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ABSTRACT

Acetylcholine (ACh) release is a prominent neurochemical marker of arousal state

within the brain. Changes in ACh are associated with changes in neural activity and

information processing, though its exact role and the mechanisms through which it

acts are unknown. Here I show that the dynamic changes in ACh levels that are

associated with arousal state control informational processing functions of networks

through its effects on the degree of Spike-Frequency Adaptation (SFA), an activity

dependent decrease in excitability, synchronizability, and neuronal resonance dis-

played by single cells. Using numerical modeling I develop mechanistic explanations

for how control of these properties shift network activity from a stable high frequency

spiking pattern to a traveling wave of activity. This transition mimics the change

in brain dynamics seen between high ACh states, such as waking and Rapid Eye

Movement (REM) sleep, and low ACh states such as Non-REM (NREM) sleep. A

corresponding, and related, transition in network level memory recall is also occurs

as ACh modulates neuronal SFA. When ACh is at its highest levels (waking) all

memories are stably recalled, as ACh is decreased (REM) in the model weakly en-

coded memories destabilize while strong memories remain stable. In levels of ACh

that match Slow Wave Sleep (SWS), no encoded memories are stably recalled. This

results from a competition between SFA and excitatory input strength and provides

a mechanism for neural networks to control the representation of underlying synaptic

information. Finally I show that during the low ACh conditions, oscillatory condi-

tions allow for external inputs to be properly stored in and recalled from synaptic

xiii



weights. Taken together this work demonstrates that dynamic neuromodulation is

critical for the regulation of information processing tasks in neural networks. These

results suggest that ACh is capable of switching networks between two distinct in-

formation processing modes. Rate coding of information is facilitated during high

ACh conditions and phase coding of information is facilitated during low ACh con-

ditions. Finally I propose that ACh levels control whether a network is in one of

three functional states: (High ACh; Active waking) optimized for encoding of new

information or the stable representation of relevant memories, (Mid ACh; resting

state or REM) optimized for encoding connections between currently stored memo-

ries or searching the catalog of stored memories, and (Low ACh; NREM) optimized

for renormalization of synaptic strength and memory consolidation. This work pro-

vides a mechanistic insight into the role of dynamic changes in ACh levels for the

encoding, consolidation, and maintenance of memories within the brain.

xiv



CHAPTER I

Introduction

Nervous systems are adapted to integrate sensory information in order to gener-

ate meaningful behavior which enhances the fitness of organisms. By far the most

common basis for neural information processing is the action potential (or spike). In

the large networks which comprise the brains of vertebrates, input patterns from ex-

ternal sources generate spatiotemporal patterns of spiking activity through complex

interactions between the biophysical properties of neurons and the connections be-

tween them. Over the course of time brain networks need to accurately represent the

external world, store representations within synaptic connections, and recall stored

representations as memories. Switching between these information processing modes

require that networks be dynamically plastic on relatively stable network structures.

The purpose of this work is to highlight the role of neuromodulatory neurotrans-

mitters in regulating and switching between information processing modes at the

network level.

1.1 The action potential and information representation between neu-
rons

Neurons operate as dynamic units through the interaction of ionic currents cross-

ing the neural membrane. Absent any external input neurons rest at a steady state

1
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membrane potential, Vrest, which results from the balance of intrinsic currents en-

tering and leaving the neuron. When a neuron receives depolarizing, or excitatory,

input its membrane potential rises above Vrest opening voltage-gated sodium channels

further depolarizing the neuron. If a neuron becomes sufficiently depolarized enough

sodium channels will open to initiate a spike [1]. During a spike the inflow of sodium

ions is followed by a delayed outflow of potassium ions which repolarizes the neuron.

Generally, currents of positive charge into a neuron are referred to as depolarizing

(increasing membrane potential, Vm) and while currents of positive charge out of a

neuron are referred to as hyperpolarizing (decreasing Vm).

The predominant form of information transfer between neurons is through chem-

ical synapses which translate an action potential in a presynaptic neuron to either

depolarizing (excitatory) or hyperpolarizing (inhibitory) currents in the postsynaptic

cell. On the presynaptic side, an action potential initiates the release of neurotrans-

mitter (glutamate in the case of excitatory neurons or GABA in the case of inhibitory

neurons) into the space between the neurons, the synaptic cleft. The neurotransmit-

ter then binds to receptors which are selective to the neurotransmitter. In most

cases these receptors are ligand-gated ion channels which allow cations (excitatory)

or anions (inhibitory) to flow with the concentration and potential gradients across

the cell membrane into the cell.

The more depolarizing input a neuron receives in a given time bin the more spikes

it will fire in that time. This provides for representation of information by the rates

neurons fire [2]. In this coding modality patterns of input intensity across a network

of neurons is reflected in neural firing rates. Rate coding is widely represented in the

brain and is commonly associated with sensory circuits like the visual system [3, 4].

There are limitations to the efficacy of rate coding, such as its limited capacity of
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pattern separation [5] and that it fails to fully explain the activity in sensory areas

of the cerebral cortex [6].

Aside from simply comparing the firing rates of neurons, information can be rep-

resented by the relative timing between neurons, or phase coding [7, 8, 9, 10]. Phase

coding is often defined in the context oscillatory network activity. Oscillatory ac-

tivity in neural circuits is frequently measured through the frequency content of the

Local Field Potential (LFP) which is generated by coherent postsynaptic currents

aligned in space. An example of phase coding is the theta-phase precession observed

in the hippocampus [11]. In this system, information about an animal’s location

in space is represented in the time of firing with respect to a 4-8 Hz (theta band)

oscillation.

1.2 Acetylcholine neuromodulation and how to model it

Rather than directly depolarizing or hyperpolarizing neurons to evoke or suppress

spiking like glutamate or GABA, neuromodulators are neurotransmitters that alter

neuronal firing by altering the biophysical properties of target neurons. Neuromodu-

lators act through second messenger systems to turn off, turn on, or modify voltage

gated ion channels in postsynaptic neurons. This mechanism of action occurs on a

longer time scale than the fast neurotransmission mediated through glutamate and

GABA, but can have profound effects of the firing rate and quality of firing in the

target neurons.

1.2.1 Cholinergic modulation

Acetylcholine (ACh) is an important regulator of neural excitability that is es-

sential for brain processes ranging from sleep to cue detection [12, 13]. Of its var-

ious effects, ACh modulates the excitability of neurons by its interaction with the
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muscarinic receptor system, which activates a G-protein signaling cascade [14]. Im-

portant downstream targets of these signals are slow non-inactivating potassium

channels. These channels, and their corresponding ionic current, the Muscarinic

Current (IM), are blocked when ACh is high and and this blockade is responsible for

a switch between integrator and resonator excitability types [15].

ACh modulation of IM exerts continuous control of neuronal excitability prop-

erties. On the poles of this range are two predominant excitability types: Type

1 (integrators) or Type 2 (resonators). These two excitability types differ in the

dynamical mechanism of spike generation. A detailed mathematical analysis can be

found [16], but in short Type 2 neurons have increased competition between depolar-

izing and hyperpolarizing currents which must be overcome to initiate a spike, while

Type 1 neurons do not. This leads to several differences in characteristics between

the two types, most notably Type 1 neurons initiate firing through a saddle-node

on the limit cycle bifurcation while Type 2 neurons initiate firing through a Hopf

bifurcation [17, 18].

The two characteristics that undergo the most dramatic change with the excitabil-

ity type are the frequency response to an injected constant current and the Phase

Response Curve (PRC) [19]. In terms of spike frequency response to an injected cur-

rent curve (or a gain function) [20], both types have a Critical Current (IC) below

which no spiking occurs, but are quite different in terms of spiking response around

this point. Type 1 neurons will fire at arbitrarily small frequencies as the critical

value of IC is reached leading to a continuous curve, whereas Type 2 neurons have

a discontinuous frequency increase from quiescence and initiate firing at a higher

frequency (Fig 1A). Another critical feature difference between Type 1 and Type 2

neurons is that Type 2 neurons vary their firing rate much less in response to changes
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in injected current, or have reduced gain [20]. The difference in gain between these

neuron types leads to larger differences in firing rates between cells receiving different

inputs in Type 1 networks compared to Type 2 networks.

A concurrent change in excitability that occurs with activating the ion channels

associated with IM is differential response to brief and weak stimuli in terms of spike

timing perturbation (i.e. advance or delay). This cellular property is quantified

by the PRC [19]. The PRC is measured, both experimentally and numerically, by

driving a neuron to fire at a stable periodic frequency and delivering small, brief, and

depolarizing perturbations between its spikes, at different timings (phases) within the

spiking cycle. In response to these perturbations the timing of the following spike

will be earlier, later, or the same as an unperturbed period (Fig 1.1D&E). Type 1

and Type 2 neurons display significant differences in PRC shape. A Type 1 PRC is

uniformly positive, meaning that perturbations will always advance the timing of the

next spike. Type 2 neurons have a biphasic PRC, meaning that when a perturbation

arrives determines if it will either advance or delay the next spike. The biphasic

character of the Type 2 PRC allows these neurons to synchronize spike firing due

to the ability to either shorten or elongate the period, with synchrony becoming a

stable fixed point of the dynamics.

In addition to controlling membrane excitability type of a neuron, the changes in

IM also regulate SFA [21]. SFA effectively represents a negative feedback on neuronal

firing and is frequently due to a hyperpolarizing current that builds up as a neuron

fires action potentials. Here, IM acts as an adaptation current and its blockade causes

a significant reduction in SFA (Fig 1.1B&C). The effects of SFA and gain modulation

are related by the fact the neuronal gain shows the firing rate of a neuron when IM

has saturated. Here we refer to SFA as the short-time scale effect of reducing the
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Figure 1.1: Modulation of neuronal properties in a model of cholinergic modulation. (A)
The f/I curve increases its slope as ACh increases (ḡKs decreases). Blue colors represent
the high ACh case. The onset of spike frequency adaptation in the Ks model occurs at
a high ḡKs. SFA is quantified here by the SFA index, which compares the inter-spike
interval between the first two and the last two spikes in an induced burst. (B top) When
gKs is low SFA is minimal and ISIs are equivalent throughout the burst. (B bottom)
When ḡKs is high ISIs gradually increase though out the burst. (C) Measured SFA
indices for various ḡKs and injected current values show that SFA is only significantly
reducing frequency during the burst above ḡKs = 0.25 mS/cm2, below this the effects
are negligible. Stars indicate the parameters of the voltage traces shown in B. Dark
blue squares indicate parameters that do not elicit spikes and bright yellow squares
parameters that yield less than 3 spikes. (D) The PRC is measured by comparing
perturbed versus unperturbed periods when neurons fire at a fixed frequency. When
the next spike is earlier the phase response is positive (blue), when it is delayed it is
negative (red). (E) Type 1 neurons have a strictly positive PRC (gray) while Type 2
neurons have a biphasic PRC. (F) Transitions in biophysical properties in the Ks model
occur over different ranges of ḡKs. Modulation of the f/I slope occurs continuously over
the range of ḡKs. The slope is steep for low ḡKs and gradual for high ḡKs. The transition
between a Type 1 and a Type 2 PRC occurs for high ḡKs, though the PRC shape does
change in a continuous manner as ḡKs changes. SFA has little effect for low ḡKs and
only significantly effects the frequency of neurons for high ḡKs.

frequency of a neuron as it fires, possibly terminating a burst of firing.
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1.2.2 Conductance based neuron models and the slow potassium current

To investigate the effect of cholinergic modulation on the patterning of neural

spiking across space and time it is useful to employ numerical modeling of networks

of neurons. This method allows for tracking of every neuron in a network and fully

recording the internal variables of neurons and interactions between them. Since

much of how neurons act as dynamic unit is through the effects of voltage-gated

conductances biophysical models seek to recreate these explictitly. This was pio-

neered using the Hodgkin-Huxley (HH) model [1], which has the following equation

for currents passing through the membrane:

cm
dVi
dt

= −ḡNam3(V )h(V )(V − ENa)− ḡKn4(V )(V − EK)(1.1)

− ḡL(V − EL) + Isyni + Iexti ,

where m(V ) and n(V ) reflect the fraction of sodium and potassium channels open,

while ḡNa and ḡK are the conductances for these ions when all channels are open

respectively. h(V ) reflects the fraction of sodium channels that are inactivated,

which occurs near the peak voltage of the spike. ENa and EK are reversal potentials

for the respective ions and determine whether current flow into or out of the neuron.

Along with voltage dependent currents, ḡL and EL is a catchall for any currents that

do not change conductance based on the membrane potential. Isyn is the summed

effect of postsynaptic currents from all inputs the neuron receives and Iext is any

other currents injected to the neuron during the simulation. Numerically solving the

current balance equation, as well as the equations for m(V ), h(V ), and n(V ), allows

the for recreation of the voltage dynamics of a neuron for various input conditions,

including fully reproducing the shape of a spike.

One useful feature of the conductance based neuron model is that ionic currents
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and conductances can be directly measured in neurons and used to adapt the equa-

tions and parameters of the model to recreate various neuronal types and conditions.

For the case of ACh this was done by adding a slow potassium conductance modeled

after Im as well as fitting the sodium and potassium voltage gated conductances to

recreate the spiking properties of a cortical pyramidal neuron [22]. The resulting

current balance equation is :

cm
dVi
dt

= −ḡNam3
∞(V )h(V )(V − ENa)− ḡKdirn4(V )(V − EK)(1.2)

−ḡKss(V )(V − EK)− ḡL(V − EL)− Isyni − Iexti .

The most important difference between this model and the HH model is the addition

of s(V ) and its associated maximal conductance ḡKs, hence this model will be referred

to as the Ks model. Since the main neuromodulatory effect of ACh, when acting

on the muscarinic receptor, is a reduction of IM the level of ACh release in a neural

network is controlled as a model parameter by changing ḡKs. When ACh is high,

ḡKs is low and rises as ACh is decreased. For the data presented here ḡKs ranges

between 0 and 1.5 mS/cm2. Within this range the range of excitability properties

targeted by ACh can be fully recreated as shown in Figure 1.1.

1.3 ACh shapes network activity: Type 1 versus Type 2 dynamics

In a network, the IM mediated switch between Type 1 to Type 2 excitability

together with effects of SFA have a profound influence on resulting network dynam-

ics. Numerical investigations have shown how transitioning neurons from Type 1 to

Type 2 excitability impact the patterns of neural activity in networks with different

connection topologies. Much of this modeling work has used the Ks neuron model

of cholinergic modulation [22].

As opposed to detailed recreation of specific biological neural circuits, this previous
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work instead turned to the tools of network theory to allow us to create a range of

networks that have the same quantifiable features of neural circuits by varying a

small set of parameters by using the Watts-Strogatz small world network model [23].

Small world networks are defined as networks that maximize physical clustering (the

probability that cells connected to a common neuron are also connected to each

other) while minimizing the mean path length (the average number of connections

between each pair of neurons in the network). Many studies of neural functional and

structural connectivity have shown experimental similarity to the features of small

world networks [24]. In these network models, neurons are arrayed on a ring lattice

and the varied network parameters are the radius of connectivity (r; the distance

across the lattice each neuron sends local outputs to) and the rewiring probability

(P; the probability that a local output is exchanged for an output to a random

target). The resulting networks have: 1) all local connections, 2) mostly local with a

few random, long range connections, or 3) completely random connectivity depending

on the value of P.

When ACh is high, neurons in the network are Type 1, and the f/I curve is con-

tinuous with a steep slope variance in the effects of synaptic input currents between

neurons. This will result in a wider distribution of firing rates across the network.

The features of this firing rate distribution are reflective of how the circuit connectiv-

ity structure interacts with a specific pattern of inputs from outside the network and

is stable through time, due to the decreased SFA in high ACh conditions. During low

ACh conditions, when Type 2 excitability dominates, variations in input across the

network create less variance in firing rate in neurons. As the firing rate is more uni-

form, oscillatory firing paired with the increased synchronizability demonstrated by

the shape of the PRC leads to synchronized bursting, with variations in input being
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now reflected by relative phases of interacting neurons, rather than their frequency

variations. Through the changes in neural excitability controlled by IM , circuits can

be shifted between these two, distinct functional regimes.

When networks of Type 1 excitatory neurons (without any inhibitory neurons) are

coupled, the circuit structure, as defined by r and P, create a diversity of spike firing

patterns [25]. In Type 1 excitatory networks, only networks with high connectivity

radii and random structure support synchronous bursting. Networks composed of

Type 2 neurons, on the other hand, are much less dependent on the interaction be-

tween r and P in the formation of bursting dynamics. As long as r is greater than 2%,

networks generate highly synchronized bursting dynamics. Varying synaptic weights

and neuron depolarization has a similar effect, Type 1 networks are more variable

while Type 2 networks are generally synchronous [26]. Hence, modulation of the f/I

curve plays an important role in shifting between network and cellular mechanisms of

pattern formation. When gain is high (the f/I curve is steep) variations in synaptic

input will drastically modify the firing rate of a neuron and interrupt internal mech-

anisms for synchronous firing among cells, while a shallow f/I merely causes slight

shifts in an internal driven period. Also an important distinction between Type 1

and Type 2 neurons that applies to these results, is the integrator versus resonator

mode of activity [15, 19].

The distribution of mAChRs has been shown to vary across cortical layers, cell

types, and brain regions [27]. In addition to variations in ACh sensitivity, hetero-

geneities in neuronal morphology and ion channel expression can lead to networks

of mixed populations of Type 1 and Type 2 neurons. Early on we have shown that

injection of few Type 2 neurons into a Type 1 network can lead to synchrony [25].

In excitatory networks containing a 50/50 mix of Type 1 and Type 2 cells, removal
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of synapses connecting the populations drastically affects the nature of bursting dy-

namics [28]. The ability of Type 2 neurons to synchronize a mixed population is

also seen when these cells are network hubs (i.e. cells that have a high number of

random, not local outputs). In such networks, synchrony during bursting is greatly

increased and more robust to changes in the distributions of P used to generate a

network structure than in Type 1 networks [29].

ACh release plays a central role in learning and memory [30]. Most of the work

to date has focused on how ACh shapes circuit oscillations and in gating synaptic

plasticity. To understand how the spiking dynamics that are associated with Type

1 and Type 2 excitability interact with fixed synaptic plasticity rules to modulate

synaptic strengths within networks, we added spike timing-dependent plasticity to

the Ks network model [31]. The general result of this work is that Type 1 network

dynamics will potentiate synapses leading to a unimodal distribution of synaptic

weights skewed toward saturation. Type 2 networks, due to the synchronized burst-

ing dynamics that are characteristic of these networks, generate bimodal synaptic

weight distributions where synapses are either silenced or saturated.

Both the PRC and frequency gain as a function of the input current describe

how neurons change their dynamics of spiking in response to synaptic input. Our

previous work extensively studied how these cellular changes affected network wide

spatio-temporal pattern formation. Now, we are further proposing that these changes

in spiking patterns may underlie even more profound changes in the network. We

argue that biophysical features controlled by IM activation are responsible for how

network firing patterns interact with external input and characteristics of the physical

structure of the network. This, in turn, leads to a dramatic switch in the coding

strategy within the same network.
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1.4 Network models

Much of the data presented here (Chapters II & III) employs another network con-

nectivity scheme often encountered in the brain [32] and having strong dependence

on Type 1 and Type 2 cellular dynamics, the lateral inhibition network. This net-

work employs two lattices, one for excitatory neurons and one for inhibitory neurons.

Lateral inhibition requires that inhibitory neurons send their outputs farther than

excitatory neurons do. Here, I take the extreme of this condition and have globally

connected inhibitory neurons and locally connected excitatory neurons. This connec-

tivity scheme yields a spatially localized bump of firing that sustains itself through

recurrent excitation between active excitatory cells, while the inhibitory cells in the

bump are inhibiting the network equally. The competition between local excitation

and global inhibition is at the center of how firing patterns in this network emerge.

This network model is based on connectivity features in many cortical areas and is

commonly used to model working memory [32, 33].

The lateral inhibition (or mexican hat) model diverges from the Watts-Strogatz in

two primary ways: 1) the spatial extent of excitation and inhibition are different and

2) the connectivity is regular without any variation between neurons. This model

was chosen because it provides a clear advantage when considering information rep-

resentation, the center of the bump can be a read out of information. Stimulating an

arbitrary location on the lattice will pin the bump to that location providing a clear

indication of external input to the network. However, the results from this model

are quite robust to varying network structure and will be shown in the following

chapters.
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1.5 Outline

In this dissertation, the aim is to provide a mechanistic understanding for how

ACh controls spatiotemporal spike pattern formation and information processing in

cortical networks. Much of this work builds upon previous modeling work using the

Ks model [26, 31, 28, 29]. The first two chapters focus on how changes in the level

of ACh expressed in a network control transitions in firing dynamics and memory

recall. The last chapter will focus on the low ACh state and how neuronal properties

in this state facilitate information storage and provide for the transduction between

rate coded information and phase coded information.

In Chapter II the Ks model is used to detail how the balance between excitatory

and inhibitory input, combined with cholinergic control of SFA shape spatiotemporal

dynamics in the lateral inhibition network structure. I show that during high ACh

conditions low SFA leads to a stationary bump of activity that drifts slowly across

the network space. The size of this bump (i.e. the number of neurons that are active

in the pattern) is governed by the strength of inhibition. Reducing the modeled

level of ACh leads to the bump traveling across the lattice in a periodic manner

by controlling how long a neuron can spike before adaptation silences it. Finally,

because the length of a firing burst is the result of competition between excitatory

(depolarizing) input and the hyperpolarizing Im, enhancing recurrent excitation is

a subregion of the network will act as a spatial attractor for the bump of activity.

This work was published in PLoS Computational Biology [34].

The role of attractors formed by regions of recurrent excitation is expanded upon

in Chapter III. Here I show that SFA, through its competition with excitatory

input, allows for selective control of memory recall in neural networks. Using the
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Ks model and a simpler Hopfield network I demonstrate that when a memory (a

prefered bump location or pattern of firing across the network) is stored with stronger

synaptic weights a stronger adaptation current is needed to move the network out

of that memory. This work shows that the high ACh state is suited for the recall

of memories that most closely match the input to a network, even if they are stored

very weakly. Moderate reductions in ACh will destabilize weak memories and lead

to the expression of stronger ones. Finally minimal levels of ACh, like during Non-

REM (NREM), lead to SFA so strong that stable recall of any memory is impossible.

This work was published in Physical Review E [35].

Lastly, in Chapter IV the role of neuronal resonance, which is characteristic of

cortical neurons in low ACh conditions, provides for an input dependent organization

of network spiking around a common oscillatory input. I show that when networks

are presented a pattern of external current inputs and brought in resonance with

an oscillation neurons with higher inputs will fire spikes at earlier phases of the

oscillation. This input dependent patterning paired with learning through synaptic

plasticity allows for the faithful storage of inputs into the synaptic weights of the

network. Additionally, this model reproduces many features of theta phase precession

and replay in the hippocampal place cell system. This work was published in the

Proceeding of the National Academy of Science [36].



CHAPTER II

Formation and dynamics of waves in a cortical model of
cholinergic modulation

Here I introduce a model of cholinergic modulation in cortical networks and de-

scribe the role of acetylcholine in the spatiotemporal patterning of spiking activity in

these networks. This chapter was published in PLoS Computational Biology in 2015

(Vol. 11, Pg. e1004449).

2.1 Abstract

Acetylcholine (ACh) is a regulator of neural excitability and one of the neuro-

chemical substrates of sleep. Amongst the cellular effects induced by cholinergic

modulation are a reduction in Spike-Frequency Adaptation (SFA) and a shift in the

Phase Response Curve (PRC). I demonstrate in a biophysical model how changes in

neural excitability and network structure interact to create three distinct functional

regimes: localized asynchronous, traveling asynchronous, and traveling synchronous.

These results qualitatively match those observed experimentally. Cortical activity

during Slow Wave Sleep (SWS) differs from that during Rapid Eye Movement (REM)

sleep or waking states. During SWS there are traveling patterns of activity in the

cortex; in other states stationary patterns occur. The model is a network composed

of Hodgkin-Huxley type neurons with the Muscarinic Current (IM) regulated by

15



16

ACh. Regulation of ACh level can account for dynamical changes between func-

tional regimes. Reduction of the magnitude of this current recreates the reduction in

SFA the shift from a Type 2 to a Type 1 PRC observed in the presence of ACh. When

SFA is minimal (in waking or REM sleep state, high ACh) patterns of activity are

localized and easily pinned by network inhomogeneities. When SFA is present (de-

creasing ACh), traveling waves of activity naturally arise. A further decrease in ACh

leads to a high degree of synchrony within traveling waves. We also show that the

level of ACh determines how sensitive network activity is to synaptic heterogeneity.

These regimes may have a profound functional significance as stationary patterns

may play a role in the proper encoding of external input as memory and travel-

ing waves could lead to synaptic regularization, giving unique insights into the role

and significance of ACh in determining patterns of cortical activity and functional

differences arising from the patterns.

2.2 Introduction

The difference between cortical activity patterns during waking, REM, and SWS

is striking. During waking and REM sleep low amplitude, high frequency Elec-

troencephologram (EEG) and Local Field Potential (LFP) recordings suggest that

cortical population dynamics are localized. Conversely, in SWS, the dynamics enter

a slow (∼ 1 Hz) oscillation state where individual neurons oscillate between a high

frequency (up) state and periods of quiescence (down state) [37, 38]. The functional

role of high frequency local activation (i.e. waking or REM state) has been linked

to attention and working memory [39, 40, 41], while traits of SWS have been related

to synaptic homeostasis and sleep pressure [42, 43, 44, 38]. Both of these dynamic

patterns can be thought of as upstates, but with differing lengths.
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ACh is a neurotransmitter that governs the cortical dynamics associated with

arousal and sleep state. Levels of ACh rise during the transition from Non-REM

(NREM) sleep to waking or REM sleep. ACh acts through two pathways, the nico-

tinic receptor and the muscarinic receptor. The nicotinic receptor directly depolarizes

cells while the muscarinic suppresses voltage-gated potassium channels. Inactivation

of these channels, and the current associated with them (the IM), changes the in-

trinsic excitability of neurons. Experiments have shown that ACh modulates neural

excitability in two ways: (1) ACh reduces SFA mediated by the IM and increases

the slope of the neural spike frequency-current (f-I) curve [45, 20], and (2) it induces

changes in the synchronization properties of neurons via the PRC [19, 26]. ACh

induces a shift from a biphasic type 2 PRC to monophasic type 1 PRC (Fig 2.1C). It

has been previously shown that networks of type 1 neurons are asynchronous while

those of type 2 neurons are highly synchronous [26].

The aim of this paper is to elucidate how cholinergic modulation interacts with

network connectivity structure to form various patterns of network activation ob-

tained experimentally. To do so I use simulations of a conductance-based (Hodgkin-

Huxley) cortical network model including cholinergic modulation [22] and a mexican

hat type of connectivity scheme that was experimentally observed in various cortical

areas [46, 47] .

We demonstrate how regulation of SFA in conjunction with the balance between

excitation and inhibition leads to various network dynamics. We show that ACh

driven reduction of SFA in model networks with lateral inhibition is responsible for

the transition from moving to stationary dynamics and E/I balance is responsible for

switching between highly local and global dynamics. We then study the properties

of the two states and their transition. Functionally, the high ACh state is far more
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Figure 2.1: Cortical network model of cholinergic modulation. (A.) The network model con-
sists of a square lattice split into an excitatory and an inhibitory layer. A connectivity
scheme balancing short-range excitation and global inhibition was used to mimic the
lateral inhibition motif seen in many areas of the cerebral cortex. (B.) Examples of SFA
induced by the slow potassium conductance are shown for ¯gKs = 0.75 mS/cm2 (top)
and ¯gKs = 1.5 mS/cm2 (bottom). The red dots indicate the spike times of the neuron
in question and illustrate the the offset of an upstate corresponds to the maximal level
of ¯gKs. (C.) The phase response curve of individual neurons shifts from type 1 to type
2 as ¯gKs increases. (D.) An illustration of the dynamics sampled by scanning inhibitory
strength,(wi→e), and ¯gKs. In a general sense, the spatial scope of activity is determined
by the excitatory/ inhibitory balance and the temporal scope of activity is determined
by the strength of SFA. Key: (1) quiescent (2) mixed dynamics, (3) stationary bump
(4) traveling bump (5) global high frequency activity (6) multiple interacting bumps
(7) planar wave (8) global burst.

sensitive to heterogeneities in network structure than the traveling wave state. In

this neuron model, SFA and PRC effects occur over different ranges of ACh, which

leads to three distinct functional regimes. Further, I show that both SFA and E/I

balance shape network activity by setting the spatial (E/I balance) and temporal

(SFA) extent of network upstates.
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2.3 Models

2.3.1 Neuron model

I use a conductance-based model of cholinergic modulation in pyramidal cells using

Hodgkin-Huxley type gating dynamics for active conductances [22]. The membrane

voltage dynamics are described by:

cm
dV

dt
= −m∞3h ¯gNa(V − ENa)− n4(V ) ¯gKdir(V − EK)

−s ¯gKs(V − EK)− ḡl(V − El) + I tune − Isyn
(2.1)

The gating variables m, h, n, and s represent the sodium conductance, the effective

blockage of sodium current and potassium conductances respectively. In the case of

h, n, and s dynamics of the form:

dx/dt =
(x∞(V ))− x

τx(V )
.

The function x∞(V ) = 1/(1+exp((αx−V )/βx) represents the steady state gating for

each conductance and gating time constant, τx, is constant for s, τs = 75, is governed

by τx = 0.37 + Dx/(1 + exp((γx + V )/εx)) for h and n. The s variable corresponds

to the slow potassium current which is ultimately responsible for the shift in neural

excitability mediated by ACh. Adjusting the magnitude of this current (i.e. varying

the parameter ¯gKs) changes neuronal excitability characterized by the level of SFA.

For low ¯gKs values neurons have a minimal level of SFA. As ¯gKs increases the neurons

display high levels of SFA.

The direct input current, I tune, was adjusted so that all cells fired at 10 Hz in the

absence of any synaptic input, independent of ¯gKs. The synaptic input to ith neuron

is given by:
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Isyni =
n∑
j=1

Ai,jwj→iK(e
−(t̃−τD)

τS − e
−(t̃−τD)

τF )(Vi − Esyn),(2.2)

where Ai,j is the network adjacency matrix, t̃j is the time of the last spike of neuron

j, τF and τS are synaptic time costants and τD is the synaptic delay. The parameter

wj→i is the synaptic coupling between neurons i and j based on the respective species

of each. K is a normalization constant such that the range of each synaptic pulse is

∈ [0, wj→i]. Values of the neural parameters were adopted from [26] and are listed

in 2.1. The equations were solved for 5 seconds at 0.05 ms time steps using the 4th

order Runge-Kutta algorithm.

2.3.2 Network model and measurements of dynamics

I considered networks composed of 625 excitatory and 121 inhibitory neurons

evenly distributed over a two-layer lattice of sides L = 25 (Fig 2.1A) with periodic

boundaries. The fraction of inhibitory cells, 16%, was close to the 20% seen in the

cortex [48] and the dynamics were robust to shifts in inhibitory fraction between

13% to 22% (Supplemental 2.6.4 to 2.6.4). To evenly distribute the inhibitory cells

with respect to the excitatory layer the spacing of inhibitory cells , Graini, was

2.87 lattice units while excitatory cells were spaced Graine, at 1 unit. We used a

center-surround (or lateral inhibition) type network scheme which balances short-

range excitation and global inhibition. This is an established model for cortical

connectivity [49]. All excitatory neurons were connected to all cells within a radius

defined by:

(2.3) Rxx =

√
L2kxx
πN

where kee = 16 and kei = 4. This leads to 20 connections to excitatory and 4 to

inhibitory nearest neighbors. Inhibitory neurons were globally connected. Unless
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otherwise stated the maximum synaptic strengths were 20 µS/cm2 for all synapses.

As seen (Fig 2.1D) the dynamics which result vary qualitatively depending on the

values of the parameters introduced above. It includes cases where spiking is spatially

confined (’stationary bump’), where the activity moves (’moving bump’), plane waves

of activity, global bursting, etc. To illustrate the character of the dynamics on raster

plots cells were sorted by a spatial coordinate given by Si = yi + xi/L where xi and

yi are the coordinates of the cell in the lattice.

The speed of moving bumps of activity was calculated by dividing the simulation

time into 10 ms bins in which the frequency of all excitatory cells were calculated. For

each time bin the center of activity was calculated in a manner similar to a center-

of-mass calculation using an algorithm previously described in [50], which accounts

for the periodic boundaries of the network. The wave speed was averaged over the

final 2.5 s of the simulation run. When averaging wave speed the following cases

were excluded because they were not appropriate for the speed measure: where no

excitatory cells were active, where more than 300 cells were active within any 10 ms

time bin, where the standard deviation of active cells was greater than the mean

number of active cells within 10 ms time bins, when more than one bump of activity

was stable, or when the network was highly synchronized.

To measure synchronization we used the bursting measure:

(2.4) B =
1√
N

(

√
〈τ 2〉 − 〈τ〉2

〈τ〉
− 1)

where τ is the series of inter-spike intervals of all spikes regardless of cell identity

and N is the total number of spikes [26]. This measure approaches 1 as network

activity approaches perfect synchrony. We consider a network to be synchronized

when B > 0.7 as this value bisects the bimodal distribution of B (Fig 2.7).
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Heterogeneities were added to the network by multiplying the strength of excita-

tory to excitatory connections beginning and terminating within a 8 x 8 region of

the network by a constant value ranging from 1.005 to 2.5 (i.e., increasing recurrent

excitation between 0.5% to 150%). Neurons within the heterogeneity also received

an additional 0.5 µA/cm2 of direct current during the first 0.5 s of the simulation.

Preference for the heterogeneous region is described by the normalized measure

φ = (fin−fout)/(fin+fout) where fin and fout are the average frequency of excitatory

neurons inside and outside the heterogeneity respectively. φ ranges between 1, when

the only activity is within the heterogeneity, and -1, when all network activity is

outside. When measuring network preference for the synaptic heterogeneity φ was

calculated for the last half of the simulation run.

2.4 Results

I used the above model to elucidate how ACh modulation together with the net-

work connectivity properties regulates spatio-temporal dynamics in a system. The

level of ¯gKs sets the amount of SFA in each neuron and shortens the length of an

upstate both in time and in the number of spikes fired (Fig 2.1B). Sampling the

parameter space defined by ¯gKs and wi→e allows for multiple dynamical regimes to

emerge. These range from complete quiescence for excitatory cells at one extreme to

globalized network bursts at another (Fig 2.1D and Fig 2.7).

Simulations under a variety of network structures and network sizes yielded qual-

itatively similar results provided that the radius of inhibitory connections was larger

than that of excitatory connections. Reducing Rie from global to smaller values

leads to multiple independent bumps. Note that these dynamics are different from

the multiple interacting bumps described in Fig 2.1D. Implementing a heteroge-
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neous network lattice where neurons are placed at irregular intervals, the degree

distribution of neurons is nonuniform, and connections are rewired based on the

Watts-Strogatz formalism [51] did not change the the results qualitatively. Remov-

ing periodic boundary conditions leads to traveling waves in a circular as opposed to

periodic direction (2.6.4).

Moderate levels of inhibition (wi→e = 20 µS/cm2) generated two distinct classes

of dynamics as the level of SFA was changed. When ¯gKs levels are low (which

corresponds to a high ACh state) network activity is localized to a restricted area

with minimal drift, the stationary bump regime (Fig 2.2C top). Increasing ¯gKs (or

decreasing ACh) leads to a localized traveling wave of activation (a bump) that tra-

verses the entire network space (Fig 2.2C bottom). Local dynamics are characterized

by high frequency, asynchronous spiking. Spike dynamics in the global state are also

asynchronous, but oscillate between a high frequency upstate and a low frequency

down state. While the level of SFA in the system controls the amount of time that

activity remains in any single location, the level of inhibition (E/I balance) defines

the size of the portion of the network that is in an upstate at any given time. For low

levels of inhibition (wi→e = 10 µS/cm2), depending on SFA level, either the whole

network is active with quiescent regions emerging periodically (low levels of SFA;

¯gKs = 0 mS/cm2; Fig 2.2B top) or two distinct interacting bumps are stable (high

levels of SFA; ¯gKs = 1 mS/cm2; Fig 2.2B bottom). High levels of inhibition (wi→e

= 30 µS/cm2), however, reduce the spatial extent of activity at any given time (Fig

2.2D).

The interplay between SFA and inhibitory strength (wi→e) is shown in Fig 2.2A.

The SFA level (i.e. the magnitude of ¯gKs) is the primary factor in determining the

transition between the localized and global activation state. For any given level
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Figure 2.2: Both E/I balance and SFA level affect the spatio-temporal properties of
cortical activities. (A.) Within the single bump the levels of ¯gKs and wi→e determine
the speed of propagation . However, SFA does have a much larger effect on wave speed
than E/I balance. Panels B,C, and D show example raster plots for wi→e = 10, 20, and
30 µS/cm2 respectively with ¯gKs = 0 mS/cm2on top and ¯gKs = 1 mS/cm2 on bottom.
In each, black markers represent spikes from excitatory cells and red markers represent
those from inhibitory cells. Cells are sorted by spatial coordinate, a measure described
in the methods section.

of inhibition, the transition between stationary and traveling frequency dynamics

occurs over a narrow range of ¯gKs. The effect of inhibition becomes clearer in the

traveling wave regime, where the speed of the wave propagation is slowed by increased

inhibitory strength. For strong values of inhibition waves are arrested. The empty

squares of Fig 2.2A indicate parameter values that yield networks where excitatory
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cells are completely quiescent or involved in network-wide synchronous bursting.

From the single cell perspective, the level of SFA has the largest effect on the

length of an upstate. Scanning ¯gKs between 0.1 and 1.5 mS/cm2 results in a reduc-

tion of the number of spikes per upstate. This reduction of spike number corresponds

to an increase of both the length and variability of inter-spike intervals (Inter-Spike

Interval (ISI)s) within an upstate (Fig 2.3A). Increasing inhibitory strength has a

less dramatic effect on the length of an upstate. For a given value of ¯gKs increasing

inhibition reduces the average number of spikes per upstate in a linear fashion, in-

dependent of ¯gKs (Fig 2.3B). While SFA level and E/I balance define the character

of neuron upstates, PRC modulation regulates synchrony within the upstate inde-

pendently (Fig 2.4). For ¯gKs values large enough to yield traveling waves, but too

low to shift the PRC to type 2 ( ¯gKs = 0.1 mS/cm2 in the figure), spike synchrony

between cells with overlapping upstates is low and comparable to levels of synchrony

during stationary bump dynamics. In both these cases the ISI interval is approxi-

mately uniform ∈ [−π, π] (Fig 2.4A; left panels). Increasing ¯gKs to the point where

the PRC shifts from type 1 to type 2 leads to high synchrony within the upstates as

indicated by an increased observation of ISIs close to 0 or 2π and a corresponding

decrease at ±π (Fig 2.4A; right panels).

It is known from other studies that in a stationary bump regime, dynamics can

be pinned to a specific region by enhanced recurrent excitation [32, 52]. We used

this effect to map the transition between local and global dynamics (Fig 2.5A). We

defined φ (see methods section), as a proxy for the network tendency to localize

the dynamics. Increasing ¯gKs from zero rapidly decreases localization with a 50%

decrease in φ occurring within a range of 0.25 mS/cm2.

An important function of neural networks is the ability to recognize and respond
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Figure 2.3: Slow potassium conductance shapes upstate dynamics of individual neurons.
(A.) For very low levels of ¯gKs individual upstates of neurons last for a longer and more
variable number of spikes (black data series). The adaptive effect of the slow potassium
conductance is shown by the large variation in ISI for ¯gKs values above 0.75 (Red data
series). Increasing ¯gKs reduced the number of spikes per upstate to about 3. Data is
shown for wie = 24 µS/cm2 and error bars represent standard deviation. (B.) Increasing
inhibitory strength, while decreasing wave speed maintains a stable number of spikes
per upstate, with average number not changing by more than one (data are mean ±
s.e.m).

to structural features such as information encoded in synaptic weights. To explore

this idea, we compared how changes in the SFA level affect preferential activation of

a region with enhanced recurrent excitation. This effect has been previously shown

to localize stationary bump dynamics in spiking networks [32, 52]. Networks with

low levels of SFA were highly sensitive to synaptic heterogeneity, with as little as a

5% increase in synaptic strength being sufficient to localized the activation to the
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Figure 2.4: Slow potassium current regulates synchrony through PRC modulation. (A.)
An increase in spike synchrony within upstates corresponds to the shift from a type 1
to type 2 PRC which occurs at high levels of ¯gKs as indicated by the distribution of
inter-spike intervals. Time is shown as normalized phase based on the average period
of firing during an upstate and the colors of the bar graphs corresponds to the PRCs
shown in Fig 2.1. (B.) Characteristic voltage traces for 10 neighboring cells during
an upstate for ¯gKs = 0.1 mS/cm2 top and ¯gKs = 1.5 mS/cm2 bottom. Each cell is
represented by a different color. For both conditions are shown on a 40 ms time scale
and the inset shows the entire upstate for the ¯gKs = 0.1 mS/cm2. Data shown here is
for wi→e = 24 µS/cm2.

heterogeneity (Fig 2.5B). Sensitivity to heterogeneity decreases as SFA increases as

networks allow wave dynamics, but persists for strong heterogeneities well into the

wave regime. For low levels of SFA this effect is driven by upstates lasting signifi-

cantly longer within the heterogeneous area than outside (Fig 2.5C). This increase in
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Figure 2.5: Reducing slow potassium conductance increases network sensitivity to het-
erogeneities in synaptic coupling. (A.) The transition from stationary to moving
bump dynamics is demonstrated by φ, normalized preference for heterogeneity. Increas-
ing ¯gKs rapidly reduces the preference for an area with a 10% increase in strength of
recurrent excitatory connections. (B.) Significantly enhanced heterogeneities are able
to act as an attractor of network activity even for networks with high levels of SFA with
a significant preference apparent up to ¯gKs = 0.75 mS/cm2. (C.) Network preference
manifests as longer upstates within the heterogeneous zone than outside it. (data are
mean ± s.e.m).

upstate length falls off quickly, even for levels of ¯gKs where φ displays a preference.

This difference stems from φ being calculated on a longer time scale.

2.5 Discussion

These results have shown that changes in SFA level and E/I balance drive the

transitions from stationary to traveling (SFA) and local to global (E/I Balance) be-

havior. These states arise from an interaction between neural excitability and the
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network-wide strength of lateral inhibition. The magnitude of SFA is a determining

factor in whether or not network activity can be pinned by structural heterogeneities

such as recurrent excitation. The results indicate that large scale spatio-temporal

dynamics can be induced by ACh mediated SFA and that neural networks composed

of highly excitable cells will be more responsive to synaptic heterogeneities. Ad-

ditionally, ACh induced changes in SFA level and PRC shape occur over differing

values of ¯gKs.

In the model I used the changes induced by ACh resemble the dynamical cycles

seen in the cortex during sleep. Experiments have shown that in vivo stimulation

of cholinergic neurons can induce the transition from SWS to REM like sleep ac-

tivity [53, 54]. The low ACh state in this model creates traveling waves of high

frequency upstates and quiescent down states, reminiscent of what occurs during

SWS. Analysis of EEG data in sleeping humans has identified the slow wave in SWS

as a traveling wave originating in the frontal cortex and propagating to the posterior

[55]. An interesting and relevant feature of the traveling slow wave is that the origins

are stable within individuals. Traveling waves in the conductance based model are

sensitive to strong heterogeneities for intermediate values of ¯gKs. Experiments have

shown that inducing local synaptic potential via transcranial magnetic stimulation

can define the orgin of traveling slow waves [42, 43]. These results dovetail nicely

with our mechanism of recurrent excitation and SFA modulation highlighting regions

with strengthened synaptic connectivity.

This model replicates two cellular effects of cholinergic modulation; a reduction of

SFA and the shift from a type 1 to a type 2 PRC. The network level consequences of

these cellular effect occur over distinct ranges of ¯gKs. Previous modeling studies have

shown that networks composed of type 1 neural oscillators are generally asynchronous
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while type 2 networks are highly synchronous [26]. Here I show that neurons with

a type 2 PRC are able to synchronize over the short time scale of a single upstate

(Fig 2.4). It is remarkable that type 2 neurons show much higher synchrony than

type 1 cells which have much longer to entrain. Type 2 neural oscillators transfer

information, measured through spike train correlation, on a much shorter time scale

than type 1 oscillators which could explain the difference upstate synchrony [56]. It

has been shown previously that network models that learn via spike timing dependent

plasticity (SDTP) will strengthen synapses when composed of type 1 neurons, while

weakening occurs when component neurons are of type 2 [31].

SWS is critical for memory consolidation, particularly during early stages [57, 58,

59]. The changes in both SFA level and in the PRC shape are both likely to play

a role in the changes in synaptic strength during SWS, but whether they interact

synergistically is unclear and will be the topic of further study. Another important

implication of these results is to show how stationary versus traveling dynamics fit

into the frameworks proposed by the synaptic homeostasis hypothesis (SHY) [60],

which proposes synaptic renormalization during sleep, and the synaptic embossing

hypothesis (SEH) [61], in which select circuits are strengthened by synchronous firing

during REM in addition to renormalization during SWS. It may be that localized

asynchronous activity during REM sleep can further strengthen regions specified by

enhanced synaptic strength during waking, while traveling, but synchronous, activity

within a globally traveling wave can cause global depotentiation of synapses. This

would lead to a large increase in synaptic signal to noise ratio as proposed by SHY

[60] while employing a REM dependent dynamical mechanism proposed by SEH [61].

Recent in vitro and in silico studies have demonstrated the importance of REM sleep

on experience dependent plasticity [62, 63]. The differing ¯gKs ranges for SFA induced
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local to global and the PRC induced asynchronous to synchronous transitions may

account for the importance of SWS to REM transitions in synaptic restructuring

recently reported [63]. The interaction between ACh level and inhibitory strength

in our model could be functionally significant. The administration of GABAergic

drugs (which correspond to higher wi→e values in out model) increases the time

spent in SWS and the power in the delta (∼ 1 Hz) range, but does not measurably

increase memory consolidation [64]. This may be due to the interaction of the two

aforementioned mechanisms, but also to the increased GABA levels changing features

of the traveling waves during SWS. It would be interesting to see whether GABA

agonists decrease the propagation speed of SWS waves in LFP measurements.

To demonstrate the extent that the spatial properties of upstates are set by E/I

balance we sampled parameters that fall outside of normal physiological conditions

and only values that fall within the reduced range that yield single bumps produce

dynamics representative of sleeping or waking states. During SWS, increased activity

of GABAergic projections from the basal forebrain increase both phasic and tonic in-

hibition within the cortex [65]. Pharmacologically enhancing phasic inhibition, which

would skew E/I balance toward inhibition in our model, decreases power in the delta

band [66]. Increasing inhibition caused a decrease in the average number of spikes

per upstate and narrowed the spatial extent of an upstate, both of which would lead

to a decrease in LFP power. On the other hand, increasing tonic inhibition leads

to an increase of delta power [66]. This model does not include a representation

of tonic inhibition and adding this feature would be a valuable extension of these

results. During high ACh conditions a more complicated inhibition conditions exist.

While state dependent GABA input from the basal forebrain is reduced, muscarinic

agonists increase the amplitude and frequencies of spontaneous inhibitory postsy-
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naptic currents [67]. This enhanced inhibition on its own would increase localization

and sensitivity of stationary dynamics. Cholinergic drugs decrease the magnitude of

evoked inhibitory input, however [68]. Whether or not these effects lead to a net E/I

balance shift is not clear.

When the network is in the stationary state (when ¯gKs is low and SFA is mini-

mal; the high ACh state) the excited region generates large levels of distal inhibition

that reduces the likelihood that neurons outside this region will fire. Reducing the

strength of inhibition causes a corresponding increase in the likelihood that far away

cells will fire, eventually leading to a global high frequency state (Fig 2.1C). As SFA

is increased (when ¯gKs is increased or ACh levels fall) the length of an individual

neuron’s upstate becomes limited. As excited cells enter a period of quiescence,

neighboring neurons are able to enter an upstate due to a relaxation of distal inhibi-

tion. This relaxation increases the spatial extent of cells that are in an upstate at the

same time. These two factors affect the character of spatio-temporal dynamics by

effectively setting the two components of wave speed, dx/dt (Fig 2.6). The strength

of inhibition sets dx, with lower levels increasing its magnitude (and thus total wave

speed as well). A large amount of SFA shortens dt which drives large increases in

wave speed. This notion also explains how synaptic heterogeneity (i.e. enhanced

recurrent excitation) acts to pin activity. When the excited region passes over areas

with increased excitatory coupling the recurrent excitation is able to reduce the ef-

fects of SFA on neurons causing an increase in dt when activity is within this area

decreasing the propagation of excitation.

Stationary bump dynamics have long been used as a model of working memory

[69, 70, 71]. In this model, the location of excitation preserves the location of a

transient input and synaptic heterogeneities stabilize bump location [32, 52]. Recent
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Figure 2.6: Slow potassium conductance and E/I balance work in concert to shape up-
state traveling bump dynamics. The strength of inhibition determines the spatial
scope of an active zone, or the space a traveling bump will traverse in a given time
(the dx shown in blue above). The length of an upstate at any given point in space is
governed by the strength of the slow potassium conductance ¯gKs (illustrated by the red
dt above). These two features form the rough approximation of wavespeed dx/dt. As
in Fig 2.2., black markers represent spikes from excitatory cells, red markers represent
those from inhibitory cells and cells are sorted along the y-axis by spatial coordinate.

experimental results have demonstrated both the importance of stationary bumps in

attention tasks [41] and the importance of the muscarinic system in this state [39].

These results suggest that cholinergic modulation of SFA primes a network to focus

on incoming information, providing a mechanism for ACh’s role in attention [72].

In neural field models, the conditions that lead to the formation of stationary

bumps and traveling waves have been well documented [73, 74]. Lateral inhibition

is necessary for the formation of stationary bumps and traveling waves [49, 75], and

is critical for these results. While my results hold when the range of inhibition is

reduced from global, I do need the radius of inhibitory connections to be larger than

that of excitation. In fact, I do not believe that traveling waves can form unless the
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inhibitory range is larger than that of excitatory connections. While my scheme is

supported by some experimental evidence [46, 47], other results have failed to find

lateral inhibition as a model for cortical connectivity [76, 77]. While it is possible

that the range of synaptic coupling for inhibitory interneurons is shorter than that

of excitatory cells, electrical synapses (i.e. gap junctions) could broaden the scope of

inhibition. Furthermore, dynamic regulation of gap junctions could allow for network

topology to vary according to the requirements of a particular activity regime [78].

In addition to lateral inhibition, SFA also induces traveling waves in both neural

field models and in other more complex spiking networks [79, 80]. In other models,

SFA causes linearization of the f-I curve in a similar manner as ¯gKs [81, 82] and

the mechanism we describe here is likely a general phenomenon in the formation of

waves in adapting networks. Analytical results from neural fields have related higher

thresholds (the level of input required to generate action potentials) to decreased

propagation speed of traveling waves [79, 74]. This may disagree with our results,

which are that threshold and wave speed increase with ¯gKs. The threshold in neural

field models may relate more to E/I balance in our system than to the threshold for

spiking of individual neurons. It is important to note that the model we use does

not address other important facets of muscarinic neuromodulation such as resting

potential and leak conductances [83], synaptic strength [84], and both Ca2+ and Na+

dependent K+ currents [80, 40], all of which likely play a role in the formation of

spatiotemporal dynamics.

That SFA and PRC modulation take place over different ranges of ¯gKs allows for

three general regimes within networks of this type: localized asynchronous, travel-

ing asynchronous, and traveling synchronous. It is clear from our results that these

regimes differ in sensitivity to synaptic heterogeneity (decreasing from localized asyn-
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chronous to traveling synchronous) but whether they represent distinct functional

states, especially regarding processes such as memory and synaptic homeostasis,

need further experimental and computation work.
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2.6 Supporting Information

2.6.1 Supporting Figures

Figure 2.7: Distribution of bursting values.
High values of the bursting measure, B, indicate highly synchronous firing. The distribution of B

is bimodal and a value of 0.7 (red line) was chosen to exclude highly synchronous dynamics
because it divides the distribution.
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2.6.2 Fig S2

Figure 2.8: Examples of observed dynamics.
A broad array of dynamics were observed. The phase cartoon from Fig 2.1D is included with

raster plots displaying dynamics. Numbers indicate the following: (1) quiescent (2) mixed
dynamics, (3) stationary bump (4) traveling bump (5) global high frequency activity (6) multiple

interacting bumps (7) planar wave (8) global burst. Note two examples of mixed dynamics (2)
were included to show that traveling waves, stationary bumps, highly synchronized bursts, and

quiescence arise during the course of a simulation.
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2.6.3 Support Table

Table 2.1: Table of parameters.
Neural parameters
cm 1.0 µF/cm2 ¯gKs 0-1.5 mS/cm2

¯gNa 24.0 mS/cm2 gL 0.02 mS/cm2

¯gKdir 3.0 mS/cm2 ENa 55.0 mV
EK -90.0 mV EL -60.0 mV
αm -30 mV αh 53 mV
αn - 30 mV αs -39 mV
βm 9.5 mV βh 7 mV
βn 10 mV βs 5 mV
γh 40.5 mV γn 27 mV
εh 6 mV εn 15 mV
Dh 2.78 Dn 1.85
Vthreshold -20 mV
Synapse parameters
τF 0.3 ms τS 3 ms
Ee 0 mV Ei -75 mV
τD -75 mV
Network parameters
we→e 20 µS/cm2 wi→e 0-38 µS/cm2

we→i 20 µS/cm2 wi→i 20 µS/cm2

L 25 units Graine 1 unit
Graini 2.27 units kee 16
kei 4

Values of the neural parameters were adopted from [26].
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2.6.4 Supporting Videos

Video 2.1: Network dynamics for inhibitory fraction of 13% and ¯gKs = 0mS/cm2


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Video 2.2: Network dynamics for inhibitory fraction of 13% and ¯gKs = 1.5mS/cm2


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Video 2.3: Network dynamics for inhibitory fraction of 22% and ¯gKs = 0mS/cm2


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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Video 2.4: Network dynamics for inhibitory fraction of 22% and ¯gKs = 1.5mS/cm2


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}
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Video 2.5: Network dynamics for no periodic boundaries and ¯gKs = 1.5mS/cm2


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}




CHAPTER III

Memory Recall and Spike Frequency Adaptation

. Here I describe a mechanism for the organization of neuronal spiking around

oscillatory input and how this organization facilitates network level learning. This

chapter was published in the Physical Review E in 2016 (Vol. 93, Pg. 052307).

3.1 Abstract

The brain can reproduce memories from partial data; this ability is critical for

memory recall. The process of memory recall has been studied using auto-associative

networks such as the Hopfield model. This kind of model reliably converges to stored

patterns which contain the memory. However, it is unclear how the behavior is

controlled by the brain so that after convergence to one configuration, it can proceed

with recognition of another one. In the Hopfield model this happens only through

unrealistic changes of an effective global temperature that destabilizes all stored

configurations. Here I show that Spike-Frequency Adaptation (SFA), a common

mechanism affecting neuron activation in the brain, can provide state dependent

control of pattern retrieval. I demonstrate this in a Hopfield network modified to

include SFA, and also in a model network of biophysical neurons. In both cases SFA

allows for selective stabilization of attractors with different basins of attraction, and

also for temporal dynamics of attractor switching that is not possible in standard

44
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auto-associative schemes. The dynamics of our models give a plausible account of

different sorts of memory retrieval.

3.2 Introduction

The brain stores memories as patterns of synaptic strengths in the network of

neurons. It can store multiple memories and retrieve them in a reliable way, and can

change from one to another as attention wanders. However, there is no agreement

in the neuroscience community of how this occurs. This paper offers a partial solu-

tion to understanding the mechanism for retrieval and switching based on a known

physiological effect, SFA.

Decades of work on understanding storage and retrieval have focussed on versions

of the Hopfield model (a special form of the Ising model) [85, 86, 87]. Hopfield net-

works have many attractive features: they are auto-associative: that is, memories are

recalled from a fragment of their data because the memories are stored in attractors,

i.e. metastable states.

However, as in any statistical model at zero temperature there is no mechanism

for escaping an attractor: a single memory pattern would exist for all time. To

overcome this problem an artificial ’temperature’ is introduced in Hopfield models to

allow switching. This ‘temperature’ (i.e fast random noise in synaptic current) has

no obvious biological origin. Thus, despite the elegance of the model, and its utility

in computer science, its application to the brain is problematic. Previous efforts to

over come this limitation have used feedback input [88], synaptic depression [89], and

adaptive mechanisms [90]. As we will see, SFA allows escape from attractors, and, in

some cases acts in the same way as increased temperature level. In addition, it can

destabilize specific memories that were active over prolonged period of time rather
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than globally destabilizing the network, as temperature does.

SFA is an activity induced reduction in neural firing rate induced by a hyperpolar-

izing current that increases as a neuron fires (i.e. when a neuron fires a lot, it tends

to stop firing). SFA is a natural mechanism to turn off activity. Further, SFA can be

controlled by neuromodulators such as Acetylcholine (ACh), an important regulator

of neural excitability. ACh causes a reduction in SFA and provides for its dynamic

regulation [45, 21]. In Chapter II I have presented a network model of Hodgkin-

Huxley (HH) neurons with SFA and ‘Mexican Hat’ coupling which reproduces many

features of cortical activity as ACh levels change between sleep and waking states. In

the present Chapter I use this model to concentrate on memory retrieval. However,

we claim that the essentials of our results are quite robust and independent of the

details of the neuron model. To show this, we first consider a version of the Hopfield

model [85, 86, 87] which has SFA.

3.3 Methods

3.3.1 Hopfield Model

We consider networks composed of N=1000 spins, S = {si} where si = ± 1. The

network is fully connected with weights σi,j. As usual, spin up corresponds to a

neuron that fires, and spin down to a silent one. Each spin gets an input:

(3.1) hi(t) =
N∑
j=1

σi,jsj − θi(t),

where θi(t) is a local offset field at site i which changes slowly in time. The first term

is the usual Hopfield-Ising term and the second represents SFA.

The dynamics of the spins are as follows: at each time step a random spin is

flipped with probability:

Ph(si) =
1

1 + e−2sihi/T
,(3.2)
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where T is the noise. In much of what follows we take T to be very small so that Ph

is essentially a step function.

The dynamics of θi is:

θi(si) =
A

1 + e−si(t̂−τ1)/τ2
.(3.3)

Here, t̂ is the time since the last state change of the spin, and τ1,2 are time constants

which govern the dynamics of attractors. The field θ increases to A for up spins

and decreases to zero for down spins. The time constant τ1 is the time to the half-

maximum value of θi. We take τ1 = 5 (timesteps/N), except for the data in Figure

3.1 where τ1 = 1.5 (timesteps/N). The rate at which SFA activates/ deactivates is

controlled by τ2 which is set to 0.2, except for the data in Figure 3.4 where τ2 = 0.6

(timesteps/N). This implementations of adaptation is different than others in the

hopfield model [90]. because it integrates over a longer time (i.e. considers more

than the activity at the previous time step). This more closely resembles adaptation

in biophysical models.

In the Hopfield scheme memories are stored as attractors, i.e. metastable config-

urations, Ξµ = {ξµi }. We encode attractors using a modified Hebbs rule [85]:

σi,j =
1

NW

p∑
µ

wµξ
µ
i ξ

µ
j .(3.4)

Each attractor is given a weight, wµ and W =
∑p

µwµ. Thus σi,j = 1 for two

spins with correlated activity across all attractors, Ξµ, and -1 for spins with anti-

correlated activity. We set w1 : wp−1 = 0.5 and wp = 1, except for the data reported

in Figure 3.4D where all the weights wi = 1.0. The saturation is defined as α = p/N .

Attractors encoded with lower wµ are weaker attractors.

In order to determine if the dynamics has settled into the various Ξµ we measure

the Mattis magnetization, which is the overlap between the stored memory and the
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current state:

mµ =
1

N

N∑
i

siξ
µ
i ,(3.5)

which is ±1 when S = ±Ξ and 0 when S⊥Ξ. In each simulation S was always

initialized to a random weak attractor, Ξweak.

3.3.2 Biophysical Model

We use a spiking network model introduced previously which considers NE = 1225

excitatory and NI = 324 inhibitory HH neurons arrayed on two square lattices of size

LE/I . The coupling was of lateral inhibition (Mexican Hat) type where short range

excitation is balanced with global inhibition. All excitatory neurons were connected

to neighbors within radius Rxx =
√
L2
E/Ikxx/πNE/I where kei = 16 is the degree of

excitatory to excitatory connections, kei = 4 is the degree of excitatory to inhibitory

connections. Neural dynamics were modeled by the current balance equation [22]:

cm
dVi
dt

= −gNam3
∞h(Vi − ENa)− gKdirn4(Vi − EK)

− ¯gKss(Vi − EK)− gL(Vi − EL)− Isyn,i + Iext(3.6)

In this equation, as we will see, ¯gKs sets the magnitude of the SFA; it corresponds

to A in the model above.

The dynamics of the gating variables h, n and s is of the form dx/dt = (x∞(V )−

x)/τx(V ) with additional specific evolution of the two voltage dependent parameters

x∞ and τx. The slow potassium current conductance, ¯gKs controls the level of SFA

(i.e. lower values of ¯gKs correspond to low SFA). The level of ACh modulates

¯gKs: the maximum (gKs = 1.5 mS/cm2) and minimum (gKs = 0) correspond to the

absence or maximum of ACh, respectively. For more details see [34].
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The synaptic current to neuron i is Isyn,i = gE(t)(Vi − EE) + gI(t)(Vi − EI) and

the dynamics of gE/I(t) is:

gE/I(t) = K

∈E/I∑
j

σi,j(e
−(t̃j−τD)

τS − e
−(t̃j−τD)

τF )(3.7)

where σi,j is the synaptic weight between neuron i and neuron j, and τS,F are time

constants equal to 3.0 and 0.3 ms respectively. σi,j is set to 0.02 mS/cm2 unless oth-

erwise stated, t̃j is the time since the last spike of neuron j, and K is a normalization

constant. Iext set so that all neurons fire at 10 Hz in the absence of synaptic input

and for any ¯gKs. The equations were integrated using the 4th order Runge-Kutta

method at a 0.05 ms time step to 20 s. Data points are averages of 20 sets of initial

conditions.

3.4 Results

I first investigated recall dynamics of the Hopfield network as a function of SFA

amplitude. In the usual Hopfield model the preference for local, global, or no at-

tractors changes as the noise, T , increases [85, 91]. This transition depends on the

saturation α [85]. I find analogous network behavior as we increase the magnitude

of SFA, i.e. A. To show this I compare the standard T versus α plot with a plot of

A versus α in Figure 3.1. The right panel shows how T and α interact to affect the

stability of the strong and weak attractors and, eventually, to destabilize all attrac-

tors. For small T the dynamics keeps the system in a weak attractor (blue on the

colormap); for larger T the system enters a regime of stability of stronger attractors

(yellow). For large T no attractors are stable (green).

SFA has analogous effect in terms of overall destabilization of attractors of par-

ticular strength; see Figure 3.1, left. To see how this comes about, I investigate the

stability of an attractor of a given weight by mean field theory [92, 91, 93]. The
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Figure 3.1: SFA and T control attractor stability in Hopfield networks. With noise Hopfield
networks have three functional states: stability of local attractors, stability of subset
of strong attractors, and stability of no attractor. These changes of stability is shown
by the ability of the attractor to move from a weak attractor to a strong one, which is
quantified by the difference of the mµ of the strong attractor and the weak attractor in
which the system was initialized. (Top)The saturation of memories (α), noise (T ), and
adaptation (A) affect stability in a similar manner. For low levels of noise local (weak)
attractors are stable (blue). For a given α either increasing A (left) or T (right) leads
to a strong attractors being stable (yellow). Further increase destabilizes all attractors
(green). (Bottom) Example dynamics of memory overlap, mi, for strongly (black) and
weakly (red) weighted memories. In each case α = 0.01; adaptation levels are (A) A =
0.01 (B) A = 0.05 (C) A = 0.3.

mean field equations for the system are:
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Figure 3.2: Attractor stability varies as a function of A. For SFA to induce the network
to leave a attractor it must be large enough to overcome the energy barrier of that
attractor. Mean field calculations predict a linear relationship between the strength of
an attractor and the amount of adaptation, A, to destabilize it (A).This is best seen
in the Hopfield model (B). The threshold value of A increases linearly as the attractor
strength, wµ increases. A similar effect is seen in the spiking network model (C ).

〈si〉 = tanh(
β

NW

∑
j,µ

wµξ
µ
i ξ

µ
j 〈sj〉 − 2θi),(3.8)

where β = 1/T . By exploiting the fact that 〈si〉 = mξυi the mean field equations can

be rewritten as:

mξυi = tanh(
β

NW

∑
j,µ

wµξ
µ
i ξ

µ
jmξ

υ
i − 2θi).(3.9)

If p� N any overlap between memories is negligible so the mean field equation and

the system is in memory υ for a time � τ1 becomes:

mξυi = tanh(βwυmξ
υ
i −

1

T
2A),(3.10)
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Figure 3.3: SFA and T destabilize attractors of different strengths in Hopfield networks.
Solutions to mean field equations illustrate how adaptation and temperature destabilize
weak attractors. When A is low all memories are stabile (panel A; A=0.1). Increasing A
destabilizes weak memories while preserving strong memories (panel B; A=0.25). When
adaptation is absent temperature has a similar effect where all memories are stable for
low T (panel C; T = 0.2), while only strong memories are stable for high T (panel D;
T = 0.5). The dashed line shows m = m; the solid blue line shows the mean field
equation for wυ = 0.45; the solid gold line shows the mean field equation for wυ = 0.75.

which be simplified to m = tanh(βwυm − β2A). When this equation has solutions

beyond m = 0 a memory with strength wυ is stable for a given T or A. Figure 3.3

shows mean field solutions for memories with strengths wυ = 0.45 (blue line) and

wυ = 0.75 (gold line). As in the numerical results adaptation (Fig 3.3 top panels)

and temperature (bottom panels) have similar effects on the stability of memories.

For low levels (A = 0.1, T = 0.2; left panels) both strong and weak memories are
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Figure 3.4: Examples of network dynamics in the modified Hopfield model. For small A
even a weak attractor is stable (panel A; A = 0.01). A moderate increase leads to the
strong attractor becoming stable (B, A = 0.1). For larger A damped oscillations with
period ∼ 4τ1 emerge: C, A = 0.4. In panels A and B the red line corresponds to a weak
attractor and the black corresponds to a strong one. In panel C, the dark blue is the
weakest attractor. All other lines are strong attractors of equal weight.

stable (i.e. both have solutions beyond m = 0), but moderate increases in A or T

destabilize weaker memories (A = .25, T = 0.5; right panels)

Thus, changes in the strength of SFA can play the same role as changes in T

by destabilizing attractors of varying strength as A increases. Interesting time-

dependent effects occur for intermediate values of A when the τ ’s are not too large.

Because θi is a function of t we can generate chains of attractor preferences, as

opposed to stability in a deep attractor or a random walk (as in the standard Hopfield

model for large T ). These results are shown in Figure 3.4. For small A local, weak

attractors are stable. A moderate increase leads to strong attractors being stable

(Figure 3.4 A, B). Further increase of A leads to oscillations of period ∼ 4τ1; Figure

3.4 C. This is similar to the latching dynamics found in [90].
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To demonstrate the robustness and biological relevance of these results I now turn

to the biophysical model. I have shown [34] that the nature of the dynamics is that

for small ¯gKs (large concentrations of ACh) there is a stationary, localized region (a

‘bump’) of spiking activity. For larger ¯gKs the bump travels through the lattice.

Figure 3.5: Attractor preference and ¯gKs. The quantity φ is the fraction of time that activity is
located within an attractor. Gray dashed line, control value. (Top) For initial locations
outside any attractor no clear preference emerges for small ¯gKs. For moderate ¯gKs there
is clear preference for the strong attractor. (Bottom) For initial conditions within the
weak attractor activity never leaves for small ¯gKs. There is significant preference for
the strong attractor for moderate ¯gKs. Errorbars = ± s.e.m.

To consider memory we introduce spatial attractors by increasing synaptic strength

in certain locations of the network [32, 34]. These attractors fix the location of the

bump when the dynamics is in the stationary regime. For a single attractor, prefer-

ence for the attractor falls as ¯gKs increases [34]. This model is quite different from

the one discussed above: the excitatory coupling is short-ranged in contrast to the

Hopfield σ’s which are long-ranged, and thus the attractors here are defined by local

geometry. Nevertheless, SFA gives common results for the two cases.

To consider multiple attractors of variable strength we increased synaptic strength

in two network regions at opposite ends of the lattice. The strong attractor had
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100% stronger excitatory connections and the weak attractor had a 50% increase.

To examine how network preference changed as a function of ¯gKs in multi-attractor

networks we did simulations where activity was initialized by injecting a 0.25 µA/cm2

current to a region outside either of the attractors for the first 0.5 s of the simulation.

Preference for a given attractor was quantified by the measure φ which is the fraction

of time that the center of the bump, calculated according to [50], is located within the

attractor. For low levels of SFA there is no clear preference indicating that activity

localizes to attractors randomly; Figure 3.5, top. Increasing ¯gKs leads to a clear

preference for the strong attractor. The preference for any attractor disappears for

large ¯gKs as the network enters the regime of traveling bump dynamics.

To further test the stability of the two attractors I initiate network dynamics

by activating the weak attractor. For small ¯gKs activity remained localized there:

Figure 3.5, bottom. For larger ¯gKs activity moved to the stronger attractor. This

confirms that the strength of SFA can control the stability of attractors having

different depths.

I also considered how the relative stability of the attractors depends on the ra-

tio of inhibitory to excitatory coupling, we/i). Figure 3.6 is a phase plot of final

attractor preference for different we/i) and ¯gKs. The relative preference for the two

attractors was measured by φstrong − φweak, which ranges between 1 (preference for

the strong attractor) and -1 (preference for the weak). Interestingly, weakening in-

hibition abolishes any preference for the strong attractor at intermediate levels of

¯gKs.
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Figure 3.6: Strong attractor preference is controlled by inhibition strength in spiking
networks. We measure the differential attractor preference for the two attractors by
(φstrong − φweak), which is 1 when all activity is located within the strong attractor
and -1 when all activity is within the weak. The preference for the strong attractor at
moderate SFA disappears when inhibition is decreased.

3.5 Discussion

We have shown for both, biophysical and Hopfield models SFA can selectively

destabilize attractors effectively controlling attractor preference. With SFA we can

have long-term preferential activation of attractors of different strengths and also

non-trivial time dependence of attractor sequences. This provides a biologically

plausible mechanism for switching between encoded patterns [91, 94].

In the biophysical model SFA depends on ACh [22, 21, 20]. Our results imply

that ACh controls memory retrieval dynamics. Note the relevance of our results

to context dependent release of ACh and its role in attention [95]. During tasks

requiring a high degree of focus, low SFA allows the brain to fix on the memory that

closely fits the current sensory input. On the other hand, with high ACh the attractor

can be reinforced by synaptic plasticity. As attention requirements are relaxed, and

ACh levels fall, moderate levels of SFA allow for sampling of the memory space, see
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[96].

The largest variation in cortical ACh levels occurs between sleep/ wake states.

In this case the highest levels occur during Rapid Eye Movement (REM) sleep and

the lowest during slow wave sleep [97]. We argue that intermediate levels of ACh

during wake states allow for memory recall when externally driven network states are

allowed to wander to find the optimal state. REM sleep is thought to be important

for memory consolidation, where retrieval of weakly stored attractors of previous

experience is essential to their consolidation. Non-REM (NREM) sleep associated

with low ACh levels is characterized by slow waves and may play a role in synaptic

rescaling [60].



CHAPTER IV

Resonance with subthreshold oscillatory drive organizes
activity and optimizes learning in neural networks.

Here I describe a mechanism for the organization of neuronal spiking around oscil-

latory input and how this organization facilitates network level learning. I would like

to thank Nicolette Ognjanovski and Sara Aton for performing the neuronal recordings

from the hippocampus. This chapter was published in the Proceedings of the National

Academy of Sciences in 2018 (Vol. 115, Pg. E3017).

4.1 Abstract

Network oscillations across and within brain areas are critical for learning and

performance of memory tasks. While a large amount of work has focused on the

generation of neural oscillations, their effect on neuronal populations’ spiking activ-

ity and information encoding is less known. Here, I use computational modeling to

demonstrate that a shift in resonance responses can interact with oscillating input

to ensure that networks of neurons properly encode new information represented in

external inputs to the weights of recurrent synaptic connections. Using a neuronal

network model, I find that due to an input-current dependent shift in their reso-

nance response, individual neurons in a network will arrange their phases of firing

to represent varying strengths of their respective inputs. As networks encode infor-

58
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mation, neurons fire more synchronously, and this effect limits the extent to which

further ”learning” (in the form of changes in synaptic strength) can occur. I also

demonstrate that sequential patterns of neuronal firing can be accurately stored in

the network; these sequences are later reproduced without external input (in the

context of subthreshold oscillations) in both the forward and reverse directions (as

has been observed following learning in vivo). To test whether a similar mecha-

nism could act in vivo, I show that periodic stimulation of hippocampal neurons

coordinates network activity and functional connectivity in a frequency-dependent

manner. I conclude that resonance with subthreshold oscillations provides a plausi-

ble network-level mechanism to accurately encode and retrieve information without

over-strengthening connections between neurons.

4.2 Introduction

Oscillations in Local Field Potential (LFP) largely reflect coherent post-synaptic

potentials among neurons [98]. These rhythms are behaviorally relevant, and their

features are highly predictive of cognitive processes, and plasticity, in underlying

neural networks [99, 98, 100, 101, 102]. Network oscillations have long been thought

to promote plasticity by precisely timing firing between pairs of neurons (i.e., driving

Spike Timing-Dependent Plasticity (STDP)] [11, 103]. However, it is still unclear

whether specific network rhythms are critical for specific neural computations, and

if so, why this is the case.

Neurons display complex behavior in response to oscillatory input. Many neu-

ronal subtypes show enhanced membrane voltage responses to periodic subthreshold

inputs within narrow frequency bands [104, 105, 106]. Critically, the frequency at

which neurons resonate can shift in response to depolarizing or hyperpolarizing inputs
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[107, 108, 109]. Thus in addition to simply integrating inputs to generate an action

potential, neurons are biophysically suited to perform time-dependent computations,

including input filtration, based on their periodicity.

The theta (4-10 Hz) rhythm is a prominent oscillation present in mammalian brain

networks [100]. Within the hippocampus, theta plays a central role in the function

of place cells, which encode spatial and contextual information [110, 111]. Place

cells show several interesting features associated with theta-resonant firing. First,

their firing phase varies over time, relative to hippocampal theta - a phenomenon

called phase precession, which occurs as animals move though their environment

[112, 11, 113]. Second, sequences of place cell activation occurring during spatial

exploration are replayed during subsequent theta oscillations, and surprisingly, these

replay events can occur in either the forward or reverse direction [114, 115, 116,

117]. While the idea that theta (and other hippocampal oscillations) plays a role

in hippocampal function is widely accepted, the underlying mechanisms for phase

precession, forward replay, and reverse replay - and the link of these features to

memory formation - are still largely unknown.

Networks of neurons that display resonance shifts (i.e. the firing response to

subthreshold oscillating input changes as a neuron is depolarized) show enhanced

pattern formation and separation when rhythmic inputs are present [118, 119]. Here

I show that resonating networks have a firing pattern that is highly beneficial for both

encoding and retrieving patterns of external inputs. Using conductance-based model

neurons which display resonance with subthreshold oscillatory input, I show that

networks will organize the firing of neurons around an oscillation in a manner that

represents an external input. When synapses are able to evolve via a STDP rule, an

input will be reliably encoded within the synaptic weights of a network. This leads
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to the subsequent reproduction of the input-induced firing pattern in the absence

of the external pattern, for both static and temporally dynamic inputs. I also show

that resonance with subthreshold oscillations provides a network-level mechanism

both for theta phase precession and for forward and reverse replay, that reliably

happens across any resonant frequency. Finally, I find that subthreshold periodic

input induces stable, highly organized functional connectivity over the theta band,

in both simulated and in vivo networks. This work demonstrates that resonance

with subthreshold oscillations organizes neuronal firing phase with respect to network

rhythms, and thereby facilitates the encoding and retrieval of information.

4.3 Methods

4.3.1 Neuronal network model

I use a network model that is composed of N = 300 (or N = 1000 for the data

in Figures 4.6 and 4.7) excitatory neurons. Neuronal dynamics were based on a

conductance-based model (Ks model) and governed by the current balance equation:

cm
dVi
dt

= −gNam∞(V )h(V )(V − ENa)− gKdirn(V )(V − EK)(4.1)

− ¯gKss(V )(V − EK)− ¯gL(V − EL)− Isyni − Iexti

The gating variables h, n, and s were of the form dx/dt = (x∞(V )−x)/τx(V ). The

slow potassium conductance, whose maximum value is gKs, is largely responsible for

the resonance displayed by this neuron model and its value was set to 1.5 mS/cm2.

Additional details of the neuronal dynamics can be found in [22]. Ks model neurons

display a depolarization dependent spiking resonance to subthreshold inputs in the

4 - 20 Hz range.
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Additionally, I used a second conductance based neuronal model using the Hodgkin-

Huxley [1] model and parameters (Hodgkin-Huxley (HH) model) which resonated

between 40-90 Hz to produce the data in Figure 4.3. Membrane potential dynamics

were governed by the current balance equation:

cm
dVi
dt

= −gNam(V )h(V )(V − ENa)− gKn(V )(V − EK)(4.2)

− Isyni − Iexti

The gating variables m,h, and n evolved according to dx/dt = αx(V )(1−x)−βx(V )x,

where αx, βx, and other parameters are taken from [1].

For both neuronal models, Iexti was split into two components. The first is Iosc =

Aosccos(2πfosct) (except for Figure 4.12; see SI), which is identical for each neuron in

the network. Cosine was chosen so the when fosc was set to zero (i.e. no oscillation),

all neurons would receive the same peak current as Direct Current (DC). The second

component was either IDCi , which is a unique for each neuron, or in the case of data

in Figures 4.6 and 4.7 Iact,g which is a slowly varying activation current defined by

the modified Gaussian function:

Iact,g(t) =
2e
−(t−µg)2

2σ2

√
2πσ2(1 + e

−1.702λ(t−µg)

σ )
.(4.3)

where g is the group to which a neuron is assigned (one of five groups), µg is the

time of maximum activation of that group, σ = 4000 ms the width of the activation

function, and λ = 8.0 is the skewness parameter. This leads to an activation time

course that slowly grows to 227 nA/cm2 then rapidly decays to zero (Fig 4.6A).

Synaptic input was modeled as a double exponential conductance pulse with the

dynamics:
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gsyn,i(t) = Msyn

N∑
j

σi,j(exp(
−(t̂j − τD)

τS
)− exp(−(t̂j − τD)

τF
)).(4.4)

The decay constants, τS and τF , were set to 250.0 and 0.3 ms respectively. The

synaptic delay constant, τD, was set to 0.08 ms and t̂j = t− tj where tj is the time

of the last spike of the presynaptic neuron j. Msyn is a synaptic multiple used to

account for differences in the input resistance of the two neuronal models; it is set

to 1.0 for the Ks model and 10.0 for the data in Figure 4.3. The behavior of the

HH model is robust to a range of Msyn values (Fig 4.15). Total synaptic current

to a neuron was defined as Isyn,i = gsyn,i(Vi − Esyn) where Esyn is 0 mV. Networks

had a ring lattice structure and a connectivity rate of 6%. The connectivity scheme

was small world and achieved through the Watts-Strogatz method with a rewiring

probability of 0.2 [23].

Synapses evolved according to an additive STDP rule, where the weight change

of a synapse between a presynaptic neuron i and a postsynaptic neuron j is defined

by:

∆σi,j =


ALe

−|∆t|
τSTDP , ∆t > τ̂STDP

−ALe
−|∆t|
τSTDP , ∆t < −τ̂STDP .

(4.5)

Here ∆t = t̂j − t̂i, where t̂ is the time of the last spike fired by a given neuron.

τSTDP is the time constant the the effect of a spike decays and is set to 10 ms. τ̂STDP

is a symmetrical region around ∆t = 0 for which there is no synaptic change and

is set to 1.5 ms. AL was the learning rate and was set to 20 nS for all simulations

except in Figure 4.4. Synapses were bounded in the region ∈ [0,∞) and initialized

at 0.2 nS.
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All numerical simulations were performed at a time step of 0.05 ms for the Ks

model and 0.01 ms for the HH model using a fourth order Runge-Kutta algorithm.

All summary data takes data from 5 realizations of the model, except for data in

Figure 4.3D, which showed average ± s.e.m. firing phase over 10 periods in one

simulation.

4.3.2 Stimulation and recording of hippocampal networks

All procedures were approved by the University of Michigan Institutional Animal

Care and Use Committee and performed by Nicolette Ognjanovski under the super-

vision of Sara Aton. Pvalb-IRES-CRE mice ((B6;129P2-Pvalbtm1(cre)Arbr/J; Jack-

son) were crossed to B6;129S-Gt(ROSA)26Sortm32(CAG-OP4*H134R/EYFP)Hze/J

mice (Jackson) to generate PV::ChR2 mice, which expressed channelrhodopsin (ChR2)

in PV-expressing (PV+) interneurons. By rhythmically activating these neurons in

the hippocampus with 473 nm light, principle cells within the network were received

subthreshold periodic inhibitory stimulation. For all recordings, PV::ChR2 mice ages

2-5 months (n = 4)were anesthetized with isoflurane and chlorprothixene (1 mg/kg

IP). Mice were head-fixed and a 1 mm x 1 mm matrix multielectrode (250 µm elec-

trode spacing; Frederick Haer Co. (FHC), Bowdoin, ME) was slowly advanced into

CA1 until stable recordings (with consistent spike waveforms continuously present

for at least 30 - min before baseline recording) were obtained. An optical fiber

was placed adjacent to the recording array for delivery of 473 nm laser light (Crysta-

Laser). Power output at the fiber tip was estimated at 3 - 10 mW for all experiments.

CA1 neurons were recorded over a 15 - min baseline period, after which PV+ in-

terneurons were stimulated over multiple successive 15 - min periods with a range

of frequencies (2 - 18 Hz, 40 ms pulses). The various stimulation frequencies were

presented in a random interleaved manner, during which neuronal activity continued
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to be recorded. Only those neurons recorded throughout the entire experiment were

included in analyses of optogenetically induced spike-field coherence and network

stability changes. For in vivo data, 80 and 68 neurons, respectively, met inclusion

criteria for coherence and stability analysis. This data set also appeared in [120].

4.3.3 Functional network structure

Functional network structure was calculated for both simulated and recorded net-

works in a similar manner. The first measure was spike wave coherence which was

calculated as the range of the spike-triggered average of the LFP over a window of

± 50 ms normalized by the peak amplitude of the LFP. In simulated networks the

LFP was the sum of all synaptic currents. This value ranges between 0, when spikes

occur randomly in the LFP oscillation, and 1, when spikes always occur at the same

time.

The second measure of functional network structure was the stability of functional

connections though time [121, 120]. The basis of functional connectivity was the aver-

age temporal proximity of spikes between neurons and given by AMDij = 1
N

∑
∆tikk

for the i-th to j-th neurons. Here ∆tik is the time difference between the k-th

spike fired by neuron j and the nearest spike fired by neuron i. To determine

whether neurons i and j are functional connected AMDij is compared to the null

value given the firing rate of neuron j and random firing of neuron i by the Z-

score FCij =
√
Ni

µj−AMDij
σj

. The null distribution of MD is dependent on the

Inter-Spike Interval (ISI) of neuron j. For an ISI of length L, the first two mo-

ments of MD are µL =< MDL >= L/4 and < (MDL)2 >= L2/12. We will

find an ISI of length L within a spike train of length T with a probability of

pL = L/T . Thus all the intervals in the spike train of neuron j the expected

value is µj =< MDj >=
∑

L pLµ
L = 1

T

∑
L
L2

4
. The expected standard devia-
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tion is σ2
j =< (MDj)

2 > − < MDj >2 where < (MDj)
2 >= 1

T

∑
L
L3

12
. To

measure the stability of inferred functional connections spiking data were sepa-

rated by into non-overlapping time windows for which FCij values were aggregated

into matrices FCt. Between adjacent time windows cosine similarity, defined by

Ct,t+1 = <FCt,FCt+1>√
<FCt,FCt>×<FCt+1,FCt+1>

, was used to quantify the change in functional

network structure as a value between 0 (randomized) and 1 (no change). The sta-

bility of the functional network was quantified as the average similarity between

adjacent time windows. Time windows were 2s for simulated data and 1 minute for

recorded data.

4.4 Results

I investigated how resonance with subthreshold oscillations affects pattern and se-

quence learning, using modeled networks of neurons that receive three types of input

(Fig 4.1A). First, each neuron in the network receives a unique level of external, DC

indicated by the color map. Second, the entire network receives uniform oscillating

input (with modifiable frequency and magnitude). Third, individual neurons receive

the summed presynaptic input from other neurons in the network. The weights of

individual synapses evolve via STDP across the learning phase of simulations.

4.4.1 Input dependent resonance shift allows for selective activation of subsets of
neurons

The neurons in the model display input-dependent resonance shifts (Fig 4.1B). A

neuron will respond to a wider range of oscillation frequencies if it receives a larger

DC input. There are two main regimes apparent in the resonance profile: 1) a 1:1

regime where the neuron fires one spike per cycle at low frequencies, and 2) a 1:2

regime where the neuron fires every other cycle at high input frequencies. For an
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oscillation of 0 Hz (i.e. in the absence of any oscillation), an additional DC current

is added to the DC input so that neurons receive the same total input magnitude as

when an oscillation is present. This case does not lead to neuronal spiking.

The broadening of the resonance response occurs within networks as well (Fig

4.1C). To show this we formed three clusters within a network with varying intra-

cluster coupling (0.2, 1.0, and 1.4 mS/cm2), while keeping inter-cluster coupling

constant. This leads to groups with high (green), moderate (light blue), and low

(dark blue) synaptic input. The raster plots in Figure 4.1D-F show network activity

at 12, 14, and 16 Hz and demonstrate how increasing the frequency of the oscillation

provides for selective activation of clusters with stronger coupling.

4.4.2 Networks learn patterns of external input and reproduce the reverse

To investigate the basis of learning through synaptic plasticity in this model, I

had networks encode a pattern of external input (a set of DC inputs with varied

magnitude across the network) to connections (Fig 4.2). I monitored the phase at

which neurons fired relative to the oscillations, as a function of their input magnitude.

The simulations were split into five phases: prior to the input pattern (red in Fig

4.2B), during patterned input (yellow), after pattern learning has saturated (green),

and two subsequent replay periods (replay periods one and two; with and without

prior patterned DC input). During the period prior to the input pattern and the

replay periods all neurons received the same moderate DC input and STDP was

disabled. The first replay period shows the effect of learning the input pattern and

the second shows the effect of playing the stored pattern back (i.e no input pattern

is present) with active STDP.

The raster plots in Figure 4.2A show the evolution of firing phase across each pe-

riod of the simulation. The color indicates the magnitude of input current a neuron
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Figure 4.1: Input-dependent resonance shift allows for selectively activating subsets of
neurons. (A) Model neurons receive 3 types of input. External input is DC which
varies in magnitude with neuron identity, represented by the color mapped arrow. All
neurons receive an identical oscillating input, represented by the sine wave. Addition-
ally neurons receive the synaptic inputs from neighboring neurons according to network
connectivity and synaptic weights. (B) The input-dependent resonance shift manifests
as a broadening of the resonance curve with increasing excitation of the neurons. (C)
Broadening of the resonance curve also occurs for changes in synaptic weights which pro-
vides for selective activation of subsets of neurons based on synaptic coupling. Dashed
lines show the frequencies corresponding to the raster plots in panels D,E,F, which show
the divergent activation for frequencies between 12 and 16 Hz. Error bars = ± s.e.m.
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receives and neurons are sorted by this value with highly activated neurons having

a higher input rank. Before any input, neurons fire randomly over a narrow band of

phases (Fig 4.2A far left). The input pattern leads to organized firing with highly

activated neurons firing at earlier phases (Fig 4.2A inner left),with the neurons re-

ceiving larger current firing earlier on the oscillatory cycle and neurons that receive

smaller DC input following, with the range of firing phases being determined by the

spread of activating input (Fig 4.10). This variable phase locking is a well-known phe-

nomenon observed during synchronization of weakly-forced oscillators where there is

a small detuning of mutual frequencies of the drive and the oscillator. For example,

see [122]. The neurons in resonance behave as oscillators, and their specific frequency

depends on the properties (height and width) of their resonance curve, which shape

is in turn contingent on the magnitude of DC input (Fig 4.1B).

As the pattern is learned, the overall phase shifts, but neurons return to firing at

a uniform phase, independent of their DC input (Fig 4.2A center). This convergence

is due to the universal learning rule which mimics STDP [123], where the synapse is

being strengthened (or weakened) when the presynaptic neuron fires within a narrow

window before (or after) the postsynaptic neuron. As long as the neuronal pair fires

in an ordered sequence, the corresponding synapse gets systematically potentiated or

(weakened), leading to increased synaptic input to the neuron having lower DC input.

When synaptic input offsets the difference in DC input between the two neurons, the

neurons fire simultaneously - resulting in the termination of synaptic potentiation

(depression). For this process to be effective, the time-length of the EPSP has to be

on the order of 1/f , where f is the oscillation frequency. For theta frequencies this

constitute a time constant of 100-300 ms, roughly corresponding to activation time

constant of NMDA receptors [124]. However, if the reactivation happens at higher
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resonant frequencies, as shown in next section, this activation time constant can be

significantly smaller.

When learning is suspended and the external input pattern is removed, and all

neurons receive the same intermediate DC input, the network shows the reverse

pattern of activation (Fig 4.2A inner right), as now the relative patterns of cellular

input are dominated by synaptic currents. After a second period of learning (but

with a uniform external input) the network returns to firing at a uniform phase,

effectively erasing the stored pattern (Fig 4.2A far right). The above relationships

are summarized in Figure 4.2B as we plot relative phase of neuronal spiking as a

function of their DC input magnitude for each phase described above (red: before

input pattern; gold: input pattern; green: after learning saturates, blue: replay of

stored pattern; violet: replay after erasure). Figure 4.2C depicts the time-course of

the evolution of firing phase for 11 neurons having different DC input values. The

bars below indicate timeline when input and learning are present (white -input but

no learning; black - learning and input, gray - no input and no learning).

The precise firing phase versus input relationship does dependent on total input

to neurons being subthreshold; superthreshold input disrupts this relationship and

impedes subsequent learning (Fig 4.11). One the other hand, the sign of the current

in oscillatory drive does not affect the observed results. Namely, if an oscillation

is purely hyperpolarizing the same pattern of phase organization is observed (Fig

4.12). The critical components to this learning and replay mechanism are resonance

at the single neuron level and the presence of a subthreshold oscillation (Table 4.1).

The LFP is a complex oscillation with a waveform that superimposes multiple fre-

quencies. For example sharpe-wave ripples are composed of a high frequency ripple

riding on top of lower frequency sharp wave [125]. We tested the robustness of this



71

input learning mechanism to a complicated waveform combining 6 Hz and 120 Hz

oscillations (Fig 4.13A). The input versus phase relationship and pattern reversal

after learning were both reproduced with this waveform.

4.4.3 Stored patterns can be replayed for any resonant frequency

To demonstrate the generality of the pattern storage and replay mechanism we

introduce a second conductance based neuronal model based on classic Hodgkin-

Huxley dynamics [1]. This model neuron displays spiking resonance in response to

sub-threshold oscillating input in the gamma band between 40 and 90 Hz (Fig 4.14,

which is well above the resonance band of the previous model. For ease the neuronal

models will be referred to as Ks for the neuron which resonates in the theta band

and HH for the gamma-resonating neuron. In Figure 4.3 we show that patterns

stored during resonance at one frequency (theta band in our case) will be replayed

at a higher frequency (gamma band) in a similar reverse firing order. Here, synaptic

weights (and corresponding adjacency matrix) taken from a network of Ks neurons

after a pattern was learned, are used to connect a network of HH neurons (after

adjustment for differences in excitability, see Fig. 4.15 ). HH networks replay a

pattern on a similar phase range as a Ks network, though with higher variability

for late firing neurons. This result further indicates that the described resonance

mechanism is very robust to frequency modulation that may occur, for example,

during cycles between active behavior and rest.

4.4.4 Pattern learning saturates naturally in resonating networks

The results described above indicate that neuronal firing phases rapidly converge

during learning, and that this process minimizes the firing phase difference between

neurons. This behavior should result in two interesting phenomena: 1) synaptic
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Figure 4.2: Resonating networks learn by mapping input patterns to synaptic weights.
(A) Raster plots show the relationship between the phase of firing and the external input
to the neuron. Black lines show the trace of the oscillating input and the color of the
rasters shows the DC input to the given neuron. neurons are sorted by their input rank.
Sub-panels in A correspond to before DC input distribution is applied (Pre), with DC
input distribution (Input), after learning has saturated (Post), after learning/ no DC
distribution (Replay 1), and after a second period of learning with no DC distribution
(Replay 2). (B) The relationship between firing phase and DC input varies between
negatively, positively, and not correlated for different epochs of the simulation. Data
are averaged over 10 cycles of the oscillation. Error bars = ± s.e.m. (C) Transitioning
from the input-pattern depending firing phases to synchronous firing is gradual. Lines
trace the firing phase of 12 neurons with varying input magnitudes across time. The
horizontal bars above indicate when the external input and learning are present (white
-input but no learning; black - learning and input, gray - no input and no learning).
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Figure 4.3: Replay of stored pattern occurs independent of neuronal model and fre-
quency band. (A) Input induced pattern of firing phase for a network of Ks neurons
driven with a 6 Hz oscillation. (B) Reversal of pattern during replay after learning for
a network of Ks neurons driven by a 6 Hz oscillation. (C) Reversed pattern replayed
by a network of HH neurons at 60 Hz. All raster plots include spike from 10 cycles of
the oscillation and the color of a neuron’s raster indicates the magnitude of DC input it
gets in a pattern. (D) Firing phase versus DC input relations for the 3 above cases (red
→ Ks neuron before learning, green → Ks neuron replay, blue → HH neuron replay.
Error bars = ± s.e.m.
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strengths will stop changing when the phases converge, and 2) input differences

between neurons will map onto their synaptic weights. To test these effects, we

presented an input DC pattern to network for a long time-period and tracked the

time course of synaptic change. If the learning rate (the magnitude of synaptic change

corresponding to ∆t = 0) allows, both the maximum (Fig 4.4A) and mean (Fig 4.4B)

synaptic weight will saturate before the end of the simulation. Regardless of learning

rate there is a large increase in synaptic change followed by a gradual decline to no

change in synapse strength (Fig 4.4C). The time of peak synaptic change is delayed

for slower learning rates. Note that the input pattern is the same for all conditions in

Figure 4.4(A,B,C). Both the final mean synapse strength (Fig 4.4D black) and time

it takes to saturate (Fig 4.4D red) depend on the range of currents in the external

pattern. The time to saturation is the time it takes for the mean change in synaptic

strength to fall permanently fall below 5× 10−6 mS/cm2 .

Saturation of learning occurs when the input pattern is fully mapped to the synap-

tic weights in the network, a phenomenon quantified in Figure 4.5. The mapping

of the input pattern is reversed in the synaptic weights. Highly activated neurons,

which fire at an earlier phase, strengthen outward connections (black trace) while

weakening inputs (red trace). Neurons given lower external inputs do the opposite,

strengthening inputs and weakening outputs. This leads to the external input pat-

tern and the synaptic input pattern being complimentary, leading to all neurons

receiving the same net input.

Overall, neurons with the lowest DC current within the input pattern strengthen

inputs more than the rest of the network, while highly-activated neurons do the

opposite. The new pattern of synaptic connectivity is complementary to the input

pattern, which leads to all neurons firing at the same phase. Synchronous firing ter-
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Figure 4.4: Learning saturates naturally after input pattern is completely mapped to
synapses. Saturation of learning reliably occurs given that the learning rate is high
enough for the given time. Both maximum (A) and mean (B) synaptic weight saturate.
Line color indicates network learning rate. (C) The majority of synaptic change occurs
early during the learning period then gradually decreases to zeros. (D) Final mean
synapse strength and time until learning saturates depends on the spread of the input
distribution. Error bars = ± s.e.m.
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Figure 4.5: Input pattern maps to both synaptic inputs and outputs. After learning, input
strength (black) is anti-correlated with input magnitude of a neuron in the pattern and
output strength (red) is correlated. Error bars = ± s.e.m.

minates learning, because as spike-time differences between neurons approach zero,

there is no net synaptic change (simplified in our model as zero synaptic change for

∆t < 1.5 ms). When the external input is removed, the complementary synaptic in-

put distribution lead to a reversal in firing order from the input pattern (see Figure

4.2A in previous section).

4.4.5 Resonance with subthreshold oscillations facilitates sequence learning and re-
play

Next I investigated whether we can use the observed resonance shifts to store se-

quential neuronal activation to model the phenomenon of sequential replay following

experience [110]. Sequences were generated by delivering a slowly varying current

to sequentially activate subsets of neurons (Fig 4.6A; solid lines), with each group

resonating with the oscillating current in turn. This current is to model the prefer-

ential activation of subpopulations of place cells as an animal traverses a series of

spatial locations. The asymmetry in its shape is to model the forward approach of

the animal to a given location. It also provides temporal input relationships between

neurons, to strengthen connections between neurons activated in a prior location and
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those activated in the current location. During the course of sequence presentation,

groups of neurons display dynamic phase relationships (Fig 4.6B & C), where neu-

rons that are highly activated fire earlier. For a single group, during the rising phase

of activation, the firing phase will move earlier for each cycle of the oscillation (i.e.

firing phase precession is observed). Between groups, those which are at peak acti-

vation will fire at earlier phases than less-activated groups. These phenomena result

from the relationship between activation and firing phase (Fig 4.6D) and the result

of the input dependent resonance shift (Fig 4.1A). The activation sequences were

presented to the network 10 times, during which synapses were allowed to evolve

using the same STDP-based learning rule as before.

After this learning phase, the sequence can be reproduced in both the forward (Fig

4.7B) and reverse directions (Fig 4.7A). Both types of replay occur under different

dynamical conditions. Reverse replay occurs when the whole network is depolarized

to resonate with the oscillating input, but all neurons are activated to the same

extent (i.e., each neuron receives the same D.C. input). This is due to the fact that

neuronal groups in the end of the sequence receive larger overall input than groups

activated at the beginning due to asymmetry in connection strengths. This results in

an earlier phase of activation when the network resonates with the oscillatory current.

In contrast, forward sequential replay occurs when the network is driven by external

noise, in the absence of an oscillation. The neurons which fire early in the sequence

subsequently depolarize neurons at the adjacent location, making them more prone

to fire. Summary data is shown in Figure 4.7C for reverse replay firing phase among

the 5 groups. During reverse replay, groups activated earlier in the sequence reliably

fire at a later phase of the oscillation (red trace). Without any learning (i.e., without

STDP), groups generally fire at the same phase of the oscillation (black trace).
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Figure 4.6: Sequential activation of network subgroups leads to phase precession though
time. (A) Networks were sequentially activated by a slowly varying depolarizing current
delivered to subsets of neurons (solid lines; color indicates group). Spiking activity of
each group is represented by the raster plots of different colors. Neurons are sorted on
the y-axis based on their lattice location, such that neurons closer on the y-axis are
more likely to be connected. (B & C) At the transition between the activation of two
groups phase order changes so that the neurons receiving the highest activation always
fire at an earlier phase, leading to a phase precession though time. This is shown in
relation to the (B) activation of the groups and (C) with reference to the oscillation.
(D) The activation versus phase relationship shows that neurons fire earlier and with
less variability with more depolarizing input. Error bars = ± s.e.m.
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During forward replay, the feed-forwardness of the intergroup connections dominate.

The original firing order of the groups is reproduced, and early groups fire before

late groups (Fig 4.7D; red trace).

Sequential learning leads to connections being strengthened in the same direction

of the sequence (feedforward) and weakens connections in the reverse (feedback).

Mean synaptic weights between groups show strengthened connections in the di-

rection of the sequence and weakened connections in reverse (Fig 4.7E). This is

quantified for the entire network by the direction index which is

G−1∑
i=0

wi,i+1 − wi+1,i/
G−1∑
i=0

wi,i+1 + wi+1,i,(4.6)

where wi,i+1, is the mean synaptic weight of connections between groups (Fig 4.7F).

Critically, the feed-forwardness of the connections varies between groups, and in-

creases with every sequence presentation.

4.4.6 Functional network structure emerges in the theta band

I next sought to compare the behavior of simulated networks with experimentally

observed pattern formation in the in vivo networks. Information representation and

subsequent encoding using STDP type learning rules, require stable spike time rela-

tionships. In the model resonance with periodic input leads to stable spike-timing

phase relationships. To quantify this effect I measure functional network connec-

tivity and stability of the observed functional relationships using metrics that were

developed and validated [126] and compare it to results of the same analysis on

experimental data.

In networks driven by oscillatory input (a 0.3 µA/cm2 amplitude sine wave with

a 0.3 µA/cm2 DC offset) and background noise, oscillatory input leads to highly

organized functional network structure between 4 - 10 Hz (Fig 4.8). I quantified
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Figure 4.7: Learned sequences can be replayed in both the forward and reverse direc-
tions. After a sequence is learned, (A) reverse replay occurs when a network is driven
by an oscillation and (B) forward when the network is driven by noise. Raster plots
follow the same organization as Figure 4.6. (C & D) The firing relationships between
between groups is stable across cycles and different from groups without learning. (E)
Synaptic connections between groups encode the sequence direction between groups,
while weakening the reverse direction. (F) The directionality of intergroup connections
emerges gradually after repeated sequence presentations, with increasing variations be-
tween groups. Error bars = ± s.e.m.
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functional connectivity in three ways: spike-LFP coherence, mean Average Minimum

Difference (AMD) z-score, and functional network stability [126]. Spike-LFP coher-

ence, which represents the reliability of the time of spikes within the LFP oscillation

across the entire network, shows a noise dependent resonance effect for stimulation

between 3 and 13 Hz (Fig 4.8A). AMD z-score and functional network stability are

related measures that are based on the pairwise relationships between spike times

of neurons across the network. The average significance (z-score) of AMD measures

between neurons shows a narrow resonance effect between 4 and 10 Hz with a peak

effect at 6 Hz which depends on the level of background noise (Fig 4.8B). Functional

network stability, which captures how similar AMD z-scores are across time and

reports the stability of spike-time relationships across pairs of neurons, displays a

similarly narrow resonance effect between 4 - 10 Hz, but maintains a near maximal

value throughout this band (Fig 4.8C). I compare these results to the ones obtained

during optogenetic stimulation in vivo hippocampal networks [120]. Rhythmic stim-

ulation of parvalbumin-expressing (PV+) interneurons in PV::ChR2 transgenic mice

was used to ensure that principle cells within the network were received subthresh-

old periodic inhibitory stimulation. Rhythmic optogenetic stimulation of PV+ in-

terneurons leads to significant increases in both spike-LFP coherence and functional

network stability for frequencies between 4-10 Hz among the principle cells within

the network (Fig 4.8D). This suggests that in vivo CA1 hippocampal network stably

organizes its firing activity within resonant frequency band of principal cells, while

such organization is not observed when oscillatory drive is outside of this range.
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Figure 4.8: Resonating networks have organized functional structure over a narrow fre-
quency band. Theta band resonance leads to highly organized functional network
structure. In simulated networks spike-LFP coherence (A), mean AMD z-score (B),
and functional network stability (C) all dramatically increase between 4-10 Hz. This
effect is robust to noise, which is indicate by line color. (D) In vivo optogenetic stim-
ulation of hippocampal PV+ neurons lead to similar increases in spike-LFP coherence
and functional network stability at these frequencies. Error bars = ± s.e.m.
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4.5 Discussion

I demonstrated in a biophysical model that shifting resonances facilitate learning

of static and sequential patterns in neural networks. Our model combines subthresh-

old activation of neurons by stable and oscillating currents which leads to firing in

a narrow frequency band. The firing rate resonance of this model neurons displays

an input dependent broadening which allows for selective activation of subsets of

neurons within a network. The resonance effect also leads to detailed mapping of

a firing phase versus input relationship beneficial for the encoding of patterns into

synaptic weights, and for the autonomous termination of learning. The resonant ef-

fect at the single neuron level leads to the emergence of highly organized spike-time

relationships at the theta band which was also shown in vivo experiments.

The input-dependent broadening of the resonance curve in firing rate (Fig 4.1)

allows for selective activation of subsets of neurons within a network with increasing

input frequency as has been demonstrated in other computational models indicating

this is a general property of neural networks with resonance [119]. This provides a

mechanism for networks to change representations by shifting the pattern of input

strengths, or alternatively, by modulation of the oscillatory input frequency. Such a

mechanism would operate similarly for both externally generated (i.e. sensory input)

and internal (i.e. stored representations within synapses) inputs.

The mechanism described here can simultaneously promote both forward and

reverse replay of recently-learned sequences in neural networks, consistent with prior

reports of replayed patterns in both directions, across even short intervals of in

vivo recording [127]. The reverse firing phase relationship and learning saturation

seen in our external pattern simulations together provide a plausible mechanism for



84

Figure 4.9: The model proposes a mechanism for the generation of reverse replay. Re-
verse replay due to how an input pattern imposes a phase procession of neuron firing
due with respect to the oscillation. As the network learns the pattern inputs to weakly
excited neurons are strengthened while those to highly excited neurons are weakened.
When the pattern is removed inputs from synaptic connections dominate and the reverse
mapping of synaptic weights leads to reverse reactivation.

the generation of reverse replay events in vivo (Fig 4.9). This mechanism relies on

the fact that neurons with high input fire at early phases of oscillatory drive when

in resonance. Before any synaptic change occurs, the firing phase is governed by

the distribution of the external inputs the neurons receive. As learning progresses,

neurons with the lowest external input strengthen their synaptic inputs more than

the rest of the population, while highly activated neurons do the opposite, as shown

in Figure 4.5. The emerging pattern of synaptic connectivity is complementary to the

input pattern, which leads to all neurons firing at the same phase (i.e., in synchrony).

Synchronous firing leads to no net synaptic change and thus terminates learning. As

the complimentary input pattern is now represented within synaptic weights, in the

absence of external input, neurons fire in the reverse order.
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The mechanism for the replay of the reversed pattern is not dependent on the

encoding frequency. Figure 4.3 shows that a pattern can be encoded in one frequency

band (6 Hz) and replayed at another (60 Hz), provided the neurons within the

network can resonate at both frequencies. Such a mechanism could explain why

sequential place cell activation during exploration (usually in the context of theta

oscillations) can lead to subsequent replay events occurring in the context of higher-

frequency oscillations, such a sharp-wave ripples [115]. Here I use separate models

to generate spiking responses to inputs of varying frequencies, but a neuron with

resonances in both bands would behave in a similar manner. The importance of this

frequency generality is that the encoding and replay of patterns in neural firing often

occur when different frequencies are dominating the LFP. For example, sequences

of place cell activation, an any synaptic encoding, occur when theta is the most

dominant frequency band in the LFP, but instances of replay occur during sharp-

wave ripples where gamma (40-100 Hz) is most prominent [110, 115].

Learning through STDP requires either saturation or compensatory plasticity

mechanisms to counteract the inherent positive feedback effects on firing rate, leading

to network instability. Previous implementations of STDP have employed boundaries

on synaptic weights, dynamic asymmetries between potentiation and depression, or

renormalization of synaptic weights to preserve firing rates (reviewed in [128]). This

model proposes an alternative mode for preventing instability (Fig 4.4). As the input

pattern is encoded into synaptic weights and the firing phase distribution becomes

more uniform, changes in synaptic weights decrease and stop due to features of

the STDP curve around ∆t = 0, which is a reasonable fit to experimental data

[123]. While many plasticity mechanisms exist both at the cellular and network

level, the current mechanism provides an elegant solution to the question of when
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neural networks terminate learning of input patterns.

I have shown experimentally that predictions of this model agree with observed,

network wide pattern formation in hippocampal networks when channelrhodopsin-

expressing PV+ interneurons are rhythmically stimulated [120]. Within the hip-

pocampus, functional network structure emerges and stabilizes during stimulation in

the theta band (4-10 Hz), but not outside of it. Using several methods of measuring

functional connectivity within networks, I found a robust resonance effect in the for-

mation of stable network structure (Fig 4.8). This effect is due to the organizing the

firing of the network around the phase of the oscillatory input. The fact that this

effect is reproducible in various neuronal models [118] and also in vivo suggests that

it may be a general feature of activity is organized in neural networks, to optimize

encoding of input patterns.

The input-dependent organization of network activity facilitated by resonance

provides a network-level substrate for sequential learning (Figs 4.6 & 4.7). When

subsets of neurons have overlapping activation curves the relationship between input

and firing phase creates spike-time differences that are optimized for encoding the

sequence order. One requirement for this result is that the activation of neurons

needs to be skewed in time - in other words, repolarization occurs more rapidly than

depolarization (Fig 4.6A). This ensures that connections strengthened by a balanced

STDP regime are feedforward with respect to the sequence order, while feedback

connections are weakened. Within the context of hippocampal place cells sequences,

there is some evidence for this required skewness in activation [103, 129], though

in an experience dependent manner [130]. Replay is the most direct readout of

sequential learning. In the hippocampus, replay of place cell sequences occur both

in the forward and reverse direction [114, 103, 115, 117]. These replay modes are
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represented in different proportions across behavioral states, with forward replay

being more prevalent during sleep [131, 117]. In our model, forward replay occurs

when a network is driven by noise (i.e. randomly activated) and reverse occurs when

the network is reactivated by oscillating input (Fig 4.7C-F).

Hippocampal place cells show a theta phase precession in their firing, as an animal

approaches a location neurons which code for a near-by place will fire in the troughs

of the theta oscillation while those which code for a far place fire near the peak

[11]. This phenomenon has also been shown in the entorhinal cortex [112] and in

the ventral striatum [113]. In this model neurons in resonance with an oscillating

rhythm they show a similar firing versus phase relationship.

Beyond the context of place cells, this model demonstrates how a network can

translate information between the two main modes of neural coding rate [2] and

phase [7, 8, 9, 10] coding. Both rate coding, where stimuli are represented by the

firing rate of neurons, and phase coding, where information is represented in the time

differences between spikes, are observed in nervous systems. Rate coding is simple

and reliable, however, it is limited in its capacity for dynamic pattern separation

[5]. These results provide a mechanism for the translation between these two coding

schemes, and allows for networks to switch through neuromodulation [119]. Whether

the mechanism described here mediates information encoding in the brain remains

an open question. However, our present data suggest that such a mechanism has

explanatory value for many of the observed in vivo phenomena surrounding learning.

4.6 Supporting Information

4.6.1 The phase width of the pattern is determined by the range of inputs

When networks are in resonance with the oscillatory drive, there is a dispersion

of firing phases as differing external input is delivered to neurons across the network.
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Figure 4.10: Dispersion of firing phase is dependent on the spread of depolarizing input.

The depolarization dependent broadening of the resonance curve (Fig 4.1B) is re-

sponsible for this phase relationship and the range of phases that the neurons in the

network fire depends of the range of DC input distribution (Fig 4.10). I performed

simulations to measure the dependence of the phase range on the input range. These

simulations were performed without learning (Alearn = 0) and for a disconnected

network (σi,j = 0 for all i, j). To maintain a subthreshold regime the minimum

boundary for the DC distribution was adjusted so that the maximum input to any

cell was never greater than 1.3 µA/cm2. Oscillations were 0.4 µA/cm2 in amplitude

and had frequencies ranging between 4 and 8 Hz. Phases for each neuron were

averaged over 10s.

4.6.2 Superthreshold input disrupts firing phase relationship and pattern storage

To establish that neuronal resonance (in response to subthreshold input) is critical

for formation of the observed phase relationships, I performed analogous simulation

to that shown in Figure 4.2 but for superthreshold input. Superthreshold input dis-

rupts the relationship between depolarization and phase that was seen in response

to subthreshold input (Fig 4.11A). When the relationship between depolarization
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and the phase is no longer reliable the network is not able to map the input pattern

to the synapses, and replay of the reverse pattern is not observed (Fig 4.11B). Su-

perthreshold data was obtained using a 6 Hz, 0.2 µA/cm2 amplitude oscillate and

DC inputs ranging from 1.3 to 1.8 µA/cm2.

To further clarify this point I investigated network response to combinations of

3 parameters: input type (i.e. sub vs superthreshold), presence of oscillatory drive

and cell resonant properties (Table 4.1). The resonant properties of the Ks model

depend on the parameter gKs and for the input coding mechanism described here, net

input to the neuron must be subthreshold (i.e. the peak input magnitude would not

elicit spiking if applied as direct current). As shown in Figure 4.2, a spiking pattern

induced by external input to the network is reversed when replayed from synaptic

weights, leading to a negative correlation between the firing phase of a neuron in the

input pattern and its firing phase during replay (rphase < 0). As summarized in Table

4.1, the only condition in the model that will successfully yield a pattern reversal

is subthreshold oscillatory input with a gKs = 1.5 mS/cm2. Regardless of gKs

superthreshold input does not yield a pattern reversal and only leads to phase locking

with the oscillatory drive when gKs is high . fpattern reports the average firing rate of

the network before learning, but with an external input pattern. Subthreshold input

does not elicit network activity when gKs = 0 mS/cm2, but only with a oscillatory

drive for gKs = 1.5 mS/cm2. Note that because of the the form of the oscillation,

Acos(2πfosct/1000), when fosc is set to zero all neurons receive the same maximal

input as though there was an oscillation present. All simulations were performed

under the same conditions as for the data in Figure 4.2 with 0.3 µA/cm2 oscillation

and ranges of DC inputs as listed in Table 4.1. The variation in DC currents is

necessitated by changes in input resistance and threshold as gKs changes.
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Figure 4.11: Superthreshold input disrupts firing phase versus input relationship. (A)
Raster plots of the relationship between the phase of firing and the external input to
the neuron. Black lines mark the trace of the oscillating input and the color of the
rasters shows the DC input to the given cell. Cells are sorted by their input rank. Sub-
panels in A depict (from the left) neuronal activity: before DC input distribution is
applied (Pre), with DC input distribution (Input), after learning has saturated (Post),
after learning/ no DC distribution (Replay 1), and after a second period of learning
with no DC distribution (Replay 2). (B) The relationship between firing phase and
DC input varies but is not correlated for different epochs of the simulation.
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Table 4.1: Learning depends on neuronal resonance and subthreshold input.Variation of
gKs, input level, and the presence of an oscillation shows that spiking resonance in
response to subthreshold input is critical for proper pattern encoding.

gKs
(mS/cm2)

Oscillation
(Y/N)

Super/ Sub
(↑/ ↓)

DC range
(µA/cm2)

rphase
(±s.e.m.)

fpattern, Hz
(±s.e.m.)

1.5 Y ↑ [1.50,1.65] -0.16 ±0.03 6.52 ±0.03
1.5 N ↑ [1.50, 1.65] -0.02 ±0.02 12.02 ±0.01
1.5 Y ↓ [0.60, 0.75] -0.93 ±2.4× 10−3 6.0 ± 0.0
1.5 N ↓ [0.60, 0.75] N/A 0.0 ± 0.0
0.0 Y ↑ [-0.15, 0.00] −8.1× 10−3 ±0.03 13.86 ± 0.10
0.0 N ↑ [-0.15, 0.00] 0.04 ± 0.03 35.61 ± 0.07
0.0 Y ↓ [-0.60, -0.45] N/A 0.0 ± 0.0
0.0 N ↓ [-0.60, -0.45] N/A 0.0 ± 0.0

4.6.3 Hyperpolarizing or complex oscillations induce resonance and support pattern
learning

To show that periodic stimulation can induce resonant behavior regardless of

whether its depolarizing or hyperpolarizing we performed a simulation where a net-

work mapped and replayed an input pattern (similar to the simulation in Figure

4.2), but with an oscillation of the form Aosc(cos(2πfosct)−1). This ensured that the

oscillation was always hyperpolarizing. With this oscillatory drive, the network was

able to produce a stable phase versus input relationship, store, and replay an input

pattern in a similar manner to the normal oscillation (Fig 4.12). The oscillation used

here had a frequency of 6 Hz and amplitude of 0.35 µA/cm2. The DC inputs ranged

between 0.6 and 0.85 µA/cm2.

The LFP is a complex waveform containing oscillations across a wide band of

frequencies. To test how robust this learning mechanism is to complex oscilla-

tory input I delivered an oscillation of the form Aosc,1cos(2πfosc,1t)
2cos(2πfosc,2t) +

Aosc,2cos(2πfosc,3t). Aosc,1 and Aosc,2 were set to 0.25 and 1 µA/cm2 respectively

and the frequencies were fosc,1 = 3, fosc,2 = 120, and fosc,3 = 6 Hz. This oscillation

yielded a 6 Hz fundamental frequency with a faster 120 Hz oscillation on the peaks

(Fig 4.13A). Resonance induced by this oscillation still enabled mapping of the input
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Figure 4.12: Resonance and phase mapping mechanism can be induced by hyperpolar-
izing oscillations. (A) Raster plots show the relationship between the phase of firing
and the external input to the neuron. Black lines depict the trace of the oscillating
input and the color of the rasters mark the DC input value to the given cell. Cells
are sorted by their input rank. Sub-panels in A correspond to the Pre, Input, Post,
Replay 1, Replay 2 periods. (B) The relationship between firing phase and DC in-
put varies between negatively, positively, and not correlated for different epochs of
the simulation. (C) Transitioning from the input-pattern dependent firing phases to
synchronous firing is gradual. Lines trace the firing phase of 12 neurons with varying
input magnitudes across time. The horizontal bars above indicate when the external
input and learning are present (white -input but no learning; black - learning and
input, gray - no input and no learning).
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pattern to the synaptic weights leading the the replay of the reversed pattern (Fig

4.13B & C). DC inputs for these simulations ranged between -0.25 and 0.25 µA/cm2

4.6.4 Gamma band resonance in the Hodgkin-Huxley model

To show that the mechanism of pattern storage and replay does not depend on the

oscillatory drive frequency with which the pattern was encoded, I used the HH model

which is resonance in the gamma (40-90 Hz) band. Figure 4.14 shows the spiking

resonance curves for a HH neuron receiving a 1.5 µA/cm2 oscillation of varying

frequencies.

Synaptic weights encoding a pattern in the Ks model at 6 Hz were replayed at

60 Hz using the HH model (Fig 4.3). Due to differences in the input resistance

and excitability between the two models a synaptic multiple, Msyn, parameter was

used to scale all synaptic conductances in the network. Figure 4.15 shows that the

relationship between the DC input a neuron received while encoding and its firing

phase during replay is reproduced for Msyn between 10 and 30.
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Figure 4.13: Resonance and phase mapping mechanism are robust to oscillations with
complex waveforms. (A & B) A complex sinusoid composed of 3 Hz, 6 Hz, and
120 Hz oscillations was delivered to the network and induced cyclic firing. The phase
order of the cells is determined by their DC input level (shown by color and position
on the y-axis). Sub-panels in B correspond to the Pre, Input, Post, Replay 1, Replay
2 periods. (C) The relationship between firing phase and DC input varies between
negatively, positively, and not correlated for different epochs of the simulation. (D)
Transitioning from the input-pattern dependent firing phases to synchronous firing is
gradual. Lines trace the firing phase of 12 neurons with varying input magnitudes
across time. The horizontal bars above indicate when the external input and learning
are present (white -input but no learning; black - learning and input, gray - no input
and no learning).
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Figure 4.14: The Hodgkin-Huxley model shows spiking resonance in the gamma range.
The broadness of the resonance curve is modulated by depolarizing input.

Figure 4.15: Range synaptic multiples for transferring stored information between HH
and Ks models. Resonance-induced phase versus input relationship is stable over a
range of synaptic multiples, Msyn, in the HH model.



CHAPTER V

Conclusion

5.1 Summary

Chapters II and III set up a three state model of network dynamics and infor-

mation representation across the range of Acetylcholine (ACh) (Fig 5.1). Between

the highest levels of ACh and moderate levels is a transition between stationary and

moving dynamics (Fig 2.5), while synchrony emerges for very low levels of ACh (Fig

2.4). Similarly, destabilization of weak memories occurs as ACh is reduced to mod-

erate levels and destabilization of all memories occurs for the lowest ACh levels (Fig

3.2).

Figure 5.1 lays out these three states and the dynamical predictions the model

yields. High ACh (low ḡKs/ waking) produces stable spatially localized firing in the

network. Firing within this bump is asynchronous and at a high rate. In this state

the location of the bump is highly sensitive to attractors formed by enhanced recur-

rent excitation as well as external input. This state is likely optimized for forming

and strengthening new attractors from external input. Moderate ACh (moderate

ḡKs/ Rapid Eye Movement (REM)) the bump location is varied, either forming slow

periodic waves or drifting between attractors. In this state only strong attractors

are stable for an extended time. At the lowest extreme of ACh levels (high ḡKs/

96
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Non-REM (NREM)) periodic traveling waves of firing characterize the dynamics. In

this state there is a high degree of spike synchrony within the bump and no stored

memories are stable.

Figure 5.1: Three functional states resulting from cholinergic modulation. Summary of
ACh modulation results. The model parameter, ḡKs, is inversely proportional to ACh.
Dynamical predictions derived from the model are mapped to the behavioral states
NREM, REM, and Wake.

In Chapter IV the resonating quality of neurons in the low ACh condition was

highlighted as the physical property that allows for proper encoding of an external

input pattern and storage of that pattern within the synaptic weights of the network.

When a pattern of depolarizing input is applied to the networks, with a subthreshold

oscillation, neurons with the highest input fire at earliest phases of the oscillation

and the remainder of the network arranges firing phase by input magnitude. This

phase versus input relationship allows synapses to store a complimentary pattern
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to the synaptic weights. When mapping the pattern to the synapses the disper-

sion of firing phase slowly disappears, at which point learning terminates naturally.

During retrieval of the pattern, the phase relationship imposed by the original pat-

tern is reversed. This model of memory storage reproduces several features of the

hippocampal place cell system, such as theta-phase precession and reverse replay.

Importantly, the subthreshold resonance learning model provides an important

demonstration of how neural networks can translate rate coded information to phase

coded information. Neuronal membranes act as low-pass filters. If an external set

of neurons are rate coding information, the inputs they send to our focal network

would largely be steady state depolarizing inputs like those employed in the model.

Subthreshold resonance provides a mechanism to reliably translate this firing rate

information to phase information.

5.2 Future Directions

5.2.1 The role of neuromodulation in the storage and consolidation of network level
memory

To extend upon the work Chapters II and III presented on how changing levels

of ACh impact information processing at the network level the next step is to add

synaptic plasticity so that memories can be encoded, recalled, and then consolidated.

It is well known that sleep is critical for the proper function of memory [132]. ACh

is dramatically modulated across the sleep-wake cycle; highest during waking, in-

termediate during REM, and low during NREM [13]. Synaptic plasticity combined

with the changes in spatiotemporal spiking patterns can provide insights into how

memories are stored as attractors and how cycling between wake, REM, and NREM

consolidate memories.

There are two competing hypotheses on the nature of sleep’s role in memory. The
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synaptic homeostasis hypothesis states that sleep is used to uniformly reduce the

synaptic strength in the network [60]. This reduction would offset the strengthening

that occurs as experience is stored during the day. This is supported by the reduction

in slow wave power that occurs during sleep [38]. The second hypothesis, synaptic

embossing hypothesis, builds upon this by suggesting that replay during REM sleep

strengthens recent memories while NREM sleep renormalizes synaptic strength [61],

though recently it has been suggested that forgetting is equally important during

sleep [133].

One complicating factor when considering a model of neuromodulation during

sleep is that ACh is not the only neuromodulator that cycles during sleep-wake

cycles. Importantly, Norepinepherine (NE) also decreases as an animal enters sleep,

though it is equally low during REM and NREM [134]. ACh and NE work in

concert to shape learning through synaptic plasticity [135]. As seen in Chapter IV,

synaptic plasticity has two sides, Long-Term Potentiation (LTP) and Long-Term

Depression (LTD), that act according to the relative spike timing between a pair of

connected neurons. In pairs of cortical pyramidal cells the amount of potentiation

is controlled by the level of NE in the network, while ACh controls the amount of

depression. This leads to an Spike Timing-Dependent Plasticity (STDP) envelope

that is unique across wake, REM, and NREM.

I have begun developing a fully plastic model of sleep state dependent ACh/ NE

modulation in cortical networks. Paired with the dynamic effects of ACh neuromod-

ulation the magnitude potentiation and depression is changed across the sleep state

according to [135] (Fig 5.2). In the waking state STDP is biased to LTP. In NREM,

both ACh and NE are low which leads to an equal reduction in both LTP and LTD.

In REM however, NE is low and ACh is high which results in STDP biased toward
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LTD.

Figure 5.2: Modulation of the SDTP envelope across the sleep-wake cycle. During wake
the STDP envelope is biased toward LTP (red), during NREM both LTP and LTD are
equally reduced as ACh and NE are both low. During REM the learning rule is biased
to LTD (black)

For simulations spatial attractors were formed by stimulating an area in the net-

work with a radius of 5 neurons. A total of six points were encoded to the network

for 250 ms each under waking conditions (Fig 5.2). This stimulation protocol formed

discrete spatial attractors (Fig 5.3). Over the next 75 seconds of simulation time 5

cycles of NREM to REM sleep were simulated (20% of each cycle was spent in REM).

After completion of the sleep cycle the set of point memories were consolidated into

a path attractor connecting the stored points. The peak synaptic strength is not sig-

nificantly altered by the sleep cycle, but the spatial pattern of where neurons direct

synaptic output to is modified.

Clearly there is significantly more to be done with this model. First the diversity

in STDP shape requires a systematic understanding of how bias toward either LTP

or LTD affects forming stabile attractors within the network. For a localized bump
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Figure 5.3: Consolidation of point memories during sleep. Prior to the sleep simulation six
point memories were encoded under waking conditions for 250 ms each. During the sleep
simulation the stable point attractors are connected into a path attractor which yields
a sequential reactivation of the point memories. Color plots show the total excitatory
input conductance for each excitatory neuron in the network. Vector plots show the
average direction of synaptic output for each neuron. The size and direction of the
vector indicates the direction of that neurons strongest outputs. No arrow indicates
outputs are equal in all directions.

of activity to form a stable attractor through synaptic plasticity synapses need to be

strengthened toward the fast neurons at the center of bump and weakened toward

the low firing neurons at the edge. This will direct synaptic output to the center of

the bump and stabilize the memory. The STDP conditions that support this need to

be identified and a mechanistic explanation developed. Detailed investigation of how

phase of the sleep cycle contribute to consolidating point attractors is still need as

well. With these caveats in mind, this model has promise to add information storage

roles for each of the three states outlined in Figure 5.1.
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5.2.2 Dynamic changes in ACh facilitate switching between rate coding and phase
coding

Using the Ks model we have shown that neuromodulation of the Muscarinic Cur-

rent (IM) can switch networks from a rate coding regime when ACh is high (ḡKs)

to an oscillatory phase coding state when ACh is low (ḡKs is high). This neuronal

model recreates biophysical changes displayed in neurons when the muscarinic system

is activated, including gain modulation, Phase Response Curve (PRC) modulation,

and Spike-Frequency Adaptation (SFA) modulation (Fig 1.1). As ACh levels are

continuously changed, these three properties are inflected over different ranges of the

maximal conductance of IM , ḡKs.

It is important to note that all three of these properties are important for switch-

ing from a rate to a phase coding regime. For rate coding in high ACh conditions,

high gain is beneficial in widening the firing rate distribution for a given range of

synaptic inputs. Low SFA allows neurons to persist in firing to maintain a rep-

resentation in frequency space and low synchrony from a Type 1 PRC prevents a

reduction in frequency variation. For phase coding under low ACh conditions, low

gain reduces frequency variation in the network, while a Type 2 PRC and high SFA

induce increased periodicity allowing for phase differences to persist.

In dynamical systems theory it is well known that PRC type determines whether

coupled oscillators will synchronize and this has been used as one of the dynamical

mechanisms to describe the emergence of synchrony in neural networks. The PRC

provides an elegant explanation for why networks of Type 2 neurons synchronize,

while those with Type 1 neurons do not. Type 1 neurons can only shorten the period

in response to synaptic input leading to unstable synchrony if it ever emerges. On the

other hand, Type 2 neurons can either elongate or shorten their period which will not
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only push networks to synchronize spiking, but also stabilize synchrony to noisy input

or perturbations. One limitation of this criteria is that the variance in frequencies be

small enough for synaptic mechanisms to lead to the emergence of synchrony. When

this criteria is not met, and network connectivity permits, networks will break into

synchronized clusters of neurons with similar frequencies [136]. Thus, reductions in

ACh level provide two dynamical substrates for phase coding: 1) near uniformity in

firing rates across the network, and 2) the ability of neurons to collectively organize

into network-wide oscillatory behavior.

This modulation of frequency variance and phase locking by ACh provides a

basis for different coding schemes (Fig 5.4). Across multiple network topolgies, high

ACh networks have high frequency variance and low phase locking (as measured by

Mean Phase Coherence (MPC)). As ACh is reduced ( ḡKs is increased), frequencies

become more uniform, and phase locking increases. These two effects on the character

of network dynamics provide a substrate for each coding scheme at each pole of

cholinergic modulation. High ACh networks are primed for rate coding and low ACh

networks are primed for phase coding.

Directly quantifying the dependence of a network firing pattern on a particular

network structure for networks of the same connection topology scheme would pro-

vide strong evidence that Type 1 networks have rate coding firing patterns that reflect

a given pattern of external inputs while Type 2 firing patterns provide oscillatory

phase coding dynamics.

That the transition from high rate varience to phase locked firing patterns occurs

over the ḡKs range when the gain of the neuron (f/I curve) is significantly modulated

points to the importance of this property for switching coding regimes. When a

network of high gain neurons are connected, slight variations in synaptic input will
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Figure 5.4: Cholinergic modulation of phase locking and frequency distribution. The
transition from high frequency variance to high phase locking across three network
topologies shows how cholinergic modulation can change coding principles. High ACh
networks have highly varied firing rates as measured by the coefficient of variation.
Firing rates quickly become more uniform as ḡKs increases. Conversely, MPC (phase
locking) is high for low ACh networks. (A) random networks, (B) small world networks,
(C) lateral inhibition networks. Error bars indicate s.e.m.

result in higher firing rate differences between neurons. This wide, input dependent,

firing rate distribution will drive the network firing rate distribution and be repro-

ducible for a given set of inputs or a given network structure. As gain is reduced,

frequency differences between neurons will be reduced allowing neuronal properties
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such as SFA and PRC effects to impact network dynamics in a significant way. For

example, it is well known that networks of periodic oscillators synchronize easier

when the frequency range is reduced and that large variance in frequencies promotes

the formation of discrete clusters of synchronization [137, 136, 138].

Spike initiation dynamics and the adaptation mechanics of neurons have been

suggested as being substrates for coding through integration or coincidence detection

[139, 140]. While both integrative and coincidence coding can exist with wide firing

rate distributions, phase coding relies on neurons being close in frequency while

high neuronal gain facilitates rate coding [141]. The importance of co-modulation

of neuronal gain and excitability type in transitioning a network from rate to phase

coding would be a novel and important result.

Gain modulation improves signal recognition in a variety of brain regions [142, 143,

144, 145]. In many cases gain modulation is attributed to fluctuations in synaptic

inputs and synaptic plasticity due to gain modulation being stimulus dependent [146,

147, 148]. But changes in ACh tone also change the gain response of neurons [149,

150, 151]. ACh release is increased when an animal is performing an attentional task

and its release is correlated with task performance [152, 153, 154]. These results point

to cholinergic modulation priming neuronal networks to respond with an appropriate

rate code to a given cue by increasing the gain of the neurons. This also indicates

that rate coding may be better at facilitating representations of sensory information

than phase coding.

The Type 2 dynamics of the low ACh state support robust synchronized bursting

required for oscillations in population activity [25, 26, 28]. ACh release is important

for the generation of the theta rhythm in the hippocampus [155, 30, 156]. But a

temporal analysis of both ACh release and theta band power shows that peaks in
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ACh release lag behind increases in theta power [157]. This suggests that ACh

release is actually working to disrupt synchrony within the theta oscillation. Further

evidence for the role ACh release could play in reducing synchronous firing is seen

in its suppression of sharp wave ripples [30].

ACh release is very closely related to the sleep-wake cycle. ACh release is highest

during wakefulness and REM sleep and lower during non-REM (NREM) sleep [13].

When the Ks model simulates these levels of ACh it recreates similar changes in

spiking dynamics that are seen across these states [34]. Additionally, the effects on

synaptic plasticity, namely high ACh leads to increases in average synaptic weights

and low ACh decreases them, support the synaptic homeostasis hypothesis [60, 31],

but at the same time the proposed shift in the coding schemes paints more com-

plex picture of specific roles of sleep cycles. The widening of neuronal firing rate

distributions across sleep-wake states also indicates that gain modulation by ACh is

shaping network activity [158]. The role of ACh level in sleep dependent memory

consolidation and synaptic homeostasis suggests that phase coding is optimized for

the storage of information. This is supported by the role neuronal resonances play

in network level pattern storage [36].

ACh is a neuromodulator that is critical for cognitive processes throughout the

brain. The biophysical changes in neural excitability that IM governs lead to signifi-

cant changes in the spiking and oscillatory processes in the brain. The effects of gain

modulation in switching between circuit activity that has high or low dependence on

network structure may be central to the role of ACh role in information processing at

the network level. Additionally, the dynamic nature of ACh release could allow for

a stable network to coordinate information processing functions across various brain

states. While ACh has other pathways of neuromodulation, notably through the
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nicotinic receptor which directly depolarizes neurons [72], the results presented here

show that the muscarinic effects of changing ACh levels can change coding modes to

a large degree.
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[27] Groleau M, Kang JI, Huppé-Gourgues F, Vaucher E (2015) Distribution and effects of the
muscarinic receptor subtypes in the primary visual cortex. Frontiers in Synaptic Neuroscience
7:1–9.

[28] Knudstrup S, Zochowski M, Booth V (2016) Network burst dynamics under heterogeneous
cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity.
European Journal of Neuroscience 43(10):1321–1339.

[29] Mofakham S, Fink CG, Booth V, Zochowski M (2016) Interplay between excitability type and
distributions of neuronal connectivity determines neuronal network synchronization. Physical
Review E 94(4):042427.

[30] Hasselmo ME (2006) The role of acetylcholine in learning and memory. Current opinion in
neurobiology 16(6):710–715.

[31] Fink CG, Murphy GG, Booth V, Zochowski M (2013) A Dynamical Role for Acetylcholine in
Synaptic Renormalization. PLoS Computational Biology 9(3):e1002939.

[32] Renart A, Song P, Wang XJ (2003) Robust spatial working memory through homeostatic
synaptic scaling in heterogeneous cortical networks. Neuron 38(3):473–485.

[33] Zhang S, et al. (2014) Long-range and local circuits for top-down modulation of visual cortex
processing. Science 345(6197):660–665.

[34] Roach JP, Ben-Jacob E, Sander LM, Zochowski M (2015) Formation and Dynamics of Waves
in a Cortical Model of Cholinergic Modulation. PLoS Computational Biology 11(8):e1004449.



111

[35] Roach JP, Sander LM, Zochowski M (2016) Memory recall and spike-frequency adaptation.
Physical Review E 93(5):052307.

[36] Roach JP, et al. (2018) Resonance with subthreshold oscillatory drive organizes activity and
optimizes learning in neural networks. Proceedings of the National Academy of Sciences
115(13):E3017–E3025.

[37] Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside
neocortical neurons. Journal of Neurophysiology 85(5):1969–1985.

[38] Vyazovskiy VV, et al. (2009) Cortical Firing and Sleep Homeostasis. Neuron 63(6):865–878.

[39] Herrero JL, et al. (2008) Acetylcholine contributes through muscarinic receptors to attentional
modulation in V1. Nature 454(7208):1110–1114.

[40] Hasselmo ME, Sarter M (2010) Modes and Models of Forebrain Cholinergic Neuromodulation
of Cognition. Neuropsychopharmacology 36(1):52–73.

[41] Wimmer K, Nykamp DQ, Constantinidis C, Compte A (2014) Bump attractor dynamics in
prefrontal cortex explains behavioral precision in spatial working memory. Nature Neuro-
science 17(3):431–439.

[42] Huber R, et al. (2007) TMS-Induced Cortical Potentiation during Wakefulness Locally In-
creases Slow Wave Activity during Sleep. PLoS ONE 2(3):e276.

[43] Massimini M, et al. (2007) Triggering sleep slow waves by transcranial magnetic stimulation.
Proceedings of the National Academy of Sciences 104(20):8496–8501.

[44] Massimini M, Tononi G, Huber R (2009) Slow waves, synaptic plasticity and information pro-
cessing: insights from transcranial magnetic stimulation and high-density EEG experiments.
European Journal of Neuroscience 29(9):1761–1770.

[45] Aiken SP, Lampe BJ, Murphy PA, Brown BS (1995) Reduction of spike frequency adapta-
tion and blockade of M-current in rat CA1 pyramidal neurones by linopirdine (DuP 996), a
neurotransmitter release enhancer. British journal of pharmacology 115(7):1163–1168.

[46] Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annual Review of Neu-
roscience 27:419–451.

[47] Aton SJ, et al. (2013) Visual experience and subsequent sleep induce sequential plastic changes
in putative inhibitory and excitatory cortical neurons. Proceedings of the National Academy
of Sciences 110(8):3101–3106.

[48] Sahara S, Yanagawa Y, O’Leary DDM, Stevens CF (2012) The fraction of cortical GABAergic
neurons is constant from near the start of cortical neurogenesis to adulthood. Journal of
Neuroscience 32(14):4755–4761.

[49] Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Bio-
logical cybernetics 27(2):77–87.

[50] Bai L, Breen D (2008) Calculating Center of Mass in an Unbounded 2D Environment. Journal
of Graphics, GPU, and Game Tools 13(4):53–60.

[51] Schneider-Mizell CM, Parent JM, Ben-Jacob E, Zochowski M, Sander LM (2010) From net-
work structure to network reorganization: implications for adult neurogenesis. Physical Bi-
ology 7(4):046008.

[52] Kilpatrick ZP, Ermentrout B, Doiron B (2013) Optimizing Working Memory with Hetero-
geneity of Recurrent Cortical Excitation. Journal of neuroscience 33(48):18999–19011.



112

[53] Steriade M, Amzica F, Nuñez A (1993) Cholinergic and noradrenergic modulation of the slow
(approximately 0.3 Hz) oscillation in neocortical cells. Journal of Neurophysiology 70(4):1385–
1400.

[54] Baghdoyan HA, Lydic R (1999) M2 muscarinic receptor subtype in the feline medial pontine
reticular formation modulates the amount of rapid eye movement sleep. Sleep 22(7):835–847.

[55] Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The Sleep Slow Oscillation as a
Traveling Wave. Journal of Neuroscience 24(31):6862–6870.

[56] Barreiro AK, Shea-Brown E, Thilo EL (2010) Time scales of spike-train correlation for neural
oscillators with common drive. Physical Review E.

[57] Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA (2000) Visual discrimination task
improvement: A multi-step process occurring during sleep. Journal of cognitive neuroscience
12(2):246–254.

[58] Gais S, Mölle M, Helms K, Born J (2002) Learning-dependent increases in sleep spindle
density. Journal of Neuroscience 22(15):6830–6834.
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