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ABSTRACT

Catamarans operating in a large sea state encounter slamming events on the wet-

deck that may lead to structural failure. Wetdeck slamming is a non-linear process

which involves complex free-surface topology, high-velocity water jets, and breaking

waves interacting with the bow and deck-hull geometry. The slamming process gen-

erates large pressures and loads that are time dependent and concentrated in space.

The structure responds in a coupled manner to the complex fluid loading. Common

approaches to design for the limiting slamming loads include analytical models or

segmented model tests. Analytical slamming models assume a linear free-surface,

prescribed velocities, and simplified geometries. These simplified assumptions make

it difficult to apply to realistic cases. Experimental model tests capture slamming

loads by using segmented models attached to a backspline. It is difficult to scale

results to full-scale and to recreate model scale conditions that lead to the limiting

load cases.

A high-fidelity fluid-structure interaction solver is used to study a simplified im-

pact problem and slamming on a catamaran. The canonical problem is a flat plate

impacting a curved water surface. A detailed analysis is conducted on the simple flat

plate showing the influence of boundary conditions, structural non-linearities, and

the relative impact velocities. A new adaptive inertial under-relaxation scheme is

developed for solving the artificial added mass instabilities due to the segregated cou-

pling of the CFD and FEA models. Catamaran slamming simulations compare the

influence of global loads on the local wetdeck structure. The full field data provided

by the numerical solver is used visualization of flat wetdeck slamming loads. Careful

xi



evaluation of existing impact models are presented and recommendations for reduced

order modeling of maximum stress during wetdeck slamming are provided.
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CHAPTER I

Introduction

Oceangoing vessels in heavy seas experience slamming events due to large rel-

ative vertical motions of the vessel and sea surface. Slamming events can cause a

whipping response in the structure in addition to the springing response caused by

the encounter wave frequency being close to, or a multiple of, the the hull natural

frequency. Slamming events most often occur near the bow region in head seas and

sometimes occur at the stern. Recent economic design trends in shipping have led to

larger vessels. These larger vessels are subject to hydroealstic effects from springing

and whipping and have experienced structural failure such as the case of the MOL

COMFORT (2015) and MSC Napoli (2008). In the case of the MOL COMFORT,

Figure 1.1, the vessel completely broke in half before sinking. Even though these ves-

sels met the current classification societies rules, it is clear that dynamic effects from

springing and whipping can not be ignored when designing the structure of a ship.

The research area of dynamic springing and whipping loads on container ships has

grown in recent years for the purpose of providing recommendations for classification

society rules and building safer ships.

For catamarans, slamming events lead to large structural loads on the wetdeck

area located between the two hulls. These slamming loads are experienced in large

and small vessels. Slamming events can produce the maximum structural loads that a
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Figure 1.1: MOL COMFORT after structural failure and before sinking

vessel will see during its service life. If the maximum loads are not properly designed

for, plastic deformation or failure to the structure can occur as seen in Figure 1.2,

for the INCAT 96 m wave piercing catamaran. External plate buckling is seen on

the forward side hull after the catamaran experienced an extreme slam event Lavroff

et al. (2013). Slamming on the wetdeck is a complex process and difficult to model

due to the wave breaking, hull interactions, air entrapment, and ship motions that

effect the response of the structure. In addition to the local slamming loads, the

global whipping and springing response may contribute to the structural failure.

One advantage of catamarans is their ability to offer a large flat deck area. The

outer portion of the lower deck structure that connects the two hulls is called the

wetdeck. Figures 1.3 and 1.4 shows two common wetdeck designs circled in red. In

some cases the wetdeck may be flat as seen in Figure 1.3, which makes the wetdeck

vulnerable to large slamming loads in large sea states. Figure 1.4 shows a popular

design for catamarans involving the use of wave-piercing bows to reduce the added

resistance due to a sea state. Although the wave-piercing bows provide a reduction
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Figure 1.2: External plate buckling after an extreme slam event Lavroff et al. (2013)

in resistance, the reduced buoyancy in the front of the bows makes the vessel more

susceptible to wetdeck slamming. For this reason, a wedge-shaped wetdeck was de-

signed to reduce the impulse force on the wetdeck structure. This wedge shape adds

weight and air resistance to the catamaran, which is a compromise in the design for

the reduction of slamming motions.

Slamming forces on a wetdeck may cause large structural loads and whipping,

which can contribute to global structural fatigue. Accurately predicting the slamming

forces on a wetdeck structure is important for design evaluation. There are many

challenges to the designer to accurately model wetdeck and global structure loading.

Structural models typically use a Finite Element Model (FEM) that can be as simple

as a single beam or incorporate the full details of the ship structure using a large

number of structural elements stiffeners, frames, and plates. Corrosion and fatigue of

the structure can also lead to failures in the harsh marine environment. Fluid models

3



Figure 1.3: X-craft naval catamaran showing the design of a flat wetdeck circled in
red

Figure 1.4: The naval HSV-2 Swift catamaran with wave piercing bows and a wedge
shaped wetdeck to mitigate slamming loads

4



can incorporate analytical models or higher fidelity tools such as Computational Fluid

Dynamics (CFD). Fluid models need to account for the random ocean environment

which includes wind, waves, currents, and potential for green water on deck that

all contribute to a vessels motions and structural response. Higher fidelity tools are

computationally expensive and do not capture all of the complex interactions that

lead to the structural response of the vessel. In addition, analytical and numerical

tools have not been fully validated and experimental results are difficult to scale

and measure accurately. Using the higher fidelity tools on extreme slam events can

provide insights to reduced order models. The higher fidelity tools model more of the

physics involved in the Fluid-Structure Interactions (FSI) and allow for corrections

or insights to be gained when using a reduced order model.

Current analytical methods are limited in modeling the nonlinear interactions

that occur during a wetdeck slamming event. It is difficult to define the appropriate

boundary conditions, the relative velocity of impact, the effective deadrise angle,

and the three-dimensional ship geometry in terms of two-dimensional contours. The

objective of this research is to provide a new in-depth analysis of wetdeck slamming

loads to assist analytical modeling methods. This research uses a tightly coupled

CFD and Finite Element Analysis (FEA) numerical FSI solver to study the complex

interactions between the fluid and the structure during a wetdeck slam event. The

FSI solver captures the three-dimensional free-surface that is typically omitted in

analytical slam models. The full field data is available for the fluid and the structure

allowing for a complete spatial representation of a wetdeck slam event.

Chapter II provides an overview of slamming analysis techniques and a detailed

description of the FSI solver. Chapter III provides a detailed slamming analysis of

a canonical problem. The canonical problem is a simple two-dimensional flat plate

impacting a free-surface and is used as a validation case for reduced order slamming

models. The simplified flat plate problem allows for a detailed review of the FSI

5



solver stability, accuracy, and convergence. Chapter IV presents a new adaptive

inertial under-relaxation scheme used to stabilize the segregated FSI solver. In this

chapter the new algorithm is applied to the flat-plate drop canonical problem, and a

detailed analysis shows how the fluid added mass varies and influences the stability of

the algorithm. Chapter V analyzes the flow and structural response of a catamaran

operating with forward speed in wave a condition that leads to wetdeck slamming.

The FSI solver provides novel details of the progression of a flat wetdeck slam event

and the influence between the global and local structure response. Comparisons of the

wetdeck slamming loads to the two-dimensional simple plate problem are provided,

and recommendations are provided for reduced order modeling of wetdeck slamming

loads. Finally, Chapter VI summarizes the research work, lists the contributions, and

suggests recommendations for future research.
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CHAPTER II

Background

The three main analysis techniques used for fluid-structure interactions during

slamming events are analytical solutions, experimental model tests, and numerical

analysis. Each technique has its advantages and disadvantages depending on the

type of slamming problem being modeled. This research focuses on expanding a new

numerical technique that couples a CFD Volume of Fluid (VoF) approach for the

fluid domain to an FEA model of the structure that uses a modal decomposition.

This new numerical technique is a high-fidelity FSI solver that can be used to model

wetdeck slamming on catamarans with realistic geometries. This high-fidelity tool

models the complex three-dimensional geometry and the non-linear interactions of

the free-surface with the geometry.

2.1 Analytical Models

The modern analytical methods for predicting slamming forces were first devel-

oped by Von Karman (1929) for the maximum pressure forces on seaplane floats

during landing. A two-dimensional wedge was used to model the bottom of the sea-

plane float. Wagner (1932) extended upon this method by accounting for the pile-up

of displaced water using momentum theory and a potential flow approach. Both

methods attempt to solve for the pressure on an impacting body by accounting for

7



the added mass effects. The methods are two-dimensional and the velocity of the

impact is prescribed. Bishop and Price (1979) developed a method to study the hy-

droelasticity of ship structures by modeling a ship as a beam and solving for the

modal decomposition of the structure. Hydrodynamic forces are applied to the struc-

ture using strip theory. Bishop et al. (1986) extended upon the hydroelastic analysis

to incorporate catamaran structures for the analysis of sectional forces and bending

moments.

The analytical slamming models were first used to model wetdeck slamming loads

by Zhao and Faltinsen (1992). Kvalsvold and Faltinsen (1995) derived a numerical

solution for hydroelastic response of wetdeck slamming that uses analytical functions

for modeling the hydrodynamic loads on a flat plate impacting the top of a wave.

Two-dimensional Timoshenko beam elements where used for a modal decomposition

of the structure. A Hydrodynamic Boundary Value Problem (HBVP) was solved

using Wagner’s Theory (Wagner, 1932), which includes the pile-up of water to esti-

mate the wetted length of the plate. The coordinate system of the HBVP is shown

in Figure 2.1. Three stages of entry were identified when modeling the hydroelastic

response, the compressible phase, the structural inertia phase, and the added mass

restoring phase. Compressible effects due to air entrapment did not have a signifi-

cant effect on the maximum stress up to and including the structural inertia phase.

However, a simplified one-dimensional acoustic approximation is used to model the

compressible phase.

Faltinsen et al. (1997) developed an asymptotic solution procedure based of the

results from Kvalsvold and Faltinsen (1995) to solve the flat plate impact problem.

The compressible phase is neglected and only the structural inertia and added mass

restoring phases are considered. The plate is assumed fully wetted and the velocity is

constant. This simplifies the solution procedure since the phase with time dependence

of the wetted length of the plate is not calculated. Both Økland (2002) and Ge (2002)

8



Figure 2.1: Coordinate system for the HBVP for a flat plate impacting the top of a
wave (Kvalsvold and Faltinsen, 1995).

studied the global loads on catamarans with flat wetdecks in a sea state. Slamming

forces are modeled using the two-dimensional analytical theories. Ge et al. (2005)

used a similar method to Kvalsvold and Faltinsen (1995), but used the Von Karman

(1929) assumption to model wetdeck slamming. Ge et al. (2005) found that further

improvements need to be made to properly capture the three-dimensional interactions

when modeling wetdeck slamming on catamarans analytically.

Wedge impacts have been widely studied since Von Karman (1929) first used them.

More recently, hydroelastic analysis of wedge impacts have been developed to model

the fluid-structure interactions. Korobkin et al. (2006) used a generalized Wagner

approach similar to Kvalsvold and Faltinsen (1995), but coupled to a FEM to study

the impact of an elastic wedge. The FEM consisted of Euler beam elements and a

modal decomposition was calculated using FEA techniques. Using a FEM allows for

more realistic structures to be modeled and the generalized Wagner approach will

give good results for blunt body impacts. The generalized Wagner approach is only

valid while the chines are dry. Once the wedge or blunt body is fully wetted the

Wagner model is no longer valid since it accounts for the force of the changing wetted

length. Piro and Maki (2011) studied the entry and exit of a two-dimensional wedge

by coupling CFD and FEA model. Results showed that in some cases the exit phase

of an elastic wedge can generate larger structural forces than the entry phase. This

suggests that further development of analytical models may be needed to model the
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maximum slamming loads on a structure that experiences entry and exit phases.

The analytical models described in this section work well during the entry stage

of impacting blunt bodies. The velocity of the impacting body must be known ahead

of time. If the velocity of impact is not constant, then the analytical models become

difficult to solve and numerical techniques must be employed. The widely used Wag-

ner model is only valid up to the body becoming fully wetted. Analytical models are

not valid for the exit stage of a slamming body as they can not properly model the

time dependence wetted length of the body. Numerical solvers, such as the one used

in this research, are able to provide insights into further development of analytical

models for entry and exit stages.

2.2 Experimental Models

There are two different ways to model hydroelastic slamming effects experimen-

tally. The first involves a fully elastic model. This can be measuring slamming forces

on a full scale prototype or a smaller section of a full scale model such as flat plate

drop tests. The second is a segmented model test. This is where a scaled model of a

vessel is cut into segments and attached to a backspline that is scaled to the appro-

priate structural elastic properties of the full scale vessel. An example of a segmented

model is shown in Figure 2.2 with three cuts along each hull corresponding to L/4,

L/2, and 3L/4 where L is the length of the model. The cuts are the white vertical

strips in Figure 2.2, which are sealed to prevent water from penetrating the model

while still allowing the model to deflect under load.

Full scale prototype models are not practical for large vessels. Full scale vessel

testing has many complications including relying on the environment to produce

slamming conditions. Faltinsen (2001) conducted full scale testing with a high speed

catamaran. Strain measurements were taken in several areas along the hull and

wetdeck. However, measurements for vertical velocities, free surface elevation, and
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Figure 2.2: Example of a segmented X-Craft scaled model from Dessi et al. (2016).

pressures were not taken, which hampered comparisons to analytical results. Jacobi

et al. (2014) took full scale measurements of the strains on the structure of the

98 m long HSV-2 catamaran to investigate slamming loads. Reducing the operating

speed or changing heading from head seas greatly reduced the number of slams and

maximum loading on the structure due to slam events.

Greenhow and Lin (1983) first studied rigid wedge and cylinders impacting the

free-surface and made comparisons to two-dimensional free-surface theories. The

exit phase of a fully submerged cylinder was also studied, but the two-dimensional

theories were insufficient at describing the complex vortex shedding and free-surface

interactions during the exit phase. Whelan (2004) conducted experimental drop tests

on two-dimensional bow sections for wedge shaped wetdecks. Recommendations for

wedge section shapes to reduce maximum accelerations are provided and compared

with added mass theories. Swidan et al. (2017) conducted vertical drop tests on

the INCAT model bow section with different geometries. Visual inspection of the

impacting flow and forcing on the bow section are analyzed.

Fully elastic scaled models are extremely difficult to test and not all scaling pa-

rameters can be met simultaneously. Flat plate drop tests are a useful way to model

local structural impacts. Faltinsen et al. (1997) conducted flat plate impacts on top

of wave crests. The flat plate drops were only conducted for relatively large radius of
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wave curvature, and difficulties in dropping the wedge on the top of the wave crest

were documented.

The number of segments used can effect the response of the backspline structure.

Økland et al. (2003) found that at least three segments per hull were needed to

model the global structure mode shapes for catamarans with four segments yielding

better accuracy of typical structure mode shapes. When cavitation, ventilation, or

air entrapment occurs during wetdeck slamming, Thomas et al. (2011) found that the

segmented catamaran model had conservative predictions for structural loads when

compared to the full scale vessel measurements. Lavroff et al. (2013) used a segmented

model of the INCAT catamaran with forward speed to capture global hydroelastic

response due to slamming. Maximum loads on the structure occurred during slam

impacts.

Experimental testing for hydroelastic effects is complex and difficult. Scaling of

the velocities and structural properties provides significant challenges for full scale ex-

trapolations. Well documented test setups and data are needed for both the structure

and model geometry to compare with analytical and numerical simulations. Although

experimental model tests are challenging and may have scaling issues, they also pro-

vide valuable data that can be used for validation of analytical and numerical models.

2.3 Numerical Models

There are several numerical techniques that are used to model slamming events.

Some of these numerical techniques incorporate the two-dimensional analytical models

to estimate forces during slamming. The more complicated analytical models, such

as Kvalsvold and Faltinsen (1995), require numerical techniques to solve for the time

dependent wetted length. This section will focus on the more advance numerical

techniques that try to model the full three-dimensional geometry of a vessel and

complex fluid-structure interactions. These include numerical techniques such as
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Boundary Element Method (BEM), Smoothed Particle Hydrodynamics (SPH), and

CFD.

Zhao and Faltinsen (1992) developed the BEM for the slamming of two dimen-

sional bodies. Although good agreement was found for two dimensional wedge sec-

tions, three dimensional effects were not captured. Three-dimensional effects can be

very important for wetdeck slamming on catamarans in real sea conditions. Three

dimensional Rankine panel methods have been developed to handle ship motions in a

seaway. A code capable of handling non-linear Wave-Induced loads and SHip motion

(WISH) was developed with capabilities of modeling the a ship structure as a beam

(Kim et al., 2011). Kim et al. (2015) used a three dimensional Rankine panel method

with a Generalized Wagner Model (GWM) for slamming using two-dimensional sec-

tions. Results were compared with a segmented container ship model showing good

agreement for whipping response due to slamming.

An Euler-Lagrange coupling method to capture the fluid-structure interaction

for a wedge drop impacting water was studied by Aquelet et al. (2006), Stenius

et al. (2007), Das and Batra (2011), and Wang and Guedes Soares (2017). The

fluid solves the Navier-Stokes equations using an Arbitrary Lagrange-Eulerian (ALE)

formulation on a fixed or moving mesh, while the structure is solved using a Lagrange

formulation on a deforming mesh. A contact penalty approach is used to couple the

fluid and structure solutions. The contact penalty approach causes oscillations in

the fluid pressure acting on the wedge. Aquelet et al. (2006) proposed a damping

term to remove the non-physical oscillations from the pressure. Stenius et al. (2011)

used a multi-material ALE formulation to model air and water for an elastic wedge

impact. The importance of fluid structure interactions was found by comparing to

Rigid-Quasi Static (RQS) results. De Rosis et al. (2014) modeled a hydroelastic

wedge impact using the lattice Boltzmann method coupled to a FEM. The numerical

results underpredicted strain at different impact velocities, but followed the trends
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of the experimental results. SPH is used by Amicarelli et al. (2015) and Gong et al.

(2016) to model rigid wedge impacts and Lind et al. (2015) used SPH to model rigid

flat plate impacts. Detailed hydroelastic results using SPH have not been widely used

and validated. Most SPH studies have used rigid structures to compare forcing to

experiments.

Common techniques in industry to model fluid structure interactions use CFD

with a one-way coupling to the FEM structure to perform a RQS analysis. Maki

et al. (2011) improved upon the RQS analysis and provide the structure inertia effects

by performing a one-way coupling between the fluid and structure for a wedge drop

with a 10 degree deadrise angle. Wet natural frequencies were modeled with acoustic

elements on the FEM structure. The difference in maximum displacement of the wet

and dry natural frequencies showed the importance of capturing the correct wetted

length of the wedge during impact. Piro and Maki (2011) studied the FSI of a wedge

during entry and exit using CFD VoF approach coupled to a modal decomposition of

a FEM structure using beam elements. This two-way coupled technique allows for the

time varying added mass and wetted length of the wedge to be modeled. The study

also compared an exact boundary condition with a deforming mesh to an approximate

boundary condition with no deformations and only structure velocities that are given

to the fluid patch. For small deflections, the approximate boundary condition had

good comparisons with the exact boundary condition. Camilleri et al. (2015) also

looked at wedge drops by coupling two commercial codes, CFD with Star CCM+ and

FEM with Abaqus. A large computational expense was needed to converge the fluid

and structure solutions using this two-way coupled method. The full structure model

was used adding to the computational expense of the method.

Two-way coupling of CFD and FEM has been used to model FSI interactions

due to ship slamming in head seas. El Moctar et al. (2011) coupled VoF CFD with

Timoshenko beam elements to model bow flare slamming for containerships. This
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technique was extended by Seng (2012), Seng et al. (2014), Oberhagemann (2016),

and el Moctar et al. (2017) to compare with experimental results for a segmented

containership model. Good agreement was observed with experimental results when

comparing the vertical bending moment in a sea state with slamming. Piro (2013)

used a similar technique to study slamming with green water on the deck of a seg-

mented Joint High Speed Sealift (JHSS) model. A modal decomposition was used

for the FEM to reduce the degrees of freedom and an approximate boundary con-

dition to remove the need to morph the fluid mesh. This allowed the FSI solver to

run at similar computational expense as the rigid body simulations. Higher frequen-

cies in the structural responses were not fully captured, but the lower frequencies

that correspond to the primary bending modes showed good agreement with exper-

iments. Southall et al. (2016) studied vertical bending moments on a segmented

containership model by using a linear seakeeping code to predict vessel motions and

detect slamming events. Slamming forces are accounted for using two-dimensional

CFD runs for sections experiencing a slam with the initial conditions and motions

provided from the linear code. This method reduces the computational expense al-

lowing for longer simulations to be conducted for statistical analysis. McVicar et al.

(2018) coupled the commercial CFD solver Star-CCM+ with the commercial FEA

solver Abaqus to study slamming on a wave piercing catamaran model. One-way and

two-way coupling techniques were compared. The two-way coupling was found to

be computationally expensive so the one-way coupling technique was recommended

that includes an added-mass estimation. Comparisons of the global loads from the

segmented model experiments showed decent agreement.

Two-way coupled CFD and FEM provide a way to model realistic three dimen-

sional geometries and capture non-linear hydrodynamic effects; however, there is a

significant computational expense and should only be used when three dimensional

and non-linear hydrodynamic effects are important. This research uses Piro (2013)
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formulation to study global and local slam events on flat wetdeck structures. One-way

and two-way coupling techniques will be compared. The two-way coupling method

captures the added mass effects and has a similar computationally expense as the

one-way method depending on the number of iterations needed to converge the solu-

tion.

2.4 FSI Solver

The development of the FSI solver is described in detailed by Piro (2013). This

section gives a short overview of the FSI solver and how the coupling between the

fluid and the structure is handled.

The FSI solver uses CFD with a VoF surface capturing techniques for the fluid

domain, coupled with a FEA modal decomposition for the structure domain. The

solver is validated with elastic wedge drops and segmented model tests of the JHSS

in head seas. The fluid solution is solved using the OpenFOAM 2.4.x CFD library.

OpenFOAM uses an arbitrary-polyhedral discritization that allows for the modeling

of realistic and complex geometries. The governing fluid equations are the Navier-

Stokes equations,

∇ · ~u = 0 (2.1)

∂ρ~u

∂t
+∇ · ρ~u~u = −∇p+∇ ·

[
µ
(
∇~u+∇~uT

)]
+ ρ~g. (2.2)

An arbitrary Lagrangian-Eulerian finite volume discritization is used to allow for

a moving and deforming mesh. A two-phase flow is captured using the VoF technique

with the equation governing the phase-indicator variable α,

∂α

∂t
+∇ · (α~u) +∇ · (α(1− α) ~ur) = 0. (2.3)
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The volume fraction variable, α, tracks the two phases which are 0 for air and 1

for water. This method allows for the tracking of a nonlinear free-surface. Fluid

discritization schemes are second order space and first order in time.

The structure is modeled using the FEM. The homogeneous equations of motion

for the FEM are written as,

[M ]{ü}+ [K]{u} = 0 (2.4)

where [M ] is the global mass matrix, [K] is the global stiffness matrix, and {u} is the

displacement vector for the nodes. Assuming small deflections and sinusoidal vibra-

tions, Equation 2.4 can be written as a determinate problem and the eigenvalues and

eigenvectors of the system can be found. These correspond to the natural frequencies

and mode shapes of the structure. The modal equations of motion including damping

and forcing are,

[I]{q̈m}+ [2ζωn]{q̇m}+ [ω2
n]{qm} = {fm} (2.5)

where [I] is the identity matrix, [2ζωn] is the modal viscous damping matrix, [ω2
n] is

a diagonal matrix containing the squared natural frequencies of the structure, {qm}

is a vector containing the modal amplitudes, and {fm} is the modal force vector. An

advantage to using the modal equations of motion is the reduction of the number of

degrees of freedom in the system. Small deflections are assumed for this lineariza-

tion to be valid. The majority of the structure’s energy is contained in the lower

frequencies, which correspond to the first set of mode shapes, allowing for the high

frequencies to be neglected.

The modal equations of motion are solved in time using the state-space represen-

tation,
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d

dt

{qm}{q̇m}

 =

 0 1

−[ω2
n] −[2ζωn]


{qm}{q̇m}

+

 0

{fm}

 (2.6)

where the time derivative depends on the time stepping scheme. The state vector is

saved for the two previous time steps to allow a second-order time stepping scheme to

be used for the structure solution for the FSI solver. For a single degree-of-freedom

the state-space representation can be written as,

Xn+1
i+1 = [A]Xn +

 0

∆tfm


n+1

i

, X =

qmq̇m
 (2.7)

where X is the state vector, the n index refers to the current time, and the i index

refers to the current iteration.

The coupling of the two segregated codes using the FSI solver may have insta-

bilities due to the artificial added mass as discussed by Young et al. (2012). The

artificial added mass comes from the lag in exchanging data across the fluid-structure

interface. An inertial under-relaxation scheme is used to stabilize the FSI solver. The

modal equations of motion become,

([I] + [Γ]){q̈m}+ [2ζωn]{q̇m}+ [ω2
n]{qm} = {fm}+ [Γ]{q̈m,est} (2.8)

where [Γ] is a diagonal matrix containing the inertial under-relaxation factors for each

mode. Assuming a small time step size, the estimate of modal acceleration for each

mode is a first-order finite difference scheme,

q̈m,est ≈
q̇n+1
m − q̇nm

∆t
. (2.9)

A single mode is analyzed for the stability of the FSI solver using the single

degree-of-freedom modal equation of motion with inertial under-relaxation,
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(1 + Γ)q̈m + 2ζωnq̇m + ω2
nqm = fm + Γq̈m,est. (2.10)

Equation 2.7 for a single degree-of-freedom and the iterative algorithm for updating

the structure state becomes,

Xn+1
i+1 = [A]Xn +

 0

∆tfm+Γq̈m,est

1+Γ


n+1

i

(2.11)

The modal force can be split into the modal added mass, γm and time dependent

component f̃ ,

fm = −γmq̈m + f̃ . (2.12)

The final structure iteration algorithm is,

Xn+1
i+1 =

0 0

0 −γm−Γ
1+Γ

Xn+1
i + [A∗]Xn +

 0

∆tf̃


n+1

i

, (2.13)

where [A∗] is determined by the time discretization scheme with the addition of the

velocity from the current time level for the estimation of acceleration. Knowing that

the eigenvalues of the matrix must have a magnitude less than one, the inertial under-

relaxation stability criteria is,

Γ ≥ 1

2
(γm − 1) . (2.14)

Details on selecting the inertial under-relaxation and the impact on stability of the

FSI solver is discussed in Chapter IV. A adaptive inertial under-relaxation scheme is

presented in Chapter IV as well.

The solver tightly couples the fluid and structure solutions to capture the fluid

structure interactions. The fluid solution is solved first and the pressure forces are
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interpolated to the Gauss points, as shown in Figure 2.3. The fluid pressure inter-

polation to the structure is handled through a weighted distance function of the four

closest fluid cell centers. The structural forces are then interpolated to nodes and

transformed to modal forces using the eigenvectors. The modal equations of motion

are then solved and transformed back to structural velocities and displacements at

the nodes. The structural velocities and displacements are given to the fluid solution

at the face centers using the structure shape functions. The fluid solution is solved

again with the new structure displacements and velocities. This iterative process is

repeated until the fluid and structural solution has converged for the current time

step.

Figure 2.3: Fluid-to-structure mapping Piro (2013)

For coupling the fluid to the structure, two boundary conditions are possible. The

exact boundary condition uses the structure displacements to deform the fluid mesh

and apply the correct velocities to the fluid boundary. The approximate boundary

condition uses the structure velocities on the body boundary to impart the correct
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velocities on the fluid patch without deforming the mesh. The approximate boundary

condition is consistent with the assumption of small deflections, and can be used

to reduce the computational expense and inaccuracies of deforming the fluid mesh,

shown by Piro and Maki (2013). The difference between the two boundary conditions

will be further examined in Chapter III.

It is common to assume small deflections when modeling steel hull structures.

Using the approximate boundary condition on the fluid patch and the modal decom-

position of the structure allows for a large reduction in computational expense. Piro

(2013) found that for complex ship slamming simulations, using only the first 100

frequencies, the FSI solver had similar computational times to the rigid body simu-

lations. The modeling of hydroelastic effects for steel hull structures is accomplished

with reasonable computational cost using the FSI solver.
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CHAPTER III

Hydroelastic Analysis of a Simple Plate

This chapter presents a canonical problem which is used to model wetdeck slam-

ming impacts. The problem is set up so it can be modeled in two-dimensions, allowing

analytical slamming models to be evaluated. A numerical model, analytic model, and

experimental data are compared with the FSI solver in order to verify and validate

the solver and further understand the underlying physics that are important when

modeling this type of impact problem.

The simplified problem uses a flat plate free-surface impact as a way to model

a wetdeck structural panel experiencing a slamming load. The flat plate is dropped

at varying heights onto a wave with varying radius of curvatures, or a calm (flat)

free-surface. During the impact, the speed of the flat-plate is assumed to be constant

or close to constant since the time duration of the impact is short and the plate is

modeling only a small portion of the overall mass of the multi-hull structure. The

structure and fluid problem are modeled in two-dimensions to isolate and study the

hydroelastic effects. The case setup chosen to compare with experimental results is

shown in Figure 3.1.

The flat plate is 0.5 m long and 8 mm thick and made of steel. The impact test

condition chosen to simulate is a 0.5 m drop height corresponding to an nominal

constant velocity impact of 2.5 m/s. The wave radius of curvature is 10.2 m, which

22



x

y

V=2.5m/s
R=10.2m

Wave Free Surface

Flat Plate
L=0.5m

t=8mm

Figure 3.1: Flat plate drop setup

is flat enough that an air pocket is captured between the plate and the wave surface

at impact. The air pocket was observed in the experimental tests and the numerical

simulations. The wave radius of curvature is given as,

R =
1

ak2
(3.1)

where a is the wave amplitude and k is the wave number. The detailed analysis of

the hydroelastic behavior is focused on the deflections and strains at the center of the

plate, corresponding to x = 0.

3.1 Convergence Study

A rigorous study of the convergence behavior of the FSI solver is conducted in this

section. The convergence of the structure from the FEM, fluid from the CFD, and the

combined fluid and structure algorithm is analyzed. Convergence is determined using

grid refinement and iteration studies. Results are used to make parameter selections

for the FSI solver.
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3.1.1 Structure

The plate is modeled in Abaqus using two-dimensional beam elements. A sym-

metry condition is used for the structure and the fluid solution located at the center

of the flat plate. The boundary conditions at the ends are a symmetric boundary

condition at x = 0 m and a pinned boundary condition with a torsional stiffness

at x = 0.25 m. The torsional stiffness is provided from Faltinsen et al. (1997) as a

stiffness per unit width. This stiffness was measured from the experimental setup.

Abaqus solves the modal decomposition of the structure. The natural frequencies and

mode shapes are provided to the FSI solver. The first six mode shapes from from the

FEM are shown in Figure 3.2.

Figure 3.2: First six mode shapes from Abaqus

By varying the number of beam elements, Abaqus results were used to study the

sensitivity of the modal frequencies as a function of the number of elements in the

FEM. Frequency results for selected modes between 5 and 200 are shown in Figure 3.3

and the frequencies for the first 10 modes are provided in Table 3.1.

The modal analysis of a structure usually contains the majority of the structural

energy in the first couple of modes, which correspond to the lowest frequencies. For

a small number of beam elements the first 10 modes have already visually converged.

The higher frequencies require more resolution before they converge. Resolution is
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Figure 3.3: Convergence of mode frequencies verse number of beam elements

Modal Freq. [Hz]
Elements 50 100 150 200 250 300
Mode 1 119.13 119.13 119.12 119.12 119.12 119.12
Mode 2 741.59 741.54 741.53 741.53 741.52 741.52
Mode 3 1939.40 1939.10 1939.00 1939.00 1939.00 1939.00
Mode 4 3699.40 3698.30 3698.10 3698.10 3698.00 3698.00
Mode 5 5991.80 5989.40 5989.00 5988.80 5988.80 5988.70
Mode 6 8778.50 8774.30 8773.50 8773.20 8773.10 8773.00
Mode 7 10409.00 10410.00 10411.00 10411.00 10411.00 10411.00
Mode 8 12016.00 12010.00 12009.00 12009.00 12009.00 12009.00
Mode 9 15659.00 15653.00 15652.00 15651.00 15651.00 15651.00
Mode 10 19662.00 19658.00 19658.00 19657.00 19657.00 19657.00

Table 3.1: Convergence of Modal Frequency
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added by increasing the number of beam elements. For this problem, 300 beam ele-

ments were selected to study the effects of higher frequencies and local peak pressures

from the fluid. A large number of beam elements allows for the proper structural res-

olution to capture the high frequencies and local peak pressure forcing effects.

An advantage to using the modal analysis of the structure is reducing the degrees-

of-freedom needed to solve the structure. This is done by truncating the total modes

available that capture the majority of the structural energy. To determine where the

structural energy is contained for this problem, a fluid grid with 0.625 mm resolution

and 10 iterations was selected based off the studies in Sections 3.1.2 and 3.1.3 respec-

tively. Simulating a flat plate impact on top of a 10.2 m radius wave curvature using

a constant velocity impact at 2.5 m/s, the modal forces were integrated for the first

40 modes to determine the total structural energy during the simulation. Each modes

force was then integrated and divided by the total structure energy to determine the

percentage of modal energy of each mode during the impact. The modal force is

plotted for the first nine modes in Figure 3.4 and the percentage of the total energy

and cumulative energy of the structure is given in Table 3.2.

Mode # Total Energy [%] Cumalitive Energy [%]
1 99.99445 99.99445
2 0.00506 99.99951
3 0.00038 99.99989
4 0.00007 99.99996
5 0.00002 99.99998
6 0.00001 99.99999

Table 3.2: Structural energy for the first six modes during a two-dimensional flat
plate impact

The largest contribution to the total structural energy is contained in the first

mode shape as see in Figure 3.4 and Table 3.2. Other modes are excited at the initial

impact, but quickly damp out. The first mode shape continues to vibrate at the

wetted natural frequency after the initial impact. The contribution to the structural
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Figure 3.4: Modal forcing during a 2.5 m/s constant velocity impact on a 10.2 m wave
curvature radius

energy decreases as the mode frequency increases. It is important to capture the

total structural energy without selecting unnecessary higher mode frequencies that

have a limiting time step criteria for the one-way coupling algorithm. Adding higher

frequencies decreases the maximum time step size for stability of the one-way coupling

structure solution leading to more time expensive simulations. The higher frequencies

can suffer from accuracy with the two-way coupling algorithm if a small enough time

step is not taken. From this simulation, nine modes are selected for the remaining

simulations as this is sufficient to capture the majority of the structural energy.

3.1.2 Fluid

The fluid grid also utilizes a symmetry boundary condition at x = 0. The CFD

grid is a two-dimensional grid with local refinement near the hydroelastic patch.

Figure 3.5(a) shows the cell density of the selected CFD grid. Figure 3.5(b) shows
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the phase indicator, α, on the grid where a value of one or zero is a cell containing

only water or air respectively, and a value in between one and zero is the location of

the free surface interface. Cells above the hydroelastic patch are removed to reduce

computational cost.

(a) Two-dimensional CFD grid (b) Alpha field modeling the wave surface

Figure 3.5: Fluid grid setup for flat plate drop simulations

The convergence of the fluid solution is analyzed by conducting a spatial resolution

study for the CFD grid. A rigid simulation of the flat plate drop using the same

conditions in Section 3.1.1 is set up without the structure coupling. Pressure at 0.1 m

from the center of the plate is plotted for varying resolutions along with experimental

data in Figure 3.6. Also the total force per unit length acting on the plate is plotted

in Figure 3.7.

The peak pressure increases as the resolution increases. The peak pressure time

occurs earlier when the resolution is too coarse. The experimental data has a lower

pressure peak due to the hydroelastic effects compared to the the rigid simulations,
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Figure 3.6: Pressure during a rigid flat plate slam at 0.1 m from the plate center

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

 0  0.005  0.01  0.015  0.02

V
e
rt

ic
a
l 
F

o
rc

e
 p

e
r 

L
e
n
g
th

 [
N

/m
]

Time [s]

0.625 mm
1.25 mm
2.5 mm
5.0 mm
Experiment

Figure 3.7: Total forcing per unit length of a rigid flat plate slam
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which have enough resolution to capture the pressure peak. The pressure peak hap-

pens during the impact stage and then approaches a constant value due to the rigid

plate and constant velocity boundary conditions. After impact, the experimental

pressure values continue to oscillate at the first wet natural frequency since the plate

is still oscillating at this frequency. Smaller, higher frequency oscillations are also

seen in the experimental pressure data shortly after impact due to higher modes, air

entrapment and mixing.

The vertical force per unit length of the flat plate also exhibits similar trends

to the pressure on the plate. However, the numerical peak force is closer to the

experimental peak force. The finest grid resolution still over predicts the experimental

data as expected for a rigid simulation. The oscillations in forcing are not present for

the rigid simulations as these are due to the hydroelastic effects for the experimental

forcing data.

The fluid grid resolution selection is important for capturing the correct forcing

while maximizing the time step stability criteria to reduce computational expense. A

finer resolution requires smaller time steps. Peak pressures are not as important to

the response of the structure if the peak pressure occurs over a short time. Similarly,

the peak forcing on a structure is only critical to the response if the impulse force

is large. For the two-dimensional simulations, the 0.625 mm resolution translates to

only 242,000 cells and so the finest resolution is used for the two-dimensional simu-

lations to more closely model the fluid dynamics. For three-dimensional simulations,

coarser resolutions can be used to reduce computational cost, as long as the forcing

is sufficiently resolved.

3.1.3 Fluid-Structure Coupling

The mapping scheme between the fluid and the structure is discussed by Piro and

Maki (2013). The scheme assumes that the CFD grid has more resolution than the
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FEM as is typical between the two different numerical models. This allows for the

fluid and structure grids to be made independent of each other as mesh generation

and refinement zones are typically different for each model. Both the fluid and the

structure grids are modeled in two-dimensions. However, for transferring pressure

to a force and to model the torsional stiffness of the end boundary condition a unit

width is given to the CFD and FEM grids. Figure 3.8 shows the mapping of the

first modes eigenvector magnitudes at the 301 structure node points to the 400 fluid

cell faces for the CFD grid. A visual inspection of the mapping scheme shows the

fluid grid matching the structure nodes. The symmetry condition is at the center of

the plate at x = 0 m and the pinned torsional boundary condition is on the right at

x = 0.25 m. The structure has 300 beam elements and the fluid has 400 cells along

the mutual patch.
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Figure 3.8: Mapping of the eigenvectors magnitudes at the structure node points to
the fluid faces

The convergence of the FSI solver is analyzed through the number of modes used
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Figure 3.9: Convergence of deflection at the center of the plate for different number
of modes
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Figure 3.10: Convergence of strain at the center of the plate for different number of
modes
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Figure 3.11: Convergence of deflection at the center of the plate for different number
of iterations with a fixed inertial under-relaxation factor of 1.7 for all
modes

on the structure side and the number of iterations needed for the algorithm to con-

verge. The stability of the FSI solver is discussed in more detail in Chapter IV. The

number of iterations needed is largely dependent on the inertial under-relaxation fac-

tor used. This problem uses the conditions outlined from the previous two sections

with an inertial under-relaxation factor Γe of 1.7 or a modal added mass γ of 4.4

for all modes. The first convergence test analyzed uses 10 iterations and varies the

number of modes. This test is a secondary test for Section 3.1.1 and confirms the

number of modes needed for the structure.

Figures 3.9 and 3.10 confirm what is presented in Section 3.1.1. The majority

of structural energy is contained in the first mode shape which is already visually

converged for the deflection at the center of the plate. The strain at the center of the

plate is visually converged after adding the second mode which contains the second

most structure energy. With this in mind, nine modes are selected for the remaining
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Figure 3.12: Convergence of strain at the center of the plate for different number
of iterations with a fixed inertial under-relaxation factor of 1.7 for all
modes

analysis. For the convergence of the FSI solver, the number of iterations between the

fluid and the structure is evaluated in Figures 3.11 and 3.12.

The convergence of the FSI solver is clearly visible in the frequency of oscillation

after impact. A large number of iterations - up to 40 - were plotted to insure that

the algorithm was converged. Deflection and strain is shown to converge after six

iterations, which corresponds to six fluid solves and five structure solves. For the

remaining simulations, 10 iterations are used to ensure convergence and the added

expense is still small enough for this two-dimensional problem.

3.2 Experimental Validation

Experimental test data is available for this flat plate drop problem. Results were

obtained from Faltinsen et al. (1997) as well as the description of the setup and some
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detailed data. The tests were conducted at the MARINTEK wave basin in Norway. A

steel and stiffened aluminum section were tested, but detailed results were only given

for the steel section. Dummy plate sections were placed on either side of the test plate

section to reduce the three dimensional effects for comparisons with two dimensional

slamming models. Pressure, acceleration, strain, and displacement measurements of

the test section were taken at several locations. The plates were dropped on flat

free-surfaces as well as the top of waves with varying radius of curvature. The dry

structural natural frequencies and torsional rigidity of the plate connection points

were experimentally determined before the flat plate drop. The total weight of the

rig setup was 500 kg to model a constant-velocity impact. Data for comparative

studies was only provided for a drop height of 0.5 m, which corresponds to a nominal

impact velocity of 2.5 m/s, and a wave radius of curvature of 10.2 m for the steel test

section.

(a) Top view. (b) Profile view.

Figure 3.13: Flat plate drop test setup (Faltinsen et al. (1997)).

An overview of the test rig is presented in Figure 3.13. The instrumentation of the

test rig is provided with locations for pressure probes, strain gauges, force transducers,

and displacement transducer. Data for strain (SG3) and deflection is only provided

at the center of the plate test section. Comparisons with the FSI solver for validation

will focus on these measurement points.
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3.2.1 Boundary Conditions

Three-dimensional effects are assumed negligible for the flat plate drop, so the

FSI solver comparisons use a two-dimensional fluid grid with Euler beam elements

representing the plate structure as described in the previous sections. Both a con-

stant velocity and free drop condition is simulated to compare the constant velocity

assumption to the actual drop speed. A comparison of the drop speed velocities for

the simulations and experiment is shown in Figure 3.14.
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Figure 3.14: Free drop velocity of test rig for simulations and experiment

The free drop simulations solve a single degree-of-freedom rigid body motion equa-

tion that starts at rest 0.5 m above the wave crest to model the velocity impact. The

motion solver impacts the wave crest at approximately 3.0 m/s and rapidly slows to

a velocity of approximately 2.5 m/s during the impacting stage. The simulation ve-

locities for the exact and approximate FSI boundary conditions have the same initial

impact speed and then decelerate at the same rate. The difference between the exact

and approximate boundary conditions is discussed in Section 2.4. The approximate
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boundary condition does not influence the initial impact speed were the maximum

deflection and strain occurs. The constant velocity assumption of 2.5 m/s is the solid

black line on the graph and is approximately the average of the experimental veloc-

ity shortly after impact. The simulations do not show the small oscillations around

2.5 m/s which may be due to a combination of the two-dimensional assumption,

compressibilty effects, and differences in the actual impact angle of the plate during

the experiments. The FSI solver’s exact and approximate boundary conditions are

further compared for different impact velocities in Figures 3.15 and 3.16.
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Figure 3.15: Deflection for different FSI solver boundary conditions

The free drop impact case is similar to the constant velocity impact case, but the

constant velocity impacts underpredict the maximum deflection. The two FSI solver

boundary conditions, exact and approximate, show similar results for each impact

speed when looking at the deflections at the center of the plate. The strains are more

sensitive to the hydroelastic effects and show differences in the higher frequency oscil-

lations for each test case. However, the variable of most importance is the maximum
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Figure 3.16: Strain for different FSI solver boundary conditions

strain. When comparing the maximum strain between impact speeds, the maximum

strains are similar. The free drop condition matches the experimental results better

than the constant velocity impact as expected. The constant velocity impact has a

slight advantage in improved computational costs, and for similar impact problems

may provide a decent assumption for impact models that require a prescribed veloc-

ity. It is important to note that a similar impact problem requires a larger rigid body

mass when compared to the hydroelastic structural mass for the validity of this as-

sumption to remain true. The close comparisons between the approximate and exact

boundary conditions shows that for small deflections the approximate boundary con-

dition can be used. Using the approximate boundary condition avoids the additional

computational cost in morphing the mesh, which adds additional iterations in the

FSI algorithm.

The main difference between the FSI solver and experimental results are in the

primary oscillation frequency after impact. There are several modeling differences
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between the simulations and experiments that may contribute to the different oscil-

lation frequency. The simulations assume a perfectly symmetric fluid and structure

domain. The experimental setup required the test rig to be dropped on a moving

wave. The wave crest at impact, during the experiments, did not exactly hit at the

center of the plate. This, combined with the horizontal velocity of the wave, means

that the fluid loading on the structure was never symmetric in the experiments. The

experimental plate test section was welded to the test rig at the plate ends. The tor-

sional stiffness at the ends of the plate were experimentally measured and assumed to

be symmetric. The measured torsional stiffness is applied as a symmetrical bound-

ary condition in the simulation model. This symmetric assumption in the structural

boundary conditions in reality is not true as the two welds are different and create an

asymmetric boundary condition. The sensitivity of the structure boundary conditions

is demonstrated in Figures 3.17 and 3.18.

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  0.005  0.01  0.015  0.02

D
e
fl
e
c
ti
o
n
 a

t 
M

id
p
o
in

t 
[m

]

Time [s]

Constant Vel. Approx. BC
Exact BC

Clamped Exact BC
Experiment

Figure 3.17: Deflections for different structure boundary conditions

The free drop condition with the exact boundary condition is chosen, since this
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Figure 3.18: Strains for different structure boundary conditions

simulation is closest to the maximum results at the center of the plate. The struc-

ture boundary condition at the ends is changed from the experimentally measured

torsional stiffness to a clamped condition. The main oscillation frequency matches

the experimental results, but the maximum deflection is underpredicted. However,

the maximum strain is still closely captured. The main frequency of oscillation and

maximum deflection is sensitive to the structure boundary conditions. An asymmetry

in the plate welds at the ends of the plate, compressibility effects, and cavitation may

contribute to the difference in oscillation frequency and deflection results at the center

of the plate. Figure 3.19 shows the fluid grid for the free drop condition with the

exact boundary condition close to the maximum deflection at time 0.004831 seconds.

The deflection of the plate and the mixing of the air pocket that is captured at impact

are visible.

The oscillation period and reduction in amplitude of the second oscillation for the

deflection and strain may also be explained from the missing physics in the simu-
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Figure 3.19: Two-dimensional free drop with exact boundary condition close to max-
imum deflection

lations. The experiments have observed air entrapment at impact with ventilation

and cavitation also occurring around 0.01 s. The FSI solver simulates the air entrap-

ment during impact, but the solver does not account for the compressibility of the

air captured. Kvalsvold and Faltinsen (1995) state that modeling the compression is

not necessary for the maximum structure response. Modeling the compression could

influence the response of the structure during the second oscillation frequency. The

FSI solver does not model cavitation when the pressure approaches vapor pressure.

In the experiments, cavitation was not analyzed so the contribution of the structure

response from cavitation is difficult to quantify. Structural damping may also play

a role in the reduction of amplitudes in the second oscillation. Structural damping

is modeled as a percentage of the structure velocity. A constant structural damping

parameter of 2% is used for all simulations and modes.

The torsional stiffness at the plate ends was experimentally measured and con-

verted to a torsion per unit width. The two-dimensional beam model used a unit

width to model the full rig setup including the dummy plate components. The ex-
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perimentally measured torsional stiffness is applied as a boundary condition at the

plate ends in the FEM model. Information on the dummy plates was not provided,

but stated that the dummy plates were similar to the test section plate. The mea-

sured natural frequencies of the first three modes are compared to the FEM natural

frequencies in Table 3.3.

Mode [#] Exp. [Hz] FEM [Hz] Diff. [%]
1 125 119 -4.8
2 375 - -
3 800 745 -6.9

Table 3.3: Dry structural frequency comparisons with experiments

The unit width beam element model closely matches the experimental results.

The second natural frequency is an asymmetric mode which is not captured with

the symmetry boundary condition used for the two-dimensional beam element model.

Since the fluid loading on the structure is also symmetric, the asymmetric mode is not

excited during impact. The dry frequencies are close to the experimentally measured

values and differences may be attributed to the experimental error, inaccuracies in

modeling the dummy plates, and the assumption of symmetrical boundary conditions

when measuring the torsional stiffness at the plate ends.

3.2.2 Structure Sampling

Post-processing stress and strain in FEA may have inaccuracies depending on

where the sampling point is positioned on an element. FEA solves for the structure

displacements and velocities at the nodes. The formulation of elements use interpo-

lation functions to solve for the structure solution contained in the element between

the node points. The interpolation functions used are called shape functions. Shape

functions are C0 continuous between elements. For deflections and rotations the shape

functions will have the same value at shared node points for any element. However,

the interpolation of stress and strain, which uses the derivatives of the shape functions,
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at the nodes may be different for each element. The stress and strain interpolations

are most accurate at the Gauss points, and can yield large inaccuracies at the node

points. There are many sampling post-processing techniques for stress and strain that

can be used to avoid large inaccuracies.

Sampling of stress and strain at the nodes is a common request in the design

analysis of a structure. FEA post-processing tools use stress smoothing techniques

to interpolate stresses and strains at the node points. The formulation of an element

involves the use of Gauss points to integrate over the element. At the Gauss points,

the stress and strains are most accurate. Stress smoothing techniques use the stress

and strain interpolation at the Gauss points in various ways to interpolate to the node

points - for example, taking the stress at the closest Gauss points for each element

that attaches to the node and averaging the stresses. In Figure 3.20, the deflection at

the center of the plate is shown for different number of beam elements. The deflection

at the center element Gauss point does not have a noticeable difference from the node

points and is omitted from this plot. Figure 3.21 shows the strains at the center Gauss

point of the element closest to the center of the plate for different number of beam

elements. Inaccuracies of strain interpolation at the node located at the center of the

plate is shown in Figure 3.22.

The center of the flat plate, modeled by beam elements, lies on a node point with

a symmetry boundary condition. The Gauss points are at the center of the element

that connects to the node modeling the center of the plate. As more beam elements

are used, the Gauss points approach the true center of the plate. After 50 beam

elements are used, the strain interpolation at the Gauss points is no longer sensitive

to the distance from the center of the plate and the deflections are converged.

The strain interpolation at the nodes becomes more inaccurate with increasing

elements and does not match the converged strain from interpolations at the Gauss

points. Adding beam elements increases the overprediction of strain at the center to
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Figure 3.20: Deflection near center point for different number of structure elements
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Figure 3.21: Strain sampled at the center Gauss point of the element
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Figure 3.22: Sampling of strain on the node point at the center of the plate

almost twice the measured experimental strain. The strain measured at the Gauss

points converges after 50 elements and does not show large inaccuracies with increas-

ing number of elements. This shows the importance of sampling stress and strain at

the Gauss points and using a smoothing technique to interpolate to the nodes. The

FSI solver does not employ a smoothing technique, so care is taken to sample the

structure at a Gauss point.

3.2.3 Structure Non-Linearity

Two types of structural non-linearity that are omitted when using a modal analysis

are geometric and material non-linearity. The FSI solver only handles the modal

decomposition of the structural model. Thus, a one-way coupling utility is developed

to couple the rigid pressure loads from the fluid patch to the FEM in Abaqus to study

the sensitivity of the non-linear structural effects.

The three-dimensional geometry of the plate test section is modeled with plate
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elements in Abaqus. The full test rig in three-dimensions is modeled for the rigid

CFD grid. Rigid pressures from the CFD grid are mapped to the structure model

using Abaqus’s Python wrapper. The Python utility then solves the structure for

the next time step and repeats the mapping for the next pressure time history. The

measured torsional stiffness from the experiments is scaled to 0.1 m, the width of the

plate test section for the structural model. The dummy plates on the test rig are

not modeled in the structural model since the geometric description of the dummy

plates is not provided. This increases the primary oscillating frequency after impact

when compared to the experiments since the dummy plates were wider than the test

section at 0.45 m on either side and contained a larger proportion of mass compared

to the test section. However, maximum strain measurements at the center of the

plate are still similar to the experimental results when acoustic elements are used.

The difference between a one-way and two-way coupling is shown in Figure 3.23.
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Figure 3.23: Comparison of one-way and two-way three-dimensional flat plate drops

Hydroelastic effects are responsible for the differences between the one-way and
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two-way coupling results. The added mass is captured in the two-way coupling,

causing the structure to oscillate at a lower frequency. The one-way coupling oscillates

at the dry frequency. The rigid slamming pressures are larger during the initial impact

and the dry structure captures higher excitation frequencies causing the maximum

strains to be larger for the one-way coupling without acoustic elements. Acoustic

elements model the structure as fully wetted which reduces the excitation of the

structure from higher frequency content in the fluid forcing. However, the rigid forcing

does not capture the hydroelastic effects, because the fluid does not experience the

change in velocity due to the structure motion, which is captured by the two-way

coupling. When studying the structural non-linearity, the hydroelastic effects are

neglected to save computational cost and compare just the geometric and material

non-linear effects.

A modal decomposition of the structure is used to reduce the number of degrees-

of-freedom by linearizing the response of the structure into a finite number of mode

shapes. This linearization neglects the non-linear effects that can occur in the geom-

etry when the full FEM model is solved. A comparison between the full FEM model

solved using the one-way Abaqus coupling tool and the one-way modal analysis is

presented in Figure 3.24.

Between the linear modal results and the non-linear geometry there is an increase

in the oscillation frequency. In addition, the non-linear structure responds to local

forcing effects, causing small amplitude higher frequency oscillations. These local

forcing effects are filtered out in the linear modal results. These effects are not shown

in the experimental data and may be caused by the hydroelastic and compressibility

effects that are not modeled.

Material non-linearity is more difficult to model and requires experimental tests

to be modeled accurately. Non-linearity in materials occur when a structure’s elastic

behavior on the stress strain curve does not have a constant slope (constant Young’s
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Figure 3.24: Non-linear geometry effects

modulus, E), or when the yield stress of the material is exceeded and plastic de-

formations occur. The material listed in the experiments was High-Strength Low-

Alloy (HSLA) steel. There are several different types of HSLA steel and the exact

specifications were not provided. Three types of HSLA steel were chosen with low,

medium, and high yield stresses. An elastic-plastic model for non-linear material is

setup with the one-way Abaqus coupling utility. Figure 3.25 shows results for the non-

linear material simulations. These simulations also contain the non-linear geometry

effects.

The elastic simulation models the high strength HSLA steel as the yield stress is

never met so the structure material responds in the elastic range only. This is the same

result as the non-linear dry simulation in Figure 3.24. The medium and low grade

HSLA steels have yield stresses of 360 MPa and 260 MPa respectively. The material

is modeled as elastic until the stress in the element exceeds the yield stress then the

material is modeled as plastic. The medium grade HSLA steel simulations barely

48



-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0  0.002  0.004  0.006  0.008  0.01

S
tr

a
in

 a
t 
M

id
p
o
in

t 
[-

]

Time [s]

Elastic
Elastic/Plastic 360MPa
Elastic/Plastic 260MPa

Figure 3.25: Non-linear material effects

exceed the yield stress which causes a small reduction in maximum strain. Higher

frequency content is present, but the main oscillation frequency is reduced after the

first oscillation. The low grade HSLA steel exceeds the yield stress early in the impact

and the large plastic deformations are shown by a shift in the oscillations about zero

strain to approximately 0.001 strain. A higher maximum strain is captured and the

main oscillation frequency is increased when compared to the high grade HSLA steel.

Non-linear effects can change the maximum strain and frequency-of-oscillation

during impact. The non-linear geometry may be more sensitive to compressible effects

by responding to local higher frequency forcing components from the incompressible

fluid solution. Using a modal solution filters out the local high frequency forcing.

Based on this analysis, modeling non-linear effects is not important for this problem,

but would be important if the yield stress of the material is exceeded.
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3.2.4 Analytical Modeling

Two numerical methods that use analytical functions to model the hydrodynamic

loading on a flat plate slam are compared with the experimental and FSI solver results.

The first method by Kvalsvold and Faltinsen (1995) models the impact problem using

a generalized Wagner theory to account for the time dependent wetted length. The

second method by Faltinsen et al. (1997) has several simplifications that are made

based off of the results of the first method. The deflections and strains at the center

of the plate for the numerical methods, FSI solver, and experimental results are

presented in Figures 3.26 and 3.27.
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Figure 3.26: Deflection comparisons with analytical models

The two numerical methods and FSI solver oscillate at the same first wetted

natural frequency of the structure. However, the excitation of the second symmetric

frequency in the two numerical methods does not damp out like the experimental and

FSI solver results. This leads to large overpredictions of the maximum strain of 18%

and 47% for Kvalsvold and Faltinsen (1995) and Faltinsen et al. (1997), respectively.
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Figure 3.27: Strain comparisons with analytical models

Faltinsen et al. (1997) does not solve for the time dependent wettness of the structure

during impact and assumes a fully wetted structure. The Kvalsvold and Faltinsen

(1995) method captures more of the physics during the initial impact and compares

better with the experimental results when compared with the symplifications made

by Faltinsen et al. (1997). The two numerical methods and the FSI solver do not

model the cavitation that occurs around 0.01 seconds which is why the frequency of

oscillations are different from experiments after the maximum deflection and strain.

Maximum deflections from Kvalsvold and Faltinsen (1995) and the FSI solver are

close to experimental results, but the simplifications by Faltinsen et al. (1997) lead

to an overprediction of maximum deflection by 17%. These simplifications add to the

overprediction of the maximum strain, but both numerical models suffer from large

oscillations from the secondary symmetric natural frequency that are not present in

the experiments.

To relate the two-dimensional slamming models and experimental results to re-
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alistic wetdeck slamming events, Faltinsen et al. (1997) proposes a non-dimensional

maximum bending coefficient, k, formulated as

k =
|σmax|
VaveZ

√
I

ρELW
(3.2)

where σmax is the maximum stress, Vave is the average impact velocity, Z is the

distance from the neutral axis to the measured maximum stress, I is the cross sectional

area moment of inertia, ρ is the impacting fluid density, E is the modulus of elasticity,

L is the length of the plate between transverse stiffeners, and W is the width of the

plate between longitudinal stiffeners. The non-dimensional maximum stress values

are calculated for the four FSI solver simulations and the two numerical methods and

plotted with experimental results in Figure 3.28.
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Figure 3.28: Non-dimensional stress at center of the plate

The non-dimensional stress parameter uses an impact velocity instead of a maxi-

mum pressure as is common in classification rules. Relating the maximum stress to an

impact velocity is more consistent with experimental results, where large variations
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in maximum pressures are captured and are sensitive to small differences in surface

features during an impact, but do not influence the maximum stress in the structure.

However, determining the average impact velocity has sensitivity issues as to the time

window that the average velocity is calculated for. The average impact velocity of

2.5 m/s has an initial impact speed of approximately 3.0 m/s before decelerating to

the averaged value. Kvalsvold and Faltinsen (1995) use the actual velocity recorded

during the experimental results, while the exact and approximate FSI simulations

solve for the rigid body motions during impact. The constant velocity FSI simula-

tions and Faltinsen et al. (1997) use the average impact velocity 2.5 m/s as the fixed

drop velocity. The constant velocity assumption for the FSI simulations decreases

the predicted maximum stress, while the approximate boundary condition increases

the maximum stress. The FSI simulation solving for the rigid body motions and

using the exact boundary condition captures the maximum stress with a difference of

approximately 2.4% from the experimental results. The approximate boundary con-

dition has a difference of 4.4% and the constant velocity simulations have differences

of 7.2% and 10.1% for the approximate and exact boundary conditions respectively.

This provides further validation that capturing the correct velocity during impact is

one of the important factors to model when determining the maximum stress.

Predicting maximum stress during a slam impact is important for the analysis of

an adequate structure design, as it may be the maximum condition that a structure

experiences during its lifetime. For the flat plate impact case, the FSI solver closely

matches experimental data for maximum deflection and maximum strain at the center

of the plate when modeling the correct impact velocity. Modeling the impact velocity

accurately has the most significant effect on capturing an accurate maximum stress

in the structure. Linear potential models can be used to predict the relative impact

velocity on the wetdeck and use the non-dimensional stress factor k to determine

loading on the wetdeck structure. Future work could involve validating the non-
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dimensional stress factor for different impact velocities.
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CHAPTER IV

Adaptive Inertial Under-Relaxation Factor

Coupling CFD and FEA with two-phase flows presents a unique challenge when

compared to single-phase flow analysis. The primary challenge is in accurately mod-

eling the time-dependent wetness of a body, and this has direct implications on the

added mass of the body and response of the structure. In marine flows, the two-phases

typically modeled are water and air. Water is approximately 850 times denser than

air. This difference leads to large time variations in added mass of a marine structure

during a slamming event. For catamaran structures with flat wetdecks, there is a

substantially large variation in added mass between normal operations with a dry

wetdeck and during an impact with time varying wetness on the wetdeck. The VoF

approach allows for the tracking of the time dependent wetness and the total forcing,

including the added mass forcing, of a marine structure. Large differences between

the added mass and the hydroelastic structural mass, will cause the FSI solver to

be unstable when using a tightly-coupled segregated algorithm. This is due to the

artificial added effects from delay in information transfer between the segregated al-

gorithms as discussed in Young et al. (2012). For pitching hydrofoils, Young et al.

(2012) proposes a hybrid coupling method to estimate the added mass and improve

convergence. For the FSI coupling using the full FEM, Veldman et al. (2018) pro-

poses a quasi-simultaneous coupling method that uses the mode shapes to provide
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an estimate of the structure displacement to the fluid instead of using inertial under-

relaxation. Yvin et al. (2014) estimates added mass of rigid six degree-of-freedom

body using unit accelerations provide to the fluid during run time, but states apply-

ing this technique to deformable structures is not straight forward. The new method

proposed in this chapter uses an inertial under-relaxation technique to stabilize the

FSI solver on the structure side. During runtime, an estimate of the modal added

mass is calculated for each mode and used to provide an inertial under-relaxation

factor for the next time-step. An analysis of the stability criteria for the FSI solver,

as it pertains to the added mass effects, is described in this Section 2.4. Further

details on the convergence of the solver and estimating the added mass are provided

in this section for an adaptive inertial under-relaxation factor.

4.1 FSI Solver Stability

Large added mass effects are experienced during a slamming event and can desta-

bilize the FSI solver. These added mass effects are related to the modal accelerations,

q̈m, of the modal added mass in Equation 2.12. The forcing due to added mass during

a slamming event can be quite large and dominate the forcing term. To analyze this

effect, consider Equation 2.12 where the modal forcing, fm, is composed of a compo-

nent of modal added mass, γm, along with a time dependent forcing, f̃ . The modal

added mass is the ratio of the added mass contribution from the mode to the modal

structural mass of that mode. The modal added mass varies for each mode. If the

modal added mass is larger than 1, meaning the added mass contribution is more

than the modal structural mass, the FSI solver can become unstable. An inertial

under-relaxation method is used shown in Equation 2.8 to stabilize the FSI solver.

[Γ], is a square matrix with non-zero values along the diagonal corresponding to the

inertial under-relaxation factor for each mode. A detailed stability analysis for the

FSI solver is presented in Section 2.4 and further stability information is presented
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in Piro and Maki (2013).

The coupling algorithm’s stability is independent of the the time step and relies

on choosing an inertial under-relaxation factor that is related to the modal added

mass by Equation 2.14. A large value for Γ, may insure stability, but convergence is

governed by the magnitude of Γ. Minimizing Γ will speed up convergence and reduce

the number of iterations for each time step of the FSI solver. This leaves the choice

of stability and convergence to an estimate of the modal added mass. An estimate

of the modal added mass, proposed by Mesa and Maki (2017), can be obtained by

comparing the dry, ωd, and wet, ωw, natural frequencies of each mode,

γm =
ω2
d

ω2
w

− 1. (4.1)

Many FEA programs have the ability to include acoustic elements to solve for the

wet natural frequencies. The wet natural frequencies are smaller due to the added

mass effects when compared to the dry natural frequencies. Each mode will have an

independent added mass estimation that indicates that mode’s participation to the

added mass effects. Using acoustic elements in a FEM adds additional elements and

degrees-of-freedom to the analysis. This increases computational time for the FEA

program to solve for the modal decomposition. The wet frequencies of the dry mode

shapes may be difficult to decipher as mode shapes pertaining to the acoustic elements

are also generated. For complex geometries, comparing the wet and dry frequencies

to estimate the modal added mass becomes time intensive for computations and

matching the wet frequencies to the dry frequencies. The order between dry and wet

modes may not be the same and this can introduce error matching the dry and wet

frequencies. Mismatching the dry and wet modes leads to a miscalculation that can

under or over predict the modal added mass. Another method for estimating the

modal added mass to determine the inertial under-relaxation factor is described in

the next section.

57



4.2 Runtime Modal Added Mass Estimation

Estimating the modal added mass using Equation 4.1, presents challenges for

complex geometries. An estimate for added mass during the simulation runtime would

eliminate the need for estimating the added mass before the simulation. A runtime

estimation of added mass could reduce the computational expense and potential for

a failed simulation due to instability associated with an under estimation of the

added mass during pre-processing. With a few assumptions of the forcing, a runtime

estimation of the added mass is described in this section.

During a slamming event, the forcing due to added mass for each mode in Equa-

tions 2.12 is assumed to be much larger that the forcing from other components,

|γmq̈m| >> |f̃ | → fm ≈ −γmq̈m. (4.2)

Assuming the modal forcing is dominated by the added mass effects, the modal forc-

ing is approximated to be the modal added mass forcing. Under the small time step

assumption the estimation for modal acceleration using the first order finite differ-

ence scheme, Equation 2.9, the time dependent modal added mass for each mode is

determined,

γm = − fm
q̈m,est

. (4.3)

The estimate for the modal mass may be determined for each iteration during a

single time step. This estimation allows for an inertial under-relaxation factor to

be calculated using Equation 2.14. Analyzing the this estimation and developing a

adaptive inertial under-relaxation algorithm is presented in the following section.
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4.3 Runtime Adaptive Inertial Under-Relaxation Factor

A runtime adaptive inertial under-relaxation scheme is developed using the run-

time estimation of the modal added masses. For each iteration k and each mode,

Equation 4.3 becomes,

γkm = − fkm
q̈km,est

. (4.4)

The maximum modal added mass over the old time step iterations is combined into

Equation 2.14 to determine the inertial under-relaxation factor for the new time step

for each mode,

Γnm =
1

2

(
max

[
γk,om
]
S − 1

)
(4.5)

where n is the new time step, o is the old time step, and S is a stability factor greater

than one. A stability factor of 1.5 is used for the simulations in this report. The

stability factor is necessary in the case where the modal added mass is increasing per

time step. This ensures that the inertial under-relaxation factor for the new time step

is in the stability range of the FSI solver.

The estimation of the modal added mass in Equation 4.4 is invalid if the modal

acceleration for a given mode is zero. The adaptive inertial under-relaxation scheme

insures that the modal added mass estimation does not divide by zero. If accelerations

are small, large values of the estimated added mass will plague the algorithm so small

acceleration estimations need to be eliminated for any mode. To determine what

small accelerations are, the modal accelerations for all modes are normalized by the

absolute value of their sum,

q̈m,norm =
q̈2
m,est

#modes∑
m=1

q̈2
m,est

. (4.6)
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The normalized modal accelerations that are smaller than 0.1, or 10% of the summed

squared modal accelerations, use the last time step estimate of added mass for that

mode instead of the new calculated value. A similar normalization can also be made

for the modal forcing to remove high modal added mass estimations that may linger

between time steps. Normalized modal forces that do not meet the minimum criteria

can set the modal added mass estimate for that iteration and mode to zero. If a

normalized modal force is used, the minimum criteria for the normalized modal force

is recommend to be set to 0.01 (1%) or smaller.

To reduce large oscillations in the inertial under-relaxation factor between time

steps, a reduction factor R is used to restrict the decrease in the inertial under-

relaxation factor between time steps,

Γnm = max [Γnm, RΓom] , R = [0 : 1] . (4.7)

A reduction factor of 0.9 is used in this study. This means that the inertial under-

relaxation factor for the new time step can not be less than 90% of the factor from the

old time step. This has the effect of stabilizing the algorithm when difficulties in cal-

culating the estimated modal added mass are encountered leading to large and small

estimations between time steps. For a constant iteration value, significant changes in

the inertial under-relaxation factor between time steps can lead to instabilities in the

adaptive inertial under-relaxation scheme.

When the modal added mass estimations are small enough that Equation 4.5

becomes small or negative. A minimum inertial under-relaxation factor is set before

runtime that is greater than or equal to zero.

Γnm = max [Γnm,Γm,min] , Γm,min ≥ 0. (4.8)

This minimum value can vary between modes and insures that the inertial under-
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relaxation value is not negative.

This work uses a constant iteration for each time step. In future work, a conver-

gence criteria for the state vector should be added so that the number of iterations

can adapt to assure convergence before moving to the next time step. The sensitiv-

ity of the stability factor, reduction factor, and other terms in the adaptive inertial

under-relaxation scheme could then be further analyzed for convergence. Recommen-

dations for the value of the factors in the adaptive inertial under-relaxation scheme

could be provided.

4.4 Modal Added Mass Analysis

The adaptive inertial under-relaxation scheme is used to estimate the added mass

at the previous time step and determine a suitable inertial under-relaxation factor

for the next time step. The adaptive scheme uses a constant 10 iterations per time

step and a 0.5 minimum inertial under-relaxation factor. Nine modes are used, but

the first mode contains the majority of the structural energy and requires the largest

inertial under-relaxation factor. The analysis will show the first two modes for an-

alyzing the stability of the adaptive algorithm. A constant drop velocity with the

approximate FSI boundary condition, from Section 3.2.1, is used and results for the

deflection and strain for adaptive and fixed inertial under-relaxation factors are shown

in Figures 4.1 and 4.2.

The adaptive algorithm shows good agreement with the 1.7 fixed inertial under-

relaxation factor. The adaptive algorithm remains stable with the 0.5 minimum

inertial under-relaxation factor, while the fixed 0.5 inertial under-relaxation factor

goes unstable during impact. This shows the advantage of the adaptive inertial under-

relaxation scheme for cases where the modal added mass estimation is difficult or not

possible for all modes. An analysis of the convergence of the adaptive scheme is

presented in Figure 4.3.
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Figure 4.1: Deflection for runtime adaptive added mass simulation
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Figure 4.2: Strain for runtime adaptive added mass simulation
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Figure 4.3: Strain convergence study for runtime adaptive added mass simulation

For the fixed 1.7 inertial under-relaxation factor a minimum of 6 iterations were

needed for the convergence of strain, Section 3.1.3. The adaptive inertial under-

relaxation scheme needs at least 10 iterations for the convergence of strain. The in-

crease in iterations comes from the over estimation of the new inertial under-relaxation

factor when there are small modal structure accelerations. Small modal accelerations

cause overpredictions of the estimated modal added mass. Overpredictions can also

come from the modal force assumption, where the forcing from added mass effects is

assumed to dominate the modal forcing. The algorithm does show promise for sim-

ulations where calculating an estimate of the added mass before runtime is difficult.

An increase in the iterations is a better alternative to the simulation failing due to

stability issues. The computational cost from increasing the number of iterations can

be much smaller than the computational cost from multiple failed simulations. The

added mass estimation for mode one and two is plotted in Figure 4.4 for the adaptive

algorithm and the fixed 1.7 inertial under-relaxation factor.
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The solid black horizontal line is the constant inertial under-relaxation equivalent

value of 1.7 which corresponds to a 4.4 modal added mass by solving Equation 2.14 for

γm. The estimation of the modal added mass for the adaptive conditions has several

instances where the estimation is larger than the required stability criteria. This over

estimation may come from the assumption made in Equation 4.2, where the added

mass is assumed to dominate the modal forcing or from small modal accelerations.

The adaptive estimate follows the trends of the fixed value, but has more noise present

in the estimation. Small accelerations lead to large added mass estimates which

increase the inertial under-relaxation factor, Figure 4.5. Larger overpredictions of the

inertial under-relaxation factors require more iterations for convergence. The larger

overestimate of the inertial under-relaxation factors cause the iterations needed for

convergence to change from 6 to 10 iterations. The flat portions of the adaptive

scheme which correspond to a maximum value are were accelerations are small enough

that the modal added mass estimation from the previous time step is used. The flat

portions of the adaptive scheme that correspond to zero for the estimated modal

added mass are where the normalized force is small so the estimation of the modal

added mass is set to zero. The flat portions of the inertial under-relaxation factor

that match the 0.5 minimum inertial under-relaxation factor are were the estimation

of the inertial under relaxation-factor is below the minimum value. An example of

small acceleration that lead to larger modal added mass estimates is shown for the

eight iterations over two time steps in Figures 4.6 and 4.7.

The vertical black line denotes the change between time steps and a new set of

iterations. At the first iteration the fluid solution is solved first with the old structure

state and the new structure state is solved with the new fluid update. The second

iteration is when the fluid solution first sees the updated structure state solution and

this is one of the places where issues with small accelerations can occur. In Figure 4.6,

the absolute values of the modal accelerations are plotted on log scale. Iteration nine,
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which corresponds to the second iteration in the new time step, decreases significantly

from the converged modal accelerations after the fluid is solved with the first structure

state update. This leads to a large estimation in the modal added mass for the current

iteration as shown in Figure 4.7. This is the artificial added mass issues discussed

in Young et al. (2012). After iteration 15, which is the last iteration in the new

time step, the new inertial under-relaxation factor increases for the next time step.

Stability issues were found if only the converged estimate of modal added mass is

used. This means that the converged modal added mass estimation in the adaptive

inertial under-relaxation algorithm does not always correspond to the stability criteria

needed for the inertial under-relaxation factor.

The adaptive algorithm shows promise for simulations where added mass estima-

tion before runtime is difficult or computationally expensive. Future work should

explore issues such as the modal forcing assumption and how solving for the fluid

solution first can cause stability issues with the adaptive inertial under-relaxation al-

gorithm. Issues with handling small accelerations and convergence criteria are other

areas of future exploration. Over estimating the modal added mass leads to better

stability, but slower convergence. However, the adaptive inertial under-relaxation

scheme is a better alternative to a failed solution due to stability issues with the

inertial under-relaxation factor.
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CHAPTER V

Wetdeck Slamming of a Catamaran

The primary goal of this research is to further understand the physics involved in

wetdeck slamming events in order to provide analytical theories that model slamming

with appropriate assumptions. This research provides the first look at a detailed

hydroelastic analysis of a realistic catamaran geometry with a flat wetdeck. The

high-fidelity FSI solver allows for the modeling of global and local loading on the

catamaran and wetdeck to be explored. The influence of modeling different parts of

the structure is discussed. Recommendations are provided for the important physics

to model when using a simplified theory to predict response.

The FSI solver is applied to a realistic multihull geometry with a flat wetdeck.

A segmented model is chosen to model global loads in addition to the local loads

on the wetdeck structure. The geometry chosen is a test model for a Surface Effect

Ship (SES) operating without the skirt which models a typical catamaran geometry

with a flat wetdeck. Stationary simulations with head seas is simulated for Response

Amplitude Operators (RAO) comparisons. Head seas with forward speed is simulated

for measuring loads during wetdeck slamming events. The body plan of the SES is

shown in Figure 5.1 and the backspline structure layout for the segmented SES model

is shown in Figure 5.2.

The body plan for the SES shows a typical geometry for catamarans with flat
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Figure 5.1: Body plan of the SES model without the skirt from Ge (2002)

Figure 5.2: Global backspline structure layout for the segmented SES model from Ge
(2002)
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wetdecks. The backspline models the scaled structure elasticity of a typical full scale

vessel. The model is cut into three segments longitudinally. There is another cut down

the center line which separates the two hulls transversely. The wetdeck is cut into four

separate plates and a pinned connection is used to connect the wetdeck plate to the

backspline. Deck one and two connect to the two forward backspline segments, while

decks three and four connect to the middle and aft backspline segments respectively.

Deck one has constant slope relative to the baseline while the remaining decks are

parallel to the baseline. The backspline structure connects all hull segments and

wetdeck segments together.

Figure 5.3: Fluid CFD grid patch of SES hull

The longitudinal elastic response is modeled by the steel springs and aluminum

transducers located at cut one and two as indicated in Figure 5.2. Longitudinally,

the segments are connected by the springs and transducers only. This allows for

measurements of sectional forces and moments at cuts one and two. The transverse

elastic response has contributions from the the wetdeck segments and the the springs

and transducers connecting the segments transversely. Transverse bending will not
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be analyzed for the head seas comparisons, as the structural loading is symmetric and

transverse bending response is small compared with the longitudinal bending. There

are two different mass distributions used in this chapter. Økland (2002) reported a

total mass of 302 kg for the stationary tests and Ge (2002) reported a total mass

of 246 kg for the slamming tests with forward speed. The RAO simulations use the

302 kg mass distribution and the elastic slamming simulations with forward speed

use the 246 kg mass distribution. Both mass distributions are listed in Appendix A.

Ge (2002) reported that the ballast weights used in the stationary tests were removed

for the forward speed cases in waves.

The three-dimensional geometry is developed from a table of offsets, measure-

ments, and the lines plans. The CFD grid is generated using the three-dimensional

geometry and the snappyHexMesh mesh generation utility in OpenFOAM. The fluid

face patches for the SES geometry is shown in Figure 5.3. Convergence studies and

validation of the geometry are detailed in the following sections.

5.1 Rigid Simulations

An analysis of the fluid grid is conducted by performing rigid-body simulations.

This insures that the three-dimensional SES geometry is correctly modeled and the

fluid grid has enough resolution to capture the wave interactions with the SES model.

Stationary simulations with head seas are used to compare the RAO with experimen-

tal results. A grid convergence study is conducted in heads seas with forward speed

to analyze the convergence of the motion and the forcing on the wetdeck panels.

The largest slamming event from the text of Ge (2002) is used for all forward speed

simulations.
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5.1.1 RAO Analysis

The SES model under went experimental testing at MARINTEK in Norway. Test-

ing for the RAO of the vessel was conducted in the wave tank with zero forward speed.

Experimental tests were conducted for wave periods between 0.7-2.5 seconds. To re-

duce the steepness of the waves and minimize non-linearity, wave heights between 0.02

and 0.03 m are used. Table 5.1 shows the wave properties for the four simulations

used to compare to experimental results.

T [sec] H [m] U [m/s] λ [m] k [rad/m]
0.7 0.03 0.0 0.776 8.09
0.85 0.03 0.0 1.136 5.53
1.0 0.03 0.0 1.567 4.01
1.8 0.03 0.0 5.060 1.24

Table 5.1: Wave properties for RAO simulations

For the RAO simulations, the limiting factor for the grid resolution is the wave

height. When simulating waves in the OpenFOAM CFD environment, 100 points per

wave length and 5 points per wave height are preferred for resolving the wave profile.

For this reason the largest wave height of 0.03 m is used. A resolution of 0.005 m

gives 6 points per wave height and is used for all RAO simulation. The model is

approximately 4.1 m long, 1.04 m wide, and 0.5 m tall. The grid extends from the

hull two ship lengths in front, three ship lengths behind, 1.5 ship lengths to the side,

1.5 ship lengths below, and 0.75 ship lengths above. Stretching is used away from

the hull to reduce the number of cells. The grid size is 13,845,714 cells and is split

on 288 processors. A minimum time step size of 1000 time steps per wave period is

enforced to minimize time discretization error. A list of the grid properties for the

four simulations is shown in Table 5.2.

Økland (2002) presents the experimentally measured RAO for the SES in head

seas with no forward speed. A Fourier analysis of the motion time history of the

vessel is used to calculate the RAO transfer function. The magnitude of the first
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T [sec] p.p.w.l. p.p.w.h. ∆tmin [sec]
0.7 155 6 0.0007
0.85 227 6 0.00085
1.0 313 6 0.001
1.8 1012 6 0.0018

Table 5.2: Grid properties for RAO simulations

harmonic from the transfer function is the RAO value. This value is a linearization

of the vessel response at a certain wave frequency and amplitude. The heave RAO

value is defined as,

RAOheave =
η3

ζa
(5.1)

where ζa is the wave amplitude and η3 is the heave amplitude. The pitch RAO value

is defined as,

RAOpitch =
η5

ζak
(5.2)

where k is the wave number and η5 is the pitch amplitude. The experimental values

are measured from the optical sensor and Motion Reference Unit (MRU) and shown in

Figures 5.4 and 5.5 with the simulation values. Stationary tests were also conducted

for oblique, beam, and following seas. The most severe slams occurred in head seas,

so only head seas are analyzed.

Økland (2002) expressed low confidence in the experimental measurements for

heave at the lower frequencies due to the differences in the RAO between the optical

sensor and MRU and the small wave amplitudes used in the measurements, which were

30 mm tall. The small wave amplitudes used in the RAO measurements also drove

the CFD grid size, as at least five points is needed per wave height to capture the wave

profile. The heave RAO shows reasonable agreement with the experimental results

and only have large discrepancies for the second lowest frequency. The slamming
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Figure 5.4: Heave RAO for head seas with zero forward speed
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Figure 5.5: Pitch RAO for head seas with zero forward speed
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event that is chosen for validation has a wave period of 1.8 seconds. For this wave

period, the rigid CFD model falls between the two experimental measurements from

the MRU and optical sensor for the heave and pitch RAO. The pitch RAO also

shows excellent agreement with the experimental measurements at lower frequencies.

Capturing the pitch motion is important for local wetdeck slamming loads as large

vertical velocities can be achieved at the bow or stern due to pitching motion. The

agreement with the experimental RAO measurements gives confidence to the CFD

grid modeling of the SES geometry.

5.1.2 Wetdeck Slamming and Forcing

Slam events are encountered in the experiments for a wave period of 1.8 seconds, a

forward speed of 1.8 m/s, and wave a amplitude of 0.041 m. These conditions are used

in the simulations and new grids are generated based off the RAO studies. The coarse

grid has 2,384,130 cells and the hull face patch is shown in Figure 5.3. The medium

grid has 3,533,572 cells and the fine grid has 8,562,860 cells. Figures 5.6 and 5.7

show the rigid heave and pitch motions during a slamming period for each grid. The

slamming period is the wave encounter period of 1.097 seconds. The impact of the

wetdeck starts at approximately 3.7 seconds in the following figures.

The pitch response between the two grids closely matches in frequency and am-

plitude. However, the heave motion has a small time delay for the coarser grids

compared to the fine grid. This small difference may be attributed to the difference

in resolution of the wave, since fewer cells are used to describe the height of the wave

for the coarser grids. Modeling the elastic structure depends on the forcing from the

fluid grid. Figure 5.8 shows the total vertical force on the hull and Figure 5.9 shows

the total vertical force on the Deck 1 fluid patch for the coarse, medium, and fine

grids. The time window for the experimental results, presented in Ge (2002), is from

19.5 to 23.5 seconds. The time window corresponds to a series of consistent slam
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Figure 5.7: Pitch response during slamming for grid refinement study
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events, and is shifted to match the simulation results.
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Figure 5.8: Total rigid vertical hull forces for grid refinement study

The forcing on Deck 1 from the experiments is measured at the pinned connections

between the wetdeck and the global structure backspline. The oscillations in the

experimental measured forces come from the inertial forces between the wetdeck and

global structures. The forces measured by the rigid simulations are the pressure forces

acting on the fluid patch and do not contain the elastic forcing oscillations. The peak

slamming force is sensitive to the wave-hull interactions and the resolution of the

grids. The peak force is overpredicted by the rigid grids as expected since there is no

structure-to-fluid interactions. A larger negative force impulse loading on the patch

after impact corresponding to the exit phase is seen in experiments and simulations.

This negative force loading was also noted in the wedge entry and exit studies by

Piro and Maki (2011). The structure response to larger force impulse loads which

corresponds to the area under the forcing curve. The negative impulse load on the

structure is significant, and will influence the structure response. Modeling the exit
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Figure 5.9: Rigid vertical forces on Deck 1 for grid refinement study

phase is just as important as modeling the entry. The FSI solver has the ability to

solve the rigid body motions in all six degrees-of-freedom. The simulations for this

study in head seas, fix the model at a constant forward speed and solve the pitch and

heave motions while keeping all other degrees-of-freedom fixed. This allows for the

entry and exit phase to be solved for the model. Korobkin et al. (2017) have worked

with analytical exit stage models for three-dimensional bodies. Analytical models are

complex and require separate modeling of entry and exit stages to accurately account

for the forcing on the body.

The forcing between the coarse, medium, and fine grids show good agreement

except during the impact. The coarse and medium grid have more noise in the

forcing signal during impact for the total vertical forces on the hull and Deck 1. A

small time delay in the coarse and medium grid compared to the fine grid is exhibited

in the forcing signals. Impact forcing show differences in maximum loads, but the

impulse load on the structure is similar between the coarse, medium, and fine grids.
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The maximum pressure during the simulation for each patch on Deck 1 is plotted

for both the coarse, medium, and fine grid in Figure 5.10 using the non-dimensional

pressure coefficient,

Cp =
pmax − pa

1
2
ρV 2

ave

, (5.3)

where pmax is the maximum pressure during the simulation on the face patch, pa is

the atmospheric pressure, ρ is the density of water, and Vave is the average impact

velocity. The average impact velocity is approximately 1.9 m/s and includes the

forward and vertical velocity components of the wetdeck during impact. Majority of

the velocity comes from the forward speed of the vessel. Note that the three patches

in Figure 5.10 are not a single time instance, but the maximum recorded pressure on

each cell face at any point in time during the simulation.

Figure 5.10: Maximum rigid slam pressures on the Deck 1 patch for the coarse (left),
medium (middle), and fine (right) grids

The wave hull interactions during a wetdeck slamming event influence the peak
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Figure 5.11: Wetted rigid pressure for coarse (left), medium (middle), and fine (right)
grids at times 3.69 s (top), 3.735 s (middle), and 3.78 s (bottom)
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pressures along the Deck 1 patch. The peak pressures are sensitive to the wave

profiles and modeling the correct wave-hull interactions. The largest peak pressures

occur near the location that Deck 1 and 2 meet. The maximum pressure value

increases with grid refinement similar to the flat plate impact simulations. A high

resolution of grid cells is needed to accurately model maximum value of pressure. Even

though the maximum pressure value is not captured with the coarse and medium grid,

the forcing on the fluid patches is not sensitive to capturing the maximum value of

pressure. Figure 5.11 shows the wetted rigid pressures at different stages of impact

for the coarse, medium, and fine grids.

The wetted rigid pressures on Deck 1 and part of Deck 2 show that a jet root

develops from the water pile-up as the bow sections enter the wave. As the two jet

roots approach each other, the wetdeck impacts the wave crest and entraps air. The

moment that the maximum pressure occurs is difficult to capture visually as data must

be written out at the exact time step for post-processing. As the wetdeck continues

to impact the wave crest, the entrapped air is mixed. The maximum pressure occurs

close to initial impact and around the same time the two jet roots meet. Although

the maximum pressure is not captured by the coarser grids, the elastic structure

responds to the force impulse loading. It is important to capture the longer impulse

loading accurately for the structural response. Both the coarse, medium, and fine

grids exhibit similar long term force impulse loads, shown in Figures 5.8 and 5.9, on

the fluid patches and are sufficient for modeling the structure response.

5.1.3 Sectional Forces

Sectional forces at the segmented cuts are measured in the experimental tests.

Experimental measurements are taken from a five degree-of-freedom aluminum force

transducer, see Figure 5.2, that makes up part of the elastic beam connection between

segments. The mass and inertia information for each segmented is provided by Ge
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(2002), and can be referenced in Appendix A. Using the mass data and integrating

the pressure force over the hull fluid patch, the rigid vertical shear force and vertical

bending moment is calculated at each segmented and compared with experimental

data, Figure 5.12.
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(b) Vertical bending moment at Cut 1
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(c) Vertical shear force at Cut 2
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(d) Vertical bending moment at Cut 2

Figure 5.12: Rigid simulations of vertical shear force and bending moment at segment
cuts

The sectional forces are the sum of the port and starboard longitudinal transducers

at each cut. The sectional forces are zeroed at the static load case with zero forward

speed. The rigid simulations do not contain the global structure ringing response

that is seen in the experimental results. The rigid sectional forces do follow the

average forcing that the experimental results are oscillating about. There is not a

large variation in the shear force and bending moment between the coarse, medium,
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and fine grids. Differences in the shear force and bending moment do occur at the

initial impact of the wetdeck around 3.7 seconds. These differences are small and do

not significantly affect the sectional forces after the impact. The structure responses

to the force impulse load and the visual differences between the force impulse load

between the three grids is small. This suggests that the coarse grid has enough

resolution to solve the global structure response.

5.2 Elastic Simulations

The coarse grid is chosen for the elastic simulations based on the studies from the

previous sections and due to the large computational cost savings when compared

to the medium and fine grids. Elastic simulations are conducted using a one-way

coupling between the rigid fluid grid and structural model and two-way tightly coupled

hydroelastic simulations with the structure response influencing the fluid solution.

The first 90 modes are used for the global simulations which include 24 modes from

Deck 1 and 6 modes from Deck 2. The same number of modes for Deck 1 and Deck 2

are used in the local only simulations. The FEA of the structure is modeled in Abaqus

and the modal decomposition information is provided to the FSI solver. Figures 5.13-

5.15 show the local and global FEM generated in Abaqus and the mapping to the

fluid grids of the first mode shapes.

To study local effects, the FEM models of Decks 1 and 2 are modeled separately

and attached to a rigid global structure. Wetdeck slamming only occurs for this case

on Decks 1 and 2, so the remaining decks are assumed rigid. A pinned connection to

the rigid global structure is used for connecting the wetdecks to the hulls. The rigid

body motions of the SES is transferred to the elastic wetdeck structures through the

pinned connections. Pressure loads from Decks 1 and 2 are applied to the one-way

coupled structures respectively.

Global loads are accounted for by modeling the entire SES structure. The global
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(a) Structure FEM grid (b) Fluid CFD grid

Figure 5.13: Deck 1 structure to fluid mapping of the first mode shape

(a) Structure FEM grid (b) Fluid CFD grid

Figure 5.14: Deck 2 structure to fluid mapping of the first mode shape
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(a) Structure FEM grid

(b) Fluid CFD grid

Figure 5.15: Global and local structure to fluid mapping of the two node bending
mode
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structure connects all six segments using beam elements. The wetdecks connect

to the segments through pinned connections. The entire fluid hull patch pressures

are provided to the one-way and two-way coupled global structure. For the two-

way simulations the entire fluid hull patch models the hydroelastic effects using the

approximate FSI boundary condition. The layout of the beam elements connecting

to the center-of-gravity of each segment is shown in Figure 5.16 where the bow is at

the top and the stern is at the bottom of the page.

Each beam element, displayed in green, has pinned boundary conditions at the

ends that connect to the red Cartesian coordinates that mark the center-of-gravity

location of a segment. The rigid connections between the pinned beam and the

center-of-gravity are the red line segments. The mass and inertia information for

each segment that is not included in the modeled structure, such as motors, measure-

ment equipment, etc., is included as a rigid body point mass at the center-of-gravity of

each segment. The elastic spring and transducer that connect the segments are mod-

eled as beam elements with an equivalent EIeq = 6, 541 Nm2 and equivalent length

of 0.21 m as provided by Ge (2002). The global FEM also models the four wetdecks

since they provide a significant contribution to the transverse bending stiffness. Rigid

connections are also used between the rigid body point masses and the pinned bound-

ary condition of each wetdeck. Decks 1 and 2 connect to the forward two segments

and Decks 3 and 4 connect to the middle and aft segments respectively, see Figure 5.2.

Rigid shell elements are used to model the hull geometry. The rigid shell elements for

each segment are connected to the rigid body point mass and transfer the pressure

forces and moments from the hull to the internal structure. The rigid shell elements

are known as transfer shell elements in the FSI solver. The transfer shell elements

map the fluid forcing to the structure for the one-way and two-way simulations. For

the two-way simulations, the transfer shell elements provide the structure response

to the fluid using the approximate FSI boundary condition. Table 5.3 shows the dry
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Figure 5.16: Global structure model using beam elements
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oscillation period for the two node and three node bending. The dry frequencies were

measured experimentally and reported by Økland (2002). The two mass distributions

are modeled numerically using the FEM with Ge (2002) 246 kg and Økland (2002)

302 kg mass distributions.

Mode Type Økland Exp. FEM 246kg Diff. FEM 302kg Diff.
[sec] [sec] [%] [sec] [%]

2 Node Bending 0.17 0.14 -20.1 0.15 -9.4
3 Node Bending 0.07 0.06 -17.9 0.06 -12.4

Table 5.3: Dry oscillation period comparisons with experiments for the SES model

The two node bending mode is the first mode shape, and is shown in the mapping

example in Figure 5.15 for Ge (2002) 246 kg mass distribution. The experimental

measurement data is reported for Økland (2002) 302 kg mass distribution. The

difference in oscillation period between the experiments and FEM for Økland (2002)

302 kg mass distribution can be due to the accuracy of the effect stiffness, effective

length, mass distribution, structural elements, and the precision of the measured

values. The oscillation periods of the FEM are modeled in a vacuum while the

experimental results were measured in air. Although added mass effects in air are

small, the oscillation periods would decrease if the experimental measurements were

conducted in a vacuum. The difference between the FEM oscillation periods of Økland

(2002) and Ge (2002) is from the differences in the mass of each model.

The complex fluid interactions with the catamaran geometry, rigid body motion

solver, and the elastic structure increase the number of iterations needed for conver-

gence. A convergences study on the number of iterations is conducted for the elastic

two-way coupling simulations. The convergence simulations start at rest with the

fluid grid at the starting draft and the structure at zero displacement. The structure

begins to oscillate from the sectional forces and moments acting on the catamaran.

The convergence of the heave and pitch motions are shown in Figures 5.17 and 5.18.

The rigid body motion solver uses a similar inertial under-relaxation technique

88



-0.0045

-0.004

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0  0.2  0.4  0.6  0.8  1

H
e
a
v
e
 [
m

]

Time [s]

3-iter
6-iter

10-iter
20-iter

Figure 5.17: Two-way coupling iteration convergence of heave
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Figure 5.18: Two-way coupling iteration convergence of pitch
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described in Section 2.4 to stabilize the motion solver due to added mass effects. The

rigid body simulations used 5 iterations to insure convergence of the motion solver.

The convergence study in Section 3.1.3 found that 6 iterations were necessary for

convergence of the two-dimensional FSI simulations. The elastic two-way coupling

simulations show that at least 10 iterations are needed to converge the heave and

pitch motions. Figure 5.19, shows the convergence of the vertical sectional force at

segment Cut 1.
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Figure 5.19: Two-way coupling iteration convergence of Cut 1 sectional forces

The simulations are only run for one second, but if the simulations were run for

longer the oscillations would damp out and the structure would have a static displace-

ment and vertical sectional force. At least 6 iterations are required for convergence of

the sectional forces acting on the structure for a fixed inertial under-relaxation factor

of one. After evaluating the convergence of the heave motions, pitch motions, and the

vertical section force at segment Cut 1, a minimum of 10 iterations are needed for the

elastic two-way coupling simulations. Using a fixed inertial under-relaxation factor of
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5.0, the simulation would become unstable during the wetdeck impact. The adaptive

inertial under-relaxation scheme was used with a minimum inertial under-relaxation

factor of 5.0 to stabilize the FSI solver. The adaptive inertial under-relaxation scheme

requires additional iterations for convergence and a total number of 15 iterations per

time step is selected for the two-way coupling simulations which model the wetdeck

slamming events.

5.2.1 Global Loads

Global structure shear force and bending moment is measured at the segment

connection points. The elastic sectional forces at each segment cut are compared in

Figure 5.20 using the one-way coupling technique and two-way coupling techniques.

The oscillation differences between the one-way simulation and experiment is from

the added mass effects which cause the wetted structure to oscillate at a lower fre-

quency. The one-way coupling technique oscillates at the dry frequency since only

the fluid pressures are given to the structure and the fluid does not receive the struc-

ture velocities or displacements. The two-way coupling technique captures the added

mass effects, but at a larger computational expense from the increase in iterations

for convergence. The frequency-of-oscillation of the two-way coupled simulation is

higher than the experiments. The higher frequency-of-oscillation may be due to the

difference between the simulation and experimental mass distributions. The two-way

simulations used the 246 kg mass distribution reported by Ge (2002). The 302 kg

Økland (2002) mass distribution, listed in Appendix A, oscillates at a lower frequency

due to the larger structure mass. If the 302 kg Økland (2002) mass distribution is

used, the two-way oscillation frequencies should more closely match the experimental

results.

The two-way coupled amplitudes are closer to the experiments than the one-way

coupled amplitudes. However, the one-way coupling amplitudes are on the same
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(c) Vertical shear force at Cut 2
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(d) Vertical bending moment at Cut 2

Figure 5.20: Elastic simulation of vertical shear force and bending moment at segment
cuts
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order of magnitude as the two-way and experiments with less computational expense.

Different amplitudes are noted between slamming periods that depend on speed and

the geometry of the wave at impact. The experimental measurements were taken for a

set of wave impacts that produced similar shear force and bending moment amplitudes

between slams. The stiffness of the global structure leads to decent results in sectional

force and bending moment amplitudes using the one-way coupling. When designing

a structure, maximum values are of interest for fracture and fatigue.

5.2.2 Local Loads

The experimental wetdeck structures incorporate transverse and longitudinal stiff-

eners. The stiffeners are oversized to create an extremely stiff wetdeck structure so

focus can be maintained on measuring global structure loads. The local wetdeck plate

structures are simulated with the one-way coupling technique for computational ef-

ficiency. Stiff structures are usually modeled in a fluid solution as a rigid body and

maximum amplitudes will be similar hydroelastic simulation. The plates will oscillate

at the dry frequency, but the wetdeck is only wetted during the impact stage for a

short duration. The deflections and strains for a chosen point on Decks 1 and 2 near

the maximum pressure value are shown in Figures 5.21 and 5.22.

The sampling point on Deck 1 is located 3.780 m forward of the aft perpendicular

and 0.101 m to starboard of the center line. The sampling point for Deck 2 is located

3.241 m forward of the aft perpendicular and 0.063 m to starboard of the center line.

These correspond to points in between two transverse stiffeners. These points will be

used for comparisons of maximum stress later in the chapter with the two-dimensional

flat plate simulations in Chapter III.
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Figure 5.21: Local deflection on Decks 1 and 2
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Figure 5.22: Local strain on Decks 1 and 2
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5.3 Slamming Analysis

This section presents differences when modeling only local loads and including the

global loads for a dynamic slamming simulation. Comparisons are also made with

two-dimensional flat plate drop results and recommendations for analytical slamming

models are provided. These recommendations and results are only valid for similar

flat wetdeck slamming problems.

5.3.1 Global and Local Loads

To understand the effects of the global loads on the local structure, the sample

points in the previous section on Decks 1 and 2 are compared with and without the

global structure modeled. Figures 5.23 and 5.24 show the deflections and strains at

the sample points.
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Figure 5.23: Global and local deflection on Decks 1 and 2

The global structure ringing oscillations are present in the deflections and strains

that include the global structure model. The global deflections are several orders of
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Figure 5.24: Global and local strain on Decks 1 and 2

magnitude larger than the local only deflections. This is largely due to the two node

longitudinal bending at the segment cuts that yield larger structure deflections farther

away from the segment cuts. The strains with the global structure also exhibit the

global ringing oscillations. The local only structure is only influenced by the slamming

event. The maximum strains from the global loads are an order of magnitude larger

than the local strains from slamming. Figure 5.25 maps the stress from the Deck 1

plate structure during the impact when the local and global loads have similar orders

of magnitude for maximum stress at the sample point at approximately 4.905 seconds.

The tertiary stresses on the wetdeck plate are influenced by the global structure

response. The local only model shows the excitation of one of the higher plate modes

during the impact. The wetdeck plate that includes the global loads exhibits some of

the higher mode characteristics of the local model, but there are significant influences

from the global loads that change the maximum stress locations. At the time in the

simulation the stresses in the global model are at a minimum while the local model
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Figure 5.25: Stress mapping of Deck 1 plate for global (left) and local only (right)
simulations at 4.905 seconds

is near a maximum. This analysis shows that modeling the global structure in this

dynamic slamming simulation is important for capturing the maximum tertiary loads

developed in the wetdeck plate.

5.3.2 Analytical Modeling

Comparisons are made between the three-dimensional wetdeck impact and the

two-dimensional flat plate impact. The two-dimensional flat plat impact allows for

analytical models to be used. Assumptions made by analytical models are addressed

and recommendations for reduced order models are provided. Analytical models have

the ability to integrate into the early stage design process and provide qualitative

guidance. Correct assumptions and solutions to different impact problems need to be

validated before analytical slamming models can become a reliable design tool. This

study furthers the initial steps for validating and improving analytical slam modeling.

97



The three-dimensional slamming simulation is broken down into a two-dimensional

slice to relate to the flat plate impact simulations and experiments. A slice of Deck 1

during impact is taken at the sample point 0.101 m to starboard of the center line,

Figure 5.26. The grid resolution on the hull is 0.01 m.

Figure 5.26: Longitudinal slice of Deck 1 at sample point during impact

The grid shows a captured air pocket with mixing similar to the two-dimensional

flat plate impact in Figure 3.19. Due to the pitching motion of the catamaran, Deck 1

is close to horizontal at impact. The transverse stiffeners break up Deck 1 into 10

sections of length 0.076 m. Equation 3.2 for the non-dimensional maximum stress

uses the length between transverse stiffeners to calculate the loads on the wetdeck

plate. When considering the plate impact between stiffeners, the wave radius of

curvature compared to the plate length is large and can be assumed to be practically

flat. These assumptions were made by the various analytical slamming models and

are good assumptions for this wetdeck geometry.

The non-dimensional maximum stress is calculated at the Deck 1 sample point
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for the simulations with the global structure and with the local structure only. The

non-dimensional maximum stress for the SES simulations are compared with two-

dimensional simulations in Figure 5.27.
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Figure 5.27: Non-dimensional stress located in the middle of two stiffeners

The constant velocity two-dimensional impact with the approximate FSI bound-

ary condition is run for several different impact speeds. The constant velocity impact

results agree with the trend from the limited experimental results. The impact ve-

locity of Deck 1 at the sample point is approximated at an average 0.05 m/s. The

non-dimensional maximum stress has good agreement with the two-dimensional drop

for the structure with the global loads. The model with only the local structure un-

derpredicts the the non-dimensional maximum stress by 50% of the global structure

non-dimensional maximum stress. Modeling the global structure response may have

significant impact on the local wetdeck structure loads. Influence from the global

structure should be explored in future work to determine how much the global struc-
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ture response can contribute to the local loads on the wetdeck structure.

Another noticeable trend that Faltinsen et al. (1997) first theorized, is the maxi-

mum stress is linearly proportional to the impact velocity in the range he examined.

In the two-dimensional flat plate experiments, the velocity that most closely modeled

the experimental impact and elastic structure deformation matched the experimental

value best. Simplified theories should focus on capturing the correct relative impact

velocity if the model intends to use the non-dimensional stress values k. The relative

impact velocity is the velocity normal to the wetdeck location of impact. The relative

impact velocity Ve is given by Faltinsen et al. (1997) as,

Ve = V + Uα + uz (5.4)

where V is the structure velocity normal to the wetdeck impact location, U is the

combined forward speed of the wave and wetdeck in head seas, α is the wetdeck

angle relative to the forward speed, and uz is velocity of the wave normal to the

wetdeck impact location. The impact velocity Ve can be determined using linear

motion functions and modeled for a long period to develop statistics for the relative

impact velocity and relative vertical motions. Using these statistics, Faltinsen et al.

(1997) presented a joint probability equation for bending stress that is larger than

σmax using the non-dimensional stress coefficient k,

P = exp

[
−
(

σ2
maxI

2k2Z2ρELWσ2
v

+
d2

2σ2
r

)]
(5.5)

where σ2
v is the variance of the relative vertical velocity Ve, d is the height of the

wetdeck above calm water, and σ2
r is the variance of the relative vertical motion

between the wetdeck impact location and the waves. The statistics for the long term

results do not model voluntary reductions in speed due to sea states and the full

profile of the non-dimensional stress values should be explored before a reduced order
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model can be developed and used.

The non-dimensional stress values are only analyzed in this study for the locations

in the middle of two transverse stiffeners. The values for the non-dimensional stress

vary along the distance between the stiffeners and were found by Faltinsen et al.

(1997) to be between 0.6 and 1.2 for the analytical method. Further analysis of

variation of non-dimensional stress at locations between transverse stiffeners should

also be explored before implementing a simplified theory. The non-dimensional stress

study has only focused on horizontal impact of flat plate geometries and does not

apply to more complex geometries, such as catamarans with wedge shaped wetdecks.

The FSI solver has proved to be a useful tool in modeling the complex hydroelastic

interactions during flat wetdeck slamming events. The solver can be used to further

explore the non-dimensional stress and even used as a late stage design tool to validate

extreme slam responses for vessels of concern.

101



CHAPTER VI

Conclusions

6.1 Summary

This study is motivated by recent issues in ship design where underpredicting

the dynamic loading and slamming loads have led to structural failure. Specifically,

catamarans with flat wetdecks are susceptible to extreme slam events and structural

failure from these events. Background information on the latest analytical, experi-

mental, and numerical modeling techniques for slamming is presented. A high-fidelity

FSI model is used to study a simple plate impact on a free-surface. Stability of the

FSI solver pertaining to the artificial added mass effects from the coupling of seg-

regated algorithms is analyzed. A new adaptive inertial under-relaxation scheme is

developed to solve the issue of knowing the maximum modal added mass value be-

fore simulation runtime. The FSI solver is then used to study a realistic catamaran

geometry with a flat wetdeck. The effects of modeling the global and local structure

separately are shown. The realistic wetdeck slam events are related to the simple

plate impact study and recommendations are provided for analytical modeling of the

process. Assumptions made in the two-dimensional slam models are also confirmed

with the FSI solver.
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6.2 Contributions

The following are contributions to the research community from this dissertation.

A new analysis of the FSI solver using a simple two-dimensional plate impact prob-

lem. The FSI solver analysis includes influences of the exact and approximate FSI

boundary conditions for small displacements, a first look at the dynamic non-linear

structure geometry and non-linear material plastic deformation influences, and the

first CFD analysis validating the relationship of non-dimensional plate stress to the

velocity of impact. A new adaptive inertial-under relaxation scheme is developed and

analyzed to stabilize the large artificial added mass effects in the FSI solver. The

first techniques for estimating the modal added mass during runtime and reduce over

estimates due to small accelerations is provided. New details of the artificial added

mass from the coupling of segregated fluid and structure solvers is presented. This

dissertation provides the first comparison of the MARINTEK SES experiments with

FSI results using CFD. The full field data is provided by the CFD and the FEA simu-

lations. The first analysis of local and global slamming loads for flat wetdecks, shows

that local tertiary loads can be significantly influenced by the global primary loads

of the ship structure. Visualization of the local tertiary loads on the wetdeck plate

using the full field data show the influence of the primary global structure. The first

CFD simulations used to compute the non-dimensional stress on the wetdeck, show

that the two-dimensional simple plate problem can relate to three-dimensional wet-

deck slamming events. The relationship of the non-dimensional stress to the impact

velocity is validated using three-dimensional slamming simulations.

6.3 Future Work

The FSI solver used in this study has proved the solvers potential for studying

complex interactions between the fluid and structure. The most promising areas of
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future research lie in the potential to provide appropriate recommendations to clas-

sification societies for dynamic loads on structures. Further suggestions for future

work include exploring the non-dimensional stress coefficient at different impact ve-

locities and developing mathematical relationships for the non-dimensional stress and

velocity of impact. The effects of turbulence, compressiblity, and cavitation on the

hydroelastic response during an impact can be investigated. Also the adaptive iner-

tial under-relaxation scheme can be improved by incorporating a convergence criteria

to study the stability and convergence of the adaptive scheme. Adding the full FEM

to the solver library to incorporate non-linear geometries and materials would in-

crease the usefulness of the solver and allow for non-linearities in the structure to be

modeled. These are some of the immediate areas of future work and improvements.
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APPENDIX A

Mass Distributions for the SES
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Component Mass LCG TCG VCG r11 r22 r33

kg m m m m m m
Hull SB fore 20 0.95 0.33 0.25 0.1 0.45 0.55
Hull SB mid 17 2.08 0.33 0.25 0.1 0.35 0.45
Hull SB aft 25 3.3 0.33 0.25 0.1 0.4 0.5
Hull PS fore 20 0.95 -0.33 0.25 0.1 0.45 0.55
Hull PS mid 17 2.08 -0.33 0.25 0.1 0.35 0.45
Hull PS aft 25 3.3 -0.33 0.25 0.1 0.4 0.5
TR+SPR, SB aft 3.2 2.68 0.335 0.31 0 0 0.1
TR+SPR, SB fore 3.2 1.48 0.335 0.31 0 0 0.1
TR+SPR, PS aft 3.2 2.68 -0.335 0.31 0 0 0.1
TR+SPR, PS fore 3.2 1.48 -0.335 0.31 0 0 0.1
TR+SPR, deck fore 2.3 0.77 0 0.44 0 0 0
TR+SPR, deck mid 2.3 2.08 0 0.44 0 0 0
TR+SPR, deck aft 2.3 3.39 0 0.44 0 0 0
Deck 1 9.1 0.34 0 0.35 0.1 0.23 0.2
Deck 2 3.2 1.12 0 0.35 0.1 0.27 0.2
Deck 3 4.8 2.08 0 0.35 0.1 0.3 0.3
Deck 4 5.4 3.39 0 0.35 0.1 0.4 0.4
Suspension mid 3 2.08 0 0.42 0.2 0.4 0.4
Suspension aft 3 3.39 0 0.42 0.2 0.4 0.4
Motor SB 18 3.03 0.45 0.65 0.1 0 0
Motor PS 18 3.03 -0.45 0.65 0.1 0 0
PR+shaft SB 2 3.9 0.35 0 0 0 0
PR+shaft PS 2 3.9 -0.35 0 0 0 0
RudderContr. SB 1.2 3.8 0.35 0.4 0 0 0
RudderContr. PS 1.2 3.8 -0.35 0.4 0 0 0
RudderMachine SB 2.2 4 0.35 0.4 0 0 0
RudderMachine PS 2.2 4 -0.35 0.4 0 0 0
MRU 3.8 2.02 -0.21 0.31 0 0 0
Rudder/plastic SB 0.1 2.1 0.35 0.4 0 1.2 1.2
Rudder/plastic PS 0.1 2.1 -0.35 0.4 0 1.2 1.2
Pulsetrigger 3 3.4 0.35 0.4 0 0 0
Cables etc. 2 2.1 -0.15 0.4 0.3 1 1
Ballast SB 9 3.98 0.37 0.25 0 0 0
Ballast PS 9 3.98 -0.37 0.25 0 0 0

246 2.468 0 0.335 0.372 1.128 1.179

Table A.1: Mass Distribution from Ge (2002)
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Component Mass LCG TCG VCG r11 r22 r33

kg m m m m m m
Hull SB fore 20 0.95 0.33 0.25 0.1 0.45 0.55
Hull SB mid 17 2.08 0.33 0.25 0.1 0.35 0.45
Hull SB aft 25 3.3 0.33 0.25 0.1 0.4 0.5
Hull PS fore 20 0.95 -0.33 0.25 0.1 0.45 0.55
Hull PS mid 17 2.08 -0.33 0.25 0.1 0.35 0.45
Hull PS aft 25 3.3 -0.33 0.25 0.1 0.4 0.5
TR+SPR, SB aft 3.2 2.68 0.335 0.31 0 0 0.1
TR+SPR, SB fore 3.2 1.48 0.335 0.31 0 0 0.1
TR+SPR, PS aft 3.2 2.68 -0.335 0.31 0 0 0.1
TR+SPR, PS fore 3.2 1.48 -0.335 0.31 0 0 0.1
TR+SPR, deck fore 2.3 0.77 0 0.44 0 0 0
TR+SPR, deck mid 2.3 2.08 0 0.44 0 0 0
TR+SPR, deck aft 2.3 3.39 0 0.44 0 0 0
Deck 1 9.1 0.34 0 0.35 0.1 0.23 0.2
Deck 2 3.2 1.12 0 0.35 0.1 0.27 0.2
Deck 3 4.8 2.08 0 0.35 0.1 0.3 0.3
Deck 4 5.4 3.39 0 0.35 0.1 0.4 0.4
Suspension mid 3 2.08 0 0.42 0.2 0.4 0.4
Suspension aft 3 3.39 0 0.42 0.2 0.4 0.4
Motor SB 18 3.03 0.45 0.65 0.1 0 0
Motor PS 18 3.03 -0.45 0.65 0.1 0 0
PR+shaft SB 2 3.9 0.35 0 0 0 0
PR+shaft PS 2 3.9 -0.35 0 0 0 0
RudderContr. SB 1.2 3.8 0.35 0.4 0 0 0
RudderContr. PS 1.2 3.8 -0.35 0.4 0 0 0
RudderMachine SB 2.2 4 0.35 0.4 0 0 0
RudderMachine PS 2.2 4 -0.35 0.4 0 0 0
MRU 3.8 2.02 -0.21 0.31 0 0 0
Rudder/plastic SB 0.1 2.1 0.35 0.4 0 1.2 1.2
Rudder/plastic PS 0.1 2.1 -0.35 0.4 0 1.2 1.2
Pulsetrigger 3 3.4 0.35 0.4 0 0 0
Cables etc. 2 2.1 -0.15 0.4 0.3 1 1
Ballast SB 9 3.98 0.37 0.25 0 0 0
Ballast PS 9 3.98 -0.37 0.25 0 0 0
Ballast SB 1 5 3 0.35 0.095 0 0 0
Ballast PS 1 5 3 -0.35 0.095 0 0 0
Ballast SB 2 10 1.34 0.42 -0.105 0 0 0
Ballast PS 2 10 1.34 -0.42 -0.105 0 0 0
Ballast SB 3 6 1.34 0.42 -0.155 0 0 0
Ballast PS 3 6 1.34 -0.42 -0.155 0 0 0
Ballast SB 4 7 0.18 0.35 0.135 0 0 0
Ballast PS 4 7 0.18 -0.35 0.135 0 0 0

302 1.55 0 0.316 0.3815 1.0721 1.13

Table A.2: Mass Distribution from Økland (2002)
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von Fl{ü}ssigkeiten. ZAMM-Journal of Applied Mathematics and Mechan-
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