculin recruitment or laser ablation experiments in isolation, opposite conclusions 

would have been drawn about how the Anillin expression level affects junctional tension. A 
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weakness of these tension probing techniques is that they do not easily reveal the direction of 

forces acting on the junction. For example, if a junction recoils slowly parallel to the junction 

after laser ablation, is this because there is less parallel tension, more perpendicular tension, or 

other mechanical changes? Additionally, we found that Anillin stabilizes medial-apical F-actin 

helping to generate a load-bearing structural network in epithelia (Fig. 3.8 C). When we 

stabilized F-actin with jasplakinolide, junction recoil was dramatically decreased, similar to the 

effect with Anillin overexpression, indicating that cellular mechanics are regulated by the 

physical properties of the F-actin network (Fig. 3.8 C) in addition to the contractile forces 

generated by the network. Finally, we showed that Anillin promotes tissue-wide stiffness, and 

this likely contributes to the changes we observe in cellular mechanics (Fig. 3.8 D). 

 While there is little direct evidence about how tissue compliance affects laser ablation 

results, it is easy to conceive how two junctions under the same tension - one in a compliant 

tissue vs. one in a non-compliant tissue - would recoil at different velocities. A recent study 

found that cell boundary stiffness was locally increased by unidirectional actomyosin-generated 

tension, and when ablated parallel to this axis, the tissue displayed high recoil (Chanet et al. 

2017). In contrast, when actomyosin-generated contractility was omnidirectional cell boundary 

stiffness increased evenly around the cell boundary, and when ablated, the tissue displayed 

reduced recoil (Chanet et al. 2017). While changes in the direction of actomyosin contractility 

certainly contribute to the changes in junction recoil, the changes in boundary stiffness may 

also play an essential role. Future studies using laser ablation or other methods of measuring 

junctional tension should consider potential contributions of perpendicular tensile forces 
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generated by the medial-apical actomyosin network, the stability of F-actin filaments, and the 

compliance of the junction and surrounding tissue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Anillin regulates apical tensile forces, stabilizes F-actin, and stiffens tissues. 

A) Schematic of our results showing that increased Anillin expression slows junction recoil. B) Model of how Anillin 

slows junction recoil by reorienting tensile forces across the apical surface of cells, transitioning the dominant 

tensile force from being in line with the junction to being perpendicular to the junction, which may contribute to 

the observed changes in junction recoil. C) Model of how Anillin stabilizes F-actin, which may contribute to the 

observed changes in junction recoil. D) Model of how Anillin modulates tissue compliance, which may contribute 

to the observed changes in junction recoil. 
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Anillin regulates apical contractility in epithelia  

 Combining our previous study, which showed that Anillin maintains F-actin, Myosin II, 

and proper RhoA activity at cell-cell junctions (Reyes et al. 2014), with this study, which shows 

that Anillin promotes a contractile medial-apical network, positions Anillin as a key regulator of 

contractility at the apical surface of epithelial cells. Our results also suggest that the level of 

Anillin expression may modulate redistribution of cellular load-bearing structures from 

junctional/circumferential when Anillin is expressed at a low level to cortex-spanning/medial-

apical when Anillin is expressed at a high level. This change parallels one seen 

in Drosophila development over the course of germ band elongation. Initially, tissue tension is 

transmitted primarily through junctional structures, but by the end of germ band elongation, it 

is carried by cortex-spanning structures (Ma et al. 2009). Additional work will be necessary to 

distinguish the functions of Anillin-organized contractility at junctional and medial-apical 

contractile arrays. 

 Anillin’s role in regulating medial-apical contractility may function to prevent junction 

disassembly by generating forces perpendicular to the junction. Myosin II-generated tension 

applied on adherens junctions can prevent junction disassembly (Weng and Wieschaus 2016). 

Here, we showed that Anillin-organized medial-apical contractility produces perpendicular 

tension on adherens junctions. This raises the possibility that protective tensile forces organized 

by medial-apical Anillin are lost when Anillin is knocked down, which could lead to the 

compromised junctions we have previously reported (Reyes et al. 2014). 

 Our findings establish Anillin as a candidate protein that may be involved in 

developmental events that require apical constriction including gastrulation and neurulation. 
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Anillin’s potential role in development is supported by the fact that many of Anillin’s interacting 

proteins - including active RhoA, the formin Diaphanous, F-actin, and Myosin II - also localize to 

the medial-apical actomyosin network and are required for apical constriction events during 

development (Mason, Tworoger, and Martin 2013; Martin and Goldstein 2014). Of note, when 

Shroom3, which is known to induce apical construction during neurulation (Haigo et al. 2003), 

was overexpressed, Anillin strongly accumulated across the medial-apical surface as apical 

constriction proceeded (Fig. S3.2 C). In the future, it will be interesting to directly test whether 

Anillin plays a role in gastrulation and/or neurulation. 

Does Anillin regulate tissue stiffness in development and disease? 

 Our data demonstrating that Anillin promotes tissue stiffness is intriguing because tissue 

stiffness can affect tissue folding during development (Jackson et al. 2017) as well as cell 

migration during development and in cancer (Barriga et al. 2018). Although we cannot confirm 

whether reduction in tissue stiffness after Anillin knock down is directly related to loss of 

medial-apical Anillin vs. contributions from loss of junctional Anillin, failed cell division events, 

or the changes in other tissue layers, the idea that Anillin is regulating tissue stiffness by 

organizing actomyosin contractility at one or more of these sites is supported by previous 

work. For example, tissue stiffness increases during Xenopus development, and this is 

dependent on F-actin and Myosin II (Zhou, Kim, and Davidson 2009). Indeed, the ~35% 

reduction in stiffness we observed after Anillin knockdown is in line with the ~50% reduction in 

stiffness observed after acute drug treatments that disrupt F-actin or Myosin II (Zhou, Kim, and 

Davidson 2009). Additionally, a recent study directly connected medial-apical contractility with 

promoting tissue stiffness, and found that the direction of contractility promoted oriented 
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tissue stiffness, which in turn drove proper tissue invagination (Chanet et al. 2017). Future 

studies should investigate whether Anillin impacts developmental events that require tissue 

stiffening. 

 Our findings may also provide insight into the role Anillin plays in cancer progression. To 

date, studies examining Anillin’s role in tumor progression and survival outcome have produced 

conflicting evidence. Most studies have found that Anillin is overexpressed in diverse tumors, 

and its expression correlates with cancer progression and poor survival rates (Hall et al. 2005; 

Suzuki et al. 2005; Wang et al. 2016; Idichi et al. 2017; Zhang et al. 2017). However, work 

examining the subcellular localization of Anillin found that nuclear localization of Anillin 

correlates with poor survival rates, whereas cytoplasmic localization of Anillin is a marker of 

favorable prognosis, suggesting that Anillin’s localization rather than its expression level is 

key (Ronkainen et al. 2011; Liang et al. 2015). Our finding that Anillin increases tissue stiffness 

may help explain Anillin’s role in tumor progression. It is well known that tumors increase in 

stiffness over time due to increased extracellular collagen, and this stiffening promotes tumor 

progression (Fang et al. 2014); however, measurements of the stiffness of individual cancer 

cells revealed that cells become less stiff as they become metastatic (Swaminathan et al. 2011; 

Guo et al. 2014). Considering our results in this context, we speculate that cytoplasmic Anillin 

could help protect against cancer progression, as it stiffens the cells and the tissue by 

reorganizing actomyosin, preventing cells from entering a migratory metastatic state. Our 

previous work showing that Anillin is important for maintaining normal cell-cell adhesion could 

also play a role in preventing cancer cell invasion and metastasis (Reyes et al. 2014).  
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Conclusions 

 Our results reveal that by structuring medial-apical actomyosin, Anillin helps orchestrate 

apical contractility in epithelial cells, affects the direction of tensile forces applied on junctions, 

and promotes tissue stiffness. Thus, Anillin is potentially a key cytoskeletal organizer in events 

that require apical constriction, junction maintenance, and/or changes in tissue stiffness. 

Future work is required to tease apart the contributions and interplay between Anillin’s 

versatile roles in cytokinesis, cell adhesion, and medial-apical actomyosin regulation and how 

they culminate to promote a functional epithelium.  
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Materials and methods 

Xenopus laevis embryos and microinjections 

All studies conducted using Xenopus laevis embryos strictly adhered to the compliance standards of the 

US Department of Health and Human Services Guide for the Care and Use of Laboratory Animals and 

were approved by the University of Michigan’s Institutional Animal Care and Use Committee. Xenopus 

embryos were collected, in vitro fertilized, de-jellied, and microinjected with mRNAs for 

fluorescent probes using methods described previously (Reyes et al. 2014). Embryos were injected at 

either the two-cell (each cell injected twice) or the four-cell stage (each cell injected once) and allowed 

to develop to gastrula stage (Nieuwkoop and Faber stages 10 to 11) or neurula stage (Nieuwkoop and 

Faber stage 15). For gastrula-stage experiments, embryos were injected at the animal hemisphere at the 

two cell stage, injecting each cell twice, or the four cell stage, injecting each cell once. For neurula stage 

experiments, embryos were injected at the equator at the four cell stage, injecting two of the cells to 

characters defects and all four of the cells for tissue stiffness measurements. Amounts of probes per 

single injection are as follows: actin-mNeon, 17 pg or 36 pg when Anillin was knocked down; Anillin 

untagged OE, 70 pg; Anillin-3xmCherry, 70 pg; Anillin-3xGFP or 3xmCherry OE, 300pg; α-catenin, 30pg; 

E-cadherin-3xGFP, 50pg; Lifeact-GFP or RFP, 16 pg; membrane-TagBFP, 60 pg; SF9-mNeon, 74 pg; 

Shroom 3 OE, 200 pg; Anillin morpholino 211 pg. Anillin MO was injected similar to (Reyes et al. 2014) 

except instead of injecting 5 nl of 5mM morpholino, here we injected 10nl of 2.5mM morpholino to 

make injections easier as the higher dilution made the morpholino less viscous and easier to inject.  

 

Constructs 

 Xenopus laevis actin was cloned from a cDNA library generated from Xenopus laevis tadpoles (Higashi et 

al. 2016). pCS2+/Shroom 3 was a generous gift from Sergei Sokol. SF9 was a generous gift from Ed 
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Munro (Hashimoto et al. 2015) and was subcloned into pCS2+mNeon. All other constructs were in pCS2+ 

plasmid and mRNA was synthesized as previously reported in (Reyes et al. 2014; Higashi et al. 2016). 

 

Experiment replicates 

Multiple embryos were used for all experimental replicates. Each experiment was conducted in three 

separate replicates except the following: Laser ablation with jasplakinolide treatment, two replicates. 

Laser ablation with Anillin knockdown and jasplakinolide treatment, two replicates. FRAP of medial 

apical F-actin with Anillin knockdown, two replicates. Shroom 3 overexpression in animal cap epithelium 

observing Anillin localization, two replicates. Dorsal isolate characterization when Anillin was knocked 

down, two replicates. Dorsal isolate tissue stiffness measurements when Anillin was knocked down, two 

replicates. 

 

Confocal microscopy 

Images of gastrula stage embryos were collected on an inverted Olympus Fluoview 1000 microscope 

equipped with a 60X super corrected PLAPON 60XOSC objective (numerical aperture [NA] = 1.4; working 

distance = 0.12 mm) and FV10-ASW software as previously described in (Reyes et al. 2014). 

 

Images of dorsal isolates were collected using a confocal laser scan head (SP5 Leica Microsystems) 

mounted on an inverted compound microscope (DMI6000, Leica Microsystems) equipped with a 25X 

water immersion objective using acquisition software (LASAF, Leica Microsystems). 

 

Laser ablation 
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Single plane movies were collected on a Leica Inverted SP5 Confocal Microscope System on a 60X 

objective with 2-Photon. White-light laser was tuned for emission at 488 nm and or 561 nm to visualize 

GFP or mCherry, respectively. Junction cuts were made with the 2-Photon laser with a ROI 0.36 x 4 µm. 

Each embryo was only cut three times and junction cuts were made in distant areas of the embryo. 

 

Fixed staining and immunofluorescence  

Gastrula-stage embryos were immunostained by methods described previously (Reyes et al. 2014) with 

the following changes: embryos were fixed with 1.5% formaldehyde, 0.25% glutaraldehyde, 0.2% Triton 

X-100, and 0.88X MT fix buffer (1X MT buffer: 80 mM K-PIPES, 5 mM EGTA, 1 mM MgCl2 [pH 6.8]) and 

blocked in Tris-buffered saline (50 mM Tris and 150 mM NaCl [pH 7.4]) containing 10% fetal bovine 

serum (10082-139; Invitrogen), 5% DMSO and 0.1% NP-40 overnight at room temperature. Embryos 

were stained with anti-Anillin antibody (generously provided by Aaron Straight, Stanford 

University (Straight, Field, and Mitchison 2005)) and detected with goat anti-rabbit-Alexa Fluor 488 (Life 

technologies A11008 Lot:1583138),1:500 and phalloidin Alexa Fluor 568 (Life Technologies A12380 

Lot:1154065), 1:100.  

 

ATP experiments 

Whole gastrula-stage embryos (NF stage 10.5) were imaged on an Olympus SZX16 Fluorescent 

Stereoscope, and 320 nl of 50 mM ATP (Sigma A2383-5G Lot: SLBD2725V) diluted in 0.1X MMR was 

added to one side of the embryo with a microinjector needle. For cell view experiments, gastrula-stage 

embryos were mounted in 0.1X MMR for confocal imaging in an imaging slide with an opening in the top 

of the chamber. During live imaging, 100 ul of 500 µM ATP diluted in 0.1X MMR was added to the 

chamber. 
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Jasplakinolide experiments 

For confocal timelapse gastrula-stage embryos were mounted in 0.1X MMR for confocal imaging in an 

imaging slide with an opening in the top of the chamber. During live imaging, 100 ul of 20µM 

Jasplakinolide diluted in 0.1X MMR was added to the chamber. For laser ablation experiments embryos 

were added to microcentrifuge tube with 20 µM Jasplakinolide diluted in 0.1X MMR. After 1 hr of 

incubation embryos were mounted on a slide and imaged. 

 

Actin localization in dorsal isolates 

Anillin morpholino was co-injected with Alexa Fluor 647-conjugated dextran into one dorsal blastomere 

at the 4-cell stage. At NF stage 15, dorsal isolates were microsurgically isolated, fixed in 4% 

paraformaldehyde for 4 hours, bisected, and stained for F-actin (BODIPY FL phallacidin ThermoFischer 

Scientific B607). Some explants were not bisected, but instead the neural ectoderm was imaged en face. 

Dorsal isolate stiffness 

Anillin morpholino or water (control) was injected into each dorsal blastomere at the 4-cell stage. Dorsal 

isolates were isolated from embryos at NF stage 15 and loaded into the nanoNewton Force 

Measurement Device to measure time-varying elastic modulus using a stress-relaxtion 

protocol (Davidson and Keller 2007). In brief, the tissue sample is compressed along its anterior-

posterior axis while the resistive force is measured by the deflection of an optical fiber force transducer. 

Young’s modulus after 180 seconds of compression is then calculated using measured resistive force, 

explant cross-sectional area and strain measurements.  

 

Image analysis 
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Vinculin and α-catenin intensities: A bicellular junction was traced from tricellular junction to tricellular 

junction with a segmented line 5 pixels wide in Fiji (Schindelin et al. 2012). Vinculin and α-catenin 

intensities were normalized by dividing by the membrane probe intensity. 

 

Vertex recoil after laser ablation: In Fiji, a straight line was drawn between the vertices to measure the 

amount of separation over time. 

 

F-actin and Myosin II intensity: In Fiji, a circular ROI with a diameter of 10 µm placed in the center of the 

cell was used to measure medial-apical intensity. For fixed phalloidin staining of F-actin, the raw 

intensity values were used. For live imaging of Myosin II with SF9-mNeon, the intensity was normalized 

by dividing by the membrane probe intensity.  

 

ATP contraction index: Kymographs were generated in Fiji, and shift of the pigment in the kymograph 

was measured three times as length by tracing a line across the image: near the top, center, and bottom 

of the kymograph. These values were averaged, and movement of the whole embryo in the field of view 

was subtracted from the contraction by tracing the bottom edge of the embryo in the kymograph to 

obtain the contraction index. 

 

F-actin intensity after ATP: In Fiji, a circular ROI with a diameter of 10 µm placed in the center of the cell 

was used to measure medial-apical intensity over time. Change in F-actin intensity was measured by 

subtracting baseline intensity from peak intensity. Baseline was the average of the 10 time points before 

ATP, and peak was the average of the 10 time points starting at 45 s after ATP. For near junction vs. 
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center of cell F-actin intensity comparisons, a smaller ROI with a diameter of 3 µm was used to measure 

F-actin intensity in the center of the cell or near the cell periphery.  

Blinded catagorization of medial-apical F-actin organization: Confocal images of the F-actin channel 

(Lifeact-RFP) when full length Anillin or Anillin mutants were overexpressed were exported as JPEGs 

using ImageJ. File names were then randomly generated using the Random Names program created by 

Jason Faulkner from How-To-Geek https://goo.gl/1EcGCa. Cells that were ~80% or more visible in the 

field of view were then categorized as: 1) no F-actin fibers, 2) short F-actin fibers that do not span the 

apical surface, or 3) long F-actin fibers that do span the surface. Each cell could only be palced into one 

category, so if for example a cell contained both short and long fibers it would go into the long fiber 

category. Categorization was done by three different blinded individuals, and their categorizations were 

averaged to produce the final graph. 

Anillin medial-apical intensity: A circular ROI with a diameter of 10 µm was placed in the center of the 

cell, and average intensity was collected for full length Anillin or Anillin mutant constructs tagged with 

3xGFP. These values were not normalized but the same excitation laser intensity was used for 

acquisition across experiments. 

FRAP: FRAP data was collected and analyzed as described in (Higashi et al. 2016) with the following 

modifications: only a single plane was captured instead of Z-stacks. Medial-apical actin-mNeon was 

bleached instead of junction proteins. Curves were fit with a double association curve in Prism6. 

 

Statistical analysis 

Unpaired t-tests were performed using GraphPad Prism version 6.01 for Windows, GraphPad Software, 

La Jolla California USA, www.graphpad.com. Double exponential curves with the following contraints, 
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Y=0 and plateau must be <1, were fit to FRAP data in GraphPad Prism version 6.01 for Windows. 2-way 

ANOVA was performed using IBM SPSS Statistics for Windows, Armonk, NY: IBM Corp.   
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 Supplemental figures 

 

Figure S3.1: Anillin increases junctional Vinculin recruitment but reduces recoil of junction vertices after laser 

ablation 

A) Confocal images of live epithelial cells in gastrula-stage Xenopus laevis embryos expressing a probe for the 

plasma membrane (2x membrane localization signal of Src family tyrosine kinase Lyn tagged with TagBFP at its C-

terminus), α-catenin-mCherry, and Vinculin-mNeon as a tension sensor when Anillin is knocked down (KD) or 

overexpressed (OE). B) Quantification of Vinculin intensity as a ratio to membrane intensity. Measurements were 

taken by tracing a bicelllular junction from vertex to vertex. Error bars, S.E.M. Statistics, unpaired t-test, n=number 

of junctions. C) Quantification of α-catenin intensity as a ratio to membrane intensity. Measurements were taken 

by tracing a bicelllular junction from vertex to vertex. Error bars, S.E.M. Statistics, unpaired t-test, n=number of 

junctions. D) Unannotated version of Fig. 3.1 F: cell view of embryo overexpressing Anillin tagged with 

3xmCherry. Cartoon traces of ablation data depicting the events during ablation. 
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Figure S3.2: In apically constricting cells, F-actin and Anillin emanate from junctions and spread medial-apically 

A) Confocal images of live epithelial cells from gastrula-stage Xenopus laevis embryos expressing a probe for F-

actin (LifeAct-GFP). Exogenous ATP is added at time 0 to induce contraction. Notice how F-actin accumulates first 

near the junctions and then spreads medial apically. B) Apical F-actin intensity measured using an ROI with a 5 µm 

diameter near the junction or in the center of the cell. Error bars, S.E.M. Statistics, unpaired t-test, n=number of 

cells. C) Confocal images of live epithelial cells expressing Anillin-3xmChe at low levels and overexpressing Shroom 

3 to induce apical constriction. Notice how Anillin accumulates first near the junctions and then spreads across the 

center of constricting cells.  
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Figure S3.3: Stabilizing F-actin rescues Anillin KD junction recoil defect after laser ablation. 

A) Medial-apical FRAP data for actin-mNeon highly expressed in Anillin KD gastrula-stage Xenopus laevis embryos. 

Data fitted with a two phase association curve. n=number of cells. B) Quantification of vertex separation over time 

after ablation. Error bars, S.E.M. Statistics, unpaired t-test, n=number of junctions. C) Unannotated version of laser 

ablation results in Fig. 3.6 G. Cell view of gastrula-stage Xenopus laevis embryos expressing E-cad-3xGFP and 

treated with 20 µm jasplakinolide. D) Confocal images of an embryo expressing E-cad-3xGFP and overexpressing 

Anillin-3xmCherry (not shown) before and after laser ablation. Blue boxes show the zoomed area for the ablation 

montage. Green dashed line indicates the position of the vertices relative to the edge of the image, the grey 

dashed line indicates the space forming between the two cells, and blue arrows represent forces between 

junctions adjacent to the measured vertex. Notice how the lower vertex only begins to separate, detected by a 

reduction in the length of the green dashed line, after the forces perpendicular (blue arrows) to the adjacent 

junction cause loss of adhesion between the two cells. E) Unannotated version of laser ablation results in D. 
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Figure S3.4: Anillin maintains 

apical F-actin in dorsal epithelium 

Transverse sections of dorsal 

isolates explanted from Xenopus 

laevis embryos injected with 

Anillin morpholino. Anillin 

morpholino was co-injected with 

Alexa Fluor 647-conjugated 

Dextran as a lineage tracer. Anillin 

knockdown dorsal epithelial cells 

(red) exhibit a rounded apical 

morphology, loss of F-actin on 

their apical surface, enhanced 

basal F-actin, and disrupted 

mesodermal organization. Control 

epithelial cells have a flat apical 

morphology, robust apical F-actin, 

and weak basal F-actin.  
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Chapter 4 

Discussion 

 In this dissertation, I have demonstrated that during cytokinesis, epithelial cells remain 

connected to one another, maintain the barrier function of the tissue, and reinforce their 

adherens junctions in response to tension generated by the contractile ring. I have also shown 

that Anillin regulates cell mechanics by organizing the medial-apical contractile network. 

Together, these data support the notion that epithelia act as mechanical sensors and that an 

individual protein can have dramatic mechanical impacts at the cellular level that propagate to 

the tissue level. While the work presented here has answered several questions about how 

epithelial cells regulate and respond to mechanical inputs in order to build and maintain a 

functional tissue, there are many unanswered questions that stem from this work. In the 

following sections, I explore these questions, put them in the context of the field, and propose 

experiments to address them
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Epithelial cytokinesis 

Why don’t tight junctions feel the force from cytokinesis? 

 Are the forces from cytokinesis transmitted to tight junctions? If so, how do those forces 

impact barrier function? These are especially pressing questions in epithelial tissues that 

undergo rapid cell division, such as the intestinal epithelium. Previous work has shown that 

tight junction dynamics are globally stabilized in a tension-sensitive manner (Higashi et al. 2016; 

Yu et al. 2010). Here, I showed that tight junction components are not locally stabilized by 

forces from the contractile ring (Fig. 2.3, 2.4). This indicates that adherens junctions are the 

major load-bearing junction during cell division, while tight junctions appear to simply be along 

for the ride. However, tight junctions are connected to junctional F-actin, are mechanically 

sensitive, and regulate epithelial mechanics (Fanning, Van, and Anderson 2012; Choi et al. 2016; 

Hatte, Prigent, and Tassan 2018; Spadaro et al. 2017). Why, then, are tight junctions uncoupled 

from the forces driving cytokinesis? One possibility is that forces from cytokinesis directly 

coupled to tight junctions could disrupt barrier function. If this is true, one might expect to see 

uncoupling of tight junctions during other events that increase apical tension, such as apical 

constriction and convergent extension. 

 Experimental manipulation of Myosin II-driven contractility has revealed it to be an 

important regulator of barrier function (Arnold, Stephenson, and Miller 2017). However, in 

some cases inhibiting Myosin II activity increases the permeability of tight junctions (Ivanov et 

al. 2007; Ivanov et al. 2004), while in other cases loss of Myosin II activity decreases 

permeability (Yu et al. 2010). Similar contradicting evidence can be found for increased apical 

tension, where activation of Myosin II has no effect on barrier function in human epithelial 
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colorectal adenocarcinoma cells (Acharya et al. 2018), but in endothelial cells, Myosin II 

activation strengthens barrier function (Dudek et al. 2004). It is clear that Myosin II activity is a 

regulator of barrier function; however, it is unclear how elevated levels of acute tension affect 

barrier function. 

 To test how actomyosin forces affect barrier function, manipulations such as treatment 

with the phosphatase inhibitor Calyculin A to increase active Myosin II or mosaic Anillin 

overexpression to increase tension, or drugs such as the ROCK inhibitor Y-27632, or Myosin II 

inhibitor blebbistatin to decrease tension, could be used in conjunction with a barrier assay 

more sensitive than the tracer dye experiment in (Fig. 2.1). A former postdoc in the lab 

developed a Zinc-based Ultrasensitive Microscopic Barrier Assay (ZnUMBA) that would perfectly 

serve this role (Tomohito Higashi, unpublished). After determining how actomyosin forces 

affect barrier breaches on the cellular scale using ZnUMBA, it would be informative to look 

more closely at the epithelial barrier during cell division. It is possible that there are small 

barrier breaches around the dividing cells that are undetected via the tracer dye method used 

in Chapter 2 (Fig. 2.1). Indeed, flares of RhoA activity, which are sites of barrier leaks, are 

increased around dividing cells (Rachel Stephenson, Torey Arnold, & Farah Huq, unpublished). 

Specifically, there may be an increased number of breaches at the cleavage furrow where the 

forces are acutely increased, and where the shapes of the junction and the membrane are 

drastically changing. Additionally, using chimeric proteins, such as a ZO-1/α-catenin or ZO-

1/Anillin fusion protein, to artificially connect tight junctions to adherens junctions or connect 

tight junctions to the contractile ring would allow us to test how directly connecting tight 

junctions to the forces from the contractile ring affects barrier function. To summarize, there is 
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little consensus on how global tensile forces affect tight junction barrier function, and even less 

known about how large, acute tensile forces such as those generated during cytokinesis affect 

barrier function, making this an interesting question to pursue 

Why are adherens junctions reinforced during cytokinesis? 

 Adherens junctions maintain epithelial integrity by mechanically linking cells together, 

which is required for tight junction formation and barrier establishment (Hartsock and Nelson 

2008). Through my research, I showed that adherens junctions are reinforced via Vinculin 

recruitment during cytokinesis (Fig. 2.5). Vinculin reinforcement at the cleavage furrow was 

simultaneously expected and surprising. It was expected because adherens junction are well 

known to be mechanically sensitive and recruit Vinculin to their junctions under mechanical 

stress (Yonemura et al. 2010; Yao et al. 2014; Kim et al. 2015). However, it was surprising 

because recent studies investigating cytokinesis in Drosophila showed a weakening or break in 

adherens junctions at the cleavage furrow (Herszterg et al. 2013; Guillot and Lecuit 2013; 

Founounou, Loyer, and Le 2013).  

 Why do vertebrates reinforce their junctions at the cleavage furrow while invertebrates 

allow theirs to be disrupted? One possibility is the requirement for and maintenance of barrier 

function in the embryos. The studies in Drosophila were carried out in stage 8-10 embryos 

which do not form an epithelial barrier (Tepass and Hartenstein 1994). In contrast, the 

experiments we conducted were in stage 10.5 Xenopus embryos, which form a complete tight 

junction seal. Xenopus may require a strong barrier at stage 10.5 in order to develop properly; 

however, this has not been directly tested. In Drosophila stage 8-10 embryos, there is no 

requirement to maintain adhesion to preserve barrier function, so adherens junctions can 
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decouple in Drosophila without much consequence. In support of this hypothesis, recent work 

in Drosophila examining cytokinesis in epithelia that do develop barriers showed that both the 

adherens junctions and the barrier forming septate junction remain intact at the cleavage 

furrow (Wang, Bosveld, and Bellaiche 2018; Daniel et al. 2018). 

 The work I presented in Chapter 2 shows that forces from cytokinesis recruit Vinculin to 

adherens junctions, and this in turn stabilizes junction components and reinforces the 

connection between the actin cytoskeleton and the junction. However, we have less evidence 

about why this is happening and if it is required for successful cytokinesis or maintaining the 

barrier functions during cell division. We had difficulty depleting Vinculin in Xenopus; however, I 

think Vinculin depletion will be a critical step towards understanding Vinculin’s role in 

cytokinesis. Dominant negative Vinculin-D1 increased the speed of contractile ring closure; 

however, we saw no dramatic defects in cytokinesis using this perturbation (Fig. 2.6). 

Additionally, dominant negative Vinculin decreased E-cadherin and ZO-1 intensity at the 

cleavage furrow, which may indicate increased barrier permeability that we could test with the 

ZnUMBA barrier assay. Complementing this work with studies in cultured epithelia, where we 

could more readily deplete Vinculin, could reveal more about the role of Vinculin reinforcement 

in cytokinesis. Alternatively, in Xenopus we could use try different morpholinos, or use a 

combination approach by expressing Vinculin-D1 along with Vinculin morpholinos. Another 

possibility would be knocking down α-catenin and replacing it with mutant α-catenin that 

cannot bind to Vinculin. Together, these experiments will be informative about the function of 

adherens junction reinforcement during cell division. 
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What is the role of Vinculin in dividing and neighboring cells? 

 In order to understand cell division in a tissue, it is equally important to consider the 

mechanics of both the dividing cell and the neighboring cells. Based on work presented in 

Chapter 2 performed by Tomohito Higashi, it is not clear whether Vinculin accumulates in both 

the dividing cell and its neighbors in unperturbed cells. Testing this by mosaically expressing 

Vinculins tagged with different fluorophores could address this question. For example, 

expressing red tagged Vinculin in neighboring cells and green tagged Vinculin in division cells 

and measuring their accumulation at the cleavage furrow. If Vinculin does accumulate in both 

cells, it would mean that pulling strain is applied to both the diving cell and the neighboring cell. 

I would expect Vinculin to accumulate in the dividing cell, as its adherens junctions are directly 

coupled to the contractile ring; however, the situation in the neighboring cell is less clear. Is the 

circumferential actomyosin network in the neighboring cell providing a passive resistance, and 

is this enough to trigger the strain across α-catenin or is there an active contractile response in 

the network?  

 I hypothesize that the neighboring cell reinforces the adherens junction to preserve 

barrier function and epithelial integrity. However, it is possible that reinforcement is simply a 

consequence of the mechanosensitivity of α-catenin. The resistive force of junctional interfaces 

in Drosophila has been measured to be on the 100 pN scale (Bambardekar et al. 2015), while 

forces generated from the contractile ring in the first embryonic division of different organisms 

have been measured to be in the 10 nN range (Rappaport 1967; Miyoshi et al. 2006). The 

amount of force required to induce the conformational change in α-catenin is only 5 pN (Yao et 

al. 2014), so it is likely that reinforcement occurs not only in the dividing cell, but also the 
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neighboring cell as a result of the passive resistive force of the junction interface instead of an 

active contractile force in the neighboring cell.  

 One consequence of Vinculin recruitment is the recruitment of the actin polymerizer 

Ena/VASP, which binds directly to Vinculin (Leerberg et al. 2014). This raises the possibility that 

increased actin polymerization at junctions at the cleavage furrow (possibly in both the dividing 

and neighboring cells) is required for successful cytokinesis, cell adhesion, and barrier function. 

It would be interesting to perturb this function of Vinculin and observe the effect it has on actin 

and the barrier at the cleavage furrow. Perhaps Vinculin recruitment is needed to polymerize 

more F-actin in the contractile ring in order to add more F-actin along the growing junctions 

during the large shape changes generated during cytokinesis? Understanding how and why 

Vinculin is being recruited to the cleavage furrow in both the dividing and neighboring cells will 

be important for understanding how epithelial cells successfully divide and remain adherent to 

one another. 

Understanding the diversity of cytokinesis 

 Studies in Xenopus and Drosophila have revealed that cells use dramatically different 

solutions for cell division in epithelial tissues (Fig. 2.7) (Higashi et al. 2016; Herszterg et al. 2013; 

Guillot and Lecuit 2013; Founounou, Loyer, and Le 2013). In Drosophila, researchers have found 

that cell division in epithelial tissue is a multicellular process. In some Drosophila tissues 

explored, neighboring cells actively contributed to cytokinesis (Herszterg et al. 2013; Guillot and 

Lecuit 2013; Founounou, Loyer, and Le 2013). As the cleavage furrow ingresses, Myosin II 

accumulates in the neighboring cell perpendicular to the axis of division, bringing the furrowing 

interfaces close to one another. Then, the dividing cell uses branched F-actin to push the 
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neighboring cells’ membrane out of the furrow, and adherens junctions are formed between 

the newly formed daughter cells (Herszterg, Pinheiro, and Bellaïche 2014). This discovery was a 

paradigm shift for how we think about cytokinesis; what was once thought to be a cell 

autonomous process actually requires cell cooperation.  

 Observing cell division in different epithelial tissues, at other stages of development, 

and in other organisms is likely to lead to other new discoveries. For example, are there 

instances where cell division is not driven by the dividing cell but by pushing forces from the 

neighboring cells? Are there tissues where cells divide without actomyosin? Additionally, it is 

important to understand how cell division changes based on the characteristics of the tissue. 

For example, how do factors like proliferation rate and cell shape affect cytokinesis? Comparing 

different tissues types - highly proliferative and less proliferative epithelia, or columnar, 

cuboidal, and squamous epithelia - could help address these questions. 

How does epithelial stiffness affect cytokinesis? 

 It is well known that stiffness of the extracellular matrix increases proliferation and 

dedifferentiation of cells, and this has a major impact on the progression of cancers (Handorf et 

al. 2015). Much less is known about how the stiffness of cells within a tissue affects cell division. 

Even though tumors as a whole tend to be stiffer than surrounding tissues, the tumorigenic 

cells themselves tend to be less stiff than surrounding cells (Swaminathan et al. 2011; Guo et al. 

2014). This opens interesting questions about where in tumors cells are proliferating: at sites of 

cell-matrix adhesion, cell-cell adhesion, or both? To test how surrounding cell stiffness affects 

cytokinesis, we could modulate Anillin expression, which in turn alters tissue stiffness. Xenopus 

is a great model system to study the effects of cancer cell stiffness on cell division because 
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Xenopus tadpoles are clear, making them amenable to live imaging, and they can be induced to 

generate tumors (Dahmane et al. 1997; Yang et al. 1998; Wallingford et al. 1997). Alternatively, 

mammalian tumors can be seeded and grown in tadpoles (Haynes-Gimore et al. 2015). 

Understanding how cell division is regulated by the mechanical environment imposed by 

surrounding cells will be useful both for our understanding of disease progression and 

embryonic development. 

Anillin’s role in epithelial mechanics 

What is Anillin’s role in cancer cells and tumor progression? 

 Tumors are mechanical sensors. As the extracellular matrix of a tumor stiffens, tumor 

cells become more invasive and metastatic (Reid and Zanivan 2017). In Chapter 3, I showed that 

Anillin organizes medial-apical actomyosin into a contractile unit and that Anillin 

overexpression results in structural and mechanical changes that are similar to treatment with 

the F-actin-stabilizing toxin jasplakinolide (Fig. 3.1-6). Additionally, we found that Anillin 

depletion reduces tissue stiffness (Fig. 3.7). This result may shed light on how Anillin affects 

cancer progression. Anillin is overexpressed in many human tumors (Hall et al. 2005), and high 

levels of Anillin expression in tumors correlates with poor survival rate (Hall et al. 2005; Suzuki 

et al. 2005; Wang et al. 2016; Idichi et al. 2017; Zhang et al. 2018). However, work examining 

the subcellular localization of Anillin found that nuclear localization of Anillin correlates with 

poor survival rates, whereas cytoplasmic localization of Anillin is a marker of favorable 

prognosis, suggesting that Anillin’s localization is key (Ronkainen et al. 2011; Liang et al. 2015).  

 What is the mechanism behind this finding? Because cancer cells become less stiff as 

they become metastatic (Swaminathan et al. 2011; Guo et al. 2014), one possibility is that 
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Anillin-mediated cell stiffening prevents cells from becoming metastatic. Anillin also promotes 

normal cell-cell adhesion (Reyes et al. 2014; Wang et al. 2015) and apical actomyosin 

contractility, which has been shown to protect junctions from disassembly (Weng and 

Wieschaus 2016), again hinting that Anillin may function to mechanically maintain cells in a 

non-invasive state. In opposition to this idea, in migratory cells, such as neurons and podocytes, 

cytoplasmic Anillin promotes migration by organizing, protecting, and scaffolding F-actin at the 

leading edge (Tian et al. 2015; Gbadegesin et al. 2014). One possible reconciliation is that Anillin 

helps maintain an epithelial cell state by maintaining stiffness and adhesion, but in migratory 

cells Anillin is relocalized to the leading edge of motile cells to promote migration. It would be 

interesting to test this by overexpressing Anillin and HIF-1a, which induces metastasis (Yang et 

al. 2008), and observing if Anillin can prevent epithelial cells from transitioning to motile 

mesenchymal cells. Likewise, how would cells with increased HIF-1a and decreased Anillin 

behave? Perhaps they would undergo the epithelial to mesenchymal transition but become less 

mobile compared to cells with normal levels of Anillin? 

 Why is nuclear Anillin associated with poor cancer prognosis? Little is known about the 

role of cytoskeletal proteins in the nucleus. Even the nuclear function of actin, which was first 

confirmed to be in the nucleus in the 1970s (Clark and Merriam 1977), is not fully elucidated. 

That said, we do know that both globular and filamentous actin has many functions in the 

nucleus and is more than just a “molecular wanderer” as was first posited (Pederson and Aebi 

2002). Actin gives shape to the nucleus and reshapes chromatin after mitotic exit (Baarlink et al. 

2017; Moore and Vartiainen 2017). Actin can also regulate transcription, mRNA processing, and 

genome organization (Visa and Percipalle 2010). Therefore, it is likely that actin-associated 
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proteins like Anillin perform similar functions, so high levels of Anillin in the nucleus may 

potentiate metastasis via nuclear functions. Since Anillin is overexpressed in many human 

tumors (Hall et al. 2005) and can have both negative and positive outcomes for the patient, 

learning more about the cytoplasmic and nuclear functions of Anillin may allow us to target it to 

prevent tumors from entering a metastatic state. For example, using a small peptide to inhibit 

Anillin’s interactions with RhoA or other binding partners could be used as a treatment method. 

This technique has been used successfully on other scaffolds such as the MAP kinase scaffold 

IQGAP1 and shows promise as a possible treatment option (Jameson et al. 2013). 

Is Anillin important for developmental events that require apical constriction? 

 Developmental process such as gastrulation, neurulation, and eye and gland formation 

require apical constriction (Sawyer et al. 2010). Apical constriction is a well-conserved cell 

shape change that can induce tissue folding in in urchin, worms, flies, frogs, chicks, and 

mice (Kimberly and Hardin 1998; Nance and Priess 2002; Young, Pesacreta, and Kiehart 1991; 

Keller 1981; Schoenwolf and Smith 1990; Sadler et al. 1982). In Xenopus gastrulation, a small 

population of bottle cells on the vegetal (bottom) side of the embryo undergo apical 

constriction, causing an invagination which initiates the formation of the primary tissue 

layers (Hardin and Keller 1988). Actomyosin accumulation at the apical surface is required to 

drive apical constriction in Xenopus; however, whether the accumulation of actomyosin is 

medial-apical or junctional is still unknown (Lee and Harland 2007). Later in Xenopus 

development, the actin-binding protein Shroom3 induces apical constriction to form the neural 

tube (Haigo et al. 2003; Nishimura and Takeichi 2008). Interestingly, even though there is clear 

medial-apical accumulation of actomyosin in Shroom3-expressing cells, the authors attributed 
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apical constriction to the junctional actomyosin (Haigo et al. 2003). Drosophila gastrulation was 

the first place where medial-apical actomyosin accumulation was shown to drive apical 

constriction (Martin, Kaschube, and Wieschaus 2009). Since then, medial-apical actomyosin has 

also been found to drive apical constriction during lens pit formation (Plageman et al. 2011), 

and it is likely to drive apical constriction in mouse neural tube formation, as Shroom3 is 

required for this process as well (Hildebrand and Soriano 1999).  

 Because medial-apical actomyosin contraction drives apical constriction during many 

morphological events, our finding that Anillin affects medial-apical contractility (Fig. 3.3 & S3.2) 

supports a potential role for Anillin in development. Indeed, when Anillin is knocked down in 

Xenopus embryos, gastrulation is delayed and some embryos fail to gastrulate, dying soon after 

(data not shown). Xenopus is a good system for exploring Anillin’s role in apical constriction 

during development, as experiments can be performed in intact embryos or explants of 

embryonic tissue which still undergo morphogenetic events (Zhou, Kim, and Davidson 2009; 

Keller, Shih, and Sater 1992; Lee and Harland 2007). Explanting tissues would make direct 

imaging of bottle cell apical constriction and neural plate apical constriction easier and more 

consistent than whole embryo experiments, and to my knowledge these would be the first en 

face images of bottles cells to be captured. This would allow the apical constriction to be 

tracked over time with Anillin perturbations. By imaging probes for F-actin and Myosin II, we 

would learn if Anillin functions to organize the medial-apical contractile network during apical 

constriction. One hurdle with studying Anillin in morphogenic events is that Anillin participates 

in cytokinesis, cell-cell junction structure, and medial-apical contractility. Therefore, regulating 

the amount of knockdown is critical, but even then, it is difficult to determine if the gastrulation 
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defects we observe are from defects in cytokinesis, junctional contractility, or medial-apical 

contractility. 

 After apical constriction of the bottle cells, cells migrate into the embryo and form 

several cavities, including the archenteron and the blastocoel. The tissue migration and 

elongation is driven by actomyosin processes in mesenchymal cells that rearrange to elongate 

the tissue (Keller et al. 1985; Shindo 2018). When Anillin is knocked down, these cavities are 

still present; however, when Anillin is overexpressed these cavities appear to be absent and are 

instead full of cells (data not shown). This could be a result of over-elongation of the tissue, 

increased migration of mesenchymal cells that break away from the tissue and proliferate in 

the cavities, loss of cell adhesion between cell in the surround tissues, or a combination of 

these events. Determining the origin of these cells and a robust characterization of the 

mechanisms behind this defect could provide insights into the role of Anillin in tumor formation 

and metastasis. As a whole, Anillin’s role in development is uncharacterized and is likely a 

fruitful area of study given Anillin’s role in cellular events that are critical for development. 

How does Anillin organize medial-apical F-actin into a contractile unit? 

 The study that first characterized Anillin determined that a small region near the N-

terminus of the protein can bind and bundle F-actin in vitro (Field 1995). Using electron 

microscopy, researchers recently found that Anillin’s F-actin binding domain has three separate 

actin binding regions (Jananji et al. 2017). When they made mutations so that only one F-actin 

binding site was present, the fragment bound F-actin in vitro. When two binding sites were 

present, the fragment bundled F-actin into two dimension sheets. When all three binding sites 

were present, the fragment bundled F-actin into three dimensional structures (Jananji et al. 
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2017). Knowing that the F-actin binding domain alone can bundle F-actin in vitro (Field 1995; 

Kinoshita et al. 2002; Jananji et al. 2017), we hypothesized that the F-actin binding domain of 

Anillin was required to structure medial-apical F-actin in vivo. While this prediction was 

correct (Fig. 3.5), we were surprised to find that it was not sufficient; all three C-terminal 

domains were also required for Anillin to organize F-actin in bundles (Fig. 3.5).  

 In vivo, each of the C-terminal deletions localizes to medial apical surface, and they all 

contain the actin-binding domain (Fig. 3.5). Why, then, don’t these mutants bundle F-actin? The 

Rho binding domain, Calcium2 (C2) domain, and the Pleckstrin Homology (PH) domain all help 

anchor Anillin to the membrane and impact Anillin’s ability to regulate active RhoA. The Rho 

binding domain directly binds to active RhoA, which helps link Anillin to the membrane. It has 

been proposed that when Anillin binds to RhoA it resets the timer for RhoA inactivation, 

allowing it to remain active longer (Budnar et al. 2018; Piekny and Glotzer 2008; Sun et al. 

2015). Anillin’s C2 domain binds to the membrane and to MgcRacGAP and Ect2, negative and 

positive regulators of RhoA, respectively (Gregory et al. 2008; Frenette et al. 2012). The PH 

domain binds to the membrane, septins, and the negative regulator of RhoA, p190RhoGAP-

A (Manukyan et al. 2015). While it is possible that membrane binding is important for F-actin 

bundling in vivo, deleting one of three membrane binding domains does not completely disrupt 

membrane binding. Therefore, it seems more likely that RhoA regulatory activity of these 

domains is critical for Anillin to bundle and organize F-actin in vivo. 

 The in vitro studies that showed Anillin’s bundling capabilities used F-actin filaments 

stabilized by phalloidin or high salt (Field 1995; Sun et al. 2015; Kinoshita et al. 2002). In vivo, 

medial-apical F-actin is very dynamic with a t1/2 on the order of 10s (Fig. 3.6). Using FRAP, I 
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showed that Anillin overexpression stabilizes F-actin (Fig. 3.6), likely through protecting the 

actin filaments from Cofilin severing (Tian et al. 2015). However, this level of F-actin 

stabilization does not fully explain the actin bundles caused by full length overexpression, as 

overexpression of C-terminal mutants did not bundle F-actin. I hypothesize that RhoA-mediated 

actin polymerization is required for bundling and organizing medial-apical F-actin in vivo. To 

test this idea, we could use actin-intact Xenopus egg extracts on a substrate-supported lipid 

bilayer, a technique that is being optimized in our lab by Jennifer Landino (Field, Pelletier, and 

Mitchison 2017). With this method, a lipid bilayer is seeded on a cover slip, Xenopus egg 

extracts are added, and a cortex of actin forms on the lipid bilayer (Field, Pelletier, and 

Mitchison 2017). To perturb the system, purified proteins can be added to the extract for 

overexpression, antibodies can be used to deplete proteins, and inhibitors can be directly 

added to the extract. Once established, the actin network can be visualized with Total Internal 

Reflection Fluorescence (TIRF) microscopy of F-actin probes, such as purified mCherry-

Utrophin, which the lab already has, and perturbed through addition of Anillin, inhibition of 

RhoA, formins, and/or depletion of RhoA regulators such as Ect2. This would provide a more 

direct and easily perturbable system to determine the mechanism through which Anillin 

promotes an organized and contractile actin network.  

 Purifying Anillin would be a hurdle for the experiments described above, but it would be 

useful here as well as in other in vitro experiments. For example, there is evidence that suggests 

Anillin is a tension-sensitive protein like α-catenin (Manukyan et al. 2015). Having purified 

Anillin would allow direct in vitro laser trap force measurements to test whether Anillin 

undergoes a mechanically-induced conformational change (Buckley et al. 2014). This would pair 
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nicely with FRET-based in vivo experiments showing a loss of FRET when Anillin is under 

mechanical stress. In brief, two fluorophores that undergo energy transfer are embedded in the 

protein on either side of a linker with known mechanics. Tension across the protein deforms 

the linker leading to a decrease in FRET. This technique has been used for several other 

junctional proteins as a direct measurement of tension across the protein (Grashoff et al. 2010; 

Kim et al. 2015; Borghi et al. 2012). 

 While Anillin has many functions, such as membrane anchoring, RhoA regulation, and F-

actin and Myosin II binding, it is not known how all of these functions work together to 

establish a functional contractile network. A pure in vitro system where purified components 

are added such as F-actin, Anillin, and Myosin II could shed light onto the mechanism(s) through 

which Anillin builds a contractile network (Gardel et al. 2004; Zimmermann et al. 2017). For 

example, the binding affinity of Anillin and F-actin is fairly low, with a Kd around 4 μM (Jananji 

et al. 2017). This weak affinity may be beneficial for several reasons. First, Anillin can bind to 

Myosin II and formins, both of which are processive: Myosin II walks along actin filaments while 

formins track growing plus ends. If the formin is anchored in place, the actin filaments will grow 

from the formin; if the formin is free to move, the formin will have a velocity associated with 

the growing end of the actin filament (Romero et al. 2004). Anillin binds to both of these 

processive proteins, so one possibility is that Anillin has multiple weak interactions with F-actin 

to allow the filaments to “slide” through Anillin. This would allow Anillin to ride along with a 

formin at the growing end of polymerizing actin filament or allow the filaments to slide through 

Anillin as Myosin II motors translocate filaments. To test this hypothesis, purified tagged 

versions of Anillin, Myosin II, and mDia2 (formin) could be added to stabilized, coverslip-
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anchored actin filaments and observed with TIRF microscopy (Zimmermann et al. 2017). If 

Anillin becomes processive when untethered formins or Myosin II are added, this would 

support my hypothesis. Instead of actin filaments, formins or Myosin II could also be tethered 

to beads or the coverslip (Zimmermann et al. 2017). If Anillin does not allow sliding of actin 

filaments, then high levels of Anillin should inhibit formin polymerization of F-actin or Myosin II 

induced sliding of actin filaments.  

 Finally, many of Anillin’s interactions and functions have been mapped, so mathematical 

modeling of Anillin’s role in organizing a contractile actomyosin network could be done in 

conjunction with in vitro experiments. This would allow confirmation of in vitro results and may 

provide unexpected insights for future experiments as variables and parameters can be 

adjusted more readily. This could be particularly useful for guiding experiments to tease apart 

Anillin’s role in regulating junctional vs. medial-apical F-actin. While there is a great deal known 

about what Anillin does in a contractile network, there is very little known about how Anillin 

actually does it. This multi-pronged approach of in vitro, in silico, and in vivo experiments will 

help to tease apart the molecular mechanisms of how Anillin organizes and orchestrates F-

actin, Myosin II, formins, and RhoA activity flux into a contractile network. 

What is the interplay between junctional and medial-apical actomyosin? 

 The apical surface of cells is organized into two types of contractile units, junctional and 

medial-apical. These distinct yet similar contractile networks can function to perform the same 

task, such as embryonic wound healing, or distinct functions, like junctional actomyosin-

mediated mechanical coupling of cells during cytokinesis, or medial-apical actomyosin-

mediated apical constriction during ventral furrow formation in Drosophila. While it is clear that 
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forces from medial-apical actomyosin contractility are directed upon junctional actomyosin and 

transmitted to neighboring cells, how junctional actomyosin impacts medial-apical actomyosin 

is less well understood.  

 It is specifically difficult to attribute Anillin’s role in regulating cellular mechanics at the 

apical surface of cells to one of the populations of actomyosin because Anillin localizes to both. 

For example, when Anillin is knocked down, we see reduced levels of junction proteins, 

indicating possible junction disassembly (Reyes et al. 2014). It is known that Myosin II-

dependent contractility prevents junction disassembly (Weng and Wieschaus 2016), but in the 

case of Anillin knockdown, is disassembly caused by lack of forces generated by junctional 

actomyosin, the loss of medial-apical forces applied to junctions, or something else? This is a 

difficult question to tease apart, and would require knockdown of Anillin and rescue with Anillin 

constructs that could distinctly localize to junctions or the medial-apical surface. This could be 

accomplished by fusing Anillin to a junctional protein or a protein that only localizes to the 

medial-apical surface such as Endolyn (Ihrke et al. 2001; Hildebrand 2005). Possible issues 

might arise from this, as Anillin might still target the chimeric proteins to both locations. A 

method (independent of Anillin) to help tease apart how medial-apical forces affect junction 

maintenance would be to laser ablate medial-apical actomyosin and observe the effects on cell-

cell junctions. Low levels of the actin depolymerizing drug latrunculin B could also be used, as I 

have observed actin depolymerization seems to occur first across the medial-apical surface, 

then junctionally at fairly high concentrations (25 µM) of latrunculin B (data not shown). A 

lower concentration of latrunculin B in the nanomolar range might disrupt medal-apical F-actin 

while preserving the junctional network.  
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 In addition to the force interplay, another area of interest is to explore the interplay of 

signaling and protein components between junctional and medial-apical actomyosin. For 

example, my data exploring apical contractility after the addition of ATP demonstrated that 

medial-apical accumulation of F-actin occurs first near cell-cell junctions and then sweeps 

across the apical surface of the cell (Fig. 3.3). Additionally, when Shroom3 was overexpressed 

to induce apical constriction, Anillin accumulated first near cell-cell junctions and then 

propagated across the apical surface of the cell (Fig. S3.2). These data position junctions as 

potential signaling centers or protein stores for medial-apical contractility. In the case of ATP 

addition, it is possible that the P2Y receptors that bind ATP and induce the signaling cascade are 

accumulated near junctions. Immunostaining or live imaging of tagged P2Y receptors could 

determine if this is true. Relocalization of the receptor across the apical surface instead of at 

junctions would test whether junctional localization is the mechanism for propagation from 

junctional to medial-apical. Another possibility is that the large accumulation of active RhoA at 

cell-cell junctions is what initiates this propagation, so even if the P2Y receptor is mislocalized, 

the accumulation of F-actin will still sweep out from junctions to the medial-apical surface.  

 To test if protein populations are shared between junctional and medial-apical, 

photoactivatable or photo switchable tagged proteins could be used. For example, Anillin 

tagged with a photo-switchable fluorophore could be switched from green to red at junctions, 

and the medial-apical intensity of red to green florescence could be measured at the medial-

apical surface. This would provide evidence as to the origin of the newly accumulating proteins 

across the apical surface. If, for example, the junctional pool was switched to red while the 

cytoplasmic population remained green, and the Anillin accumulating on the medial-apical 
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surface was predominantly green, this would support the idea that the newly accumulated 

medial-apical Anillin is mostly from the cytoplasm. This would demonstrate that the observed 

propagation of Anillin from junctions to the medial-apical surface is not a result of diffusion, but 

likely occurs through the propagation of a signal that spreads from junctions across the medial-

apical surface. To my knowledge, there is little evidence about how junctional and medial-apical 

networks communicate with one another to build a functional apical contractile network, even 

though the two structures are closely related and mechanically integrated, and these 

experiments could begin to illuminate this question. 

Closing thoughts 

 Being a part of the Miller lab for the past 5 years has given me the opportunity to 

expand our knowledge about how epithelial cells respond to and organize mechanical forces. 

With my work and the work of others in the lab, we have shown that epithelial cells reinforce 

their junctions in response to the forces generated by the contractile ring. I think the most 

important questions to pursue next are: Why are these force only transmitted to adherens 

junction and not the barrier-producing tight junctions? And what are the consequences for 

development and barrier function if adherens junctions are not reinforced during cell division? 

 My main project on Anillin regulating forces across the apical surface of cells only 

started to come together in the last two years of my graduate career, and the driving force 

behind it was the surprising and peculiar results of the laser ablation data. I feel extremely lucky 

to have had a “well that’s funny” moment fall into my path during graduate school. This 

motivated me to keep an open mind and explore what Anillin was doing across the apical 
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surface. This open mindset and curiosity allowed me to characterize a new role for Anillin in 

regulating medial-apical contractility. 

 Anillin is a Swiss Army Knife of a protein. With many protein-protein interactions and 

cellular functions, it is difficult to tease apart Anillin’s functions and mechanism with accuracy. 

There are many future paths I would take in exploring Anillin’s function in regulating epithelial 

mechanics. However, the one I am most curious about is how my findings can tie into and 

explain the mechanisms for Anillin’s role in cancer progression. Uncovering the conundrum of 

why Anillin overexpression can be favorable or unfavorable for cancer prognoses would be a 

useful path of research, as Anillin could be a potential target for cancer treatment. There is still 

so much to be learned about how cells respond to and generate mechanical cues to establish a 

functional epithelial sheet. I hope the data presented here have added useful pieces to the 

puzzle for future researchers to build upon, so that eventually we can unlock the mysteries of 

the mechanical information stored within these cells. 
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