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ABSTRACT

Observational studies are important for evaluating treatment effects, especially

when randomization of treatments is unethical or expensive. Without randomiza-

tion, valid inferences about treatment effects can only be drawn by controlling for

confounders. Propensity scores (PS) – the probability of treatment assignment as a

function of covariates – are often used to control for confounders. PS-based methods

are vulnerable to bias and inefficiency when outcome or propensity score models are

misspecified or there is limited overlap in the propensity score distributions between

treatment groups. In this dissertation, we develop new robust methods for estimat-

ing causal effects from observational studies and address two closely related topics on

causal inference – the problem of limited overlap and variable selection for propensity

score model.

In Chapter 2, we propose a robust multiple imputation based approach to causal

inference called Penalized Spline of Propensity Methods for Treatment Comparison

(PENCOMP). PENCOMP estimates causal effects by imputing missing potential

outcomes with flexible spline models, and draws inference based on imputed and

observed outcomes. Under the standard causal inference assumptions, PENCOMP

is doubly robust, that is, yields consistent estimates of causal effects if either the

propensity or the outcome model is correctly specified. Simulations suggest that it

tends to outperform doubly-robust marginal structural modeling, especially when the

weights are highly variable. We apply our method to the Multicenter AIDS Cohort

study (MACS) to estimate the short term effect of antiretroviral treatment on CD4

counts in HIV+ patients.
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In Chapter 3, we address the issue of limited overlap in the propensity score distri-

butions across treatment groups. We investigate appropriate restrictions of the causal

estimand, and compare alternative estimation methods, including various simple and

augmented inverse propensity weighting approaches, matching and PENCOMP. We

demonstrate the flexibility of PENCOMP for estimating different estimands. We

apply these methods to the MACS dataset to estimate the effects of antiretroviral

treatment on CD4 counts in HIV+ patients.

In Chapter 4, we consider variable selection techniques that seek to restrict pre-

dictors in the propensity model to true confounders, thus improving overlap in the

propensity distributions and increasing efficiency. We also propose a new version of

PENCOMP via bagging, which can be advantageous when the data are noisy. We

examine by simulation studies the impact of various variable selection techniques,

including an extension of the adaptive lasso, on inferences from PENCOMP and

weighting methods. We demonstrate our methods and variable selection techniques

using the MACS dataset.
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CHAPTER I

Introduction

Randomized experiments allow researchers to measure the impact of an interven-

tion on the outcome of interest since it can balance the covariate distributions across

treatment groups. Unfortunately, randomization is not always feasible or ethical. In

such cases, observational studies can provide some valuable information about the ef-

fectiveness of an intervention. However, without randomization, valid inference about

causal effects can only be drawn by controlling for confounders. In 1983, Rosenbaum

and Rubin introduced the idea of using propensity scores to estimate causal effects

from observational studies. Since then, propensity scores (PS) – the probability of

treatment assignment as a function of covariates – are often used. The propensity

score has the balancing property: conditional on the propensity score, the observed

covariates and treatment assignment are conditionally independent. The balancing

property of propensity score implies that adjusting for the propensity score can re-

move bias due to the observed covariates (Rosenbaum and Rubin, 1983).

Inference about causal effects involves speculation about what would have hap-

pended if a subject receives some other treatment that’s different from the assigned.

Suppose there are two treatments denoted as 1 or 0, a subject has both an outcome

under treatment 1 and an outcome under treatment 0. This describes the widely

adopted Rubin’s (1974) potential outcome framework in causal inference literature,
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which was first introduced by Neyman’s (1923). Potential outcomes are defined as

potentially observable outcomes under different treatments or exposure groups. In-

dividual causal effects are defined as comparisons of the potential outcomes for that

subject. However, only the potential outcome corresponding to the treatment actu-

ally assigned is observed for any subject. This is the fundamental problem of causal

inference (Holland, 1986). Thus, to make causal inference, three assumptions are

required: 1) SUTVA (Angrist, Imbens and Rubin, 1996) states that a) the observed

outcome under the assigned treatment is the same as the potential outcome asso-

ciated with that treatment, and b) the potential outcomes for a given subject are

not influenced by the treatment assignments of other subjects (Rubin, 1980; Angrist,

Imbens, Rubin, 1996); 2) positivity states that each subject has a positive probabil-

ity of being assigned to each of the compared treatments; 3) ignorability states that

treatment assignment is as if randomized conditional on all the past histories.

PS-based methods are based on estimating the propensity of treatment assign-

ment, given potential confounding variables, and then using the estimated propensity

to match, stratify or weight subjects. In matching, the treated and control subjects

are selected to form matched pairs and simple matched pair analyses can be per-

formed to obtain causal effects. In stratification, subjects are divided into strata

based on their propensity scores and comparisons are performed within each stratum

and causal effects are estimated by averaging across strata. Weighting each subject

by the inverse of the propensity of receiving the observed treatment can also adjust

for confounding variables because the weights in effect create a pseudo-population

that is free of treatment confounders.

For PS-based methods to work correctly, the propensity score model should be

correctly specified. Thus, more robust methods such as the ones that incorporate the

outcome models can protect against misspecification of the propensity score model.

One difficult but less addressed problem in causal inference is controlling for time-
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dependent confounders. For example, in a longitudinal study, subjects are observed

over time and intermediate outcomes are measured. If these intermediate outcomes

are also used to determine concomitant treatment assignments, they are both interme-

diate outcomes of past treatments and confounders of future treatment assignments-

the phenomenon known as confounding by indication. Including these variables in

standard regression models to control them as confounders does not work since they

are also mediators of earlier treatment effects. For example, the Multicenter AIDS

cohort study (MACS) (Kaslow et al, 1987) saw the introduction of the first antiretro-

vial therapy (zidovudine or AZT) at a time when no effective treatment for human

immunodeficiency virus existed. Hence, early administration was based on availabil-

ity and biomarkers of disease severity such as CD4 count, with sicker patients more

likely to be treated. As HIV infection progresses, the number of CD4 cells decreases,

and when the CD4 count was too low, patients started antiretroviral treatment to

control the virus and increase the CD4 count. The CD4 count is a time-dependent

confounder because it is both an intermediate outcome of past treatments and a

confounder of future treatments.

The existing methods for controlling time-dependent confounders include the in-

verse probability treatment weighted (IPTW), the augmented IPTW (AIPTW), and

g computation. The IPTW estimators are consistent if the propensity score mod-

els are correct. The AIPTW estimators are doubly robust, that is, consistent if the

propensity models or all the outcome and intermediate outcome models are correct

(Scharfstein, Rotnitzky, and Robins 1999; Yu and van der Laan, 2006). Finally, the

g-computation provides a consistent estimator of potential outcomes and thus causal

effects if all the conditional distributions relating outcomes to covariates are correctly

specified (Robins, 1987). The IPTW and AIPTW estimators can result in highly vari-

able estimates when there are extreme weights, which are common in observational

studies. This is a particularly serious issue with longitudinal data with many possible
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treatment combinations. In addition, the weighted estimators are arguably hard to

understand for applied researchers. The AIPTW estimators are doubly robust, but

very hard to implement for applied researchers. The g-computation is more intuitive

but not doubly robust.

Whether in a single or multiple time-point treatments, for PS methods to work

reliably, there should be a sufficient overlap in the propensity score distributions be-

tween the compared treatment groups. This avoids extrapolating outside the overlap

region and hence is less vulnerable to model misspecification. Restricting estimation

of causal effects to a subpopulation where there is more balance in the propensity dis-

tributions between the treatment groups could reduce the sensitivity of causal effect

estimates to model misspecification (Rosenbaum and Rubin, 1984). Most literature

focuses on using propensity scores for assessing overlap. Cochran and Rubin (1973)

suggest caliper matching when some units are left unmatched due to poor match qual-

ity based on some criteria. Gutman and Rubin (2013, 2015) propose dropping units

outside of the overlap region of estimated propensity scores between the treatment

groups. Dehejia and Wahba (1999) drop all control units whose estimated propensity

scores are less than the smallest estimated propensity scores among the treated. Ho,

Imai, King and Stuart (2005) propose a two-stage approach. In the first stage, all the

treated units are paired with their closest control units, and only the matched units

are included in the second stage. Crump et al (2009) propose trimming off extreme

propensity values below α and above 1− α. Li, Morgan and Zaslavsky (2017) define

an estimand that weights cases to balance the weighted distributions of the covariates

between treatment groups that minimizes the asymptotic variance of the estimated

treatment effect.

In addition to sufficient overlap, one assumption needed for PS methods to make

valid inference about causual effects is that all the confounders are observed and

included in the propensity model. Since excluding important confounders in the

4



model can lead to biased estimates, many covariates are often included, for fear of

excluding some important confounders. Rubin (2007) notes that only pretreatment

covariates should be included in the propensity model and argues that the model

should be selected without accounting for the relationship between covariates and

outcome. This approach helps maintain objectivity when making inference from

nonrandomized studies. Furthermore, the variables included in the model can directly

affect the degree of overlap. For example, including strong predictors of the treatment

that are not predictive of the outcome in the propensity model could potentially shrink

the overlap region. Recent work has also shown that including such covariates can

inflate the variance of the causal estimate and may also induce bias (Brookhard et al,

2006). On the contrary, including covariates that are associated only with the outcome

can improve efficiency, since it reduces random covariate imbalance in finite samples

(Brookhard et al, 2006). Glymour et al (2008) argues for controlling only common

causes of the treatment and outcome. VanderWeele and Shpitser (2011) propose

controlling for covariates that are causes of the treatment and/or outcome. Thus,

a propensity model based only on the treatment can be inefficient, as it prioritizes

variables associated with treatment but not necessarily with outcome. Balancing

such covariates using propensity score is unnecessary since these covariates are not

confounders.

In this dissertation, we develop new statistical methods for estimating causal ef-

fects from nonrandomized studies and address two closely related topics on causal

inference – the problem of limited overlap in the propensity score distributions be-

tween treatment groups and variable selection for propensity score models. In Chapter

2, we propose a simple and straightforward approach to causal inference that does

not rely on weighting, is less sensitive to extreme weights, and has a double robust-

ness property for causal effects, called Penalized Spline of Propensity Methods for

Treatment Comparison (PENCOMP). PENCOMP estimates causal effects by im-
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puting missing potential outcomes with flexible spline models, and draws inference

based on imputed and observed outcomes. We compare PENCOMP with the existing

weighting methods and g computation in simulation studies. We apply our method to

the Multicenter AIDS Cohort study (MACS) to estimate the effect of antiretroviral

treatment on CD4 counts in HIV infected patients.

In Chapter 3, we address the issue of limited overlap in the propensity score distri-

butions across treatment groups. We investigate appropriate restrictions of the causal

estimand, and compare alternative estimation methods, including various simple and

augmented inverse propensity weighting approaches, matching and PENCOMP. We

demonstrate the flexibility of PENCOMP for estimating different estimands when

necessary. We apply these methods to the MACS dataset to estimate the effects of

antiretroviral treatment on CD4 counts in HIV+ patients.

In Chapter 4, we turn our focus to model selection for the propensity score model.

We consider variable selection techniques that seek to restrict predictors in the propen-

sity model to true confounders, thus improving overlap in the propensity distributions

and increasing efficiency. We also propose a new version of PENCOMP via bagging

that also incorporates the variability of model selection, which can be advantageous

when the data are noisy. We examine by simulation studies and the MACS dataset the

impact of various variable selection techniques, including an extension of the adaptive

lasso, on inferences from both versions of PENCOMP, AIPTW and IPTW. Finally

in Chapter 5, we summarize our findings and suggest future directions to explore for

PENCOMP.
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CHAPTER II

Penalized Spline of Propensity Methods for

Treatment Comparison

2.1 Introduction

Observational studies are important for evaluating treatment effects, particularly

when randomization of treatments is unethical or expensive. In the absence of ran-

domization, valid inferences about treatment effects can only be drawn by controlling

for confounders. However, controlling for time-dependent confounders using stan-

dard regression methods can fail. For example, in a longitudinal study, subjects are

observed over time and intermediate outcomes are measured. If these intermediate

outcomes are also used to determine concomitant treatment assignments, they are

both intermediate outcomes of past treatments and confounders of future treatment

assignments-the phenomenon known as confounding by indication. Including these

variables in standard regression models to control them as confounders does not work

since they are also mediators of earlier treatment effects. Similar issues arise in studies

with sequential randomization.

We adopt Rubin’s (1974) potential outcome framework for estimating causal ef-

fects. Potential outcomes are defined as potentially observable outcomes under dif-

ferent treatments or exposure groups. Individual causal effects are defined as com-
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parisons of the potential outcomes for that subject. Only the potential outcome cor-

responding to the treatment actually assigned is observed for any subject. Therefore

we estimate causal effects by imputing the potential outcomes that are not observed.

We propose a robust multiple imputation based approach to causal inference in

this setting, called Penalized Spline of Propensity Methods for Treatment Comparison

(PENCOMP), which builds on the Penalized Spline of Propensity Prediction method

(PSPP) for missing data problems (Little and An, 2004; Zhang and Little, 2009). We

first illustrate our approach for the simple case of assessing the causal effect of two

treatments, Z1 = 0 or 1 and a function of subject level covariates X1. Our approach

estimates the propensity to be assigned Z1 given the observed covariates X1, using

a method such as logistic regression appropriate for a binary outcome Z1. It then

estimates regression models for the potential outcome Y Z1=z1 under each treatment

Z1 on (a) a spline of the logit of the propensity to be assigned that treatment, and

(b) other covariates predictive of Y . These regression models are then used to predict

the individual outcomes of treatments not assigned. We then draw inferences based

on comparisons of the imputed and observed outcomes between treatment groups.

Our approach shares some similarities with the MITSS method (Gutman and Rubin,

2015). At the first stage, they partition the subjects into subclasses based on esti-

mated propensity scores and ensures that at least three units from each treatment

group are in each subclass. At the second stage, they fit a regression spline with knots

fixed at the borders of the subclasses and impute the missing potential outcomes for

all the subjects and estimate the causal effects by combining the imputed datasets

with Rubin’s combining rule. We extend PENCOMP to longitudinal treatments,

which is not considered in Gutman and Rubin (2015).

As discussed in Section 2.2 and in Appendix A.1, under the stable unit treatment

value (SUTVA), positivity and ignorability assumptions, PENCOMP has a double

robustness property, resulting from the balancing property of the propensity score
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(Rosenbaum and Rubin, 1983). Specifically, if the relationship between Y and the

logit of the propensity score is modeled correctly, the relationship between Y and other

covariates can be misspecified without biasing estimates of marginal parameters of

interest, namely the marginal means of Y under each treatment. This idea can be

generalized to multiple time points, including the situation where variables are both

mediators of initial treatments and confounders of later treatments.

Our motivating dataset is from the Multicenter AIDS Cohort study (MACS)

(Kaslow et al, 1987). The MACS was started in 1984, and a total of 4,954 gay

and bisexual men were enrolled in the study and followed up semi-annually. At each

visit, data from physical examination, questionnaires about medical and behavioral

history, and blood test results were collected. The primary outcome of interest was

the CD4 count, a continuous measure of how well the immune system functions. As

HIV infection progresses, the number of CD4 cells decreases, and when the CD4 count

was too low, patients started antiretroviral treatment to control the virus and increase

the CD4 count. The CD4 count is a time-dependent confounder because it is both

an intermediate outcome of past treatments and a confounder of future treatments.

The MACS public data set was released by the Center for Analysis and Management

of Multicenter AIDS Cohort Study. We used this dataset to analyze the short term

(1 year) effects of using antiretroviral treatment on the disease progression between

visit 7 and 21, the period after the first antiretroviral drug, zidovudine, was available,

and before the advent of highly active antiretroviral therapy (HAART).

Throughout this paper, we consider longitudinal data at T+1 discrete time points.

For subject i at time t = 1, . . . , T + 1, let Xt(i) denote the vector of covariates ob-

served, and Zt(i) the binary treatment indicator. X̄t(i) and Z̄t(i) are the covariate

and treatment history, up to and including time t. The final outcome of interest Y (i)

is observed at time point T+1, after the last treatment ZT (i). For example, in the ap-

plication, we are interested in estimating the final CD4 count Y (i) after 1 year, i.e, in
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a three-visit window. Xt(i) contains, for example, the blood count measures, such as

CD4 count, at time t, for t = 1, 2, and 3. Y (i) = X3(i) is the final outcome of interest

for subject i measured at time t = 3, a year from baseline. We compare results from

PENCOMP with results from three versions of marginal structural models (MSMs):

inverse-probability-treatment-weighted estimators, and augmented IPTW (AIPTW)

estimators (Yu and van der Laan, 2006), and g-computation (Robins, 1987). The

extended nature of the MACS trials allows comparison of methods on a set of causal

estimands, allowing some capability of observing patterns of performance.

The IPTW method controls for confounding by weighting subjects by the inverse

of the probability of receiving the observed treatment sequence. The weights in ef-

fect create a pseudo-population that is free of treatment confounders, providing the

capability for the MSMs to adjust for both time-dependent and time-independent

confounders. As for PENCOMP, this method assumes SUTVA, positivity, and ig-

norability. The IPTW estimators are consistent if the treatment propensity model is

correct. On the other hand, g-computation directly simulates counterfactuals of in-

terest of each treatment sequence based on conditional distribution of covariates and

outcomes estimated from the data, so provides a consistent estimator of potential

outcomes and thus causal effects if all the conditional distributions relating outcomes

to covariates are correctly specified (Robins, 1987). Finally, the AIPTW estimator

consistently estimates causal effects if the treatment propensity models are correct, or

all the conditional distributions relating outcomes to covariates are correctly specified

(Scharfstein, Rotnitzky, and Robins 1999; Yu and van der Laan, 2006).

As in g-computation, PENCOMP draws the counterfactuals of interest for each

treatment sequence. However, PENCOMP utilizes the observed outcomes and only

imputes the missing potential outcome to draw inference on causal effects. Also,

PENCOMP has the double robustness property that g-computation lacks, since PEN-

COMP, like AIPTW, incorporates both the propensity and prediction models.
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The compared methods are valid alternative approaches, but we argue that PEN-

COMP has the following attractive properties. First, it avoids weighting, which

may require careful monitoring to avoid a small number of cases receiving very high

weights, resulting in highly variable estimates. This is a particularly serious issue

with longitudinal data sets with many possible treatment combinations. Second,

PENCOMP is conceptually simple since it relies purely on regression models for pre-

diction, with the prediction of potential outcomes addressing the issue of confounding

by indication. Third, Bayesian versions of PENCOMP allow for inferences that are

not asymptotic, and properly reflect uncertainty in parameter estimates. Saarela et

al. (2015) propose an approach to confounding by indication that has Bayesian as-

pects, but since it involves weighting we regard it as a hybrid approach – see the

discussion in Elliott and Little (2015).

The rest of the paper is structured as follows. In Section 2.2, we first briefly

introduce PSPP, the method on which PENCOMP was built. We then describe

PENCOMP for the simple case of treatment assigned at a single point in time, and

for the situation where treatments are assigned at two time points, and intermediate

outcomes after the first time point are used to assign treatments at the second time

point. In Section 2.3, we briefly describe IPTW, AIPTW and g-computation. In

Section 2.4, we compare PENCOMP with the MSM approaches in simulation studies,

assessing empirical bias, root mean squared error, 95% confidence interval coverage,

and width of confidence intervals. In Section 2.5, we apply our method to the MACS

dataset to evaluate the short term effect of antiretroviral treatment on CD4 counts in

HIV+ infected patients. In Section 2.6, we presents conclusions and topics for future

research. In particular, for simplicity we restrict attention here to the situations with

up to two treatment assignments, one at baseline and one at an intermediate time

point. In Section 6, we also outline how PENCOMP might be applied in cases with

more than two assignments, as when assessing longer term treatment impacts in the

11



MACS study.

2.2 Penalized Spline of Propensity Methods for Treatment

Comparisons

2.2.1 Penalized Spline of Propensity Prediction (PSPP) for Missing Data

Zhang and Little (2009), refining earlier work by Little and An (2004), proposed

the following Penalized Spline of Propensity Prediction (PSPP) method for missing-

data problems. The objective is to estimate the mean, say µ, of a variable Y with

missing values. Let R denote the response indicator for Y , taking the value 1 if

Y is observed and 0 if Y is missing. Let X = (X1, ..., Xp) denote a set of p fully-

observed variables. PSPP first estimates the propensity to respond given X, using

a method appropriate for a binary outcome such as logistic regression. The method

then predicts the missing values of Y using a linear model that includes as predictors

a penalized spline of the estimated propensity to respond and a linear function of

other covariates X that are predictive of Y .

Assuming the missing data are missing at random (Rubin, 1976; Little and Rubin,

2002), Zhang and Little (2009) show that this method has the following double ro-

bustness property for normal linear models: the estimate of µ is consistent if either (a)

the regression model for Y is correctly specified, or (b) the model for the propensity

to respond and the relationship between Y and the propensity are correctly specified.

The latter assumption can be met under relatively weak conditions by regressing Y

on the spline of the logit of the propensity, since the spline does not impose strong

assumptions on the functional form of the relationship between Y and the propen-

sity. Zhang and Little (2009) and Yang and Little (2015) describe simulation studies

suggesting that PSPP compares favorably with alternative doubly-robust methods.

The PSPP method has three principle variants: (a) maximum likelihood (ML)
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(PSPP-ML), where parameters are estimated by ML and standard errors computed

using the information matrix or the bootstrap; (b) Bayes (PSPP-B), where parameters

are drawn from the posterior distribution and inference about µ is based on draws

from its posterior distribution; and (c) multiple imputation (MI) (PSPP-MI), where

draws of the missing values are multiply imputed, and inferences based on Rubin’s

(1987) MI combining rules. In the next section we describe adaptations of PSPP for

causal inference problems.

2.2.2 PENCOMP for Treatments at a Single Time Point

We first consider PENCOMP in the simple setting of a trial where treatments are

assigned at a single time point. Suppressing indexing by subject, Z1 ∈ {0, 1} denotes

assignment to control (0) or treatment (1), Y Z1 denotes the potential outcome as-

sociated with a given level of Z1, measured after treatment Z1, and X1 denotes the

vector of pretreatment covariates. Our inferential goal is to obtain the marginal aver-

age effect of treatment on the outcome, denoted ∆ = E(Y 1−Y 0), where expectation

is taken with respect to a specified population of interest. Figure 1 frames inference

about ∆ as a missing data problem (Rubin, 1974; Elliott and Little, 2015): note that

X1 and Z1 are fully observed, but Y 0 is observed only for the n0 subjects assigned to

control, while Y 1 is observed only for the n1 subjects assigned to treatment. Table 2.1

thus emphasizes the fundamental problem of causal inference (Holland, 1986): since

Y 1 and Y 0 are never observed simultaneously, inference about ∆ based on directly

observing Y 1 − Y 0 is impossible.

To make progress in the face of this missing data problem, we make the follow-

ing three assumptions. First, the stable unit treatment value assumption (SUTVA),

assumes Y = Z1Y
Z1 + (1 − Z1)Y 1−Z1 , so that a) the observed outcome Y under a

specific treatment is equal to the potential outcome associated with that treatment,

and b) the potential outcomes for a given subject are not influenced by the treatment
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assignment of other subjects (Rubin, 1980; Angrist, Imbens, Rubin, 1996). Next, we

make the positivity assumption: 0 < P (Z1 = 1|X1) < 1 for all subjects, so that all

subjects have a non-zero probability of being assigned to treatment or control. In

practice, this assumption is satisfied by restricting the analysis to treatments with

enough cases to make the relevant regressions estimable and excluding subjects with

extreme propensity, for example. Finally, we make the ignorable treatment assump-

tion (Y 1, Y 0) |= Z1|X1, so that, given covariates, treatment assignment is independent

of the potential outcomes of interest, i.e. no unmeasured confounders. The plau-

sibility of SUTVA assumption can usually be assessed in a given context, while the

ignorable treatment assumption may or may not be reasonable given the study design

and the set of available covariates. Taken together, these assumptions allow the unob-

served potential outcomes for subjects receiving treatment Z1 = z1 in Figure 1 to be

imputed using the observed outcomes from subjects receiving treatment Z1 = 1− z1

. Specifically, we can use an imputation approach with bootstrapping to propagate

uncertainty in parameter estimates (Heitjan and Little, 1991).

A potential shortcoming of the prediction approach is that it assumes correct spec-

ification of the model for the distribution of the outcome conditional on the covariates.

Our proposed PENCOMP method weakens this assumption by exploiting the dou-

ble robustness property of penalized spline propensity prediction, PSPP (Little and

An, 2004; Zhang and Little, 2009). PENCOMP applies the idea of PSPP to the

causal inference setting, with the propensity of response replaced by the propensity

of treatment assignment and the missing data being the outcomes under unassigned

treatments. We estimate the propensity to be assigned to each treatment by a regres-

sion method suitable for a categorical outcome, for example by logistic regression if

there are two treatments, or polytomous regression if there are more than two treat-

ments. We then predict the potential outcomes for the treatments not assigned to

subjects using regression models that include splines on the logit of the propensity to
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be assigned that treatment and other covariates that are predictive of the outcome;

separate models are fitted for each treatment group. Under the assumptions stated

above, PENCOMP has a double robustness property for causal effects, as shown in

Appendix A.1.

As with PSPP, there are ML, Bayesian and MI versions of PENCOMP: PENCOMP-

ML estimates parameters by ML and calculated standard errors using an information

matrix or the bootstrap, and PENCOMP-B simulated draws of the parameters and

missing observations from their posterior distributions. PENCOMP-MI is analogous

to the PSPP-MI algorithm for missing data, and is given as follows:

(a) For d = 1, · · · , D, generate a bootstrap sample S(d) from the original data S

by sampling units with replacement, stratified on treatment group. Then carry out

steps (b)-(d) for each sample S(d):

(b) Estimate a logistic regression model for the distribution of Z1 given X1, with

regression parameters γz1 . Estimate the propensity to be assigned treatment Z1 = z1

as P̂z1(X1) = Pr(Z1 = z1|X1, γ̂
(d)
z1 ), where γ̂

(d)
z1 is the ML estimate of γz1 . Define

P̂ ∗z1 =log[P̂z1(X1)/(1− P̂z1(X1))].

(c) For each z1 = 0, 1, using the cases assigned to treatment group z1, estimate a

normal linear regression of Y z1 on X1, with mean

E(Y z1|X1, Z1 = z1, θz1 , βz1) = s(P̂ ∗z1|θz1) + gz1(X1; βz1), (2.1)

where s(P̂ ∗z1 |θz1) denotes a penalized spline with fixed knots (Eilers and Marx, 1996;

Ngo and Wand, 2004; Wand, 2003), with parameters θz1 , and gz1() represents a para-

metric function of other covariates predictive of the outcome, indexed by parameters

βz1 . One of the covariates might need to be omitted to avoid collinearity in the co-

variates in Eq. (2.1). A simple form is to assume linear additive function of the

covariates X1, but models with interactions between the covariates and P̂ ∗z1 are also
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allowed. Other forms of splines are possible in Eq. (2.1), as are generalized linear

mixed models for non-normal outcomes Y z1 . Note that a different spline function in

Eq. (2.1) is fitted for each treatment group, since there is no a priori reason to assume

that the relationship between the potential outcomes under different treatment arms

and the propensity of treatment assignment is the same.

In particular, for a penalized spline with truncated linear basis, s(P̂ ∗z1|θz1) =

θ0 + θ1P̂ ∗z1 +
∑K

k=1 θ1k(P̂ ∗z1 −Kk)+, where K1, · · · , KK are fixed knots, and (P̂ ∗z1 −

Kk)+ = (P̂ ∗z1 −Kk) if P̂ ∗z1 > Kk ; and = 0 if P̂ ∗z1 ≤ Kk.

In the linear additive form for g, define the design matrices C1 = [1, P̂ ∗z1 , x1],

C2 = [(P̂ ∗z1 −K1)+, · · · , (P̂ ∗z1 −KK)+], and C = [C1, C2]. Then spline model can be

expressed as a linear mixed model (Wand, 2003),

Y z1 = C1β + C2θ + ε,

 θ

ε

 ∼

 0

0

 ,
 σ2

θI 0

0 σ2
ε I


 , (2.2)

where β = (β0, β1, β2, · · · , βp) denote fixed effects, and θ = (θ11, · · · , θ1K) are random

basis coefficients. REML estimates of the parameters of this model can be easily

fitted in statistical software, such as PROC MIXED in SAS or lme in R. The fitted

values of Y z1 are ŷz1 = C(CTC+λ̂D)−1CTy, where λ̂ = σ̂2
ε/σ̂

2
θ is the REML estimator

of λ and

D =

 0(p+1)×(p+1) 0

0 IK×K


(d) For z1 = 0, 1, impute the values of Y z1 for subjects in treatment group 1− z1

in the original data set with draws from the predictive distribution of Y z1 given X1

from the regression in (c), with ML estimates θ̂
(d)
z1 , β̂

(d)
z1 substituted for the parameters

θz1 , βz1 , respectively. Let ∆̂(d) and W (d) denote the difference in treatment means and

associated pooled variance estimate, based on the observed and imputed values of Y

in each treatment group.
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(e) The MI estimate of ∆ is then ∆̄D = 1
D

∑D
d=1 ∆̂d, and the MI estimate of

the variance of ∆̄D is TD = W̄D + (1 + 1/D)BD, where W̄D =
∑D

d=1W
(d)/D,BD =∑D

d=1

(
∆̂(d) − ∆̄D

)2

/(D−1). The estimate ∆ is t distributed with degree of freedom

v, (∆− ∆̄D)T
−1
2

D ∼ tv, where v = (D − 1)(1 + W̄D/((D + 1)×BD))2.

We apply this PENCOMP-MI method in the application and simulations in this

article.

Table 2.1: Observed and missing outcomes for treatment at a single time point

Subjects X1 Z1 Y 0 Y 1

1 0 ?
2 0 ?
· · · 0 ?
n0 0 ?

n0 + 1 1 ?
· · · 1 ?
n = n0 + n1 1 ?

2.2.3 PENCOMP with Longitudinal Treatment Assignments

We now consider a longitudinal study with treatments assigned at multiple time

points t = 1, . . . , T . Suppressing indexing by subject, let X̄t and Z̄t denote the covari-

ate and treatment history, respectively, up to and including time point t. Let X Z̄t
t+1

denote the potential intermediate outcome under treatment regime Z̄t = (Z1, · · · , Zt).

Let Y Z̄T denote the final potential outcome under the entire treatment regime Z̄T =

(Z1, · · · , ZT ), measured at time point T + 1 after the assignment of last treatment

ZT . Assume at each time t ≥ 2, the intermediate outcome Xt is both an outcome of

treatment Zt−1 and confounder for treatment Zt+1. Supposed we want to estimate

the overall treatment effects as a function of treatment regime Z̄T , relative to Z̄
′
T . To

estimate causal effect ∆Z̄T
= E(Y Z̄T )−E(Y Z̄

′
T ), we make the following assumptions.

1) SUTVA (Angrist, Imbens and Rubin, 1996) states that a) the observed out-

comes under a specific treatment regime is equal to the potential outcomes associated
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with that treatment regime, and b) the potential outcomes for a given subject are

not influenced by the treatment assignments of other subjects (Rubin, 1980; Angrist,

Imbens, Rubin, 1996)

2) Positivity states that each subject has a positive probability of being assigned

to each treatment zt at each time point t: 0 < Pr(Zt = zt|X̄t−1, Z̄t−1) < 1.

3) Sequential ignorable treatment assumption states that

(Y Z̄T , X Z̄t
t+1) |= Zt|(Z̄t−1, X̄t)

for every z̄T ∈ A : at every time t, where A denote the set of all possible treatment

combinations, that is, at each time t, treatment assignment Zt is as if randomized

conditional on all the past treatment and covariate history.

For simplicity, we illustrate a longitudinal study with two time points and binary

treatments. In such setting, there are four possible treatment regimes. Let XZ1
2 de-

note the potential intermediate outcome if subject received treatment Z1, and Y Z̄2

the potential outcome of interest if subject received treatment regime Z̄2. Our in-

ferential goal is to estimate the overall treatment effects as a function of Z1 and Z2,

relative to no treatment at both time points, namely ∆z̄2 = E(Y Z̄2 − Y 00), where

expectation is taken with respect to a specified population of interest. In this case,

we are interested in inference about ∆11,∆10, and ∆01. Table 2.2 frames inference

about the causal effects as a missing-data problem (Rubin, 1974; Elliott and Little,

2015). In this setting, values of the intermediate and final outcomes are only observed

for the treatment combination actually assigned. Thus, for example, values of X1
2 are

missing for cases assigned to Z1 = 0, and values of Y 10, Y 01 and Y 11 are missing for

cases assigned to (z1, z2) = (0, 0); and similarly for the other treatment combinations.

The missing values of the intermediate outcomes X0
2 and X1

2 are imputed using

the method described in Section 2.2.2. Conditional on the values of X1, Z1 and
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the observed or imputed values of X2, the propensity that Z2 = 1 given X̄2, Z1 is

estimated based on a logistic regression of Z2 on X̄2, Z1. The missing values of Y jk

are draws from the regression model of Y jk on X̄2, Z̄2, and a spline on the logit of the

propensity score. A distinct regression model is fitted for each outcome Y jk. More

specifically, the steps for PENCOM-MI are as follows:

(a) For d = 1, · · · , D, generate a bootstrap sample S(d) from the original data S

by sampling units with replacement, stratified on treatment group. Then carry out

steps (b)-(g) for each sample d:

(b) Estimate a logistic regression model for the distribution of Z1 given baseline

covariates X1, with regression parameters γz1 . Estimate the propensity to be assigned

treatment Z1 = z1 as P̂z1(X1) = Pr(Z1 = z1|X1, γ̂
(d)
z1 ), where γ̂

(d)
z1 is the ML estimate

of γz1 . Define P̂ ∗z1 =log [P̂z1(X1)/(1− P̂z1(X1))].

(c) Using the cases assigned to treatment group Z1 = z1, estimate a normal linear

regression of Xz1
2 on X1, with mean

E(Xz1
2 |X1, Z1 = z1, θz1 , βz1) = s(P̂ ∗z1|θz1) + gz1(X1; βz1), (2.3)

where s(P̂ ∗z1|θz1) denotes a penalized spline with fixed knots with parameters θz1 , and

gz1() represents a parametric function of other predictors of the outcome, indexed

by parameters βz1 . As for PSPP, one of the covariates might be omitted to avoid

collinearity in the covariates in Eq. (2.3). Note that a different spline model of the

form (2.3) is fitted for each treatment regimen.

(d) For z1 = 0, 1, impute the values of Xz1
2 for subjects in treatment group 1− z1

in the original data set with draws from the predictive distribution of Xz1
2 given X1

from the regression in (c), with ML estimates θ̂
(d)
z1 , β̂

(d)
z1 substituted for the parameters

θz1 , βz1 .

(e) Estimate a logistic regression model for the distribution of Z2 givenX1, Z1, X2 =
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(X0
2 , X

1
2 ), with regression parameters γz2 and missing values of X2 imputed from

step (d). Estimate the propensity to be assigned treatment Z2 = z2 given Z1, X̄2

as P̂z2(X̄2, Z1) = Pr(Z2 = z2|X̄2, Z1 = z1, γ̂
(d)
z2 ) , where γ̂

(d)
z2 is the ML estimate

of γz2 . The probability of treatment regimen (Z1 = z1, Z2 = z2) is denoted as

P̂z̄2 = P̂z1(X1)P̂z2(X̄2, Z1), and define P̂ ∗z̄2 =log[P̂z̄2/(1− P̂z̄2)].

(f) Using the cases assigned to treatment group (z1, z2), estimate a normal linear

regression of Y z̄2 on X̄2, Z̄2, with mean

E(Y z̄2|X̄2, Z1 = z1, Z2 = z2, θz̄2 , βz̄2),

= s(P̂ ∗z̄2|θz̄2) + gz̄2(X̄2, Z̄2; βz̄2) (2.4)

where s(P̂ ∗z̄2 |θz̄2) denotes a penalized spline with fixed knots with parameters θz̄2 , and

gz̄2() represents a parametric function of other predictors indexed by parameters βz̄2 .

One of the covariates might need to be omitted from gz̄2() to avoid collinearity in

the covariates. Note that a distinct model of form (2.4) is fitted for each treatment

regimen.

(g) For each combination of z̄2 = (z1, z2), impute the values of Y z̄2 for subjects

not assigned this treatment combination in the original data set with draws from the

predictive distribution of Y z̄2 in (f), with ML estimates θ̂
(d)
z̄2 , β̂

(d)
z̄2 substituted for the

parameters θz̄2 , βz̄2 . Let ∆̂
(d)
jk , (j, k) = (1, 1), (1, 0) and (0,0) denote the average treat-

ment effects, with associated pooled variance estimates W
(d)
jk , based on the observed

and imputed values of Y for each treatment regimen.

(h) The MI estimate of ∆jk is then ∆̄jkD =
∑D

d=1 ∆̂
(d)
jk , and the MI estimate of the

variance of ∆̄jkD is TD = W̄jkD+(1+1/D)BjkD, where W̄jkD =
∑D

d−1W
(d)
jk /D,BjkD =∑D

d=1

(
∆̂

(d)
jk − ∆̄jkD

)2

/(D − 1). As described in (e) of single treatment setting, draw

inference about ∆jk by assuming a t-distribution.
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Table 2.2: Observed and missing intermediate and final outcomes for treatment at
two time points

Subjects X1 Z1 X0
2 X1

2 Z2 Y 00 Y 01 Y 10 Y 11

1 0 ? 0 ? ? ?
· · · 0 ? 0 ? ? ?
n00 0 ? 0 ? ? ?

n00 + 1 0 ? 1 ? ? ?
· · · 0 ? 1 ? ? ?
n0 = n00 + n01 0 ? 1 ? ? ?

n0 + 1 1 ? 0 ? ? ?
· · · 1 ? 0 ? ? ?
n0 + n10 1 ? 0 ? ? ?

n0 + n10 + 1 1 ? 1 ? ? ?
· · · 1 ? 1 ? ? ?
n = n0 + n10 + n11 1 ? 1 ? ? ?

In a longitudinal study with more than two time points, the procedures are sim-

ilar to those described in the two time points setting. PENCOMP imputes the first

missing intermediate outcomes X2 first and continues forward to the final outcome

Y . Specifically, to impute the missing intermediate outcomes X z̄t
t+1 for the subjects

whose treatment sequence did not match z̄t, we draw values from a mean model of

E(X z̄t
t+1|X̄t, Z̄t = z̄t, θz̄t , βz̄t) = sxt+1(P̂ ∗z̄t ; θz̄t) + gz̄t

[
X1, · · · , Xt; βz̄t

]
, where Xt can be

observed or imputed in the previous steps, and P̂ ∗z̄t =log[
∏t

k=1 P (Zk = zk|Z̄k−1 =

z̄k−1, X̄k)/(1 −
∏t

k=1 P (Zk = zk|Z̄k−1 = z̄k−1, X̄k))], where
∏t

k=1 P (Zk = zk|Z̄k−1 =

z̄k−1, X̄k) represents the propensity of being assigned the treatment sequence z̄t con-

ditional on the past treatment and covariate history. As before, the propensity of

being assigned zk at time t = k, P (Zk = zk|Z̄k−1 = z̄k−1, X̄k−1, γzk) can be estimated

based on a logistic regression model. Under the assumptions stated above in section

2.2.3, PENCOMP has a double robustness property for causal effects in a longitudinal

study setting. The proof is outlined in Appendix A.1. The marginal mean from the

imputation model is consistent if

1) All the prediction models for the intermediate and final outcomes at each time

point t = 1, · · · , T + 1, conditional on the covariate and treatment history, denoted

as gz̄t , are correctly specified. OR
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2) The propensity models are correctly specified, and the relationship between

Xt+1 and P̂ ∗z̄t are correctly specified at each time point t = 1, · · · , T + 1. Note

Y = XT+1. Again, this assumption can be weakened by assuming only a smooth

functional form, such as a penalized spline as in PENCOMP.

2.2.4 Restricting cases in a treatment comparison to reduce disparity in

the distribution of estimated assignment propensities

The positivity assumption requires that cases have a propensity to be assigned

to any of the compared treatments that lie between zero and one. However, when

there are extreme propensity scores, the propensity score distributions tend to have

limited overlap. Some techniques have been proposed to address this issue. Cochran

and Rubin (1973) suggest caliper matching when some units are dropped due to poor

match quality. Rubin (1977) suggests dropping units with covariate values that have

either no treated or no control and estimate causal effects for the range of covariate

values that have both treated and control units. Dehejia and Wahba (1999) drop

control units whose estimated propensity scores are less than the smallest estimated

propensity scores among the treated when estimating the average treatment effects

for the treated. Crump et al (2009) propose a minimum variance approach to select an

optimal subpopulation for which the estimated causal effects have the least variance,

where the optimal subpopulation is obtained by excluding cases with propensity scores

outside of a range [α, 1− α]. Gutman and Rubin (2015) propose restricting included

cases to the overlap region of estimated propensity scores between the treatment

groups.

Comparison of the performance of those methods for dealing with limited overlap,

especially in the longitudinal treatments where lack of overlap can be very severe,

is a topic for future research. However, here we restrict the overlap region to avoid

extrapolation of the prediction model outside the range of estimated propensities and
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extend the overlap rule to longitudinal treatments. To illustrate in the general case

of ∆ZT
, relative to the null treatment regime 0T , at a given time 1 ≤ t ≤ T , we first

obtain the set of observations At = AZt
such as

AZt
=

{
i : {zti = Zt, zti 6= Zt}, min

j:zti=Zt

(P̂ ∗j,Zt
) ≤ P̂ ∗i,Zt

≤ max
j:zti=Zt

(P̂ ∗j,Zt
)

}

At corresponds to the set of observations that have an estimated propensity score for

treatment regime Zt that lies within the range of the observed propensities of subjects

who actually received Zt. We then obtain Bt = B0t as

B0t =

{
i : {zti = 0t, zti 6= 0t}, min

j:zti=0t
(P̂ ∗j,0t) ≤ P̂ ∗i,0t ≤ max

j:zti=0t
(P̂ ∗j,0t)

}

Bt corresponds to the set of observations that have an estimated propensity score

for null treatment regime 0t that lies within the range of the observed propensities

of subjects who actually received the treatment regime 0t. Finally, we restrict our

analysis to the set of observations given by A1 ∩B1 ∩ · · · ∩ AT ∩BT . In this way we

assure that all observations used in the analysis have a common set of overlapping

estimated propensities that are actually observed in the data.

2.3 G-computation, IPTW and AIPTW

2.3.1 G-computation

In a longitudinal treatment scenario with T + 1 time points, let O = (X̄T , Z̄T , Y )

denote the observed data, as above. The likelihood of the observed data can be

factored into two components P (O) = Q0g0, where Q0 = P (Y |X̄T , Z̄T = z̄T )×∏T
t=1 P (Xt|X̄t−1, Z̄t−1 = z̄t−1) and g0 =

∏T
t=1 P (Zt = zt|Z̄t−1 = z̄t−1, X̄t−1). Un-

der SUTVA, positivity and ignorability assumptions, for a fixed treatment regime

z̄T = (z1, · · · , zT ), E(Y z̄T ) =
∑

X1,··· ,XT
E(Y |X̄T , Z̄T = z̄T )×P (X1)×P (X2|X1, Z1 =
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z1) · · · × P (XT |X̄T−1, Z̄T−1 = z̄T−1). For continuous Xs, the expectation can be

solved by using a Monte-Carlo algorithm (Robins 1987). For example, in a two-time

point setting with binary treatment at each time point, there are four possible treat-

ment combinations (0, 0), (0, 1), (1, 0), and (1, 1). First, draw baseline covariate x∗1

from the empirical distribution of X1. Set Z1 = z1 and generate a draw x∗2 from

P̂ (X2|X1 = x∗1, Z1 = z1). Then setting Z1 = z1 and Z2 = z2, generate draws y∗

from P̂ (Y |X1 = x∗1, Z1 = z1, X2 = x∗2, Z2 = z2). Repeat the procedure many times

to get the marginal distribution of the outcome of interest under each counterfactual

treatment history. The marginal treatment effects between (Z1 = z1, Z2 = z2) and

(Z1 = z
′
1, Z2 = z

′
2) can be estimated by the sample mean of the draws y∗ under

(Z1 = z1, Z2 = z2) and the sample mean of the draws under (Z1 = z
′
1, Z2 = z

′
2). If all

the models are correctly specified, the g-computation estimator is consistent.

2.3.2 Inverse Probability Treatment Weighted Estimator

The IPTW estimator provides a consistent estimator of the parameter of the

marginal mean of E(Y z̄T ) = f(z̄T , β) by solving the estimating equations:

DIPTW (O|β, g0) =
df(z̄T , β)

dβ

{ T∏
t=1

P (Zt = zt|Z̄t−1 = z̄t−1)/g0

}
(Y z̄T−f(z̄T , β)) = 0,

where g0 is defined in Section 2.3.1.

Under the assumptions stated in Section 2.2, the IPTW estimator is consistent if

the propensity score models that make up g0 are correctly specified. For example, in

a two time points treatment, the marginal structural model of interest is E(Y Z̄2) =

β0 + β1Z1 + β2Z2 + β3Z1Z2. Let h(Z̄2) = dE(Y Z̄2 )
dβ

P (Z1 = z1)P (Z2 = z2|Z1 = z1),

where P (Z2 = z2|Z1 = z1) can be modeled as a logistic regression conditional on past

treatment history. We solve the following estimating equation:
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DIPTW (O|β, g0) = {h(Z̄2)/g0}
(
Y Z̄2 − (β0 + β1Z1 + β2Z2 + β3Z1Z2)

)
= 0,

where g0 = P (Z1 = z1|X1)P (Z2 = z2|Z1 = z1, X̄2)

2.3.3 Augmented Inverse Probability Treatment Weighted Estimator

With treatments assigned at two time points, the AIPTW estimator is obtained

by solving the following estimating equation.

DAIPTW (O|β, g0, Qo) = DIPTW (O|β, g0)−
t=2∑
t=1

EQ0,g0 [DIPTW (O|β, g0)|Z̄t, X̄t]− EQ0,g0 [DIPTW (O|β, g0)|X̄t] = 0

Under the assumptions stated in Section 2.2, the AIPTW estimator is consistent

if 1) the propensity score models are correctly specified or 2) all the conditional

distributions of the covariates and the outcomes are correctly-specified (Scharfstein,

Rotnitzky, and Robins 1999).

See appendix A for more detailed descriptions of our implementations of IPTW

and AIPTW.

2.4 Simulation Studies

2.4.1 Introduction

We conducted simulations to assess the finite sample performance of PENCOMP-

MI, compared with g-computation, IPTW and a Monte-Carlo AIPTW method (Yu

and van der Laan, 2006) in estimating treatment effects.

Our simulation study design considered five factors: a single point in time and

a two-point in time treatment with the second treatment confounded by indication;

three levels of confounding (low, moderate and high); linear vs. non-linear regression
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models for the outcomes; three sample sizes (200, 500 and 1000); and two forms

of model misspecification. We considered three sets of models for the AIPTW and

PENCOMP estimators: (A) correctly-specified propensity and prediction models, (B)

a correctly-specified propensity model only, and (C) a correctly-specified prediction

model only. The case with both models misspecified was not considered since none

of the compared methods yields consistent estimates in that case, and conclusions

from particular simulation conditions have limited generalizability. For the IPTW

estimator, there is no prediction model so we considered only a correctly-specified

or misspecified propensity model. One thousand simulated data sets were created

for sample size of 500, but to reduce computation burden, only 500 simulated data

sets were used for sample sizes of 200 and 1000 in the two-time point situation. For

PENCOMP, 200 complete datasets were created to estimate treatment effects and the

associated standard errors and confidence intervals. For IPTW and g-computation,

500 bootstrap samples were used to estimate standard errors and 95% confidence

intervals. For AIPTW, 500 bootstraps were used to calculate standard errors and

confidence intervals for sample size of 500, but to reduce computational burden, only

200 bootstraps were used for sample size 200 and 1000 in the two-time point case.

For the single time point treatment, 35 equally spaced knots were used, and for the

two-time point treatment, 15 equally spaced knots were used. A truncated linear

basis was used in both.

We compared performance in terms of bias, RMSE, average 95% confidence in-

terval width, and 95% confidence interval (non) coverage. To provide a more inter-

pretable scale for bias and RMSE, we present the ratio of the bias and RMSE to the

RMSE of IPTW for the correct propensity model. We also scaled the 95% confidence

interval width to the width of IPTW with the correct propensity model. In the main

paper, we presented the results for RMSE and 95% non-coverage. The complete

results are included in Appendix A.3.
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2.4.2 Simulations for a Treatment Assigned at a Single Time Point

Our simulation scenarios are the same as those in Glynn and Quinn (2010). Each

simulated data set contains five variables: X1a, X1b and X1c are baseline covariates,

independently and normally distributed as N(0, 1). The treatment is denoted as Z1

and is Bernoulli distributed with treatment assignment probability that depends on

X1a and X1b. The outcome of interest is denoted as Y and is normally distributed

with a mean that depends only on X1b and X1c and a variance of 1, so that X1b

confounds treatment and outcome. We considered two outcome models: linear and

nonlinear. The correctly-specified and misspecified treatment assignment mechanism

and the outcome models are described in Table 2.3. The data were generated based on

the true models shown in Table 2.3. The treatment effects under linear and nonlinear

outcome models were 5 and 9, respectively.

Table 2.3: Single Time Point Treatment Simulation Scenarios: γ = c(1.5, 1.5, 0.75),
c(1, 1, 0.5), c(0.1, 0.1, 0.05) corresponds to high, moderate, and low confounding, re-
spectively. The true coefficients associated with each model are listed next to each
model.

.
Linear Outcome

True logit(P (Z1 = 1|X̄, γ) = γ1X1a + γ2X1b + γ3X1aX1b γ = c(γ1, γ2, γ3) = c(1.5, 1.5, 0.75), c(1, 1, 0.5), or c(0.1, 0.1, 0.05)
E(Y1|X̄, β1) = β10 + β11X1b + β12X1c β1 = (β10, β11, β12) = (5, 3, 1)
E(Y0|X̄, β0) = β00X1b + β01X1c β0 = (β00, β01) = (1, 1)

Misspecified logit(P (Z1 = 1|X̄, λ) = λ0 + λ1X1a

E(Y1|X̄, α1) = α10 + α11X1c

E(Y0|X̄, α0) = α00 + α01X1c

NonLinear Outcome

True logit(P (Z1 = 1|X̄, γ)) = γ1X1a + γ2X1b + γ3X1aX1b γ = c(γ1, γ2, γ3) = c(1.5, 1.5, 0.75), c(1, 1, 0.5), or c(0.1, 0.1, 0.05)
E(Y1|X̄, β1) = β10 + β11X1b + β12X1c + β13X

2
1b + β14X

2
1c β1 = (β10, β11, β12, β13, β14) = (5, 3, 1, 2, 2)

E(Y0|X̄, β0) = β00X1b + β01X1c β0 = (β00, β01) = (1, 1)

Misspecified logit(P (Z1 = 1|X̄, λ)) = λ1X1a

E(Y1|X̄, α1) = α10 + α11X1c

E(Y0|X̄, α0) = α00 + α01X1c

Results for sample size 500 are shown in Figures 2.1-2.2 and Tables A.5-A.8 in

Appendix A.3. The RMSEs of the methods are shown in Figure 2.1, expressed as a

proportion of the RMSE of IPTW with a correct propensity model. Both AIPTW

and PENCOMP generally had substantially lower RMSEs than IPTW, especially for
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the linear outcome, with the ratio of RMSE to RMSE of IPTW with a correct propen-

sity model varying from 0.3 to 1 and with most of the ratios below 0.8. AIPTW and

PENCOMP had similar RMSE under low confounding or correctly specified predic-

tion models in the linear model, but PENCOMP had substantially lower RMSE than

AIPTW when the prediction model was misspecified and as the degree of confounding

increased and the weights became more variable. In the nonlinear outcome model,

PENCOMP and AIPTW had similar RMSE under all scenarios. Lastly, PENCOMP

had similar RMSEs to g-computation when the prediction model was correctly spec-

ified.

The 95% confidence interval non-coverage rates are shown in Figure 2.2. PEN-

COMP generally had close to nominal coverage of 95% when the prediction model was

correctly specified, and conservative (over-) coverage when the prediction model was

misspecified, especially for linear outcome model, with coverage rates close to 99%.

One exception is that in the nonlinear model under high confounding, PENCOMP

slightly undercovered, with a coverage rate of 90%. On the other hand, AIPTW and

IPTW displayed more evidence of undercoverage, especially in the linear outcome

model under high confounding, with coverage rates less than 90%.

Table A.5 in the Appendix displays the empirical bias of the three methods as

a fraction of RMSE of IPTW with a correct propensity score model. The IPTW

estimator had close to zero empirical bias when the propensity model was correctly

specified, but was substantially biased, with relative bias greater than 20% under

high confounding, when the propensity model was misspecified. G-computation had

negligible bias, when the prediction model was correct, but had substantial bias, with

relative bias over 20% in some scenarios, when the prediction model was misspeci-

fied. Both AIPTW and PENCOMP had small empirical bias, especially when the

prediction model was correctly specified or when confounding was low. The empirical

biases tended to be larger when the prediction model was misspecified, with AIPTW
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having slightly less empirical bias than PENCOMP in some scenarios. In general,

empirical bias for both PENCOMP and AIPTW represented a small fraction of the

RMSE of IPTW with a correct propensity score model.

The 95% confidence width are shown in Table A.8 in the Appendix. When the

prediction model was correctly specified, both AIPTW and PENCOMP had similar

confidence interval widths, which were smaller than those for IPTW. However, when

the prediction model was misspecified, PENCOMP tended to have a wider confidence

interval under low confounding, compared to AIPTW and IPTW with the correct

propensity model, a finding consistent with the over-coverage of PENCOMP in Figure

2.2. As confounding increased, both PENCOMP and AIPTW had similar confidence

interval widths as IPTW with the correct propensity model in the linear outcome.

In the nonlinear outcome, with the prediction model misspecified, both PENCOMP

and AIPTW had similar interval widths than IPTW with correct propensity model.

In addition, for all the estimators, the confidence intervals were wider when the

prediction model was misspecified.

The simulation results for sample sizes 200 and 1000 are given in Table A.1-A.4

and A.9-A.12 in Appendix A. As one would expect, the empirical biases of correctly-

specified IPTW, AIPTW and PENCOMP estimators decreased with increasing sam-

ple size, whereas the bias of the misspecified IPTW estimator was less dependent on

sample size. PENCOMP’s relative gains in RMSE over the other methods tended

to increase with increasing sample size, especially under moderate or high confound-

ing. Interval widths for PENCOMP decreased more dramatically when the prediction

model was misspecified as sample size increased. Confidence coverage of the methods

tended to be closer to nominal as sample size increased.

In summary, IPTW performed worse than AIPTW and PENCOMP, particularly

when confounding was high, since the doubly-robust estimators rely on both the pre-

diction model and the propensity model. PENCOMP had comparable performance
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to AIPTW when confounding was low and the prediction model was correct, and

tended to perform better than AIPTW when the prediction model was misspecified

and weights were highly variable.

Logit-transforming the propensity scores before fitting the PENCOMP model

works well in general, since the weight distribution is typically highly skewed, and

the logit transformation yields a more uniform distribution of propensity scores for

the fitting of the spline models. However, in cases where the weight distribution is

more uniformly distributed on the original scale, the logit transformation can actually

skew the weight distribution, leaving data points thinly distributed in some regions

so that it becomes harder to fit the model and make predictions. This is the cause of

the undercoverage of PENCOMP in the nonlinear model under high confounding. In

practice, examining the distribution of the propensity score with and without the logit

transformation is recommended. This issue becomes moot as sample size increases,

allowing for sufficient data to be available to fit the splines, as indicated by the fact

that coverage is approximately correct for the nonlinear model under high confound-

ing with sample sizes of 1000 (see Table A.11 in the Appendix). Lastly, including a

covariate that is a strong predictor of the treatment but not of the outcome can lead

to bias and inefficiency.
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Figure 2.1: Ratio of RMSE over RMSE of IPTW(A) with correct propenisty score
model across four methods-PENCOMP, AIPTW, IPTW and g-computation for treat-
ment effect ∆ in a linear and nonlinear outcome model. (A) correctly-specified
propensity and prediction models; (B) a correctly-specified propensity model only;
(C) a correctly-specified prediction model only; based on 1000 simulations with sam-
ple size of 500 and 500 bootstraps, and 200 complete datasets for PENCOMP.
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Figure 2.2: 95% noncoverage rate across four methods-PENCOMP, AIPTW, IPTW
and g-computation for treatment effect ∆ in a linear and nonlinear outcome model.
(A) Correctly-specified propensity and prediction models; (B) a correctly-specified
propensity model only; (C) a correctly-specified prediction model only; based on 1000
simulations with sample size of 500 and 500 bootstraps, and 200 complete datasets
for PENCOMP.

2.4.3 Simulations for Treatments Assigned at Two Time Points

In the two time-point treatment scenario, each simulated data set contains X1a,

X1b, Z1, X2a, X2b, Z2, and Y . X1a and X1b are two baseline covariates and normally

distributed with mean 0.2, variance 1. The first treatment Z1 is Bernoulli distributed
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with success probability that depends on the two baseline variables. The interme-

diate outcome X2a is normally distributed with a mean that depends on X1a, X1b

and Z1 and with a residual variance of 1. The other intermediate outcome X2b is

normally distributed with a mean that depends on X1b, X2a and Z1, and with a

residual variance of 1. The second treatment Z2 is Bernoulli distributed with success

probability that depends on all the covariate and treatment histories. Thus, X2a

and X2b both mediate and confound the relationship between Z1, Z2, and Y . The

coefficients in the second treatment assignment are varied to create three levels of

variability of the IPTW weights: low, moderate and high. The true first and sec-

ond treatment probability models are described in Table 2.4. Each outcome model

is normally distributed with a mean that depends on the covariate and treatment

histories, and a residual variance of 1, as shown in Table 2.4. The data were gen-

erated based on the true models in Table 2.4. Under the linear outcome model,

(∆11,∆10,∆01) were (22.35, 11.17, 10.45), respectively. Under the nonlinear outcome

model, (∆11,∆10,∆01) were (25.31, 12.69, 10.57), respectively.
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Table 2.4: Two Time Point Treatment Simulation Scenarios: setting (γ11, γ21, γ22, γ24) equal to (−0.5,−0.1, 0.2, 0.2),
(−0.8,−0.1, 0.6, 0.6), and (−0.8,−0.5, 1.1, 1.1) which corresponds to high, moderate, and low confounding, respectively.

.
Linear Outcome

True X1a ∼ N(0.2, 1)
X1b ∼ N(0.2, 1)
logit(P (Z1 = 1|X1, γ1)) = γ10 + γ11X1a + γ12X1b γ1 = (γ10, γ11, γ12) = (−0.01, γ11,−0.3)
logit(P (Z2 = 1|X̄2, Z1, γ2)) = γ20 + γ21(X2a −X1a) + γ22Z1(X2a −X1a) + γ23(X2b −X1b) + γ24Z1(X2b −X1b) γ2 = (γ20, γ21, γ22, γ23, γ24) = (−0.01, γ21, γ22,−0.1, γ24)
(X2a|Z1 = 0, X1a, X1b, ω0) ∼ N(ω00X1a + ω01X1b, 1) ω0 = (ω00, ω01) = (1, 0.5)
(X2a|Z1 = 1, X1a, X1b, ω1) ∼ N(ω10X1a + ω11Z1 + ω12X1a ∗ Z1 + ω13X1b, 1) ω1 = (ω10, ω11, ω12, ω13) = (1, 0.5, 0.5, 0.5)
(X2b|Z1 = 0, X1b, α0) ∼ N(α00X2a + α01X1b, 1) α0 = (α00, α01) = (0.3, 1)
(X2b|Z1 = 1, X1b, α1) ∼ N(α10X2a + α11X1b, 1) α1 = (α10, α11) = (0.4, 1)
E(Y11|X̄2, β11) = β110 + β111X1a + β112X2a + β113X1b + β114X2b β11 = (β110, β111, β112, β113, β114) = (25, 2, 2, 1.5, 1.5)
E(Y10|X̄2, β10) = β100 + β101X1a + β102X2a + β103X1b + β104X2b β10 = (β100, β101, β102, β103, β104) = (15, 2, 1, 1.5, 1)
E(Y01|X̄2, β01) = β010 + β011X1a + β012X2a + β013X1b + β014X2b β01 = (β010, β011, β012, β013, β014) = (15, 1, 2, 1, 1.5)
E(Y00|X̄2, β00) = β000 + β001X1a + β002X2a + β003X1b + β004X2b β00 = (β000, β001, β002, β003, β004) = (15, 1, 1, 1, 1)

Misspecified logit(P (Z2 = 1|X̄2, Z1, λ)) = λ0 + λ1X1a + λ2X2a + λ3X1b

E(Y11|X̄2, α11) = α110 + α111X1a + α112X1b

E(Y10|X̄2, α10) = α100 + α101X1a + α102X1b

E(Y01|X̄2, α01) = α010 + α011X1a + α012X1b

E(Y00|X̄2, α00) = α000 + α001X1a + α002X1b

NonLinear Outcome

True X1a ∼ N(0.2, 1)
X1b ∼ N(0.2, 1)
logit(P (Z1 = 1|X1, γ1)) = γ10 + γ11X1a + γ12X1b γ1 = (γ10, γ11, γ12) = (−0.01, γ11,−0.3)
logit(P (Z2 = 1|X̄2, Z1, γ2)) = γ20 + γ21(X2a −X1a) + γ22Z1(X2a −X1a) + γ23(X2b −X1b) + γ24Z1(X2b −X1b) γ2 = (γ20, γ21, γ22, γ23, γ24) = (−0.01, γ21, γ22,−0.1, γ24)
(X2a|Z1 = 0, X1a, X1b, ω0) ∼ N(ω00X1a + ω01X1b, 1) ω0 = (ω00, ω01) = (1, 0.5)
(X2a|Z1 = 1, X1a, X1b, ω1) ∼ N(ω10X1a + ω11Z1 + ω12X1a ∗ Z1 + ω13X1b, 1) ω1 = (ω10, ω11, ω12, ω13) = (1, 0.5, 0.5, 0.5)
(X2b|Z1 = 0, X1b, α0) ∼ N(α00X2a + α01X1b, 1) α0 = (α00, α01) = (0.3, 1)
(X2b|Z1 = 1, X1b, α1) ∼ N(α10X2a + α11X1b, 1) α1 = (α10, α11) = (0.4, 1)
E(Y11|X̄2, β11) = β110 + β111X1a + β112X2a + β113X1b + β114X2b + β115X2a ∗X2b β11 = (β110, β111, β112, β113, β114, β115) = (25, 2, 2, 1.5, 1.5, 1.6)
E(Y10|X̄2, β10) = β100 + β101X1a + β102X2a + β103X1b + β104X2b + β105X2a ∗X2b β10 = (β100, β101, β102, β103, β104, β105) = (15, 2, 1, 1.5, 1, 1)
E(Y01|X̄2, β01) = β010 + β011X1a + β012X2a + β013X1b + β014X2b + β015X2a ∗X2b β01 = (β010, β011, β012, β013, β014, β015) = (15, 1, 2, 1, 1.5, 0.8)
E(Y00|X̄2, β00) = β000 + β001X1a + β002X2a + β003X1b + β004X2b + β005X2a ∗X2b β00 = (β000, β001, β002, β003, β004, β005) = (15, 1, 1, 1, 1, 0.7)

Misspecified logit(P (Z2 = 1|X̄2, Z1, λ)) = λ0 + λ1X1a + λ2X2a + λ3X1b

E(Y11|X̄2, α11) = α110 + α111X1a + α112X1b

E(Y10|X̄2, α10) = α100 + α101X1a + α102X1b

E(Y01|X̄2, α01) = α010 + α011X1a + α012X1b

E(Y00|X̄2, α00) = α000 + α001X1a + α002X1b
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Results for RMSE and 95% confidence interval noncoverage for sample size 500

are shown in Figure 2.3-2.6; other results are given in Tables A.17-A.20 in Appendix

A. The RMSEs of the methods are presented in Figure 2.3 for the linear outcome

model and in Figure 2.4 for the nonlinear outcome model, expressed as a propor-

tion of the RMSE of IPTW with a correct propensity model. The AIPTW and

PENCOMP methods had substantially lower RMSEs than IPTW, with the ratio of

RMSEs less than 0.7 in most scenarios. The RMSEs for PENCOMP were similar

to or lower than the corresponding RMSEs for AIPTW, with some substantial gains

over AIPTW when the prediction models were misspecified. Lastly, g-computation

had similar RMSE to PENCOMP when the prediction model was correctly speci-

fied, but markedly, higher RMSE than PENCOMP when the prediction model was

misspecified.

Non-coverage rates of the 95% intervals are shown in Figure 2.5-2.6. Coverage for

IPTW was markedly below nominal when the prediction models were misspecified.

PENCOMP tended to have close to nominal or conservative coverages. AIPTW

had close to nominal or anti-conservative coverages, and tended to undercover in

situations with high confounding, particularly when the prediction model was severely

misspecified and the weights were highly variable. For example, for estimation of ∆10

in the nonlinear regressions, as confounding increased, AIPTW and IPTW’s coverage

rates dropped dramatically to about 60%, while PENCOMP maintained a coverage

rate of 97%.

Table A.17 displays empirical biases as a fraction of RMSE of IPTW with cor-

rectly specified propensity score model for the linear and nonlinear outcome models,

respectively. As in the one time point case, IPTW had moderate empirical bias

when the propensity model was correctly specified under high confounding, and was

highly biased when the propensity model was misspecified, especially with moderate

and high degrees of confounding. On the other hand, g-computation had negligible
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biases, with relative bias of less than 1% when the prediction model was correctly

specified, but was highly biased when the prediction model was misspecified. AIPTW

and PENCOMP had lower empirical bias under low confounding scenarios or when

the prediction model was correctly specified. As confounding increased, the estimated

biases became larger. However, both AIPTW and PENCOMP had relative bias of

less than 5% in most cases. In terms of the RMSE of IPTW with a correct propensity

model, the bias of AIPTW and PENCOMP represented a very small fraction of the

RMSE, with the fractions varying from approximately 0 to 0.25.

The 95% confidence intervals widths are shown in Table A.20. In both linear

and nonlinear outcome models, both AIPTW and PENCOMP had similar confidence

interval widths, which were substantially smaller than IPTW. As confounding in-

creased, PENCOMP tended to have smaller confidence interval widths than IPTW

with correctly-specified propensity model and still covered better. On the other hand,

AIPTW tended to undercover under high confouding. Lastly, PENCOMP tended to

have similar RMSEs and mean confidence interval widths as g-computation with cor-

rectly specified prediction models.

Results for sample size 200 and 1000 are in Table A.13-A.16, A.21-A.24 in Ap-

pendix A. In general, changes in sample sizes had similar effects on the two-time point

simulations as for the single time point simulations, with the finite sample bias for

the robust estimators decreasing as the sample size increased. Changes in sample size

had very little impact on RMSE comparisons. Coverage rates for the robust estima-

tors were slightly improved under larger sample sizes. Confidence interval widths for

PENCOMP tended to shrink as sample sizes increased, while other interval widths

remained the same.

Overall, PENCOMP outperforms the other methods in terms of RMSE and cov-

erage probability and efficiency in these simulations, although it has slightly larger

bias than AIPTW in some cases-though very small as a fraction of RMSE of IPTW
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Figure 2.3: Ratio of RMSE over RMSE of IPTW(A) with correct propenisty score
model across four methods-PENCOMP, AIPTW, IPTW and g-computation for three
treatment effects ∆11, ∆10, and ∆01 in a linear outcome model. (A) Correctly-specified
propensity and prediction models; (B) a correctly-specified propensity model only; (C)
a correctly-specified prediction model only; based on 1000 simulations with sample
size of 500 and 500 bootstraps, and 200 complete datasets for PENCOMP.
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Figure 2.4: Ratio of RMSE over RMSE of IPTW(A) with correct propenisty score
model across four methods-PENCOMP, AIPTW, IPTW and g-computation for three
treatment effects ∆11, ∆10, and ∆01 in a nonlinear outcome model. (A) Correctly-
specified propensity and prediction models; (B) a correctly-specified propensity model
only; (C) a correctly-specified prediction model only; based on 1000 simulations with
sample size of 500 and 500 bootstraps, and 200 complete datasets for PENCOMP.
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Figure 2.5: 95% noncoverage rate across four methods-PENCOMP, AIPTW, IPTW
and g-computation for three treatment effects ∆11, ∆10, and ∆01 in a linear outcome
model. (A) Correctly-specified propensity and prediction models; (B) a correctly-
specified propensity model only; (C) a correctly-specified prediction model only; based
on 1000 simulations with sample size of 500 and 500 bootstraps, and 200 complete
datasets for PENCOMP.
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Figure 2.6: 95% noncoverage rate across four methods-PENCOMP, AIPTW, IPTW
and g-computation for three treatment effects ∆11, ∆10, and ∆01 in a nonlinear
outcome model. (A) Correctly-specified propensity and prediction models; (B) a
correctly-specified propensity model only; (C) a correctly-specified prediction model
only; based on 1000 simulations with sample size of 500 and 500 bootstraps, and 200
complete datasets for PENCOMP.
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2.5 Application

We applied our method to the Multicenter AIDS Cohort study (MACS) to analyze

the effect of antiretroviral treatment on CD4 counts. We restrict our analyses to the

period between visit 7 and 21, after the first antiretroviral treatment zidovudine

(AZT) was approved for use and before the advent of highly active antiretroviral

therapy (HAART). During the period between visit 14 and 17 didanosine (ddI) and

zalcitabine (ddC) also became available. Then around visit 21, new treatments-

stavudine (d4t) and lamivudine (3tc) were approved. We estimate the short-term (1

year) effects of using any antiretroviral treatment for HIV+ subjects. Treatment was

coded to 1 if the patient reported taking any of the four mentioned antiretroviral

treatment (ART) or enrolling in clinical trials of such drugs. That is, starting with

visit 7, for every three-visit window we estimated the effects of using ART drugs

on CD4 counts. We excluded subjects with missing values on any of the covariates

included in the models. We also used the square root of the blood count variables in

this analysis.

For each three-visit window, we denoted time t = 1, 2, and 3. Let Xt(i) denote

square root of subject i’s blood count measures at time t, and Zt(i) be one if subject

i received antiretroviral treatment during the period between time t and t + 1, and

zero if otherwise, for t = 1, 2. Let Y (i) = X3(i) be the square root of CD4 count

for subject i measured a year after baseline at time t = 3. We defined dosage as

the number of times a subject went on treatment previously, i.e. from the start of

enrollment to the baseline at time t = 1 of each three-visit window. For the outcome

and propensity models, we considered baseline blood count measures, dosage, and

intermediate CD4 count as potential covariates. The baseline blood count measures

included CD4 count, CD8 count, white blood cell count (WBC), red blood cell count

(RBC), and platelets. Specifically, the intermediate outcome models included all the
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baseline blood measures. The final outcome model included the baseline blood count

measures and intermediate CD4 count. For sample size less than 50, especially for

treatment regimes (1, 0) and (0, 1), the final outcome models included only prior CD4

count. The first treatment assignment Z1 was modeled as a logistic regression with

baseline blood count measures and dosage. Race, age, and education level were not

included because including them seemed to increase the variance of the estimates

while the estimates stayed about the same. The second treatment Z2 was modeled as

a logistic regression with the same baseline covariates as those in the first treatment

model, intermediate CD4 count and Z1. The models used to estimate the numerator

of the stabilized weights excluded all covariates, except treatment indicator Z1 and

intercept. When calculating the total dosage for subjects, we assumed that subjects

with missed visits did not change treatment at the missing time points. For each

three-visit window starting with visit 7, we estimated the treatment effects ∆11, ∆10,

and ∆01, provided sufficient data were available to model the relevant outcomes. The

number of subjects with observed treatment sequence (Z1, Z2) = (1, 0) was very small

for some of the three-visit windows, as shown in Table A.25 in Appendix A.4. The

data suggested that patients tended to stay on treatment once they started. As the

three-visit window moved across time, more patients got on treatments, and fewer

patients switched off treatment, since there were more treatment options available

if resistance or severe side effects developed with one treatment. Consequently, the

number of subjects with treatment sequence (1, 0) was much smaller than that with

(1, 1), (0, 1), or (0, 0).

In both the Monte Carlo steps of AIPTW and the imputation steps in PENCOMP,

we replaced the simulated/imputed transformed CD4 values that were < 0 with 0 (i.e.

below detection level). The stabilized weights were still highly variable, as shown

in Table A.26, so we truncated the weights at the 1st and 99th percentiles when

calculating the estimates of AIPTW and IPTW estimators. Although the variances of
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the estimates reduced, the estimates became more biased toward the naive estimates,

as seen in Figure A.1 in Appendix A.4. The results without truncation are in Figure

2.8 (See Zubizarreta (2015) for an alternative that minimizes weight variance while

retaining covariate balance). For PENCOMP, we chose a mininum of 35 and 1/4

of unique data points as the number of knots. Equally spaced knots and truncated

linear basis were used. In addition, for estimating outcomes for a particular treatment

regimen Zt, we excluded cases where the propensity of Zt lay outside the observed

ranges of the propensity of Zt as described in Section 2.2.4, to avoid extrapolating

the regression model predictions outside the shared range of propensities.

For example, to calculate the treatment effect of ∆z1z2 , we estimated the probabil-

ity of getting treatment Z1 = z1 conditional of the baseline covariate history, denoted

as P̂ (Z1 = z1|X̄1), and the probability of receiving treatment Z2 = z2, conditional

the past covariate history and Z1 = z1, denoted as P̂ (Z2 = z2|Z1 = z1, X̄1). De-

note the probability of treatment regime (z1, z2) as P̂z̄2 = P̂ (Z1 = z1|X̄1) ∗ P̂ (Z2 =

z2|Z1 = z1, X̄2). At t = 1, subjects were divided into two groups using indicators

I(Zobs
1 = z1) and I(Zobs

1 6= z1). We removed subjects whose estimated propen-

sity scores P̂ (Z1 = z1|X̄1) lay outside the overlapping regions of the propensity

scores. Similarly, at t = 2, subjects were divided into two groups using indicators

I{(Zobs
1 , Zobs

2 ) = (z1, z2)} and I{(Zobs
1 , Zobs

2 ) 6= (z1, z2)}. Again, we removed subjects

whose estimated propensity scores P̂z̄2 lay outside of the overlapping regions of the

propensity scores. We then repeated this process for z1 = z2 = 0, and took for

analysis the set of observations that had not been dropped as a result of all of these

comparisons. Figure 2.7 illustrates the overlapping regions of the propensity scores

for one window. We repeat the same procedures for each set of time points and each

treatment. The fraction of subjects that was included in each analysis varied from

25% to 89% of the total sample, shown in Table A.25. One possible reason for fewer

subjects being included in later windows was that later windows included more newly
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infected subjects, as well as infected subjects who had survived for years; these two

groups of subjects were probably very different.

One important step in building the propensity score models is to check for bal-

ance in the covariates. At t = 1, for the two groups of subjects I(Zobs
1 = z1) and

I(Zobs
1 6= z1), we checked whether the distributions of the baseline covariates were

similar between the two groups. Similarly, at t = 2, we checked whether the dis-

tributions of the baseline and the intermediate covariates were similar between the

two groups I{(Zobs
1 , Zobs

2 ) = (z1, z2)} and I{(Zobs
1 , Zobs

2 ) 6= (z1, z2)}. As a measure

of imbalance, we used the standardized difference between the two groups, which is

the difference in means between the two groups divided by an estimate of the pooled

standard deviation:

d =

∣∣∣∣(x̄(z1z2) − x̄ 6=(z1z2)

)/√
s2

(z1z2) + s2
6=(z1z2)

2

∣∣∣∣
If the propensity score models are adequately specified, the covariate distributions

between the (z1z2) and 6= (z1z2) groups should be similar, conditional of the estimated

propensity scores. Specifically, to check the balance of covariate x, we regressed x

on the spline of the propensity scores and compared the residuals between treatment

groups using t-test. Table 2.5 shows an example for covariate balance before and

after adjusting for propensity scores. The standardized differences between treatment

groups for most blood count measures and the t statistics were reduced dramatically.

In addition, we assessed the degree of overlap in the propensity score distributions

between treatment groups (Imbens and Rubin, 2015). For example, we measured

the proportion of subjects in the 6= (z1, z2) group whose propensity scores of (z1, z2)

are between the 1− α and α quantiles of the propensity score distribution of (z1, z2)

group, denoted as π1−α
(z1,z2) = F 6=(z1,z2)(F

−1
(z1,z2)(1−α))−F 6=(z1,z2)(F

−1
(z1,z2)(α)), where F is

the cumulative distribution. Inside this region it is easier to impute missing potential
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outcomes Y z1z2 because there are more observations. The low degree of overlap for

this dataset suggested some difficulty in imputing the missing potential outcomes, as

shown in Figure 2.7 and Table A.27 in Appendix A.4.

We estimated the short term effect of antiretroviral treatment on CD4 count us-

ing four methods: naive crude estimate, g-computation, IPTW, AIPTW, and PEN-

COMP. The results are summarized in Figure 2.8. The standard errors were obtained

using 500 bootstrap samples. For PENCOMP, 200 complete datasets were created.

For all the three-visit windows, the naive estimators were negative, suggesting a

harmful effect of antiretroviral treatment on CD4 count. This is likely due to un-

controlled confounding by indication, in that sicker subjects with lower CD4 counts

were more likely to be assigned to treatment. The treatment effects estimated by

IPTW, AIPTW and PENCOMP all suggest less harmful effects, with PENCOMP

in particular having slightly negative to slightly positive effects, and IPTW having

positive effects in most windows. When the weights were not variable in window 1-3,

and 15-16 and the means of the stablized weights were close to one, the treatment

effects obtained from all four methods were similar. The similarity of PENCOMP to

the other estimates indicate that our proposed method is addressing the bias from

confounding by indication. Further, when the weights became variable, the PEN-

COMP estimates were more stable across time, and generally had smaller standard

errors than either AIPTW or IPTW, a finding that is consistent with the findings in

the simulation study. Lack of stronger positive effects of treatment may be due to

the inability of the observed covariates to remove all confounding.
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Figure 2.7: Distributions of the propensity scores in subjects whose observed treat-
ment sequence is (z1, z2) and subjects whose observed treatment sequence is not
(z1, z2) for window 4.

Table 2.5: Balance of covariates between subjects with observed treatment sequence
(1, 1) and everybody else before and after adjusting for propensity scores for window
8, without removing subjects outside of the overlapping regions. We regressed each
covariate on the spline of the logit of the propensity score, P̂ ∗11. Truncated linear basis
with 10 equally spaced knots was used. ∗∗ significant at 0.005 level, and ∗ significant
at 0.05 level.

.

Before Adjusting After Adjusting

Covariate d T Stats d T stats

RBC 1.83 25.23∗∗ 0.016 0.22
CD4 1.11 15.28∗∗ 0.0048 0.067
WBC 0.59 8.11∗∗ 0.028 0.39
CD8 0.0012 0.017 0.032 0.44
PLATE 0.10 1.37 0.044 0.61
CD4 at t = 2 1.12 15.28∗∗ 0.017 0.23
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Figure 2.8: For each of the three-visit windows 1, · · · , 15, the estimates and stan-
dard errors (SE) of the treatment effects ∆11, ∆10, and ∆01 of the four methods:
PENCOMP, AIPTW, IPTW, and Naive. For some windows, AIPTW had very large
bootstrap standard errors because of a few extreme bootstrap estimates.

2.6 Discussion

We have proposed PENCOMP as a new, straightforward method to estimate treat-

ment effects in point treatment situations and in two-time point treatment situations

with time dependent confounders. The method uses the doubly-robust imputation

methodology of Zhang and Little (2009) to impute the unobserved potential outcomes
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and compute the causal treatment effects of interest. As with other doubly-robust

methods, PENCOMP offers the analyst two chances to make correct inferences about

treatment effects, either by correctly specifying the propensity score model or by cor-

rectly specifying the prediction models. The robustness of PENCOMP to model

misspeciffication is borne out by our simulation studies.

Three main versions of PENCOMP are PENCOMP-ML, which is based on ML

with information-based or bootstrap standard errors, PENCOMP-B, which based

inference on posterior distributions of the causal parameters, and PENCOMP-MI,

which multiply imputes the outcomes for treatments not assigned, and uses MI com-

bining rules for inference. For PENCOMP we considered distinct outcome models for

each treatment combination in this paper. Specifically, suppose we are interested in

treatment sequence z̄T , at each time point t, the outcome model was fitted using only

the subjects with z̄t that matched with z̄T up to time point t. However, when the

observed data are sparse, outcome models with interactions between treatment and

covariates, as well as interactions between treatment and splines (Coull, 2001), can

be fitted to borrow strength across different treatment sequences. However, adding

interactions between treatment and splines could increase complexity when there are

many treatment sequences. We fitted the spline on the propensity score on the proba-

bility scale and on the logit scale but found that the logit scale worked much better in

most cases, especially when the propensity scores were too extreme on the probability

scale. Lastly, we considered PENCOMP-MI in our empirical work, but it would be

interesting to compare it with the alternative versions, particularly PENCOMP-B,

which as a Bayesian method might have attractive small-sample properties.

A natural competitor to PENCOMP is the AIPTW estimator, which like PEN-

COMP has a double robustness property. In our simulation studies, the performance

of PENCOMP is similar to that of AIPTW estimator when the confounding is low.

However, when the confounding is moderate or high and the weights in AIPTW are
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highly variable, PENCOMP tends to outperform the version of AIPTW considered

in this study with respect to mean square error, interval coverage, and interval width.

Kang and Schafer (2007) also show drawbacks of AIPTW in small samples, espe-

cially when the weights are highly variable. The version of AIPTW we considered is

based on Monte Carlo simulations and is computationally intensive. Consequently,

PENCOMP is not only statistically more efficient, but is also computationally more

efficient than this AIPTW estimator. Other versions of AIPTW have been suggested,

and we have not compared our method with these versions; however, we expect that

instability from highly-variable weights is likely to be an issue with other forms of

AIPTW as well. The PENCOMP method avoids this problem by using the propensity

as a predictor, rather than as a weight.

We have focused here on situations with treatment assignments at just two time

points. An important question is how PENCOMP can be applied to longitudinal

data sets with more than two assignment points. In the MACS data we analyzed,

data are available at 16 time points, so there are over 30,000 (215) possible treat-

ment combinations, nearly all of which are not seen in the data; providing simple

and interpretable causal conclusions in such a setting requires careful thought and

modeling. An initial step is to analyze the set of treatment combinations that arise

in the data set, and restrict inference to the subset of ”relevant combinations” judged

to have sufficient data to provide meaningful estimates. Propensity models can then

be fitted sequentially over time on historical data, including prior treatment assign-

ments and outcomes as potential covariates. The outcomes of relevant combinations

can then be imputed as a function of a spline of the propensity and other predictive

covariates in the history, with the propensity for each relevant combination obtained

by multiplying the sequence of propensities at the set of earlier time points. Some

modeling of the resulting treatment effects is likely to be needed to provide parsimo-

nious inferences; for example a plot of treatment effects against the number of prior
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”dosages” may suggest a model with a parametric form for the treatment effect as a

function of dosage. To maintain stable estimates and enhance interpretability, some

form of dimension reduction and variable selection, for example, a summary measure

of treatments and other time varying covariates, will typically required. Implement-

ing such strategies is outside the scope of this article, and a topic for future research.

We note that proliferation of treatment regimens is a characteristic of the problem,

not the statistical method; MSM models are faced with similar challenges.

In our simulation study, we considered the standard g-computation based on the

full covariate history. However, when the dimension of the covariate is high, such as

in longitudinal treatments, it becomes hard to check and fix the models, if they are

misspecified. Achy-Brou et al (2010) proposed using a g-computation approach based

on the longitudinal propensity scores as regressors, instead of the full covariate history,

exploiting the fact that the sequential ignorability assumption remains true given the

longitudinal propensity score history. They stratified patients based on quintiles

of the propensity scores at each time point, and fitted a proportional odds logistic

regression models based on the propensity quintiles for the transition probabilities

between strata. PENCOMP is similar to Achy Brou’s method in the sense that both

methods model the outcome based on propensity scores. However, while Achy Brou’s

approach uses the propensity scores in quintiles, PENCOMP uses a penalized spline

to model the relationship between the outcome and the propensity score. This relaxes

the parametric assumptions between the outcome and the propensity score and gives

PENCOMP the double robustness property. PENCOMP also includes other variables

in the prediction models to improve efficiency.

Here we considered a smooth relationship between the outcome and the propen-

sity score. If there are thought to be discontinuities, approaches that allow for this

possibility might improve on PENCOMP. Koo (1997) considers models that allow

discontinuities at the knots. An adaptive regression spline approach to PENCOMP
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could potentially address the issues of jump discontinuity and sharp jumps (Di Mat-

teo, Genovesem and Kass, 2001). In addition, we have focused on estimating causal

effects for a continuous and normally distributed outcome. Extensions to non-normal

outcomes are straightforward in principle, by replacing the normal linear mixed mod-

els discussed here with generalized linear mixed models. For example, a logistic mixed

effects regression with random effects for the spline on the propensity could be fitted

when Y is a binary outcome. Gutman and Rubin (2012) examine the performace

of a similar spline method for binary outcome in one time point treatment. How-

ever, the performance of such extensions to non-normal outcomes for time-dependent

confounding is a topic for future research.

In summary, our simulation studies suggest that PENCOMP is a viable alternative

to IPTW and AIPTW estimators. Although we focus on observational studies in

this study, PENCOMP can also be used in randomized trials, where randomization

at later time points are based on intermediate outcomes from earlier randomized

treatments, sequential multiple assignment: randomized trials or SMART (Murphy,

2005; Nahum-Shani et al, 2012). Correct methods typically use the semi-parametric

likelihood approach similar to that employed in AIPTW; use of a robust fully model-

based approach similar to that of PENCOMP might provide advantages similar to

those described here.

51



CHAPTER III

Addressing Disparities in the Assignment

Propensity Distributions for Treatment

Comparisons from Observational Studies

3.1 Introduction

Observational studies for inference about causal effects are valuable when ran-

domization is not feasible or unethical. Valid causal inferences in this setting requires

adjustment for differences in the distribution of confounders between the treatment

groups. For example, the Multicenter AIDS cohort study (MACS) (Kaslow et al,

1987) saw the introduction of the first antiretrovial therapy (zidovudine or AZT) at a

time when no effective treatment for human immunodeficiency virus existed. Hence,

early administration was based on availability and biomarkers of disease severity

such as CD4 count, with sicker patients more likely to be treated. To deal with con-

founding, propensity score - the probability of treatment assignment as a function of

covariates - is often used. The balancing property of propensity score implies that

adjusting for the propensity can remove the bias due to differences in all observed

confounders between the treatment groups (Rosenbaum and Rubin, 1983). Propen-

sity score-based methods to estimate causal effects from observational studies include

inverse propensity weighting, matching, stratification and regression adjustment on
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the propensity score. However, for these methods to work reliably, there should be

a sufficient overlap in the propensity score distributions for the compared treatment

groups. Estimating the causal effects for units outside the overlap region depends

entirely on extrapolation, and hence is vulnerable to model misspecification. Fur-

thermore, restricting estimation of causal effects to a subpopulation where there is

more balance in the propensity distributions between the treatment groups could re-

duce the sensitivity of causal effect estimates to model misspecification (Rosenbaum

and Rubin, 1984).

Techniques have been proposed to address disparities in covariate distributions.

Rubin (1977) considers a single covariate setting and suggests dropping all units with

covariate values that have either no treated or no control units and restricting causal

effects to covariate values that have both treated and control units. Gutman and

Rubin (2013, 2015) propose dropping units outside of the overlap region of estimated

propensity scores between the treatment groups. Cochran and Rubin (1973) and

Dehejia and Wahba (1999) propose discarding unmatched subjects. Ho, Imai, King

and Stuart (2005) propose a two-stage approach. In the first stage, all the treated

units are paired with their closest control units, and only the matched units are

included in the second stage for further adjustment. Similarly, Rosenbaum (2012)

proposes an algorithm for choosing an optimal set of treated subjects, where some

treated subjects are dropped due to poor matching quality. Crump et al (2009)

propose restricting the analysis to an optimal subpopulation defined by trimming

off extreme propensity values below α and above 1 − α. Li, Morgan and Zaslavsky

(2017) define an estimand that weights cases to balance the weighted distributions of

the covariates between treatment groups in a fashion that minimizes the asymptotic

variance of the estimated treatment effect.

The propensity scores are often used to determine the common support region

and subjects are simply discarded or down-weighted. Discarding units reduces the
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effective sample size and thus increases the variance of the estimated treatment effect.

However, a subject with low probability of selection in a given arm is usually not well

estimated on that arm if unobserved, since it is likely that there are only a few

observed subjects on that arm with similar covariate distributions as the subject.

Trimming off subjects with extreme propensities changes the estimand, since the

causal effect for the subpopulation is usually not the same as that for the entire

population. As the sample size increases, there are more observed subjects in the

treatment and control groups with similar covariate distributions and thus the casual

effects can be estimated more accurately. Therefore, it is intuitive that the range of

propensities where causal effects can be estimated should depend on sample size.

The remainder of the paper is structured as follows. In Section 3.2, we discuss

alternative definitions of the estimands to address limited overlap. In Section 3.3, we

describe six methods for estimating causal effects. In Section 3.4, we describe propen-

sity score estimation procedures and diagnostic checks for balance. In Section 3.5,

we study in simulation studies the performance of alternative propensity score-based

estimation methods, for a variety of estimands chosen to reduce covariate imbalance.

In Section 6, we illustrate our methods to the MACS data and provide guidance for

practice.

3.2 Alternative Causal Estimands

In a study with treatments administered as a single time point, let Xi and Zi de-

note the vector of baseline covariates and a binary treatment for subject i = 1, · · · , N ,

respectively. Let Zi ∈ (0, 1) denote a binary treatment with Zi = 1 for treatment

and Zi = 0 for control. Let Y Zi
i denote the potential outcome under Zi for subject i.

Suppose we are interested in making causal inference about a population from which

the sample is drawn. Under Rubin’s causal model, the treatment effect for a subject
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is defined as the difference between the potential outcomes under the two treatments.

The average treatment effect defined on the entire population is the ATE estimand,

E(Y 1 − Y 0). The ATE estimand is widely used and the target population by the

estimand is easy to interpret.

Since only one potential outcome is observed for each subject, to estimate the

causal effects, we make the following three assumptions.

1) Stable Unit Treatment Value Assumption, SUTVA (Angrist, Imbens and Rubin,

1996): a) the observed outcome under the assigned treatment is the same as the

potential outcome under that treatment, and b) the potential outcomes for a given

subject are not influenced by the treatment assignments of other subjects (Rubin,

1980; Angrist, Imbens, Rubin, 1996)

2) Positivity: each subject has a positive probability of being assigned to either

treatment of interest: 0 < Pr(Zi = zi|Xi) < 1.

3) Ignorable treatment assignment: (Y 1, Y 0) |= Z|X; that is, treatment assignment

is independent of the potential outcomes, given the covariates.

In this paper, we focus attention on the positivity assumption (2) by defining

restricted definitions of the target populations and analysis methods to ensure that

this condition holds and robust causal inferences are possible. The positivity assump-

tion is violated when there exists neighborhoods of covariate space where there are

subjects belonging to just one of the treatment groups being compared. Causal esti-

mation for the subjects in this neighborhood depends on extrapolation, and can be

imprecise and highly sensitive to model specifications. In order to obtain more credi-

ble causal estimates, we restrict analysis to a subpopulation where there is overlap in

the propensity distributions of the treatment groups. We define such subpopulations

as follows.

One alternative estimand is based on truncation of propensity score. For unit
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i in the population with covariate values Xi, let Pz(Xi) = Pr(Zi = z|Xi) denote

the propensity of receiving treatment z, for z = {0, 1}. The positivity condition

holds for the set of units S(0) where S(0) = {i : Pz(Xi) > 0}. To eliminate units

where the propensity to receive one treatment is small, we may further restrict the

subpopulation to units within S(0) where propensities for all treatments are above

the αth quantile of the propensity distribution. Specifically, within S(0), let Fz()

denote the cumulative distribution of the propensity of receiving treatment z, that

is, Fz(a) = Pr(Pz(Xi) ≤ a). Then we restrict inferences to the subpopulation S(α)

of S(0) where S(α) = {i : Pz(Xi) > F−1
z (α), for z = {0, 1}}. In addition, we can

also restrict inferences to the subpopulation S∗(α) of S(0), where the probability of

all treatment assignments is greater than a pre-defined level of α directly, that is

S∗(α) = {i : Pz(Xi) > α, for z = {0, 1}}. We can assess the sensitivity of causal

effect estimates to changes in the α level. When the sample size increases, the α level

can be reduced since there would be more subjects in the tails of the distributions and

there would be more subjects with similar covariates available in the other treatment

groups even at the tails.

Samuels (2017) formally defines an estimand called ATM as the average treatment

effect on a evenly matchable set, M . An unit is called evenly matchable if, within

a small propensity score stratum centered around the unit, there are at least as

many units from the other group as from its own group. Suppose we divide the

range of the propensity score into many small strata. Within each stratum, if there

are equal numbers of units from both groups, all the units are evenly matchable;

otherwise, only the units from the least prevalent group are evenly matchable. The

evenly matched set is the union of all the matchable units from all the strata. The

estimand ATM is defined as the average treatment effect on the evenly matchable set

M , E(Y 1−Y 0|M). ATM can also be defined as the weighted average treatment effect

E[Wiδi]/E[Wi], where the weight Wi =min{P1(Xi), P0(Xi)}, and δi is the individual
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conditional treatment effect for subject i (Li and Greene, 2013).

Li et al (2017) defines another estimand called ATO, the average treatment effect

on the overlap population. The overlap population is created by down-weighting the

units with extreme propensity scores and up-weighting the units with propensity score

close to 0.5. The target population is “the units whose combination of characteristics

could appear with substantial probability in either treatment group.” The ATO esti-

mand is defined as the weighted average treatment effect E[Wiδi]/E[Wi], where the

weight Wi = ZiP0(Xi)+(1−Zi)P1(Xi), and δi is the individual conditional treatment

effect for subject i. Although the population targeted by ATO is theoretically more

balanced in the covariates between the treated and control groups, it is arguably less

interpretable than the original population.

The ATM and ATO estimands are fixed regardless of sample size. As the sample

size increases, more units with extreme propensity scores appear in the sample. This

suggests reducing the α level for the truncated estimand as the sample size increases.

Thus, the estimand defined by trimming off the tails would eventually approaches to

the ATE. The estimands can be very different when there are heterogeneous treatment

effects.

3.3 Methods

We consider three methods for utilizing propensity scores in combination with

matching and truncation methods: 1) the inverse-probability-treatment-weighted es-

timator (IPTW), 2) the augmented IPTW (AIPTW) estimator (Scharfstein, Rot-

nitzky, and Robins, 1999), 3) penalized spline of propensity method for treatment

comparison (PENCOMP) (Zhou, Elliott and Little, 2018). Under the assumptions

stated in Section 3.2, the IPTW estimators are consistent if the propensity models are

correct. Under the same assumptions, the latter two methods are “doubly robust”.
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The AIPTW estimators are consistent if either the propensity models or the outcome

models are correctly specified. PENCOMP consistently estimates the causal effect of

the treatment if either 1) the model for the propensity score and the relationship be-

tween the outcome and the propensity score are correctly specified through penalized

spline or 2) the outcome model is correct. We then implement each of these methods

in combination with either pair matching or propensity score truncation. We also

consider the standard and doubly robust matching weight estimators (Li and Greene,

2013), and the overlap weight estimator (Li, Morgan, and Zaslavsky, 2017).

Next we describe the estimation procedures for the methods and the estimands

targeted by each method.

3.3.1 PENCOMP and Rubin’s Combining Rules

PENCOMP is a robust multiple imputation based approach to causal inference.

Since each subject receives one treatment, we observe the potential outcome under

the observed treatment but not the potential outcome under alternative treatment,

as described in Chapter 2. We estimate causal effects by imputing the potential

outcomes that are not observed using regression models that include splines on the

logit of the propensity to be assigned that treatment as well other covariates that

are predictive of the outcome. We then draw inferences based on comparisons of the

imputed and observed outcomes between treatment groups. Here we describe the

implementation of PENCOMP.

(a) For d = 1, · · · , D, generate a bootstrap sample S(d) from the original data S

by sampling units with replacement. Then carry out steps (b)-(d) for each sample

S(d):

(b) Estimate the propensity score model for the distribution of Z given X, with

regression parameters γz. The propensity to be assigned treatment Z = z is de-

noted as P̂z(X) = Pr(Z = z|X, γ̂(d)
z ), where γ̂

(d)
z is the ML estimate of γz. Define
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P̂ ∗z =log[P̂z(X)/(1− P̂z(X))].

(c) Check for balance and assess whether the propensity score model is adequate

as described below in Section 3.4. The best propensity score model can be selected

based on how well it balances the observed covariates between treatment groups. In

addition, include the covariates and/or higher order terms in the prediction models

to account for residual confounding.

(d) For each z = 0, 1, using the cases assigned to treatment group z, estimate a

normal linear regression of Y z on X, with mean

E(Y z|X,Z = z, θz, βz) = s(P̂ ∗z|θz) + gz(X; βz),

where s(P̂ ∗z|θz) denotes a penalized spline with fixed knots (Eilers and Marx, 1996;

Ngo and Wand, 2004; Wand, 2003), with parameters θz, and gz() represents a para-

metric function of covariates predictive of the outcome, including covariates that are

adequately balanced by the estimated propensity score models, indexed by parame-

ters βz. A different spline function is fitted for each treatment group, since there is no

a priori reason to assume that the relationship between the potential outcomes under

different treatment arms and the propensity of treatment assignment is the same. We

consider a penalized B spline, which can be easily fitted with gam function in the R

package mgcv.

(e) For z = 0, 1, impute the values of Y z for subjects in treatment group 1 − z

in the original data set with draws from the predictive distribution of Y z given X1

from the regression in (c), with ML estimates θ̂
(d)
z , β̂

(d)
z substituted for the parameters

θz, βz, respectively.

(f) Let ∆̂d and V d denote the difference in treatment means and associated pooled

variance estimate, based on the observed and imputed values of Y in each treatment

group. The MI estimate of ∆ is then ∆̄D = 1
D

∑D
d=1 ∆̂d, and the MI estimate of
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the variance of ∆̄D is TD = V̄D + (1 + 1/D)BD, where V̄D =
∑D

d=1 V
d/D,BD =∑D

d=1(∆̂d− ∆̄D)2/(D− 1). The estimate ∆ is t distributed with degree of freedom v,

(∆− ∆̄D)T
−1
2

D ∼ tv, where v = (D − 1)(1 + V̄D/((D + 1)×BD))2.

3.3.2 Estimands with PENCOMP

By using matching and truncation, we can obtain the ATE, ATM, ATO and

both truncated estimands. Matching and truncation can be viewed as preprocessing

techniques to reduce model dependence and avoid extrapolation outside the region

that is supported by the data. This could be an important step when there is limited

overlap in the distributions across treatment groups. If the entire sample is used in the

analysis, PENCOMP estimate the ATE estimand. Otherwise, a restricted estimand

is computed based on either truncation, pair matching or ATO weight.

3.3.2.1 Truncation

The truncation method restricts the sample to the set of cases defined by either

S(α) (based on the quantile of the propensity distributions) or S∗(α) (based on the

propensity score itself). The PENCOMP is then computed on this restricted sub-

sample to obtain the truncated estimand.

3.3.2.2 Matching

The ATM estimand is obtained by selecting the treated and control subjects to

form matched pairs. Each treated subject is paired with the closest control that is

within the prespecified caliper and has not been matched yet. The caliper size governs

the bias-variance tradeoff. If the caliper size is too large, the matched pairs would not

be comparable so would increase the bias of the causal estimate. On the other hand,

when the caliper size is too small, many subjects are dropped and the variance of the

estimate increases. Here we set the caliper size at 0.25 times the logit of propensity
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scores. Although matching can be based on covariates, here we focus on propensity

score-based matching. PENCOMP estimates are calculated on the matched set. By

combining with pair matching, PENCOMP method can improve upon pair matching

by adjusting for residual imbalance in the matched set.

3.3.2.3 ATO

Since the ATO estimand targets the a population that is a combination of both the

treated and control populations, it can only be obtained by weighting the individual

treatment effects by the ATO weights. Each treated subject is weighted by Wi1(Xi) =

1 − Pzi1=1(Xi) and the control by Wi0 = Pzi1=1(Xi). The treatment effect is the

weighted mean of the individual treatment effects after imputation. Specifically, let

δi = Y 1 − Y 0 denote the treatment effect for subject i, where Y 1 or Y 0 can be

imputed or observed. In Section 3.3.1, in step f, ∆̂d =
∑n

i=1Wi × δi/
∑n

i=1Wi and

the associated variance of the weighted mean is V d =
∑n

i=1W
2
i × σ2

δi
/(
∑n

i=1 Wi)
2.

3.3.3 Weighting Estimators: IPTW, Matching Weight and ATO

Each subject i is weighted by the balancing weight Wi = ωi/

{
ZiPzi=1(Xi) + (1−

Zi)(1 − Pzi=1(Xi))

}
. The treatment effect ∆ for a population of interest is defined

as follows (Mao, Li and Greene, 2018):

∆̂weighted =

∑n
i=1WiZiYi∑n
i=1WiZi

−
∑n

i=1Wi(1− Zi)Yi∑n
i=1Wi(1− Zi)

Different specifications of ωi yield average treatment effects for different subpopula-

tions. For the estimand ATE, ωi is 1 which defines the IPTW estimator. For the

estimand ATO, ωi is Pzi=1(Xi) × Pzi=0(Xi). For the truncated estimands, ωi is set

as I{i ∈ S(α) or i ∈ S∗(α)}, where I is the indicator. For the estimand ATM, ωi

is set as min

(
Pzi=1(Xi), Pzi=0(Xi)

)
. In addition to using the balancing weight ωi,
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another way to obtain the ATM estimand is by combining IPTW with pair matching.

When calculating the IPTW estimates on the matched set, the propensity scores are

reestimated after matching.

The ∆̂ for each estimand is computed on the original data S. The standard errors

are estimated using bootstraps. The procedures are as follows.

(a) For d = 1, · · · , D, generate a bootstrap sample Sd from the original data S by

sampling units with replacement. Then carry out steps (b)-(d) for each sample Sd:

(b) Select and estimate the propensity score model as described below.

(c) Check for balance and assess whether the propensity score model is adequate

as described in Section 3.4. The best propensity score model can be selected based

on how well it balances the weighted covariates.

(d) Estimate the weighted estimator on each bootstrap sample, ∆d.

(e) The standard errors ŝdD for ∆̂ based on D bootstrap samples are computed

as follows.

ŝd
2

D =
D∑
d=1

(∆̂d − ∆̂∗. )
2/(D − 1)

where ∆̂∗. =
∑D

d=1 ∆̂d/D. The 95% confidence intervals are computed as ∆̂±1.96ŝdD.

3.3.4 Augmented Weighted Estimators

For each weighting estimator as described in Section 3.3.3, an augmented weight-

ing estimator can be defined as follows (Mao, Li and Greene, 2018) :

∆̂aug =

∑n
i=1 ωi{m1(Xi, α1)−m0(Xi, α0)}∑n

i=1 ωi
+

∑n
i=1WiZi{Yi −m1(Xi, α1)}∑n

i=1WiZi

−
∑n

i=1Wi(1− Zi){Yi −m0(Xi, α0)}∑n
i=1Wi(1− Zi)

where m1(Xi, α1) = E(Yi|Xi, Zi = 1) and m0(Xi, α1) = E(Yi|Xi, Zi = 0). Through-

out the paper, we refer the augmented estimator with ωi = 1 as AIPTW. Similar
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procedures based on bootstrap samples are used to estimate the standard error for

∆̂aug.

3.4 Balance Checking

To assess whether the propensity score model is adequately specified, we assess

whether the covariate distributions between the treated and control are balanced,

after conditioning on the propensity scores, such as weighting, matching or regressing.

One measure of balance is the absolute standardized mean difference in each covariate

between the treated and control groups. The methods we consider here have different

ways of assessing balance. For matching, the absolute standardized mean difference

in covariate x is calculated on the matched set:

dmatch =

∣∣∣∣x̄1 − x̄0

∣∣∣∣/
√
s2

1 + s2
0

2

where s2
z is the variance of the original covariate in the entire treated or control groups

before adjusting for propensity scores. For the weighting estimators, covariate balance

is assessed by the absolute standardized weighted mean difference as follows:

dweight =

∣∣∣∣∑n
i=1wi1zixi∑n
i=1wi1zi

−
∑n

i=1 wi0(1− zi)xi∑n
i=1wi0(1− zi)

∣∣∣∣/
√
s2

1 + s2
0

2

where the weights wi1 and wi0 are different across the weighting methods and defined

in Section 3. As an analog to the above measures, we assess balance as follows with

PENCOMP:

dpencomp =

∣∣∣∣x̄res1 − x̄res0∣∣∣∣/
√
s2

1 + s2
0

2

where xres is the residual after regressing the original covariates on the spline of

propensity score. Here for comparison across the different measures, we use the same

s2
1 and s2

0, which are calculated on the original dataset.
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3.5 Simulation

In this section we explore the performance of our proposed approach combining

with truncation or matching to alternative weighting approaches and matching, as

discussed in Section 3.3. We propose 1) combining PENCOMP(IPTW, AIPTW)

with truncation at an α quantile level or at propensity α level, referred to as PEN-

COMP(IPTW, AIPTW)α and PENCOMP(IPTW, AIPTW)α∗; 2) combining PEN-

COMP (IPTW, AIPTW) with caliper matching, referred to as PENCOMP(IPTW,

AIPTW)+match. The three additional weighting approaches we compare with are

3) matching weights, both standard and the doubly robust version, referred as match

weight and match weight DR respectively; and 4) the overlap weights (ATO). We

compare the methods using empirical bias, root mean squared error (RMSE), 95%

coverage, ratio of empirical bias as a fraction of empirical RMSE, and mean 95%

confidence interval width. We compare the methods when the prediction and/or

propensity models are correct. Specifically, we compare the following cases: A) cor-

rectly specified prediction and propensity models; B) incorrectly specified prediction

model but correctly specified propensity model; and C) correctly specified prediction

model but incorrectly specified propensity model.

In our simulation, we assess the influence of these three factors on the relative per-

formance of the methods. The first factor is the degree of overlap in the propensity

score distributions between the treatment groups. The second factor is the relative

importance of each covariate in predicting the treatment assignment and the outcome.

There are three types of covariates: covariates are predictive of only the treatment or

the outcome, and true confounders-covariates that are predictive of both the treat-

ment and outcome. We consider two scenarios: 1) aligned-the same set of covariates,

and 2)misaligned-different set of covariates predicting the outcome and treatment.

The third factor considers whether treatment effects are heterogeneous or not. In the
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case of homogeneous treatment effects, all the methods estimate the same quantity.

Otherwise, the estimands are different and each method is evaluated based on its own

truth.

For the heterogeneous treatment effects case, we simulate each dataset as described

below. Each simulated dataset contains three baseline covariates, X = [X1, X2, X3],

which are independently and normally distributed as N(0, 1). The treatment Z is

Bernoulli distributed with probability of being assigned Z = 1 depending on X1 and

X2. The outcomes Y 1 and Y 0 are normally distributed with variance of 1 and means

that depend on X1 and X2 in the aligned case and X2 and X3 in the misaligned case.

Table 3.1 details the simulation scenarios.

Intercept X1 X2 X1X2 X2
1 X2

2 X3 X2
3

Treatment Assignment
Low 0 1.5 1.5 0.75
High 0 0.1 0.1 0.05

Aligned and Parallel
Y0 0 1 3 2 2
Y1 5 1 3 2 2

Aligned and Not Parallel
Y0 0 1 3
Y1 5 1 3 2 2

misaligned and Parallel
Y0 0 3 2 1 2
Y1 5 3 2 1 2

misaligned and Not Parallel
Y0 0 3 1
Y1 5 3 2 1 2

Table 3.1: Simulation Scenarios: logistic regression model for treatment assignment,
and linear outcome model parameters.
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Figure 3.1: Parallel surface and Misaligned: Empirical RMSE, sample size of 200.
(A)-Both propensity and prediction models are correct; (B) Prediction models are in-
correct; (C) Propensity models are incorrect. Top Panel-Low overlap in the propensity
distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure 3.2: Parallel surface and Aligned: Empirical RMSE, sample size of 200. (A)-
Both propensity and prediction models are correct; (B) Prediction models are incor-
rect; (C) Propensity models are incorrect. Top Panel-Low overlap in the propensity
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Figure 3.3: Nonparallel surface and Misaligned: Empirical RMSE, sample size of
200. (A)-Both propensity and prediction models are correct; (B) Prediction models
are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in the
propensity distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure 3.4: Nonparallel surface and Aligned: Empirical RMSE, sample size of 200.
(A)-Both propensity and prediction models are correct; (B) Prediction models are in-
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Figure 3.5: Parallel surface and Misaligned: 100 * 95% non coverage rate, sample size
of 200. (A)-Both propensity and prediction models are correct; (B) Prediction models
are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in the
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Figures 3.1-3.8 show the results for sample size of 200. The results on empirical

RMSEs are shown in Figures 3.1-3.4. For Figures 3.1-3.2, the outcome surfaces were

parallel so the ATE and restricted estimands were the same. When there was a

high degree of overlap in the propensity distribution, restricted estimands such as

ATM, ATO and truncated, didn’t improve the RMSE much, and as expected, the
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ATE estimand could be estimated reliably. The methods that didn’t incorporate the

outcome model–pair matching, IPTW, truncated IPTW, ATO, and match weight–

performed similarly when the compared groups overlapped sufficiently. The robust

methods that incorporate the outcome models had smaller RMSEs than the methods

that did, but less so when the outcome models were misspecified. When the overlap

was low as shown in the top panels in Figures 3.1-3.2, the performance of the methods

varied more greatly, especially when the outcome models were misspecified. The

RMSEs of the restricted estimands had smaller RMSE than that of the ATE estimand,

especially when the overlap was low and the outcome models were misspecified. For

example, in Figure 3.2, the RMSE of IPTW for the ATE estimand reduced from over

1.2 to less than 0.8 for restricted estimands. Similarly, the RMSE of AIPTW for the

ATE estimand went from over 1.2 to less than 0.8, and PENCOMP went from 0.8

to less than 0.5. When the outcome models were correct, as seen in (A) and (C)

in Figures 3.1-3.2, the ATE estimands had similar RMSE as the retricted estimands.

Overall, PENCOMP had comparable or smaller RMSEs than the augmented weighted

estimators for both the ATE and restricted estimands.

Figures 3.3-3.4 show the results for nonparallel surfaces. Similar patterns were

observed: restricting inference to subpopulations improved RMSE when the overlap

was low, especially when the outcome models were misspecifed as well. Unlike the

parallel surfaces, the ATE and restricted estimands were different. Furthermore,

the restricted estimands also changed with the specifications of the propensity score

models. Hence, in Figure 3.3-3.4 (C), restricting estimands could increase the RMSEs

since misspecifying the propensity score models altered the estimands.

Figures 3.5-3.8 show the noncoverage rates of all the methods. As expected,

the coverage rates for all the methods were close to the nominal coverage when the

overlap in the propensity distributions was high, compared to when the overlap was

low. In the presence of low overlap, the IPTW for the ATE estimand had very low
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coverage rates and restricting estimands improved the coverage rates significantly.

Low overlap could also affect the coverage rates of the robust weighting methods but

less so, since the outcome models attenuated some of the effects of low overlap. As

seen in our previous studies, PENCOMP tended to have more conservative coverage

rates than the weighting estimators. Furthermore, when the propensity models were

misspecified, dropping subjects yielded poor coverage rates since the empirical biases

were larger and the subpopulations were not correctly defined, as seen in Figure

3.7-3.8 (C).

The results on empirical bias are shown in the Appendix B.1-B.4. Overall, the

empirical biases associated with restricted estimands tended to be smaller than that

of the ATE estimand. As expected, when the outcome models were correct, the biases

were negligible. When the overlap was high, all the methods had very small empir-

ical biases, regardless whether the outcome models were incorporated or not. For

Figures B.3-B.4, the restricted estimands under the misspecified propensity models

were different from those under the correctly specified propensity scores. Hence, the

empirical biases for the restricted estimands increased significantly, as seen in Figures

B.3-B.4 (C).

Lastly, in the Appendix Figure B.5-B.16 present the results on the RMSEs, empir-

ical bias, and coverage rates for sample size of 1000. Similar patterns as before were

observed. Overall, the coverage rates and RMSEs were better when the sample sizes

increased. PENCOMP tended to have comparable or smaller RMSE than AIPTWs.

When the overlap between the compared treatment groups was low, restricting in-

ference to subpopulations that were more supported by the data tended to perform

better. PENCOMP provides a viable alternative for estimating both the ATE and

restricted estimands considered here.
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3.6 Application

The Multicenter AIDS Cohort study (MACS) was started in 1984 (Kaslow et al,

1987). A total of 4,954 gay and bisexual men were enrolled in the study and followed

up semi-annually. At each visit, data from physical examination, questionnaires about

medical and behavioral history, and blood test results were collected. The primary

outcome of interest was the CD4 count, a continuous measure of how well the immune

system functions. We used this dataset to analyze the short term (1 year) effects of

using antiretroviral treatment on disease progression. Here we restrict our analyses to

the period between visit 7 and 12, after the first antiretroviral treatment zidovudine

(AZT) was approved for use and before the advent of highly active antiretroviral

therapy (HAART). Treatment was coded to 1 if the patient reported taking any

of antiretroviral treatment (ART) or enrolling in clinical trials of such drugs. We

estimate the short-term (6-month) effects of using any antiretroviral treatment for

HIV+ subjects. We excluded subjects with missing values on any of the covariates

included in the models. We log-transformed the blood counts in this analysis.

Here we treat each visit as a single time point treatment. Let t = 1 denote the

time when the treatment was administered, and t = 2 the time 6-month later when

the outcome was measured. In addition, let t = −1,−2,−3 denote 1, 2, and 3 visits

away from the current visit t = 1. Let X(t = 1,−1,−2,−3) denote the blood count

histories prior to treatment assignment. Let Z be the binary treatment indicator. Let

Y (t = 2) be the CD4 count 6 months after the treatment. For the propensity score

model, we considered blood counts-CD4, CD8, white blood cell (WBC), red blood

cell (RBC), and platelets and treatment histories from the most recent 4 visits, as well

as demographic variables-college education, age, and race. The treatment assignment

Z was modeled as a logistic regression. For the outcome model, we considered the

last two CD4 counts and their squared terms. We estimated the mean CD4 count
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difference between the treated and the control at each visit, denoted as ∆, from visit

7 to visit 12. For PENCOMP, we replaced the simulated/imputed transformed CD4

values that were < 0 with 0 (i.e. below detection level). A total of 15 equally spaced

knots and B spline were used.

As shown in Figure 3.9, we see that over time the treated and control subjects

became more disimilar. The propensity score distributions became more and more

skewed, as the treated had propensity of treatment close 1 and the control close to

0. We measured the proportion of subjects in the control group whose propensity

scores were between the 1− α and α quantiles of the propensity score distribution of

the treated group, denoted as π1−α
z=0 = Fz=0(F−1

z=1(1−α))−Fz=0(F−1
z=1(α)), where F is

the cumulative distribution. Inside this region it is easier to impute missing potential

outcomes Y 0 because there are more observations. Similarly, for π1−α
z=1 . The small

proportions suggested difficulty in imputing missing potential outcomes. Since the

propensity score distributions were extreme and the overlap was low, the sample sizes

after matching were much smaller than before, as seen in Table 3.2.

Table 3.2: Sample sizes before and after trimming and matching. The measure of
overlap of the original data at each visit: π1−α

z=1 and π1−α
z=0 for α = 5%.

Trimming
All quantile α = 0.02 α = 0.02 Matching Overlap

Visit treat control treat control treat control treat control π0.95
z=1 π0.95

z=0

visit 7 98 575 86 404 56 467 69 69 0.42 0.51
visit 8 127 468 102 375 44 256 58 58 0.28 0.51
visit 9 160 418 136 362 55 236 65 65 0.25 0.42
visit 10 194 412 159 378 81 269 69 69 0.24 0.38
visit 11 227 287 227 283 177 198 116 116 0.67 0.54
visit 12 302 209 125 193 69 87 65 65 0.17 0.25

77



visit7

probTreat[simdatFit[, treat.varname] == 0]

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

visit8

probTreat[simdatFit[, treat.varname] == 0]

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

20
0

30
0

visit9

probTreat[simdatFit[, treat.varname] == 0]

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0 visit10

probTreat[simdatFit[, treat.varname] == 0]

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

visit11

probTreat[simdatFit[, treat.varname] == 0]

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60
70

visit12

probTreat[simdatFit[, treat.varname] == 0]

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Figure 3.9: Propensity distribution for visit 7-12.

One important step in building the propensity score models is to check for balance

in the covariates. At each visit, we checked for covariate balance between the treated

and control groups, as described in Section 3.4. As shown in Figure 3.10, trimming

or matching first reduced the standardized mean differences in the baseline covariates

between the treatments groups. As expected, the ATO weights achieved the best

balance.
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Figure 3.10: Absolute standardized mean differences across all the visits 7-12.

We estimated the short term effect of antiretroviral treatment on CD4 count using

pair matching, PENCOMP, both the weighted and augmented weighted estimators.

The results for visit 7-12 are summarized in Figure 3.11. The standard errors were

obtained using 1000 bootstrap samples. For PENCOMP, 1000 complete datasets were

created. The naive estimators were negative, suggesting a harmful effect of antiretro-

viral treatment on CD4 count. This is likely due to uncontrolled confounding by indi-

cation, in that sicker subjects with lower CD4 counts were more likely to be assigned
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to treatment. All the treatment effect estimates, seen in the first column of Figure

3.11, suggested less harmful effects. The weighted estimators and pair matching per-

formed worse than the robust methods–the augmented estimators and PENCOMP,

especially for the ATE estimand. For the ATE estimand, PENCOMP had smaller

standard errors than the augmented weighted estimator when the weights were vari-

able, as found in Chapter 2. With pair matching, many subjects were dropped due to

extreme propensity scores and the sample sizes became very small, as shown in Table

3.2. The re-estimated propensity scores could potentially became more extreme so

the IPTW(AIPTW)+match estimators performed worse in terms of standard errors.

Thus, here we used the match weights as described in Section 3.3.3. For PENCOMP,

we also used the match weights to weight the individual causal effects. The match

weight estimators performed better than pair matching because there was low overlap

in the propensity scores and many subjects were dropped. For the alternative causal

estimands–ATM, ATO and truncated estimands, PENCOMP had a comparable per-

formance to the augmented weighted estimators, with PENCOMP having slightly

smaller standard errors than the augmented weighted estimators for the truncated

estimands.
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Figure 3.11: Treatment effect estimates and standard error (SE) for the ATE, ATM,
and truncated estimands for visit 7-12. Truncated*: truncating at quantile level
α = 0.02 of the propensity score distributions. Truncated: truncating at α level
of propensity score. Naive estimates(SE) for visit 7-12 were -7.7(0.7), -7.0(0.6), -
6.8(0.6), -6.3(0.6), -5.5(0.6), and -8.2(0.6), respectively. The IPTW estimates(SE)
for ATE estimand were 1.9(1.7), 2.0(2.8), 2.2(3.0), 2.7(3.0), 0.2(0.9), and 7.3(5.1),
respectively.

3.7 Discussion

Here we show that PENCOMP has the flexibility of estimating different estimands

when needed and its performances can improve for restricted estimands when the
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overlap is low. In general, it tends to outperform the weighted estimator for the

ATE estimand and has comparable performance for restricted estimands, in terms of

RMSE and coverage rate.

All the previous approaches described above rely on estimated propensity scores to

determine the subpopulation. Trimming off extreme propensities to increase precision

of an estimator could be harmful if deleted subjects are of interest to investigators

(Lechner 2008). One alternative to trimming is to provide nonparametric bounds

(Lechner 2008). Because lack of overlap is a small sample problem, subjects with ex-

treme propensities might still be relevant and if more samples were taken, there would

be subjects in the other treatment group who have similar propensity scores. In addi-

tion, defining the subpopulation in term of estimated propensity scores might not be

meaningful to investigators who are more interested in identifying that subpopulation

in term of observed covariates.

The propensity score plays an important role in identifying the common support

region. However, its performance depends on what variables are included in the

model. A small set of covariates W ∈ X might exist such that 0 < Pr(Z = z|W ) < 1

and the ignorability assumption (Y 1, Y 0) |= Z|W still hold. Hill and Su (2013) define

0 < Pr(Z = z|W ) < 1 as common causal support, where W is the set of covariates

such as (Y 1, Y 0) |= Z|W holds. Thus, it might not be necessary to require common

support on all the covariates X. For example, a propensity score model based only

on treatment assignment can be inefficient, as it prioritizes variables predictive of the

treatment but not necessarily predictive of the outcome. Common support on such

predictors are not relevant since these predictors are not confounders. Furthermore,

dropping subjects due to lack of overlap on such predictors could increase variance of

the estimate, since including such predictors in the propensity model could potentially

shrink the overlap region of the propensity scores, especially in a high dimensional

setting. It is much harder to have overlap in many covariates, so it is more important
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to consider a more sparse propensity score model that satisfies the assumption of un-

confoundedness. Chapter 4 addresses the issue of model selection in causal inference.
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CHAPTER IV

Variable Selection in Causal Inference

4.1 Introduction

The propensity score, which is defined as the probability of treatment assignment

given covariates, plays an important role in bias reduction for estimation of causal

effects from nonrandomized studies. The propensity score has the balancing property:

conditional on the propensity score, the observed covariates and treatment assignment

are conditionally independent (Rosenbaum and Rubin, 1983). The balancing property

of propensity score implies that adjusting for the propensity score can remove the

bias due to differences in all observed confounders between the treatment groups

(Rosenbaum and Rubin, 1983). One important assumption needed for propensity

score-based methods to make valid inference about causual effects is that all the

confounders are observed and included in the propensity model. Since excluding

important confounders in the model can lead to biased estimates, many covariates

are often included, for fear of excluding some important confounders. Rubin (2007)

notes that only pretreatment covariates should be included in the propensity model

and argues that the model should be selected without accounting for the relationship

between covariates and outcome. This approach helps maintain objectivity when

making inference from nonrandomized studies.

However, for propensity score-based methods to work reliably, there should be
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sufficient overlap in the propensity score distributions for the compared treatment

groups. Estimating the causal effects for units outside the overlap region depends

entirely on extrapolation, and hence is vulnerable to model misspecification. The

variables included in the propensity score model influence the degree of overlap. For

example, including strong predictors of the treatment that are not predictive of the

outcome in the propensity score model could potentially shrink the overlap region.

Removing such predictors from the model could increase the overlap region. Recent

work has also shown that including such covariates can inflate the variance of the

causal estimate and may also induce bias (Brookhard et al, 2006). On the contrary,

including covariates that are associated with the outcome only can improve efficiency,

since it reduces random covariate imbalance in finite samples (Brookhard et al, 2006).

Glymour et al (2008) argues for controlling only common causes of the treatment and

outcome. VanderWeele and Shpitser (2011) propose controlling for covariates that are

causes of the treatment and/or outcome. Thus, a propensity score model based only

on the treatment can be inefficient, as it prioritizes variables associated with treatment

but not necessarily with outcome. Balancing such covariates using propensity score

is unnecessary since these covariates are not confounders. Recently researchers have

started looking at how to select variables for the propensity model by taking into

account the relationship between the covariates and outcome (Shortreed and Ertefaie

2017, de Luna, Waernbaum and Richardson 2011). In this paper, we extend the

same idea to a recently proposed propensity score-based multiple imputation based

approach, called penalized spline of propensity method for treatment comparison

(PENCOMP), and propose a new variant of PENCOMP via bagging, and compare

the performances of PENCOMP with that of inverse probability treatment weighted

approach (IPTW) in the presence of variable selection.

A useful class of propensity score-based methods is based on estimating the

propensity of treatment assignment, given potential confounding variables, and then
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using the estimated propensity as a weight, or as a predictor in regression models for

the outcome under alternative treatment assignments. The IPTW method controls

for confounding by weighting subjects by the inverse of the probability of receiving

the observed treatment sequence. The weights in effect create a pseudo-population

that is free of treatment confounders. PENCOMP controls for confounding by in-

cluding a penalized spline of the logit of the propensity to be assigned that treatment

in regression models. It has both the propensity and prediction models and is robust

to misspecification in the propensity model or the prediction model.

Here we focus on the issue of model selection for our proposed method PEN-

COMP and IPTW. We compare the performance of two confounder selection meth-

ods: with and without considering the outcome-covariate relationship. Furthmore,

often a propensity score model is selected based on how well it balances the observed

covariates and inferences are made based on a single model. This simple approach

ignores the model uncertainty regarding what variables should be included. Failure

to account for uncertainty could affect estimation accuracy. Hence, we also address

the issue of model uncertainty when making inference and propose a new version of

PENCOMP based on bagging. For PENCOMP, we consider two methods for esti-

mating standard errors and confidence intervals: (a) bootstrap method that takes

into account model selection, proposed by Efron (2014), and (b) multiple imputation

based on Rubin’s combining rules.

The outline of this paper is as follows. In Section 4.2, we describe the estimands

and assumptions of the approach we consider. In Section 4.3, we describe two versions

of (PENCOMP) for estimating causal effects: one based on multiple imputation and

the other based on bootstrap smoothing, as well as a review of inverse probability

treatment weighted and adaptive lasso. In Section 4.4, we describe variable selection

techniques for both the propensity and prediction models. In Section 4.5, we examine

using simulation studies how variable inclusion affects the performance of propensity
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score-based methods-PENCOMP, AIPTW and IPTW. We also evaluate the impact

of accounting for model uncertainty in propensity score and prediction models. In

Section 4.6, we illustrate our methods using the Multicenter AIDS Cohort study

(MACS) to estimate the effect of antiretroviral treatment on CD4 counts in HIV

infected patients. We conclude with a discussion of the results and present some

possible future work.

4.2 Estimands and Assumptions

Let Xi denote the vector of baseline covariates and Zi ∈ (0, 1) denote a binary

treatment with Zi = 1 for treatment and Zi = 0 for control, for subject i = 1, · · · , N ,

respectively. Let Y Zi
i be the potential outcome under treatment Zi. Here we focus

on the estimand of interest-the average treatment effects for the entire population

(ATE), denoted as E(Y 1 − Y 0). Thus, we compute the subject-level causal effect

as the difference between the potential outcome under treatment and the potential

outcome under control for the same subject. The average treatment effect for the

entire population is estimated by averaging all the subject-level causal effects across

the entire population. In this chapter, we focus on the estimand ATE, but the same

idea can be applied to other estimands. See Chapter 3 for other estimands.

In order to estimate the causal effects, we make the following assumptions:

1) SUTVA (Angrist, Imbens and Rubin, 1996) states that a) the observed out-

comes under a specific treatment sequence is equal to the potential outcomes as-

sociated with that treatment sequence, and b) the potential outcomes for a given

subject are not influenced by the treatment assignments of other subjects (Rubin,

1980; Angrist, Imbens, Rubin, 1996)

2) Positivity states that each subject has a positive probability of being assigned

to either treatment of interest: 0 < Pr(Zi = zi|Xi) < 1.
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3) Ignorable treatment assumption states that (Y 1, Y 0) |= Z|X; that is, treatment

assignment is as if randomized conditional on the covariates. In general, it is possible

that there exists a subset of covariates W ∈ X such as (Y 1, Y 0) |= Z|W .

4.3 Methods

4.3.1 PENCOMP and Multiple Imputation

PENCOMP is a robust multiple imputation based approach to causal inference,

under Rubin’s potential outcome framework (1974). Since each subject receives a

single treatment, we observe the potential outcome under the observed treatment

but not the potential outcomes under other treatments. We assume a single binary

treatment setting, although the approach could be extended to multiple treatments.

We estimate causal effects by imputing the potential outcomes that are not observed

using regression models that include splines on the logit of the propensity to be

assigned that treatment as well as other covariates that are predictive of the outcome.

We then draw inferences based on comparisons of the imputed and observed outcomes

between treatment groups.

PENCOMP relies on the balancing property of propensity score, in combination

with mean model for the outcome. Under the assumptions stated above, PENCOMP

has a double robustness property for causal effects. Specifically, if either 1) the

model for the propensity score and the relationship between the outcome and the

propensity score are correctly specified through penalized spline, or 2) the outcome

model is correct, the causal effect of the treatment will be consistently estimated.

Here, we describe the estimation procedures based on multiple imputation with

Rubin’s combining rules.

(a) For d = 1, · · · , D, generate a bootstrap sample Sd from the original data S

by sampling units with replacement, stratified based on treatment group. Then carry
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out steps (b)-(d) for each sample Sd:

(b) Select and estimate the propensity score model as described in Section 4.4 for

the distribution of Z given X, with regression parameters γz. The propensity to be

assigned treatment Z = z is denoted as P̂z(X) = Pr(Z = z|X, α̂(d)
z ), where α̂

(d)
z is the

ML estimate of αz. Define P̂ ∗z =log[P̂z(X)/(1− P̂z(X))].

(c) For each z = 0, 1, using the cases assigned to treatment group z, estimate a

normal linear regression of Y z on X, with mean

E(Y z|X,Z = z, θz, βz) = s(P̂ ∗z|θz) + gz(X; βz),

where s(P̂ ∗z|θz) denotes a penalized spline with fixed knots (Eilers and Marx, 1996;

Ngo and Wand, 2004; Wand, 2003), with parameters θz, and gz() represents a para-

metric function of covariates predictive of the outcome, including covariates that

are adequately balanced by the estimated propensity score models, indexed by pa-

rameters βz. A different spline function is fitted for each treatment group, since

there is no a priori reason to assume that the relationship between the potential out-

comes under different treatment arms and the propensity of treatment assignment

is the same. For simplicity, a penalized spline with truncated linear basis is used,

s(P̂ ∗z|θz) = θ0 + θ1P̂ ∗z +
∑K

k=1 θ1k(P̂ ∗z − Kk)+, where K1, · · · , KK are fixed knots,

and (P̂ ∗z −Kk)+ = (P̂ ∗z −Kk) if P̂ ∗z > Kk ; and = 0 if P̂ ∗z ≤ Kk. The spline model

can be formulated as a linear mixed model (Wand, 2003),

Y z = C1β + C2θ + ε,

 θ

ε

 ∼

 0

0

 ,
 σ2

θI 0

0 σ2
ε I


 ,

where β = (β0, β1, β2, · · · , βp) denote fixed effects, and θ = (θ11, · · · , θ1K) are random

basis coefficients. REML estimates of the parameters of this model can be easily

fitted in statistical software, such as PROC MIXED in SAS or lme in R. The fitted
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values of Y z are ŷz = C(CTC + λ̂D)−1CTy, where λ̂ = σ̂2
ε/σ̂

2
θ is the REML estimator

of λ and

D =

 0(p+1)×(p+1) 0

0 IK×K


(d) For z = 0, 1, impute the values of Y z for subjects in treatment group 1 − z

in the original data set with draws from the predictive distribution of Y z given X

from the regression in (c), with ML estimates θ̂
(d)
z , β̂

(d)
z substituted for the parameters

θz, βz, respectively. Repeat the above procedures to produce D complete data sets.

Let ∆̂(d) and W (d) denote the difference in treatment means and associated pooled

variance estimate, based on the observed and imputed values of Y in each treatment

group. The MI estimate of ∆ is then ∆̄D = 1
D

∑D
d=1 ∆̂d, and the MI estimate of the

variance of ∆̄D

TD = W̄D + (1 + 1/D)BD (4.1)

where W̄D =
∑D

d=1 W
(d)/D,BD =

∑D
d=1

(
∆̂(d) − ∆̄D

)2

/(D − 1). The estimate ∆ is

t distributed with degree of freedom v, (∆ − ∆̄D)T
−1
2

D ∼ tv, where v = (D − 1)(1 +

W̄D/((D + 1) ∗BD))2.

4.3.2 PENCOMP and Bagging

As an alternative to using multiple imputation combining rules, we can draw

inference about causal effects based on bootstrap smoothing, also called bagging. The

bagging estimator, a form of model averaging, accounts for model uncertainty. Efron

(2014) proposes standard error and confidence interval for the bootstrap smoothed

estimator.

Let S = (S1, S2, · · · , SN) denote the original data for N subjects. A nonpara-

metric bootstrap sample with replacement is denoted as Sd = (Sd1 , S
d
2 , · · · , SdN). The
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causal estimate based on the original data S is ∆̂s. In most cases, the nonparametric

standard error ŝdD for ∆̂s based on D bootstrap samples is

ŝdD =
D∑
d=1

(∆̂d − ∆̃)2/(D − 1) (4.2)

where ∆̃ =
∑D

d=1 ∆̂d/D. The standard 95% confidence intervals ∆̂s ± 1.96ŝdD or the

percentile (∆̂0.025
d , ∆̂0.975

d ) based on the 2.5th and 97.5th percentiles of the D bootstrap

estimates. However, in the presence of model selection, the bootstrap estimates can

be “jumpy and erratic” and the standard methods assume smooth distribution. As an

alternative, the bootstrap estimate ∆̃ and associated confidence interval ∆̃± 1.96s̃dD

are used. The standard error s̃dD is calculated as follows.

s̃dD = (
n∑
j=1

ˆcov2
j)

1/2 (4.3)

ˆcov2
j =

D∑
d=1

(Q∗dj −Q∗.j)(∆̂d − ∆̃)/D

where Q∗.j =
∑D

d=1Q
∗
dj/D and Q∗dj = #{Sd = Sj} is the number of times that data

point j of the original data S is selected in dth bootstrap sample Sd.

The procedures for PENCOMP are similar as described above, except in steps

(e). In step (e), the imputations are carried out on each bootstrap sample Sd, instead

of the original data S. Inference is made using the bootstrap smoothed estimator

∆̃ and confidence interval ∆̃ ± 1.96s̃dD, instead of the Rubin’s multiple imputation

combining rules.
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4.3.3 Inverse Probability Treatment Weighted Estimator IPTW

The IPTW estimator estimates the ATE and is defined as

∆̂IPTW =
N∑
i=1

ZiYi

P̂zi=1(Xi, α̂)
−

N∑
i=1

(1− Zi)Yi
1− P̂zi=1(Xi, α̂)

The causal IPTW estimate on the original data S is ∆̂IPTW . The standard errors are

estimated based on bootstraps. The procedures are as follows.

(a) For d = 1, · · · , D, generate a bootstrap sample Sd from the original data S by

sampling units with replacement. Then carry out steps (b)-(d) for each sample Sd:

(b) Select and estimate the propensity score model as described in Section 4.4.

(d) Estimate ∆d
IPTW for each bootstrap sample.

The standard approach for computing the standard errors ŝdD is based on Eq 4.2

and the 95% confidence intervals are computed as ∆̂IPTW ± 1.96ŝdD. The bootstrap

smoothed estimate is ∆̃IPTW = 1
D

∑D
d=1 ∆̂

d

IPTW , and the confidence intervals ∆̃IPTW±

1.96s̃dD, where s̃dD is computed based on Eq 4.3.

4.3.4 Augmented Inverse Probability TreatmentWeighted Estimator (AIPTW)

Each subject i is weighted by the balancing weight Wi = 1/

{
ZiPzi=1(Xi, α̂)+(1−

Zi)(1−Pzi=1(Xi, α̂))

}
. The AIPTW estimate ∆AIPTW is defined as follows (Mao, Li

and Greene, 2018):

∆̂AIPTW =

∑n
i=1 ωi{m1(Xi, β1)−m0(Xi, β0)}∑n

i=1 ωi
+

∑n
i=1WiZi{Yi −m1(Xi, β1)}∑n

i=1WiZi

−
∑n

i=1Wi(1− Zi){Yi −m0(Xi, β0)}∑n
i=1 Wi(1− Zi)

where m1(Xi, β1) = E(Yi|Xi, Zi = 1) and m0(Xi, β1) = E(Yi|Xi, Zi = 0). Similar

procedures based on bootstrap samples are used to estimate the standard error for
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∆̂AIPTW .

4.3.5 Adaptive Lasso

Let X denote the design matrix X = [X1, · · · , Xp] for p predictors. We assume

that the outcome of interest Y is continuous with a mean that is a linear function of

the predictors: E(Y ) = β1X1 + · · · + βpXp. Here we assume the data are centered

so that the intercept is not included. Suppose the model is sparse, that is, the true

model depends only on a small subset of the predictors. Let A = {j : βj 6= 0} and

|A| = p0 < p. The adaptive lasso is defined as (Zou, 2006):

β̂AL = argminβ||y −
p∑
j=1

Xjβj||2 + λ

p∑
j=1

ŵj(β̂j)|βj|

where wj = 1/|β̂j|γ and γ > 0, and β̂ are from ordinary least square or ridge regression.

The adaptive lasso has the oracle properties: 1) it identifies the right subset covariates

with probability tending to one: limn P (An = A) = 1, where An = {j : β̂j 6=

0}; 2) it estimates the nonzero coefficients as if the true model were known, i.e.

√
n(β̂A − βA)→d N(0,Σ), where Σ is the covariance matrix under the true model.

4.4 Model Selection for Propensity and Prediction

In observational studies, both the propensity and prediction models need to be

estimated from the data. Including all available covariates in both models can lead to

highly unstable estimates of treatment assignment and/or outcomes if sample sizes are

small, and may be highly inefficient if covariates are not predictive of both treatment

and outcome-that is, they are potential confounders. We consider scenarios where

there are some variables that are predictors of outcome, and some that are predictors

of treatment, some that are predictors of both treatment and outcome, and some

that are spurious, in the sense that they affect neither the propensity or the outcome.
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We assume that both the propensity and prediction models depend only on a small

subset of the variables. Using the notations as in Shortreed and Ertefaie (2017), let

C denote the true confounders, P predictors of outcome, I predictors of treatment,

and S spurious covariates. The objective is to select out the relevant variables. We

consider two strategies of building the propensity models: 1) separating the outcome

from the design (Rubin 2007), and 2) taking into account the information in the

outcome.

For strategy 1, one simple approach is to use the stepwise variable selection al-

gorithm with the Bayesian Information Criterion (BIC) to select the variables that

are predictive of treatment, regardless of how well they predict outcome. Separately,

we use the same stepwise algorithm to select the prediction model for PENCOMP.

The algorithm is abbreviated as SW. Instead of the stepwise algorithm with BIC

criterion, we also carry out an adaptive lasso algorithm to select both the propensity

and prediction models separately. This adaptive lasso algorithm is referred to as AL.

For outcome Y and treatment Z, the adaptive lasso estimates are defined as follows:

β̂AL = argminβ||y −
p∑
j=1

Xjβj||2 + λ

p∑
j=1

ŵβj |βj| (4.4)

α̂AL = argminα

n∑
i=1

−Zi(XT
i α) + log(1 + eX

T
i α) + λn

p∑
j=1

ŵαj
|αj| (4.5)

where wαj
= 1/|α̂j|, wβj = 1/|β̂j|, and α̂ and β̂ are estimated from ridge regression.

Both SW and AL satisfy Rubin’s criterion by separating the outcome from the design.

In strategy 2, we consider taking into account the relationship between covariates

and outcome when building the propensity model. Shortreed and Ertefaie (2017) pro-

pose an outcome adaptive lasso approach for variable selection. Their approach takes

into account the covariate-outcome relationships when selecting propensity model. It

tends to select covariates that are true confounders and predictors of the outcome
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and improves statistical efficiency. The outcome adaptive lasso estimates for the

propensity model are defined as:

α̂OAL = argminα

n∑
i=1

−Zi(XT
i α) + log(1 + eX

T
i α) + λn

p∑
j=1

ŵαj
|αj| (4.6)

where wαj
= 1/|β̂j|γ such that γ > 1 and minimizes the mean weighted standardized

difference between the treated and control. β̂ are the coefficient estimates by regress-

ing the outcome Y on the covariates and the treatment indicator. By penalizing the

covariates depending on the strength of the covariate and outcome relationship, the

outcome adaptive lasso selects covariates that are predictive of the outcome and does

not select covariates that are associated with the treatment but not with the outcome.

In our setting, the outcome adaptive lasso is designed to select the covariates denoted

by P and C, i.e. A = {j : j ∈ P ∪ C}.

De Luna, Waernbaum and Richardson (2011) show how to identify subsets of the

covariates such that given the subset, the unconfoundedness assumption still holds.

They propose two algorithms to identify the reduced subsets. First, remove the

covariates that are not associated with outcome, given the others, and then remove

the covariates that are not associated with the treatment, given a smaller subset

of the covariates selected at the first step. Alternatively, reverse the order by first

removing the covariates that are not associated with the treatment and then removing

the covariate that are not associated with the outcome. Dimension reduction in this

manner can further reduce the variance of the casual estimate and improve the overlap

in the propensity score distributions between treatment groups.

Building on the two-stage approach as in de Luna, Waernbaum and Richardson

(2011), we use a two-stage adaptive lasso approach. In the first stage, we select a

subset of covariates that are predictive of the outcome using adaptive lasso. In the

second stage, we use the subset of covariates found in the first stage in the propen-
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sity model, denoted as Step-ALY. Similarly, we can reverse the steps by performing

outcome adaptive lasso for the propensity model first and then the prediction model,

denoted as Step-ALT. Unlike SW and AL algorithms, OAL, Step-ALT and Step-ALY

all take into account the outcome information during model selection. By using a

two-stage approach, in finite samples, we can further reduce the probability of select-

ing any irrelevant covariates. The models from the two-stage appraoch could be more

sparse that the models selected by the outcome adaptive lasso approach proposed in

Shortreed and Ertefaie (2017).

4.5 Simulation

We simulate each dataset as described in Zigler and Dominici (2014) and Shortreed

and Ertefaie (2017). Each simulated dataset contains n subjects and p covariates X.

The treatment Z1 is Bernoulli distributed with logit of P (Z1 = 1|X) =
∑p

j=1 γjXj.

The outcome of interest Y is normally distributed with a mean of ηZ1 +
∑p

j=1 βjXj

and a variance of 1. The treatment effect η is equal to 0, without loss of generality.

We set all the coefficients 0, except the first 6 covariates X1, · · · , X6. X1 and X2

are the true confounders; X3 and X4 are predictors of the outcome but not of the

treatment; and X5 and X6 are predictors of the treatment but not of the outcome;

all the other d − 6 covariates are spurious. We vary the strengh of relationships

between covariates, outcome and treatment. In the first scenario, β and γ are set as:

β = (0.6, 0.6, 0.6, 0.6, 0, 0, 0, · · · , 0), and γ = (1, 1, 0, 0, 1, 1, 0, · · · , 0). In the second

scenario, confounders X1 and X2 have a weaker relationship with the treatment:

β = (0.6, 0.6, 0.6, 0.6, 0, 0, 0, · · · , 0) and γ = (0.4, 0.4, 0, 0, 1, 1, 0, · · · , 0). In the third

scenario, confounders X1 and X2 have a weaker relationship with the outcome: β =

(0.2, 0.2, 0.6, 0.6, 0, 0, 0, · · · , 0) and γ = (1, 1, 0, 0, 1, 1, 0, · · · , 0). We also simulate the

sample sizes, n=200 and n=1000.
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As in the real world setting, we consider scenarios where we treat all variables as

potential confounders. We compare these variable selection techniques:

(a) SW: stepwise variable selection algorithm with the Akaike Information Criterion

(BIC) separately for the propensity and prediction models.

(b) AL: adaptive lasso selection technique separately for the propensity and prediction

models.

(c) OAL: outcome adaptive lasso proposed by Shortreed and Ertefaie (2017) for the

propensity model, and adaptive lasso for the prediction model.

(d) Step-ALT: outcome adaptive lasso for the propensity model at the first stage

and then adaptive lasso for the prediction model at the second stage using only the

variables that are selected at the first stage.

(e) Step-ALY: adaptive lasso for the prediction model at the first stage and then

logistic regression model with all the variables selected at the first stage for the

propensity model.

(f) allLasso: all the variables that are selected for the propensity and prediction

models, as described in VanderWeele and Shpitser (2011).

In addition to the variable selection techniques, we present results for four propen-

sity (PS) models that include the same covariates across simulations: (1)True includes

the true propensity models that are used to generate the data, i.e. X1, X2, X5, and

X6; (2) trueConf includes only the true confounders X1 and X2; (3) outcomePred

includes both the confounders and the predictors of outcome; (4) allPoten includes

all 20 variables. For these four PS models, the prediction models for PENCOMP are

also correctly specified.

For each simulation scenario and for each of the two methods PENCOMP and

IPTW, we compare the performance of the variables selection techniques described

above for both PENCOMP and IPTW, in terms of empirical bias (BIAS), the em-

pirical standard error (Emp.SE), mean of estimated standard error (Est.SE), average
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length of 95% confidence intervals (Ave. CI), and empirical coverage rate of the 95%

confidence interval (Cov) over 500 simulated data sets. For each dataset, the esti-

mated standard errors and confidence intervals are calculated based on 1000 bootstrap

samples. For PENCOMP, we compare the two methods of standard error estimations:

multiple imputation (MI) as in Eq 1 and bootstrap smoothing (Boot) based as in Eq

3. For IPTW, we compare the standard approach based in Eq 2 with the bootstrap

smoothing.

4.5.1 Results

Tables 4.1-4.4 show the results for sample size of 200 and Tables 4.5-4.8 for sam-

ple size of 1000. By comparing the four (PS) models that do not involve variable

selections: true, trueConf, outcomePred, and allPotent, we can see that excluding

variables associated only with treatment reduced the RMSE, and including variables

associated only with outcome further reduced the RMSE. For IPTW estimates, out-

comePred had the smallest RMSE and mean confidence interval widths. The esti-

mated standard errors (SE) were closer to the empirical standard errors (SE) and

the coverage was close to the nominal coverage of 95%. The trueConf PS model

performed slightly worse than the outcomePred PS model, since including variables

associated only with outcome improves efficiency. The more spurious variables were

added as in allPotent model, the wider the confidence intervals got. Figure 4.3 shows

that outcomePred PS model had the smallest variability across the 1000 bootstrap

estimates, while allPotent had the biggest variability. This pattern was observed in

PENCOMP and AIPTW but less pronounced than in IPTW, since the prediction

model in PENCOMP and AIPTW attenuated the effect of including variables not

associated with the outcome. In addition, PENCOMP tended to perform better than

AIPTW in terms of RMSEs, when the propensity score models included many irrel-

evant covariates. As shown in Figure 4.2, the variables associated with the outcome
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were selected about 99% of the time, but in small samples, the confounders that were

weakly associated with the outcome were selected less than 80% of the time, as seen

in scenario 3.

Out of the five variable selection techniques, the two-stage techniques: Step-ALT

and Step-ALY performed the best. For PENCOMP, AIPTW and IPTW, both Step-

ALT and Step-ALY had RMSEs that were closer to the RMSEs of outcomePred PS

models. Both Step-ALT and Step-ALY were more effective at excluding spurious

variables and including variables associated only with outcome, compared to the

outcome adaptive lasso (OAL), stepwise selection with BIC (SW), and adaptive lasso

(AL) procedures, as seen in Figure 4.1. For example, for the sample size of 200 in

scenario 1, all the variable selection techniques selected the confounders X1 and X2

about 99% of the time. Step-ALY, Step-ALT, and OAL selected the non-confounders

X3 and X4 about 99% of the time. In contrast, AL and SW selected X3 and X4

about 40-60% of the time. AL and SW selected the non-confounders X5 and X6

about 99% of the time. In contrast, OAL selected X5 and X6 about 30% of the time,

but Step-ALY and Step-ALT selected them around 8% of the time. Lastly, Step-ALY

and Step-ALT selected the spurious variables at about 8% of the time, while SW,

OAL, and AL selected them about 40%, 34% and 60%, respectively. In scenario 2,

because the confounders X1 and X2 had a weaker relationship with treatment, they

were selected about 80% of the time for sample size of 200. A larger sample size

is needed to detect those confounders, as seen in Figure 4.1. In scenario 3 where

the confounders had a weak relationship with the outcome, the outcome adaptive

selection procedures performed worse than SW and AL. Step-ALT and Step-ALY

selected the weak confounders X1 and X2 about 50% of the time, while OAL selected

them around 80% of the time. Excluding weak confounders increases the bias as

seen in Table 4.3 for Step-ALT and Step-ALY, although the reduction in variance by

excluding many spurious variables was big enough that the RMSEs were still better.
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In summary, excluding predictors of the treatment only and including predictors of

the outcome, even the ones not associated with treatment, can improve the efficiency

of the estimators without substantially increasing the bias.

As shown in Table 4.1-4.4, the bootstrap smoothing with Efron’s formula tended

to perform better than MI(PENCOMP) and the standard method (AIPTW, IPTW)

for sample size of 200: the estimated SE were closer the empirical SE, the coverage

rates were closer the nominal 95% coverage, and confidence interval widths were

smaller. The gain of using Efron’s formula was more pronouced for SE, OAL, and AL.

This was probably due to the fact that the bootstrap estimates were more variable-

many different models and causal estimates were obtained across the bootstraps.

The distributions of the bootstrap estimates were thus more “jumpy and erratic”.

As shown in Figures 4.3-4.5, the 1000 bootstrap estimates for one simulated dataset

were more variable for sample size of 200 than for sample size of 1000, especially for

SW, AL and OAL selection procedures, which tended to select many more spurious

variables. In the presence of high variability across the bootstrap estimates, Efron’s

formula provided tighter confidence intervals.

As the sample size increased to 1000, the gain of using Efron’s formula disap-

peared, as seen in Tables 4.4-4.8. The standard procedure of calculating the confi-

dence intervals in the case of IPTW and AIPTW, and using multiple imputation-

based PENCOMP performed better than using Efron’s formula. When there is no

much variability in the estimates, using Efron’s formula can lead to greater confi-

dence interval widths and overcoverage. Figure 4.3-4.5 shows that for sample size of

1000, all the models had similar variability in the bootstrap estimates and the level

of variability was much less, compared to that for sample size of 200. In summary,

using Efron’s formula is advantagous when the sample size is smaller and the data

are more noisier and the model selection is more variable across bootstrap samples.
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Figure 4.1: Proportions of each variable selected for propensity model across 500
simulated datasets and 1000 bootstrap samples for each simulated dataset for sample
size of 200 and 1000. X1 and X2 are the true confounders; X3 and X4 are predictors of
the outcome but not of the treatment; and X5 and X6 are predictors of the treatment
but not of the outcome; all the other 14 covariates are spurious. Average across the
spurious variables.
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Figure 4.2: Proportions of each variable selected for prediction model across 500
simulated datasets and 1000 bootstrap samples for each simulated dataset for sample
size of 200 and 1000. X1 and X2 are the true confounders; X3 and X4 are predictors of
the outcome but not of the treatment; and X5 and X6 are predictors of the treatment
but not of the outcome; all the other 14 covariates are spurious. Average across the
spurious variables.
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Table 4.1: 100× RMSE with sample size of 200. The treatment effects η=2. S1, S2,
and S3 denote scenario 1, 2, and 3, respectively.

.
100× Empirical RMSE

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 21 19 21 28 24 28 41 31 34
Bagging allPotent 22 20 22 25 23 25 34 29 30

Standard/Rubin true 21 19 21 22 20 22 36 29 31
Bagging true 21 19 21 21 19 21 33 28 29

Standard/Rubin outcomePred 16 14 16 16 14 16 19 15 17
Bagging outcomePred 16 14 16 16 14 16 19 15 17

Standard/Rubin trueConf 16 14 16 16 14 16 22 19 21
Bagging trueConf 16 14 16 16 14 16 22 19 21

Standard/Rubin SW 21 19 21 25 23 25 38 32 33
Bagging SW 22 20 22 23 22 23 33 28 28

Standard/Rubin AL 21 19 21 26 24 27 39 30 32
Bagging AL 22 19 22 24 22 24 33 28 29

Standard/Rubin allLasso 18 17 18 18 17 19 22 18 20
Bagging allLasso 18 17 18 18 17 19 21 18 19

Standard/Rubin OAL 18 17 18 18 17 19 22 18 20
Bagging OAL 18 17 18 18 17 19 21 18 19

Standard/Rubin Step-ALT 16 15 18 17 15 23 19 15 24
Bagging Step-ALT 16 15 18 17 15 18 19 15 19

Standard/Rubin Step-ALY 16 15 18 16 14 24 19 15 25
Bagging Step-ALY 16 15 18 17 15 18 19 15 19
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Table 4.2: 100× noncoverage rate with sample size of 200. The nominal coverage
is 95%. The treatment effects η=2. S1, S2, and S3 denote scenario 1, 2, and 3,
respectively.

.
100× Noncoverage Rate

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 1 2 1 2 2 2 1 1 1
Bagging allPotent 3 4 3 4 5 4 6 3 4

Standard/Rubin true 2 3 2 4 5 4 7 6 6
Bagging true 3 4 3 3 4 3 7 6 5

Standard/Rubin outcomePred 3 4 3 4 4 4 6 4 6
Bagging outcomePred 2 3 2 4 3 4 5 3 5

Standard/Rubin trueConf 3 4 3 4 5 4 5 4 3
Bagging trueConf 2 3 2 3 4 3 4 2 3

Standard/Rubin SW 1 2 1 1 2 1 1 1 1
Bagging SW 3 4 3 4 5 4 6 4 5

Standard/Rubin AL 1 2 1 1 2 1 2 1 1
Bagging AL 4 4 4 4 5 4 6 4 4

Standard/Rubin allLasso 1 3 2 2 3 3 2 2 2
Bagging allLasso 3 4 3 4 4 4 4 3 4

Standard/Rubin OAL 2 3 2 2 3 2 2 2 2
Bagging OAL 3 4 3 4 4 4 4 3 4

Standard/Rubin Step-ALT 2 3 3 4 4 10 4 2 11
Bagging Step-ALT 2 2 5 4 3 6 4 3 7

Standard/Rubin Step-ALY 2 3 3 3 3 10 4 2 11
Bagging Step-ALY 3 2 5 4 3 6 4 3 7
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Table 4.3: 1000× empirical bias with sample size of 200. The treatment effects η=2.
S1, S2, and S3 denote scenario 1, 2, and 3, respectively.

.
1000× Empirical Bias

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 5 -2 5 2 4 2 60 11 26
Bagging allPotent 2 -6 2 2 2 2 63 5 26

Standard/Rubin true 6 4 6 6 3 6 61 11 27
Bagging true 3 1 3 5 3 5 82 18 33

Standard/Rubin outcomePred 10 7 10 8 7 8 33 9 19
Bagging outcomePred 7 4 7 8 7 8 39 9 21

Standard/Rubin trueConf 8 7 8 8 7 8 32 6 18
Bagging trueConf 5 4 5 8 7 8 39 6 20

Standard/Rubin SW 5 -2 6 4 -4 7 66 39 33
Bagging SW 2 -5 3 1 0 5 68 37 27

Standard/Rubin AL 6 -2 11 5 -0 19 71 15 29
Bagging AL 6 -3 7 2 1 11 72 16 29

Standard/Rubin allLasso 2 -3 21 4 -1 17 35 2 26
Bagging allLasso 3 -3 20 2 -1 23 46 4 32

Standard/Rubin OAL 6 0 25 4 -1 17 35 2 26
Bagging OAL 5 -1 22 2 -1 23 47 5 33

Standard/Rubin Step-ALT 2 -4 65 7 6 132 33 8 146
Bagging Step-ALT 3 -3 65 3 -3 66 40 2 83

Standard/Rubin Step-ALY 2 -4 70 8 7 138 33 9 160
Bagging Step-ALY 2 -4 70 2 -3 70 36 1 90
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Table 4.4: 10× mean 95% confidence interval width with sample size of 200. The
treatment effects η=2. S1, S2, and S3 denote scenario 1, 2, and 3, respectively.

.
10× Mean 95% Confidence Width

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 13 10 13 13 11 13 20 16 17
Bagging allPotent 10 8 10 10 9 10 14 12 12

Standard/Rubin true 10 8 10 8 7 8 12 10 11
Bagging true 9 8 9 8 8 8 12 11 11

Standard/Rubin outcomePred 7 6 7 7 6 7 8 6 7
Bagging outcomePred 7 6 7 7 6 7 8 6 7

Standard/Rubin trueConf 7 6 7 7 6 7 9 8 8
Bagging trueConf 7 6 7 7 6 7 9 8 9

Standard/Rubin SW 13 10 13 12 10 12 18 15 15
Bagging SW 9 8 9 9 8 9 13 11 11

Standard/Rubin AL 13 10 13 13 11 13 19 15 16
Bagging AL 9 8 9 9 8 9 13 11 11

Standard/Rubin allLasso 9 8 9 8 8 9 11 9 10
Bagging allLasso 8 7 8 8 7 8 9 8 8

Standard/Rubin OAL 9 8 9 8 7 9 11 9 10
Bagging OAL 8 7 8 8 7 8 9 8 8

Standard/Rubin Step-ALT 8 7 8 7 6 8 9 7 8
Bagging Step-ALT 7 7 8 7 6 7 8 7 7

Standard/Rubin Step-ALY 8 7 8 7 6 8 9 7 8
Bagging Step-ALY 7 7 8 7 6 7 8 7 7
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Table 4.5: 100× RMSE with sample size of 1000. The treatment effects η=2. S1, S2,
and S3 denote scenario 1, 2, and 3, respectively.

.
100× Empirical RMSE

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 9 8 9 13 9 13 18 11 15
Bagging allPotent 9 8 9 12 9 12 17 11 14

Standard/Rubin true 9 8 9 12 9 12 19 12 16
Bagging true 9 8 9 11 9 11 18 12 15

Standard/Rubin outcomePred 7 6 7 7 6 7 9 6 8
Bagging outcomePred 7 6 7 7 6 7 9 6 8

Standard/Rubin trueConf 7 6 7 7 6 7 10 8 10
Bagging trueConf 7 6 7 7 6 7 10 8 10

Standard/Rubin SW 9 8 9 13 9 13 19 12 16
Bagging SW 9 8 9 12 9 12 17 11 14

Standard/Rubin AL 9 8 9 12 9 12 18 12 15
Bagging AL 9 8 9 11 9 11 16 11 13

Standard/Rubin allLasso 8 7 8 8 7 8 9 7 9
Bagging allLasso 8 7 8 8 7 8 9 7 8

Standard/Rubin OAL 8 7 8 8 7 8 9 7 9
Bagging OAL 8 7 8 8 7 8 9 7 8

Standard/Rubin Step-ALT 7 6 8 7 6 9 9 6 11
Bagging Step-ALT 7 6 8 7 6 8 9 6 9

Standard/Rubin Step-ALY 7 6 8 7 6 9 9 6 11
Bagging Step-ALY 7 6 8 7 6 8 9 6 9
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Table 4.6: 100× noncoverage rate with sample size of 1000. The nominal coverage
is 95%. The treatment effects η=2. S1, S2, and S3 denote scenario 1, 2, and 3,
respectively.

.
100× Noncoverage Rate

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 3 4 3 5 4 5 7 5 5
Bagging allPotent 1 1 1 1 1 1 3 1 0

Standard/Rubin true 4 3 4 6 4 6 9 5 5
Bagging true 0 1 0 1 1 1 3 0 1

Standard/Rubin outcomePred 5 5 5 5 4 5 6 5 6
Bagging outcomePred 0 0 0 1 0 1 1 1 1

Standard/Rubin trueConf 5 5 5 5 4 5 5 6 5
Bagging trueConf 0 0 0 1 0 1 1 1 1

Standard/Rubin SW 3 4 3 5 4 5 8 4 5
Bagging SW 1 1 1 1 1 1 3 1 1

Standard/Rubin AL 3 4 3 6 4 6 9 5 5
Bagging AL 1 1 1 1 1 1 3 1 1

Standard/Rubin allLasso 2 3 3 3 2 3 3 2 3
Bagging allLasso 0 0 0 1 0 1 1 0 1

Standard/Rubin OAL 2 3 3 3 2 3 3 2 3
Bagging OAL 0 0 0 1 0 1 1 0 1

Standard/Rubin Step-ALT 4 4 2 5 4 6 6 4 8
Bagging Step-ALT 0 0 0 1 0 0 1 1 1

Standard/Rubin Step-ALY 4 4 2 5 4 6 6 4 8
Bagging Step-ALY 0 0 0 1 0 0 1 1 1
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Table 4.7: 1000× empirical bias with sample size of 1000. The treatment effects η=2.
S1, S2, and S3 denote scenario 1, 2, and 3, respectively.

.
1000× Empirical Bias

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 4 1 4 4 1 4 20 4 11
Bagging allPotent 5 1 5 4 1 4 24 4 13

Standard/Rubin true 4 2 4 5 2 5 25 5 14
Bagging true 5 2 5 5 2 5 33 7 17

Standard/Rubin outcomePred 0 -0 0 2 -0 2 14 1 7
Bagging outcomePred 1 0 1 2 -0 2 16 1 7

Standard/Rubin trueConf 0 -0 0 2 -0 2 16 0 8
Bagging trueConf 1 0 1 2 0 2 17 1 9

Standard/Rubin SW 4 1 4 3 1 3 17 4 9
Bagging SW 5 1 5 4 1 4 25 5 13

Standard/Rubin AL 4 1 5 5 2 7 27 7 15
Bagging AL 5 2 5 4 1 5 33 8 16

Standard/Rubin allLasso 2 1 3 4 1 5 17 2 9
Bagging allLasso 2 0 3 3 1 5 21 3 12

Standard/Rubin OAL 2 0 3 4 1 5 17 2 9
Bagging OAL 3 1 4 3 1 5 21 3 12

Standard/Rubin Step-ALT 1 -0 20 2 -0 22 14 1 39
Bagging Step-ALT 0 -1 20 2 -0 21 16 1 36

Standard/Rubin Step-ALY 1 -0 21 2 -0 23 14 1 40
Bagging Step-ALY 0 -1 21 2 -0 22 16 1 36
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Table 4.8: 10× mean 95% confidence interval width with sample size of 1000. The
treatment effects η=2. S1, S2, and S3 denote scenario 1, 2, and 3, respectively.

.
10× Mean 95% Confidence Interval Width

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 4 3 4 4 4 4 6 5 5
Bagging allPotent 5 5 5 6 5 6 9 6 7

Standard/Rubin true 4 3 4 4 3 4 6 5 6
Bagging true 5 5 5 6 5 6 9 7 8

Standard/Rubin outcomePred 3 3 3 3 3 3 3 3 3
Bagging outcomePred 4 4 4 4 4 4 5 4 4

Standard/Rubin trueConf 3 3 3 3 3 3 4 3 4
Bagging trueConf 4 4 4 4 4 4 6 5 5

Standard/Rubin SW 4 3 4 4 4 4 6 5 6
Bagging SW 5 5 5 6 5 6 9 6 7

Standard/Rubin AL 4 3 4 4 4 4 6 5 5
Bagging AL 5 5 5 6 5 6 8 6 7

Standard/Rubin allLasso 3 3 3 3 3 4 4 3 4
Bagging allLasso 5 4 5 5 4 5 5 4 5

Standard/Rubin OAL 3 3 3 3 3 4 4 3 4
Bagging OAL 5 4 5 5 4 5 5 4 5

Standard/Rubin Step-ALT 3 3 3 3 3 3 3 3 4
Bagging Step-ALT 4 4 5 4 4 5 5 4 5

Standard/Rubin Step-ALY 3 3 3 3 3 4 3 3 4
Bagging Step-ALY 4 4 5 4 4 5 5 4 5
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Figure 4.3: Distributions of 1000 bootstrap IPTW estimates for one simulated dataset
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Figure 4.4: Distributions of 1000 bootstrap AIPTW estimates for one simulated
dataset
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Figure 4.5: Distributions of 1000 bootstrap PENCOMP estimates for one simulated
dataset

4.6 Application

The Multicenter AIDS Cohort study (MACS) was started in 1984 (Kaslow et al,

1987). A total of 4,954 gay and bisexual men were enrolled in the study and followed

up semi-annually. At each visit, data from physical examination, questionnaires about

medical and behavioral history, and blood test results were collected. The primary
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outcome of interest was the CD4 count, a continuous measure of how well the immune

system functions. We used this dataset to analyze the short term effects of using

antiretroviral treatment. Here we restrict our analyses to visit 12. Treatment was

coded to 1 if the patient reported taking any of antiretroviral treatment (ART) or

enrolling in clinical trials of such drugs. We estimate the short-term (6-month) effects

of using any antiretroviral treatment for HIV+ subjects. We excluded subjects with

missing values on any of the covariates included in the models. We log-transformed

the blood counts in this analysis.

Here we treat each visit as a single time point treatment. Let t = 1 denote the

time when the treatment was administered, and t = 2 the time 6-month later when

the outcome was measured. In addition, let t = −1,−2,−3 denote 1, 2, and 3 visits

away from the current visit t = 1. Let X(t = 1,−1,−2,−3) denote the blood count

histories prior to treatment assignment. Let Z be the binary treatment indicator.

Let Y (t = 2) be the CD4 count 6 months after the treatment. For the outcome

model, we considered blood counts-CD4, CD8, white blood cell (WBC), red blood

cell (RBC), and platelets and treatment histories from the last 4 visits. For the

propensity model, we considered the same covariates as those in the outcome model,

as well as demographic variables-college education, age, and race. The treatment

assignment Z was modeled as a logistic regression. We estimated the mean CD4

count difference between the treated and the control at each visit, denoted as ∆. For

PENCOMP, we replaced the simulated/imputed transformed CD4 values that were

< 0 with 0 (i.e. below detection level). A total of 15 equally spaced knots and B

spline were used.

As shown in Figure 4.6, we see that the treated and control subjects were very

disimilar. The propensity score distributions were very skewed, as the treated had

propensity of treatment close 1 and the control close to 0. Here we considered the

variable selection methods in the simulation studies to select the relevant variables
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for the propensity score model. To quantify the amount of overlap, we measured the

proportion of subjects in the control group whose propensity scores were between

the 95th and 5th quantiles of the propensity score distribution of the treated group,

denoted as π0.95
z=0 = Fz=0(F−1

z=1(0.95)) − Fz=0(F−1
z=1(0.05)), where F is the cumulative

distribution. Similarly, π0.95
z=1 denotes the proportion of the treated subjects whose

propensity scores were between the 95th and 5th quantiles of the propensity score

distribution of the control group. Including only the covariates that were selected

more than 20% of times by Step ALT among 1000 bootstrap samples improved the

overlap, as shown in Figure 4.6. Table 4.9 shows the proportion that each variable

was selected across 1000 bootstrap samples. Subjects who got treatment at the recent

visits were more likely to receive treatments again. Thus, recent treatment histories

were highly predictive of the subsequent treatment, but weakly associated with the

outcome. Recent CD4 counts were much more predictive of the future CD4 counts.

Thus, when we accounted for the outcome-covariate relationship during propensity

model building, as in Step-ALT and Step-ALY, recent past treatment variables were

selected less than 10% of the times, compared to close to 100% of the time in SW

and AL, and 58% of the time in OAL. As seen in simulation studies, compared to the

OAL, the two-stage selection procedures were more effective at excluding variables

not or weakly associated with the outcome.
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Figure 4.6: Propensity score distributions between the treated (grey) and control
(black) if (A) including all covariates in the propensity score model, π0.95

z=1 = 18% and
π0.95
z=0 = 22%; (B) if including only the covariates that were selected more than 20%

of times by Step ALT among 1000 bootstrap samples, π0.95
z=1 = 33% and π0.95

z=0 = 49%
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Table 4.9: Proportion of each variable selected for prediction model across 1000 boot-
strap samples.

Outcome Model Propensity Model

Covariate SW AL SW AL OAL Step ALT Step ALY

CD4 t=-1 100 100 26 47 100 100 100
CD4 t=1 100 100 100 100 100 100 100
CD8 t=-1 71 20 20 35 77 20 20
RBC t=1 65 28 35 56 76 30 28
RBC t=-2 64 7 41 64 81 8 7
WBC t=1 59 24 16 39 61 23 25
college 57 9 19 22 38 8 9
CD4 t=-2 52 36 19 48 58 32 36
platelet t=-1 49 14 37 59 65 12 14
CD8 t=1 46 13 62 59 56 14 13
treat t=-3 43 7 38 58 59 6 6
treat t=-1 42 11 100 100 58 12 11
treat t=-2 41 7 80 94 42 9 7
platelet t=-3 37 4 21 34 38 3 4
WBC t=-1 30 1 17 36 40 2 1
age 24 2 28 28 15 1 2
CD8 t=-2 23 1 11 34 35 2 1
RBC t=-1 22 3 17 44 45 5 3
white 21 1 25 21 13 1 1
platelet t=1 19 1 20 40 36 1 1
CD4 t=-3 18 3 12 40 39 3 3
CD8 t=-3 17 2 28 37 25 2 2
WBC t=-2 14 1 19 37 30 1 1
WBC t=-3 13 1 29 37 25 1 1
platelet t=-2 12 1 15 32 27 1 1
RBC t=-3 10 0 21 38 15 1 0

Table 4.10: Treatment effect estimates and 95% confidence intervals.

.

IPTW AIPTW PENCOMP

allPotent Rubin/standard 7.5 (-2.2, 17.1) 1.3 (-0.7, 3.3) 0.7 (-1.4, 2.7)
Bagging 5.8 (-3.0, 14.6) 0.9 (-0.9, 2.6) 0.7 (-1.0, 2.4)

SW Rubin/standard 11.9 (1.4, 22.4) 2.7 (-0.03, 5.4) 0.9 (-1.9, 3.7)
Bagging 6.7 (-2.7, 16.0) 1.7 (-0.5, 3.9) 0.9 (-1.3, 3.1)

AL Rubin/standard 11.7 (1.6, 21.9) 2.8 (-0.7, 6.3) 0.9 (-1.6, 3.4)
Bagging 6.1 (-2.7, 15.0) 2.3 (-0.6, 5.3) 0.9 (-1.3, 3.1)

OAL Rubin/standard 2.5 (-6.6, 11.5) 0.9 (-2.1, 3.9) 0.6 (-1.5, 2.7)
Bagging 4.9 (-3.2, 13.0) 1.6 (-0.9, 4.1) 0.6 (-1.3, 2.5)

Step-ALT Rubin/standard 0.5 (-6.9, 7.9) -0.4 (-2.5, 1.7) -0.05 (-1.8, 1.7)
Bagging 2.0 (-5.0, 9.0) 0.4 (-1.6, 2.3) -0.04 (-1.6, 1.5)

Step-ALY Rubin/standard 0.5 (-7.0, 7.9) -0.4 (-2.4, 1.6) -0.09 (-1.8, 1.7)
Bagging 1.9 (-5.3, 9.0) 0.3 (-1.6, 2.2) -0.08 (-1.7, 1.6)

We estimated the short term effect of antiretroviral treatment on CD4 count using
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PENCOMP, AIPTW and IPTW, shown in Table 4.10. The standard errors were ob-

tained using 1000 bootstrap samples. For PENCOMP, 1000 complete datasets were

created. Overall, the IPTW estimates had the biggest confidence interval widths. In-

corporating the outcome models as in AIPTW and PENCOMP decreased the stan-

dard errors and interval widths significantly. PENCOMP tended to have slightly

smaller interval widths than AIPTW. The IPTW bootstrap estimates were much

more variable, compared to the PENCOMP or AIPTW bootstrap estimates. As seen

in the simulation studies, the bagging estimators tended to have smaller standard

errors and confidence interval widths than the standard approach for IPTW and

AIPTW, or the MI-based approach with Rubin’s combining rules for PENCOMP.

Excluding irrelevant covariates from the propensity score model, as seen in Step-ALT

and Step-ALY, improved the performance of IPTW significantly, in terms of the stan-

dard errors and confidence interval widths. Incorporating the outcome models in the

AIPTW and PENCOMP attenuated some of the effect of including such covariates.

4.7 Discussion

We propose a new version of PENCOMP via bagging that could have better per-

formance, in terms of SE, confidence interval width and coverage, than the original

version of PENCOMP with Rubin’s multiple imputation combining rules. The bag-

ging PENCOMP estimator have smaller standard errors, confidence interval width,

and better nominal coverage than the MI pencomp estimator when the data are noisy.

This can occur when there is limited overlap in the propensity score distributions be-

tween the treated and control. Lastly, we modeled PENCOMP as a mixed model

in our empirical work, but it would be interesting to compare it with the alternative

version, particularly via Bayesian approach (PENCOMP-Bayes), which as a Bayesian

method might have attractive small-sample properties. Bagging is a form of model

averaging, which can improve the performance of the estimators when the data are
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noisy. One future topic of research would be to compare it with Bayesian model

averaging combined with PENCOMP-Bayes.

Our simulation studies show that excluding strong predictors of the treatment

but not of the outcome, or spurious variables, helps improve the performance of the

propensity score-based methods, especially for the IPTW estimator. The doubly ro-

bust PENCOMP and AIPTW are not as heavily affected by including such variables.

However, one shortcoming of using outcome adaptive approach to propensity score

model building is that in small samples, it can miss many weak confounders. While

the outcome adaptive approach can decrease the standard errors of the estimates,

by excluding spurious variables and strong predictors of the treatment but not of

the outcome, it can potentially increase bias by excluding variables that are weakly

associated with the outcome, especially in small samples. This is a bias-variance

trade off problem. In addition, for the IPTW and AIPTW estimators, the bagging

approach incorporates model selection so performs better than the standard approach

in terms of bias, since it improves the chance that weak confounders are selected in

some bootstrap samples. This effect is not seen in PENCOMP, since the multiple

imputation-based approach already incorporates model selection. Whether using an

outcome adaptive approach can be beneficial depends on specific studies. In the pres-

ence of many weak confounders in the data, the reduction in variance from using an

outcome adaptive approach might not offset the increase in bias.

On the other hand, in high dimensional setting, including all the observed variables

in the propensity model can lead to highly unstable or even infeasible estimation. One

criticism of focusing on confounders rather than just predictors of treatment assign-

ment (i.e. balancing covariates between the treatment arms) is that incorporating the

outcome in the estimation procedure, whether via prognostic score (Hansen, 2008) or

as we have done here, violates the principle that causal inference methods using ob-

servational data should mimic as closely as possible randomized trial designs, where
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outcomes are not considered until the final estimation step. Following such a rule

avoids both overt and inadvertent attempts to bias model building toward preferred

outcomes (“the garden of forking paths” Gelman and Loken, 2013). However, with

the advent of advanced “automatic” penalized regression methods such as adaptive

lasso, the risk of such “model shopping” may be sufficiently reduced–though not elim-

inated, so that analysts that follow the approach outlined here should endeavor to

pre-specify to the extent possible the covariates to be used before the analysis begins.
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CHAPTER V

Summary and Future Work

In this dissertion, we have proposed PENCOMP as a new, straightforward method

to estimate treatment effects in single time-point and in two-time point treatment

situations with time-dependent confounders. PENCOMP has the double robust-

ness property for causal effects, which means that PENCOMP offers the analyst two

chances to make correct inferences about treatment effects, either by correctly spec-

ifying the propensity score model or by correctly specifying the prediction models.

In simulation studies, we show that PENCOMP is less sensitive to extreme weights,

and flexibile for estimating different estimands such as ATE, ATM and truncated,

by restricting to the appropriate subpopulation. We show that excluding variables

associated only with treatment reduces the RMSE, and including variables associated

only with outcome further reduces the RMSE. Compared with IPTW, PENCOMP

as a doubly robust method is less sensitive to the side effects of including strong

predictors of the treatment only.

We propose two versions of PENCOMP: 1) PENCOMP-MI–based on the multiple

imputation (MI) and MI combining rules for inference; and 2) PENCOMP-bagging–

based on bagging. Through simulation studies, we have shown that PENCOMP-

bagging could have better performance than PENCOMP-MI, in terms of confidence

interval widths and coverage, when the data are noisy, such as in small samples and
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in the presence of variable selection.

Our next step would be to create a R package so that applied researchers can

easily implement our method. Here we also propose some future directions to explore

for PENCOMP.

5.1 Missing Data and PENCOMP

PENCOMP is built on Penalized Spline of Propensity Prediction (PSPP) for

missing-data problems (Zhang and Little, 2009; Little and An, 2004). Let R denote

the response indicator for Y , taking the value 1 if Y is observed and 0 if Y is missing.

Let X = (X1, ..., Xp) denote a set of p fully-observed variables. PSPP first estimates

the propensity to respond given X, using a method appropriate for a binary outcome

such as logistic regression. The method then predicts the missing values of Y using a

linear model that includes as predictors a penalized spline of the estimated propensity

to respond and a linear function of other covariates X that are predictive of Y . For

the applications considered in this dissertation, we analyzed the treatment effects

on complete data sets to focus on the problem of causal inference. However, the

estimates on the complete data sets were probably biased, since the subjects who

were lost to follow up were probably sicker with lower CD4 counts. In the future, we

would consider a more realistic approach that accounts for missing data. We propose

using PSPP to impute the missing covariates to create D complete datasets. For

each data set d = 1, · · · , D, use PENCOMP-bagging or PENCOMP-MI to impute all

the missing potential outcomes, and then combine the D complete datasets with all

missing potential outcomes imputed for inference. PENCOMP has the advantage of

easily incorporating missing data. Simluation studies would be carried out to assess

the performance of such procedure.
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5.2 Bayesian PENCOMP

For both versions of PENCOMP, PENCOMP-bagging and PENCOMP-MI, the

spline models are fitted via REML. Instead of REML, we can estimate the spline

model using a fully Bayesian approach. There we describe the Baysian penalized

spline with truncated linear bases.

Y z1 = C1β + C2θ + ε,

 θ

ε

 ∼

 0

0

 ,
 σ2

θI 0

0 σ2
ε I


 ,

where β = (β0, β1, β2, · · · , βp) denote fixed effects, and θ = (θ11, · · · , θ1K) are random

basis coefficients. Specify a diffuse prior for β as P (β) ∼ 1; and prior distributions

for the variances σ2
θ and σ2

ε as P (σ2
θ) ∼ IG(Aθ, Bθ) and P (σ2

ε ) ∼ IG(Aε, Bε). To have

non-formative priors, the hyperparameters need to be small.

The posterior distributions for P (β, θ|Y, σ2
ε , σ

2
θ) ∼ N(ΣCTY, σ2

εΣ), where Σ =

(CTC + σ2
ε/σ

2
θD)−1. The posterior distribution for P (σ2

ε |Y, β, θ, σ2
θ) ∼ IG(Aε +

n/2, Bε + 1/2||y − C1β − C2θ||2). The posterior distribution for P (σ2
θ |Y, β, θ, σ2

ε ) ∼

IG(Aθ + K/2, Bθ + 1/2||θ||2). Compared to the mixed model framework, a fully

Bayesian approach takes into account the variability in hyperparameters. Future

studies would be done to investigate the performances of these versions of PEN-

COMP.

5.3 Extension of PENCOMP to Survival Outcome

Through this dissertation, we focus on continous outcome. Another important

topic for future research is to extend PENCOMP to non-normal outcomes. For ex-

ample, we can extend PENCOMP to address the problem of truncation by death.

Suppose we are interested in estimating the effect of a treatment on Quality of Life

(QOL) that is truncated by death (Rubin, 2002). Some patients die after treatment
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is assigned and before QOL is measured. For those patients who die, their outcomes

QOL are not defined. It is not approriate to treat truncated outcome as a missing

data problem, since those outcomes are neither censored or missing. In the presence

of censoring by death, the framework of principal stratification can be applied to esti-

mate causal effects (Frangakis and Rubin 2002). The idea is to stratify subjects into

four principal strata: subjects who would live under both treatments (LL), subjects

who live under treatment and die under control (LD), subjects who die under treat-

ment and live under control (DL), and those who die under both treaments (DD).

Since causal effects should be drawn on the same set of people, and subjects who die

do not have well defined Quality of Life measure, the causal effects in this case should

be defined only for the group LL.

However, since each subject can receive one treatment at a time and only one

potential outcome is observed, the principal strata are not unknown. Large sample

bounds for causal effects within the principal strata can be obtained with some as-

sumptions (Zhang and Rubin, 2003). Likelihood based approach with EM algorithm

was used to estimate causal effects within the principal strata (Zhang and Rubin,

2009). However, with PENCOMP, we can impute the missing survival outcomes

and the missing potential outcomes of interest if survived in a single time-point and

multiple time-point treatments scenarios, similar to what’s done in Chapter 2.

For simplicity, we illustrate our approach to the two time-point treatments. Let

t = 1 denote the baseline. At time t = 2, we first impute the missing survival status S2

and if S2 = 1 (alive), impute the missing intermediate outcome X2. Similarly, at time

t = 3, we first impute the survival status S3, and if S3 = 1, impute missing potential

outcome Y jk. More specifically, the implementations are described as follows:

(a) For d = 1, · · · , D, generate a bootstrap sample B(d) from the original data S

by sampling units with replacement, stratified on treatment group. Then carry out

steps (b)-(g) for each sample d:
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(b) Estimate a logistic regression model for the distribution of Z1 given baseline

covariates X1, with regression parameters γ1. Estimate the propensity to be assigned

treatment Z1 = z1 as P̂z1(X1) = Pr(Z1 = z1|X1, γ̂
(d)
z1 ), where γ̂

(d)
z1 is the ML estimate

of γz1 . Denote P̂ ∗z1 =log [P̂z1(X1)/(1− P̂z1(X1))].

(c) Using the cases assigned to treatment group Z1 = z1, estimate a logistic

regression of for the survival Sz12 on X1, with mean

logit(P (Sz12 = 1|X1, Z1 = z1, S1 = 1, θz1 , βz1)) = s(P̂ ∗z1|θz1) + gz1(X1; βz1), (5.1)

and normal linear regression of Xz1
2 on X1, with mean

E(Xz1
2 |X1, Z1 = z1, S2 = L, θz1 , βz1) = s(P̂ ∗z1|θz1) + gz1(X1; βz1), (5.2)

where s(P̂ ∗z1|θz1) denotes a penalized spline with fixed knots with parameters θz1 , and

gz1() represents a parametric function of other predictors of the outcome, indexed by

parameters βz1 . One of the covariates might be omitted to avoid collinearity. Note

that a distinct model is fitted for each treatment regimen.

(d) For z1 = 0, 1, impute the survival status of Sz12 and for S2 = 1, then impute

the values of Xz1
2 for subjects in treatment group 1− z1 in the original data set with

draws from the predictive distribution of Xz1
2 given X1 from the regression in (c),

with ML estimates θ̂
(d)
z1 , β̂

(d)
z1 substituted for the parameters θz1 , βz1 .

(e) Estimate the propensity to be assigned treatment Z2 = z2 given Z1, X̄2 as

P̂z2(X̄2, Z1) = Pr(Z2 = z2|X̄2, Z1 = z1, γ̂
(d)
z2 , S2 = 1) , where γ̂

(d)
z2 is the ML estimate

of γz2 . The probability of treatment regimen (Z1 = z1, Z2 = z2, S1 = 1) is denoted

as P̂z̄2 = P̂z1(X1)P̂z2(X̄2, Z1)P̂z1(S2, X1), where P̂z1(S2, X1) = P̂ (S2 = 1|X1, Z1 = z1)

Denote P̂ ∗z̄2 =log[P̂z̄2/(1− P̂z̄2)].

(f) Using the cases assigned to treatment group Z̄2 = z̄2, given past covariate and
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treatment histories X̄2, Z̄2, estimate a logistic regression of S z̄2 with mean

logit(P (S z̄23 = 1|X̄2, Z̄2 = z̄2, S2 = 1, θz̄2 , βz̄2) = s(P̂ ∗z̄2|θz̄2) + gz̄2(X̄2, Z̄2; βz̄2)

and a normal linear regression of Y z̄2 with mean

E(Y z̄2|X̄2, Z̄2 = z̄2, S3 = 1, θz̄2 , βz̄2) = s(P̂ ∗z̄2 |θz̄2) + gz̄2(X̄2, Z̄2; βz̄2)

where s(P̂ ∗z̄2|θz̄2) denotes a penalized spline with fixed knots with parameters θz̄2 , and

gz̄2() represents a parametric function of other predictors indexed by parameters βz̄2 .

One of the covariates might need to be omitted from gz̄2() to avoid collinearity in the

covariates.

(g) For each combination of z̄2 = (z1, z2), first impute the missing survival status

S3 = 1 and for subjects with S3 = 1, impute the values of Y z̄2 for subjects not assigned

this treatment combination in the original data set with draws from the predictive

distribution of Y z̄2 from the regression in (f), with ML estimates θ̂
(d)
z̄2 , β̂

(d)
z̄2 substituted

for the parameters θz̄2 , βz̄2 . From the imputed values, we can infer which principal

stratum each subject belongs to.

(h) Use Rubin’s Combining rule to combine all the complete datasets with poten-

tial outcomes filled in. We can compare the survival probabilities for both treatments,

in addition to comparing the mean difference of Y for the revelant principal stratum.

5.4 Extension of PENCOMP to Longitudinal Treatments

In Chapter 2, we focused on two-time point treatment situation. An important

question is how PENCOMP can be applied to longitudinal data sets with more than

two time points. For example, in the MACS data we analyzed, there are 16 time

points, so there are over 30,000 (215) possible treatment combinations, nearly all of
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which are not seen in the data. Providing simple and interpretable causal conclusions

in such a setting requires careful thought and modeling. In such hign dimensional

setting, reparametrization and some form of dimension reduction are needed. For

example, restrict inference to the subset of “relevant combinations” judged to have

sufficient data to provide meaningful estimates. Propensity models can then be fitted

sequentially over time on historical data, including prior treatment assignments and

outcomes as potential covariates. The outcomes of relevant combinations can then

be imputed as a function of a spline of the propensity and other predictive covariates

in the history, with the propensity for each relevant combination obtained by multi-

plying the sequence of propensities at the set of earlier time points. Some modeling

of the resulting treatment effects is likely to be needed to provide parsimonious infer-

ences. For example, a plot of treatment effects against the number of prior ”dosages”

may suggest a model with a parametric form for the treatment effect as a function

of dosage. To maintain stable estimates and enhance interpretability, some form of

dimension reduction and variable selection, for example, a summary measure of treat-

ments and other time varying covariates, will typically required. Implementing such

strategies is a topic for future research.

5.5 Variable Selection for Propensity Score Model

In Chapter 4, we proposed two-stage techniques: Step-ALY and Step-ALT. For

Step-ALY, in the first stage, we select a subset of covariates that are predictive of the

outcome using adaptive lasso. In the second stage, we use the subset of covariates

found in the first stage in the propensity score model. Similarly, for Step-ALT, we

reverse the steps by performing outcome adaptive lasso for the propensity model first

and then the prediction model. Future studies could be conducted to see if combining

the variable selection for the propensity score and prediction models into a single joint

selection model would be more efficient than using these two-stage techniques.
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APPENDIX A

Penalized Spline of Propensity Methods for

Treatment Comparison

A.1 Double Robustness of PENCOMP

A.1.1 Single Time Point Treatment Assignment

Let X1 denote the baseline covariates that affect treatment assignment Z1. Sup-

pose Z1 ∈ {0, 1} denotes assignment to control (0) or treatment (1). Let Y Z1 denotes

the potential outcome associated with treatment Z1.

Result 1: The ignorable treatment assignment implies that (Y 1, Y 0) |= Z1|Pz1(X1)

(Rosenbaum and Rubin 1983), where Pz1(X1) = Pr(Z1 = z1|X1) denotes the propen-

sity of being assigned z1.

In the single time point treatment setting, suppose Y 0 is observed only for subjects

i = 1, · · · , n0, while Y 1 is observed only for subjects i = n0 + 1, · · · , n. We are

interested in estimating the causal effect ∆ = E(Y 1−Y 0). Under SUTVA, ignorability

and positivity assumptions, we can estimate causal effects from the regression models

on covariates X1: E(Y |X1, Z1 = 1) and E(Y |X1, Z1 = 0), or from regression models
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on a summary measure of the covariates-propensity score Pz1(X1): E(Y |Pz1(X1), Z1 =

1) and E(Y |Pz1(X1), Z1 = 0).

E(Y 1 − Y 0) = E(E(Y 1 − Y 0|X1))

= E(E(Y 1|X1))− E(E(Y 0|X1))

= E

(
E(Y |X1, Z1 = 1)

)
− E

(
E(Y |X1, Z1 = 0)

)
by ignorability

= E

(
E(Y |Pz1(X1), Z1 = 1)

)
− E

(
E(Y |Pz1(X1), Z1 = 0)

)
by Result 1

Alternatively, the mean E(Y 1) can be written as E(Y 1) = P (Z1 = 1)E(Y 1|Z1 =

1) + P (Z1 = 0)E(Y 1|Z1 = 0), estimated as:

Ê(Y 1) =
n0

n
∗ 1

n0

n0∑
i=1

Ŷ 1
i +

n1

n
∗ 1

n1

n∑
i=(n0+1)

Y obs
i

=
1

n
∗
( n0∑
i=1

Ŷ 1
i +

n∑
i=n0+1

Y obs
i

)

where E(Y 1|Z1 = 1) = Y obs and E(Y 1|Pz1(x1), Z1 = 0) = Ŷ 1.

PENCOMP imputes the missing potential outcomes Y z1=1 for subjects i = 1, · · · , n0

from the mean model E(Y z1|X1, Z1 = z1, θz1 , βz1) = s(P̂ ∗z1 ; θz1) + gz1(P̂ ∗z1 , X1; βz1),

where P̂ ∗z1 = log [P̂z1(X1)/(1− P̂z1(X1))]. Zhang and Little (2009) showed that this

imputation model is equivalent to a centered version of the form E(Y z1|X1, Z1 =

z1, θz1 , βz1) = s(P̂ ∗z1 ; θz1) + gz1(P̂ ∗z1 , X1 − sx1(P̂ ∗z1 ;ωz1); βz1), where sx1(P̂ ∗z1 ;ωz1) =

E(X1|P̂ ∗z1) is the spline of X1 on the logit of the propensity score, denoted as, P̂ ∗z1

as shown in Little and An (2004). Specifically, in the centered version, the residuals

from the spline regressions of covariates X1 on P̂ ∗z1 enter the parametric g function.

Both Zhang and Little (2009) and Little and An (2004) showed that both imputation

models in the missing data context yields a consistent estimate for E(Y 1). Here we

show the double robustness property of PENCOMP using the centered version for
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simplicity.

a) When the mean model of Y 1 given (P̂ ∗z1 , X1) are correctly specified, the

marginal mean of Y 1 from the imputation model is consistent, as a consequence

of the properties of a well-defined regression model.

b) When the prediction model given X1 is misspecified, and the propensity and

the spline models are correctly specified, the marginal mean of Y 1 is consistent. Here

we prove the case for linear g function. In the case of a nonlinear g function, we can

approximate it using linear terms and the results will still hold.

E

(
Ŷ 1|P ∗z1

)
= sy

(
P ∗z1

)
+ E

[
g

(
P ∗z1 , X1 − sx1(P ∗z1)

)
|P ∗z1

]
= sy

(
P ∗z1

)
+ g

(
P ∗z1 , E

(
X1 − sx1(P ∗z1)

∣∣∣∣P ∗z1))
≈ sy

(
P ∗z1

)
+ g

(
P ∗z1 , 0,

)
= sy

(
P ∗z1

)
= E

(
Y 1|P ∗z1

)
= E(Y 1|P ∗z1 , Z1 = 1)

= E(Y 1|P ∗z1 , Z1 = 0)

where the last two equalities again follow from Result 1.

Thus, for the subjects who actually received controls, the marginal mean of the

imputed values Ŷ 1 from our imputation model is consistent even when the prediction

model on covariates is misspecified: 1
n0

∑n0

i=1 Ŷi
1
→ E(Y 1|Z1 = 0) as n0 →∞. Similar

approaches can be used to estimate E(Y 0|Z1 = 1) and thus estimated E(Y 0).
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A.1.2 Longitudinal Treatment Assignments

Suppose treatments are assigned at T discrete time points: t = 1, . . . , T . Let

X̄t and Z̄t denote the covariate and treatment history, respectively, up to and in-

cluding time point t. Let Y z̄T denote the potential outcome under treatment regime

z̄T = (z1, · · · , zT ). The final outcome of interest Y z̄T is measured after time point

T . Suppose, each zt is binary treatment. For a particular treatment regime z̄T =

(z1, z2, · · · , zt, zt+1, · · · , zT ), under SUTVA, sequential ignorability and positivity as-

sumptions, for all t = 1, · · · , T , the following results hold.

Result 2: Y z̄T |= I(Zt = zt)|Pzt(X̄t, z̄t−1), where I(.) is the indicator function, and

Pzt(X̄t, z̄t−1) = P (Zt = zt|X̄t, Z̄t−1), as a direct extension of the single time point

treatment (Rosenbaum and Rubin 1983).

Result 3: Y z̄T |= I(Z̄t = z̄t)|Pz̄t , where I(.) is the indicator function, Pz̄t =
∏t

k=1 P (Zk =

zk|Z̄k−1 = z̄k−1, X̄k), which is the propensity of being assigned treatment regime z̄t,

conditional on the past treatment and covariate history. In other words, the treat-

ment regime Z̄t up to and including time point t is independent of potential outcomes

Y z̄T given the propensity of receiving that treatment regime Z̄t, for all t = 1, · · · , T .

The proof is outline here.

P

(
I(Z̄t = z̄t)|Y z̄T , Pz̄t

)
= P

(
I(Z̄t = z̄t)|Pz̄t

)
= Pz̄t

P

(
I(Z̄t = z̄t)|Y z̄T , Pz̄t

)
= E

(
I(Z̄t = z̄t)|Y z̄T , Pz̄t

)
= E

[
E

(
I(Z̄t = z̄t)|Y z̄T , X̄t, Z̄t−1, Pz̄t

)
|Y z̄T , Pz̄t

]
= E

[
I(Z̄t−1 = z̄t−1)E

(
I(Zt = zt)|X̄t, Z̄t−1, Pz̄t

)
|Y z̄T , Pz̄t

]
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by sequential ignorability assumption

= E

[
I(Z̄t−1 = z̄t−1)Pzt(X̄t, z̄t−1)|Y z̄T , Pz̄t

]
= E

[
E

(
I(Z̄t−1 = z̄t−1)Pzt(X̄t, z̄t−1)|Y z̄T , X̄t−1, Z̄t−2, Pz̄t

)∣∣∣∣Y z̄T , Pz̄t

]
= E

[
I(Z̄t−2 = z̄t−2)Pzt(X̄t, z̄t−1)E

(
I(Zt−1 = zt−1)|Y z̄T , X̄t−1, Z̄t−2, Pz̄t

)
∣∣∣∣Y z̄T , Pz̄t

]
= E

[
I(Z̄t−2 = z̄t−2)Pzt(X̄t, z̄t−1)Pzt−1(X̄t−1, z̄t−2)

∣∣∣∣Y z̄T , Pz̄t

]
= E

[
Pz̄t |Y z̄T , Pz̄t

]
by the same argument for each Zt

= Pz̄t

By the same argument but without the need for the sequential ignorability assump-

tion, P

(
I(Z̄t = z̄t)|Pz̄t

)
= Pz̄t . Thus, P

(
I(Z̄t = z̄t)|Y z̄T , Pz̄t

)
= p

(
I(Z̄t = z̄t)|Pz̄t

)
Suppose we want to impute the missing potential outcomes X11

3 for subjects

1, · · · , n0 and subjects i = n0 + 1, · · ·n receive treatment combination (1, 1). As

shown below, we can build a model for X11
3 from the subjects with observed treat-

ment sequence of (1, 1) to impute missing potential outcomes X11
3 for other subjects.

Similar to single time point treatment, we can estimate causal effects from the regres-

sion models on the covariates or on the propensity scores.

E

(
X11

3

)
= E

[
E(X11

3 |X̄2)

]
= E

[
E(X3|X̄2, Z1 = 1, Z2 = 1)

]
by sequential ignorability

= E

[
E(X3|Pz̄2=(11), Z1 = 1, Z2 = 1)

]
by result 3

Alternatively, the meanE(X11
3 ) can be written as E(X11

3 ) = P (Z̄2 = (1, 1))E(X11
3 |Z̄2 =
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(1, 1)) + P (Z̄2 6= (1, 1))E(X11
3 |Z̄2 6= (1, 1)), estimated as:

Ê(X11
3 ) =

n00

n
∗ 1

n00

n00∑
i=1

X̂3
11

+
n01

n
∗ 1

n01

n00+n01∑
i=n00+1

X̂3
11

+
n10

n
∗ 1

n10

n00+n01+n10∑
i=n00+n01+1

X̂3

11
+

n∑
i=n00+n01+n10+1

Xobs
3

=
1

n
∗
(n00+n01+n10∑

i=1

X̂3

11
+

n∑
i=n00+n01+n10+1

Xobs
3

)

where X̂11
3 = Ê(X11

3 |Pz̄2 , Z1 6= 1, Z2 6= 1).

PENCOMP imputes the first missing intermediate outcomes X2 first, X3, and

continue forward to the final outcome Y . By induction, we can show PENCOMP

has double robustness property in longitudinal study. We have shown double robust-

ness property for the base case t = 1 as in the single treatment. Suppose PEN-

COMP has the double robustness property in imputing missing potential outcomes

Xt. We want to show that the double robustness property also holds for the miss-

ing potential outcomes Xt+1, Suppose we are interested in estimating X z̄t
t+1, where

z̄t = (z1, · · · , zt) and subjects i = 1, · · · , n0 do not treatment sequence Z̄t that

match z̄t. Thus, to impute the missing potential outcomes X z̄t
t+1 for the subjects

whose treatment sequence did not match z̄t, we draw values from the mean model

E(X z̄t
t+1|X̄t, Z̄t = z̄t, θz̄t , βz̄t , γz̄t) = sxt+1(P̂ ∗z̄t ; θz̄t) + g

[
P̂ ∗z̄t , X1, · · · , Xt; βz̄t

]
, which is

equivalent to the mean model E(X z̄t
t+1|X̄t, Z̄t = z̄t, θz̄t , βz̄t , γz̄t) = sxt+1(P̂ ∗z̄t ; θz̄t) +

g

[
P̂ ∗z̄t , X1−sx1(P̂ ∗z̄t ;ωz̄1

t
), · · · , Xt−sxt(P̂ ∗z̄t ;ωz̄tt); βz̄t

]
, where P̂ ∗z̄t = log

(
P̂z̄t/(1− P̂z̄t)

)
.

Here we need to show the double robustness property of PENCOMP with the centered

version.

a) When the mean model of X z̄t
t+1 given the covariate history X̄t are correctly

specified, the marginal mean of X z̄t
t+1 from the imputation model is consistent, as a

consequence of well-defined regression models.
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b) When the prediction model given X̄t is misspecified, and all the propensity

models up to and including time point t and the spline models are correctly specified,

the marginal mean of X z̄t
t+1 is consistent. Again we prove the case for linear g function.

We can approximate a nonlinear g function with using linear terms and the results

will still hold.

E

(
X̂ z̄t
t+1|P ∗z̄t

)
= sxt+1

(
P ∗z̄t

)
+ E

[
g

(
P ∗z̄t , X1 − sx1(P ∗z̄t), · · · , Xt − sxt(P ∗z̄t

)
|P ∗z̄t

]
= sxt+1

(
P ∗z̄t

)
+ g

[
P ∗z̄t , E

(
X1 − sx1(P ∗z̄t)|P

∗
z̄t

)
, · · · , E

(
Xt − sxt(P ∗z̄t)|P

∗
z̄t

)]
≈ sxt+1

(
P ∗z̄t

)
+ g

[
P ∗z̄t , 0, · · · , 0

]
= sxt+1

(
P ∗z̄t

)
= E

(
X z̄t
t+1|P ∗z̄t

)
= E(X z̄t

t+1|P ∗z̄t , Z̄t 6= z̄t)

= E(X z̄t
t+1|P ∗z̄t , Z̄t = z̄t)by result 4

where the last two equalities follow from Result 3.

Thus, 1
n0k

∑n0k

i=1 X̂
z̄k
k+1,i → E(X z̄k

k+1|Z̄k 6= z̄k) as n0k → ∞, where n0k is the sample

size of the observations for which Z̄k 6= z̄k, and we assume that the observations are

ordered that the first n0 corresponds to the observations for which Z̄k 6= z̄k. Thus,

by induction, PENCOMP has double robustness property in longitudinal study.

135



A.2 Implementations of the IPTW and the AIPTW Estima-

tors

A.2.1 IPTW

Let Oi = (X̄iT , Z̄iT , Yi) denote the observed data for subject i, where i = 1, · · · , n.

The likelihood of the observed data can be factored into two components P (O) =

Q0g0, whereQ0 = P (Y |X̄T , Z̄T = z̄T )
∏T

t=1 P (Xt|X̄t−1, Z̄t−1) and g0 =
∏T

t=1 P (Zt|Z̄t−1, X̄t−1).

Denote the MLE of Q0 and g0 as Qn and gn respectively.

From the IPTW estimating equation
∑n

i=1DIPTW (Oi|β, gn) = 0, we can obtain

Ê(Y z1) =
∑n

i=1
I(Z1i=z1i)

P̂ (Z1i=z1i|X1i)
)−1
∑n

i=1
Z1iYi

P̂ (Z1i|X1i)
. Thus, the estimated causal effect ∆̂

in a single time point is

∆̂IPTW = (
n∑
i=1

Z1i

P̂ (Z1i|X1i)
)−1

n∑
i=1

Z1iYi

P̂ (Z1i|X1i)
−(

n∑
i=1

1− Z1i

1− P̂ (Z1i|X1i)
)−1

n∑
i=1

(1− Z1i)Yi

(1− P̂ (Z1i|X1i))

Similarly, in a two time points treatment, the estimated causal effects ∆̂z1z2 are

∆̂IPTW
z1z2

= (
n∑
i=1

I(Z1i = z1, Z2i = z2)

P (Z1i|X1i)P (Z2i|X1i, X2i, Z1i)
)−1

n∑
i=1

I(Z1i = z1, Z2i = z2)Yi
P (Z1i|X1i)P (Z2i|X1i, X2i, Z1i)

− (
n∑
i=1

I(Z1i = 0, Z2i = 0)

P (Z1i|X1i)P (Z2i|X1i, X2i, Z1i)
)−1

n∑
i=1

I(Z1i = 0, Z2i = 0)Yi
P (Z1i|X1i)P (Z2i|X1i, X2i, Z1i)

A.2.2 AIPTW

To solve the estimating equation
∑n

i=1DAIPTW (Oi|β, gn, Qn) = 0 in the single

treatment assignment setting, we proceeds as follows.

(a) For d = 1, · · · , D, generate a bootstrap sample S(d) from the original data S

by sampling units with replacement, stratified on treatment group. Then carry out

steps (b)-(h) for each sample d:
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(b) Estimate a logistic regression model for the distribution of Z1 given X1, with

regression parameters γz1 . Estimate the propensity to be assigned treatment Z1 = z1

as P̂ (Z1 = z1|X1, γ̂z1
(d)) , where γ̂z1

(d) is the ML estimate of γz1 .

(c) For z1 = 0, 1, using the cases assigned to treatment group z1, estimate the

distribution Y given X1 and Z1, P̂ (Y |X1 = x1, Z1 = z1), using a normal linear

regression with mean E(Y |X1, Z1 = z1, βz1) = gz1(X1; βz1), where gz1() represents a

parametric function of X1 and Z1 indexed by parameters βz1 .

(d) Estimate the distributions of baseline covariates P (X1) using the empirical

distributions from the data, denoted as P̂ (X1).

e) Estimate β̂mcn = (β̂mc0 , β̂mc1 ) using the g-computation to generate 10, 000 number

of Y0 and Y1 from their respective counterfactual reference distributions. Specifically,

draw x∗1 from the empirical distribution of X1, P̂ (X1). Set Z1 = z1 and generate

draws y∗ from P̂ (Y |X1 = x∗1, Z1 = z1). Then fit the MSM model E(Y Z1) = β0 +β1Z1

to this collection of (y∗, 1) and (y∗, 0) to obtain β̂mcn .

f) Using Qn, gn and β̂mcn , estimate EQn,gn [DIPTW (Oi|β̂mcn , gn)|Z1i = z1i, X1i = x1i]

for each subject i as follows. Given (Z1i = z1i, X1i = x1i), generate 2,000 draws of

Y mc
i from P̂ (Y |X1i = x1i, Z1i = z1i) and compute

Dmc
i =

ĥ(Z1i)

P̂ (Z1i|X1i)
(Y mc

i − (β̂mc0 + β̂mc1 Z1i))

where ĥ(Z1i) = dE(Y Z1i )
dβ

P̂ (Z1i). Take the mean of 2000 Monte Carlo values as the

estimate.

g) Similarly estimate EQn,gn [DIPTW (Oi|β̂mcn , gn)|X1i = x1i]. Given X1i = x1i,

first generate draws of zmc1i from P̂ (Z1i|X1i = x1i), then generate draws of Y mc
i from

P̂ (Y |X1i = x1i, Z1i = zmc1i ) and compute Dmc
i . Take the mean of 2000 Monte Carlo

values Dmc
i as the estimate.
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h) Let π̂i = ÊQn,gn [DIPTW (O|β̂mcn , gn)|Z1i, X1i]− EQn,gn [DIPTW (O|β̂mcn , gn)|X1i].

Solve (β0, β1) using Newton Raphson algorithm

n∑
i=1

DAIPTW (Oi|β, gn, Qn) =
n∑
i=1

DIPTW (Oi|β, gn)− π̂i = 0

The treatment effect is ∆̂
AIPTW

=
∑D

d=1 β̂
(d)
1 /D. Estimate the variance by bootstrap

and obtain the 95% confidence interval from the bootstrap samples.

Similarly to solve the AIPTW estimating equation in a two time points treatment,

the steps proceeds as follows. Let β = (β0, β1, β2, β3).

(a) For d = 1, · · · , D, generate a bootstrap sample S(d) from the original data S

by sampling units with replacement, stratified on treatment group. Then carry out

steps (b)-(i) for each sample d:

(b) Estimate a logistic regression model for the distribution of Z1 given X1, with

regression parameters γz1 . Estimate the propensity to be assigned treatment Z1 = z1

as P̂ (Z1 = z1|X1, γ̂
(d)
z1 ) , where γ̂

(d)
z1 is the ML estimate of γz1 .

(c) Estimate the distributions of baseline covariates P (X1) as the empirical dis-

tributions from the data, denoted as P̂ (X1).

(d) Using the cases assigned to treatment group Z1 = z1, estimate P̂ (X2|X1, Z1)

using a normal linear regression with mean

E(Xz1
2 |X1, Z1 = z1, θz1 , βz1) = gz1(X1, Z1, βz1) (A.1)

where gz1() represents a parametric function of X1, and Z1 indexed by parameters

βz1 .

(e) Estimate a logistic regression model for the distribution of Z2 given X̄2, Z1,
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with regression parameters γz2 . Estimate the propensity to be assigned treatment

Z2 = z2 given Z1, X̄2 as P̂ (Z2 = z2|X̄2, Z1, γ̂
(d)
z2 ) , where γ̂

(d)
z2 is the ML estimate of γz2 .

(f) Using the cases assigned to treatment regime Z̄2 = z̄2, estimate P̂ (Y |X̄2, Z̄2)

using a normal linear regression with mean

E(Y z̄2|X̄2, Z̄2 = z̄2, βz̄2) = gz1z2(X̄2, Z̄2; βz̄2)

where gz̄2() represents a parametric function indexed by parameters βz̄2 .

g) Estimate β̂
mc

n = (β̂mc0 , β̂mc1 , β̂mc2 , β̂mc3 ) using the g-computation to generate

10, 000 draws of the potential outcomes Y 00,Y 01,Y 11,Y 10 from their respective coun-

terfactual distributions. Specifically, first generate a draw x∗1 from the empirical dis-

tribution P̂ (X1). Set Z1 = z1 and generate a draw x∗2 from P̂ (X2|X1 = x∗1, Z1 = z1).

Then set Z2 = z2 and generate draws y∗ from P̂ (Y |X1 = x∗1, Z1 = z1, X2 = x∗2, Z2 =

z2). Then fit the model E(Y Z̄2) = β0 + β1Z1 + β2Z2 + β3Z1Z2 to this collection of

(y∗, 0, 0), (y∗, 1, 0), (y∗, 0, 1) and (y∗, 1, 1) to obtain β̂mcn .

h) Using Qn, gn and β̂mcn , estimate EQn,gn [DIPTW (Oi|β̂mcn , gn)|Z̄2i = z̄2i, X̄2i = x̄2i]

for each subject i as follows. Given (Z̄2i = z̄2i, X̄2i = x̄2i), generate 2,000 draws of

Y mc
i from P (Y |Z̄2i = z̄2i, X̄2i = x̄2i) and compute Dmc

i . Take the mean of the 2,000

Monte Carlo values as the estimate.

Dmc
i =

ĥ(Z̄2i)

P̂ (Z1i|X1i)P̂ (Z2i|Z1i, X̄2i)
(Y mc

i − (β̂mc0 + β̂mc1 Z1i + β̂mc2 Z2i + β̂mc3 Z1iZ2i))

where ĥ(Z̄2i) = dE(Y Z̄2i )
dβ

P̂ (Z1i)P̂ (Z2i|Z1i). Follow the similar procedures to esti-

mate the other three conditional expectations.

i) Solve the estimating equation using Newton Raphson algorithm

n∑
i=1

DAIPTW (Oi|β, gn, Qn) =
n∑
i=1

DIPTW (Oi|β, gn)− π̂i = 0 (A.2)
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where,

π̂i =

j=2∑
j=1

EQn,gn [DIPTW (O|β̂mc, gn)|Z̄j, X̄j]− EQn,gn [DIPTW (O|β̂mc, gn)|X̄j]

The treatment effects are ∆̂AIPTW
11 =

∑D
d=1 ∆̂

AIPTW (d)
11 /D, ∆̂AIPTW

10 =
∑D

d=1 ∆̂
AIPTW (d)
10 /D,

and ∆̂AIPTW
01 =

∑D
d=1 ∆̂

AIPTW (d)
01 /D, where ∆̂

AIPTW (d)
11 = β̂1+β̂2+β̂3; ∆̂

AIPTW (d)
10 = β̂1;

∆̂
AIPTW (d)
01 = β̂2. Estimate the variance and obtain the 95% confidence interval from

D bootstrap samples.

A.3 Supplemental Tables from the Simulation Study

Table A.1: 100 * Ratio of bias over RMSE of IPTW (A), under (A) correctly-specified
propensity and prediction models; (B) a correctly-specified propensity model only; (C)
a correctly-specified prediction model only, based on 1000 simulations with sample
size of 200. The treatment effects ∆s under linear and nonlinear outcome models
were 5 and 9, respectively.

.

∆ = E(Y 1)− E(Y 0)

100 * Empirical Bias / RMSE IPTW(A)

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 1 14 25 4 3 4
g-computation(A) -0 -0 -1 6 4 3
AIPTW(A) 0 0 2 2 2 2
PENCOMP(A) 0 2 2 2 3 3

IPTW(A) 1 14 25 4 3 4
g-computation(B) 79 357 303 41 225 225
AIPTW(B) 0 18 29 -1 3 5
PENCOMP(B) 11 2 5 -1 -37 -52

IPTW(C) 82 375 340 46 250 273
g-computation(A) -0 -0 -1 6 4 3
AIPTW(C) 0 0 0 2 2 1
PENCOMP(C) -0 0 0 2 2 1
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Table A.2: 100*Ratio of empirical RMSE over RMSE of IPTW (A), denoted as
RMSE/RMSE IPTW(A), under (A) correctly-specified propensity and prediction
models; (B) a correctly-specified propensity model only; (C) a correctly- specified
prediction model only, based on 1000 simulations with sample size of 200.

.

∆ = E(Y 1)− E(Y 0)

100 * RMSE / RMSE IPTW(A)

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 100 100 100 100 100 100
g-computation(A) 80 51 37 75 61 51
AIPTW(A) 78 59 47 73 63 55
PENCOMP(A) 78 57 46 73 62 54

IPTW(A) 100 100 100 100 100 100
g-computation(B) 168 367 307 124 246 240
AIPTW(B) 81 89 90 95 99 97
PENCOMP(B) 83 65 56 91 97 102

IPTW(C) 181 389 347 130 273 290
g-computation(A) 80 51 37 75 61 51
AIPTW(C) 78 53 39 73 60 51
PENCOMP(C) 78 54 40 73 61 51
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Table A.3: Empirical 95% non-coverage rate*100 (nominal noncoverage of 5), under
(A) correctly-specified propensity and prediction models; (B) a correctly-specified
propensity model only; (C) a correctly-specified prediction model only, based on 1000
simulations with sample size of 200.

.

∆ = E(Y 1)− E(Y 0)

100 * 95% Non-coverage Rate

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 5 6 12 5 6 7
g-computation(A) 4 5 6 5 6 5
AIPTW(A) 4 6 6 5 6 5
PENCOMP(A) 4 3 3 4 5 3

IPTW(A) 5 6 12 5 6 7
g-computation(B) 10 99 100 6 64 81
AIPTW(B) 3 8 13 5 6 7
PENCOMP(B) 0 0 1 2 5 6

IPTW(C) 10 96 99 6 63 82
g-computation(A) 4 5 6 5 6 5
AIPTW(C) 4 5 7 5 6 6
PENCOMP(C) 4 4 5 5 5 5
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Table A.4: 100 * Ratio of empirical mean 95% confidence interval width to that of
IPTW (A), denoted as mean 95% interval width/mean 95% interval width IPTW(A),
under (A) correctly-specified propensity and prediction models; (B) a correctly-
specified propensity model only; (C) a correctly-specified prediction model only, based
on 1000 simulations with sample size of 200.

.

∆ = E(Y 1)− E(Y 0)

100 * mean 95% interval width/mean 95% interval width IPTW(A)

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 100 100 100 100 100 100
g-computation(A) 80 53 42 74 64 57
AIPTW(A) 79 60 60 73 66 67
PENCOMP(A) 80 69 68 74 70 72

IPTW(A) 100 100 100 100 100 100
g-computation(B) 136 84 64 114 105 95
AIPTW(B) 84 89 93 96 97 100
PENCOMP(B) 124 102 102 113 120 130

IPTW(C) 147 103 82 118 117 113
g-computation(A) 80 53 42 74 64 57
AIPTW(C) 79 55 44 73 64 58
PENCOMP(C) 79 58 50 73 65 61
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Table A.5: 100 * Ratio of bias over RMSE of IPTW (A), under (A) correctly-specified
propensity and prediction models; (B) a correctly-specified propensity model only; (C)
a correctly-specified prediction model only, based on 1000 simulations with sample
size of 500. The treatment effects ∆s under linear and nonlinear outcome models
were 5 and 9, respectively.

.

∆ = E(Y 1)− E(Y 0)

100 * Empirical Bias / RMSE IPTW (A)

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 1 4 16 -5 -8 -1
g-computation(A) 0 -0 -1 -0 -0 -0
AIPTW(A) -0 -2 0 -2 -3 -1
PENCOMP(A) -0 -0 0 -3 -2 -1

IPTW(A) 1 4 16 -5 -8 -1
g-computation(B) 123 482 406 58 333 327
AIPTW(B) 1 6 16 -8 -9 -4
PENCOMP(B) 15 -1 2 -2 -46 -67

IPTW(C) 125 510 458 62 367 396
g-computation(A) 0 -0 -1 -0 -0 -0
AIPTW(C) -0 0 -0 -2 -2 -1
PENCOMP(C) -1 -0 -0 -3 -2 -1

Table A.6: 100*Ratio of empirical RMSE over RMSE of IPTW (A), denoted as
RMSE/RMSE IPTW(A), under (A) correctly-specified propensity and prediction
models; (B) a correctly-specified propensity model only; (C) a correctly- specified
prediction model only, based on 1000 simulations with sample size of 500.

.

∆ = E(Y 1)− E(Y 0)

100 * RMSE / RMSE IPTW(A)

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 100 100 100 100 100 100
g-computation(A) 82 45 31 72 54 44
AIPTW(A) 79 54 42 70 56 49
PENCOMP(A) 79 49 38 70 55 47

IPTW(A) 100 100 100 100 100 100
g-computation(B) 184 487 408 128 345 336
AIPTW(B) 79 85 92 94 94 98
PENCOMP(B) 82 59 51 90 93 101

IPTW(C) 193 517 462 134 382 406
g-computation(A) 82 45 31 72 54 44
AIPTW(C) 79 46 32 70 53 44
PENCOMP(C) 79 46 33 70 53 44
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Table A.7: Empirical 95% non-coverage rate*100 (nominal noncoverage of 5), under
(A) correctly-specified propensity and prediction models; (B) a correctly-specified
propensity model only; (C) a correctly-specified prediction model only, based on 1000
simulations with sample size of 500.

.

∆ = E(Y 1)− E(Y 0)

100 * 95% Non-coverage Rate

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 5 6 11 5 6 6
g-computation(A) 5 6 6 4 4 4
AIPTW(A) 4 6 7 3 4 4
PENCOMP(A) 4 4 3 3 3 2

IPTW(A) 5 6 11 5 6 6
g-computation(B) 15 100 100 7 96 100
AIPTW(B) 4 7 13 5 6 6
PENCOMP(B) 0 1 1 3 6 10

IPTW(C) 12 100 100 7 97 100
g-computation(A) 5 6 6 4 4 4
AIPTW(C) 4 6 5 3 4 4
PENCOMP(C) 4 4 4 3 3 3
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Table A.8: 100 * Ratio of empirical mean 95% confidence interval width to that of
IPTW (A), denoted as mean 95% interval width/mean 95% interval width IPTW(A),
under (A) correctly-specified propensity and prediction models; (B) a correctly-
specified propensity model only; (C) a correctly-specified prediction model only, based
on 1000 simulations with sample size of 500.

.

∆ = E(Y 1)− E(Y 0)

100 * mean 95% interval width/mean 95% interval width IPTW(A)

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 100 100 100 100 100 100
g-computation(A) 84 52 38 77 61 53
AIPTW(A) 81 58 51 74 63 60
PENCOMP(A) 81 61 54 75 64 61

IPTW(A) 100 100 100 100 100 100
g-computation(B) 141 82 57 116 101 88
AIPTW(B) 82 88 92 95 95 96
PENCOMP(B) 120 92 85 107 108 113

IPTW(C) 151 98 73 119 113 105
g-computation(A) 84 52 38 77 61 53
AIPTW(C) 81 52 39 74 60 53
PENCOMP(C) 81 55 43 74 61 55
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Table A.9: 100 * Ratio of bias over RMSE of IPTW (A), under (A) correctly-specified
propensity and prediction models; (B) a correctly-specified propensity model only; (C)
a correctly-specified prediction model only, based on 1000 simulations with sample
size of 1000. The treatment effects ∆s under linear and nonlinear outcome models
were 5 and 9, respectively.

.

∆ = E(Y 1)− E(Y 0)

100 * Empirical Bias / RMSE IPTW (A)

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) -1 3 11 -2 -3 -1
g-computation(A) 2 2 1 -2 -1 -0
AIPTW(A) 2 1 0 -3 -2 -2
PENCOMP(A) 3 2 1 -2 -1 -1

IPTW(A) -1 3 11 -2 -3 -1
g-computation(B) 182 674 517 92 459 420
AIPTW(B) 2 7 14 -2 -1 -0
PENCOMP(B) 21 1 3 6 -36 -61

IPTW(C) 181 706 578 95 502 505
g-computation(A) 2 2 1 -2 -1 -0
AIPTW(C) 1 1 0 -3 -2 -1
PENCOMP(C) 3 2 1 -2 -1 -1

Table A.10: 100*Ratio of empirical RMSE over RMSE of IPTW (A), denoted as
RMSE/RMSE IPTW(A), under (A) correctly-specified propensity and prediction
models; (B) a correctly-specified propensity model only; (C) a correctly- specified
prediction model only, based on 1000 simulations with sample size of 1000.

.

∆ = E(Y 1)− E(Y 0)

100 * RMSE / RMSE IPTW(A)

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 100 100 100 100 100 100
g-computation(A) 85 45 29 79 58 44
AIPTW(A) 80 53 45 74 59 52
PENCOMP(A) 80 49 36 74 56 45

IPTW(A) 100 100 100 100 100 100
g-computation(B) 233 678 518 151 468 427
AIPTW(B) 81 90 94 96 94 94
PENCOMP(B) 85 59 50 92 88 96

IPTW(C) 238 711 581 153 513 512
g-computation(A) 85 45 29 79 58 44
AIPTW(C) 80 45 30 74 54 42
PENCOMP(C) 80 45 30 74 54 42
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Table A.11: Empirical 95% non-coverage rate*100 (nominal noncoverage of 5), under
(A) correctly-specified propensity and prediction models; (B) a correctly-specified
propensity model only; (C) a correctly-specified prediction model only, based on 1000
simulations with sample size of 1000.

.

∆ = E(Y 1)− E(Y 0)

100 * 95% Non-coverage Rate

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 5 6 12 4 6 6
g-computation(A) 6 5 5 6 5 5
AIPTW(A) 5 5 6 5 6 6
PENCOMP(A) 5 5 4 5 5 5

IPTW(A) 5 6 12 4 6 6
g-computation(B) 26 100 100 12 100 100
AIPTW(B) 4 7 13 6 6 6
PENCOMP(B) 1 1 2 3 4 8

IPTW(C) 24 100 100 11 100 100
g-computation(A) 6 5 5 6 5 5
AIPTW(C) 5 5 6 5 5 5
PENCOMP(C) 5 4 4 5 5 5
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Table A.12: 100 * Ratio of empirical mean 95% confidence interval width to that of
IPTW (A), denoted as mean 95% interval width/mean 95% interval width IPTW(A),
under (A) correctly-specified propensity and prediction models; (B) a correctly-
specified propensity model only; (C) a correctly-specified prediction model only, based
on 1000 simulations with sample size of 1000.

.

∆ = E(Y 1)− E(Y 0)

100 * mean 95% interval width/mean 95% interval width IPTW(A)

Linear Outcome NonLinear Outcome
Method Low Mod High Low Mod High

IPTW(A) 100 100 100 100 100 100
g-computation(A) 88 54 36 79 63 51
AIPTW(A) 81 59 50 74 63 57
PENCOMP(A) 82 60 49 74 63 56

IPTW(A) 100 100 100 100 100 100
g-computation(B) 144 83 54 118 103 84
AIPTW(B) 82 87 90 95 95 95
PENCOMP(B) 119 90 79 105 106 106

IPTW(C) 152 99 69 120 113 98
g-computation(A) 88 54 36 79 63 51
AIPTW(C) 81 52 37 74 60 50
PENCOMP(C) 81 54 39 74 61 51

149



T
ab

le
A

.1
3:

10
0

*
E

m
p
ir

ic
al

b
ia

s
ov

er
R

M
S
E

of
IP

T
W

(A
),

u
n
d
er

(A
)

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

50
0

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
20

0.
U

n
d
er

th
e

li
n
ea

r
ou

tc
om

e
m

o
d
el

,
(∆

1
1
,∆

1
0
,∆

0
1
)

w
er

e
(2

2.
35
,1

1.
17
,1

0.
45

),
re

sp
ec

ti
ve

ly
.

U
n
d
er

th
e

n
on

li
n
ea

r
ou

tc
om

e
m

o
d
el

,
(∆

1
1
,∆

1
0
,∆

0
1
)

w
er

e
(2

5.
31
,1

2.
69
,1

0.
57

),
re

sp
ec

ti
ve

ly
.

10
0

*
E

m
p
ir

ic
al

B
ia

s
/

R
M

S
E

IP
T

W
(A

)

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
-2

7
8

-0
-2

6
-4

5
6

5
-1

-6
1

1
2

-2
5

-4
7

5
3

-2
g-

co
m

p
u
ta

ti
on

(A
)

1
1

-0
2

1
0

2
2

1
1

1
0

2
1

1
3

3
2

A
IP

T
W

(A
)

-0
0

-1
1

1
-3

2
1

1
0

0
-0

1
0

-4
3

2
2

P
E

N
C

O
M

P
(A

)
1

1
1

2
2

1
3

2
2

2
3

3
2

2
1

4
3

2

IP
T

W
(A

)
-2

7
8

-0
-2

6
-4

5
6

5
-1

-6
1

1
2

-2
5

-4
7

5
3

-2
g-

co
m

p
u
ta

ti
on

(B
)

-6
4

-3
4

-1
1

-7
5

-5
3

-5
5

-7
-5

-4
-5

2
-6

0
-5

0
-6

3
-8

3
-9

5
-8

-7
5

A
IP

T
W

(B
)

-4
-1

2
-3

-5
-1

3
1

2
3

-8
-9

-9
-2

-2
2

-4
0

-1
-0

4
P

E
N

C
O

M
P

(B
)

1
5

8
1

8
9

1
1

3
-4

-4
0

-2
-9

-1
5

2
-1

5

IP
T

W
(C

)
25

82
10

0
-8

6
-1

60
-1

93
-8

3
-1

79
-2

57
19

58
93

-5
7

-1
15

-1
48

-9
3

-2
08

-2
77

g-
co

m
p
u
ta

ti
on

(A
)

1
1

-0
2

1
0

2
2

1
1

1
0

2
1

1
3

3
2

A
IP

T
W

(C
)

0
0

-1
1

0
-0

3
2

2
0

0
-0

1
1

0
3

3
2

P
E

N
C

O
M

P
(C

)
1

1
0

2
0

-1
3

2
1

2
3

2
2

1
1

4
3

2

150



T
ab

le
A

.1
4:

10
0*

R
at

io
of

em
p
ir

ic
al

R
M

S
E

to
R

M
S
E

of
IP

T
W

(A
),

d
en

ot
ed

as
10

0
*

R
M

S
E

/R
M

S
E

(I
P

T
W

(A
))

,
u
n
d
er

(A
)

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

50
0

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
20

0.

10
0

*
R

M
S
E

/
R

M
S
E

IP
T

W
(A

)

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(A
)

58
52

41
45

26
21

34
30

27
53

59
57

39
23

21
34

32
27

A
IP

T
W

(A
)

56
52

41
46

31
68

33
30

28
53

62
60

40
30

10
5

33
31

27
P

E
N

C
O

M
P

(A
)

58
52

41
46

29
27

33
30

27
53

61
59

39
24

23
32

31
27

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(B
)

10
5

80
55

10
3

67
65

70
65

62
93

95
84

88
91

99
82

79
69

A
IP

T
W

(B
)

71
65

54
64

45
70

66
62

59
82

84
85

74
72

78
82

78
75

P
E

N
C

O
M

P
(B

)
63

63
55

50
42

51
43

44
46

69
76

85
51

40
52

61
62

62

IP
T

W
(C

)
97

11
6

11
8

14
0

17
5

20
0

13
9

21
3

27
7

10
8

12
1

13
9

11
0

12
8

15
3

14
5

23
6

29
2

g-
co

m
p
u
ta

ti
on

(A
)

58
52

41
45

26
21

34
30

27
53

59
57

39
23

21
34

32
27

A
IP

T
W

(C
)

57
51

40
45

27
22

33
30

27
53

61
59

40
26

23
32

31
27

P
E

N
C

O
M

P
(C

)
57

52
40

46
29

24
33

30
27

53
60

58
39

25
37

32
31

27

151



T
ab

le
A

.1
5:

E
m

p
ir

ic
al

95
%

n
on

-c
ov

er
ag

e
ra

te
*1

00
(n

om
in

al
n
on

co
ve

ra
ge

of
5)

,
u
n
d
er

(A
)

co
rr

ec
tl

y
-

sp
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

50
0

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
20

0.

10
0

*
95

%
N

on
-c

ov
er

ag
e

R
at

e

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
6

7
8

4
18

29
6

4
6

11
10

10
11

30
47

6
5

4
g-

co
m

p
u
ta

ti
on

(A
)

6
7

8
5

6
6

5
4

4
5

7
8

5
6

6
5

4
4

A
IP

T
W

(A
)

5
8

6
5

4
3

5
4

4
5

8
7

6
5

3
4

4
4

P
E

N
C

O
M

P
(A

)
4

3
2

2
1

1
2

1
1

4
4

3
2

1
1

1
1

1

IP
T

W
(A

)
6

7
8

4
18

29
6

4
6

11
10

10
11

30
47

6
5

4
g-

co
m

p
u
ta

ti
on

(B
)

15
10

8
20

24
36

5
6

6
18

20
18

22
66

85
5

6
5

A
IP

T
W

(B
)

5
7

4
5

6
5

5
6

5
11

10
9

9
26

35
5

5
6

P
E

N
C

O
M

P
(B

)
2

1
0

0
0

0
0

0
0

2
2

2
1

1
1

0
0

0

IP
T

W
(C

)
6

16
39

15
69

93
11

42
80

10
7

13
20

73
94

14
52

88
g-

co
m

p
u
ta

ti
on

(A
)

6
7

8
5

6
6

5
4

4
5

7
8

5
6

6
5

4
4

A
IP

T
W

(C
)

6
6

7
5

4
6

4
3

5
5

8
8

5
6

7
5

3
3

P
E

N
C

O
M

P
(C

)
4

3
3

1
1

1
2

2
2

3
3

3
2

2
2

2
1

2

152



T
ab

le
A

.1
6:

10
0*

R
at

io
of

em
p
ir

ic
al

95
%

co
n
fi
d
en

ce
in

te
rv

al
w

id
th

to
th

at
of

IP
T

W
(A

),
d
en

ot
ed

as
m

ea
n

95
%

in
te

rv
al

w
id

th
/t

h
at

of
IP

T
W

(A
),

u
n
d
er

(B
)

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

50
0

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
20

0.

10
0

*
m

ea
n

95
%

in
te

rv
al

w
id

th
/

m
ea

n
95

%
in

te
rv

al
w

id
th

IP
T

W
(A

)

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(A
)

57
48

40
45

33
32

34
31

31
58

58
55

45
37

41
33

32
30

A
IP

T
W

(A
)

57
49

47
46

40
78

33
32

31
61

63
61

47
51

13
0

32
31

30
P

E
N

C
O

M
P

(A
)

63
58

56
53

62
91

39
40

40
66

73
73

53
59

86
38

40
38

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(B
)

79
66

56
72

57
55

67
64

63
81

74
67

72
58

59
79

76
72

A
IP

T
W

(B
)

72
63

60
66

61
87

64
61

61
84

84
86

78
78

87
79

76
75

P
E

N
C

O
M

P
(B

)
83

92
10

8
74

10
8

19
1

67
73

78
10

4
11

9
17

2
93

13
5

22
8

89
99

98

IP
T

W
(C

)
90

80
66

11
3

88
75

10
7

10
6

98
10

5
10

7
10

2
10

1
75

63
10

6
10

3
91

g-
co

m
p
u
ta

ti
on

(A
)

57
48

40
45

33
32

34
31

31
58

58
55

45
37

41
33

32
30

A
IP

T
W

(C
)

57
49

41
45

34
33

33
32

31
61

62
58

47
42

48
32

31
30

P
E

N
C

O
M

P
(C

)
63

57
49

54
58

61
39

39
39

66
72

69
54

56
10

2
38

40
38

153



T
ab

le
A

.1
7:

10
0

*
E

m
p
ir

ic
al

b
ia

s
ov

er
R

M
S
E

of
IP

T
W

(A
),

u
n
d
er

(A
)

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

10
00

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
50

0.
U

n
d
er

th
e

li
n
ea

r
ou

tc
om

e
m

o
d
el

,
(∆

1
1
,∆

1
0
,∆

0
1
)

w
er

e
(2

2.
35
,1

1.
17
,1

0.
45

),
re

sp
ec

ti
ve

ly
.

U
n
d
er

th
e

n
on

li
n
ea

r
ou

tc
om

e
m

o
d
el

,
(∆

1
1
,∆

1
0
,∆

0
1
)

w
er

e
(2

5.
31
,1

2.
69
,1

0.
57

),
re

sp
ec

ti
ve

ly
.

10
0

*
E

m
p

ir
ic

al
B

ia
s

/
R

M
S

E
IP

T
W

(A
)

L
in

ea
r

O
u

tc
om

e
N

on
li

n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
-3

-0
2

-6
-1

7
-3

1
-5

-5
-5

-2
0

-0
-6

-1
6

-3
1

-3
-3

-1
g-

co
m

p
u

ta
ti

on
(A

)
2

1
1

1
0

1
-0

-0
0

2
1

1
1

0
0

1
1

1
A

IP
T

W
(A

)
1

0
1

1
0

1
-1

-1
-0

1
1

1
1

0
1

0
0

1
P

E
N

C
O

M
P

(A
)

3
1

1
1

-1
-0

-1
-1

-1
3

3
3

2
0

0
0

-0
0

IP
T

W
(A

)
-3

-0
2

-6
-1

7
-3

1
-5

-5
-5

-2
0

-0
-6

-1
6

-3
1

-3
-3

-1
g-

co
m

p
u

ta
ti

on
(B

)
-1

02
-5

1
-1

8
-1

32
-7

5
-6

7
-1

4
-1

4
-1

2
-7

7
-8

1
-7

2
-1

17
-1

04
-1

01
-1

0
-1

0
10

A
IP

T
W

(B
)

0
0

1
-3

-5
-6

0
-0

1
-0

-2
-4

-5
-1

4
-2

5
3

3
7

P
E

N
C

O
M

P
(B

)
3

5
6

1
6

7
0

0
1

-0
-4

-4
-3

-7
-9

1
-0

4

IP
T

W
(C

)
59

12
7

14
6

-1
55

-2
05

-2
26

-1
48

-2
89

-4
31

49
88

13
8

-1
11

-1
41

-1
57

-1
57

-3
26

-4
66

g-
co

m
p

u
ta

ti
on

(A
)

2
1

1
1

0
1

-0
-0

0
2

1
1

1
0

0
1

1
1

A
IP

T
W

(C
)

1
1

1
1

0
1

-1
-0

0
1

1
1

1
-0

0
0

0
1

P
E

N
C

O
M

P
(C

)
3

1
1

1
-0

1
-1

-1
-1

3
3

3
2

0
1

0
-0

0

154



T
ab

le
A

.1
8:

10
0*

R
at

io
of

em
p
ir

ic
al

R
M

S
E

to
R

M
S
E

of
IP

T
W

(A
),

d
en

ot
ed

as
10

0
*

R
M

S
E

/R
M

S
E

(I
P

T
W

(A
))

,
u
n
d
er

(A
)

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

10
00

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
50

0.

10
0

*
R

M
S
E

/
R

M
S
E

IP
T

W
(A

)

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(A
)

61
48

36
48

21
16

36
32

32
55

50
49

43
17

14
36

33
32

A
IP

T
W

(A
)

58
47

36
46

23
23

34
30

30
56

55
54

44
21

25
32

31
30

P
E

N
C

O
M

P
(A

)
58

47
36

46
23

19
33

30
30

54
52

51
43

19
15

32
31

30

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(B
)

13
2

83
50

15
2

83
72

70
63

61
10

9
10

3
92

13
6

10
9

10
4

79
75

72
A

IP
T

W
(B

)
72

59
49

65
42

40
62

57
58

83
80

86
79

76
78

75
73

76
P

E
N

C
O

M
P

(B
)

61
55

47
48

33
39

41
41

44
67

65
74

54
33

40
55

56
59

IP
T

W
(C

)
11

1
15

1
15

8
19

4
21

4
23

0
18

3
31

0
44

4
12

0
14

0
17

4
14

9
14

7
15

9
18

8
34

2
47

5
g-

co
m

p
u
ta

ti
on

(A
)

61
48

36
48

21
16

36
32

32
55

50
49

43
17

14
36

33
32

A
IP

T
W

(C
)

58
47

36
46

21
16

34
30

30
55

54
52

44
20

16
32

30
29

P
E

N
C

O
M

P
(C

)
58

46
35

46
22

17
33

30
30

54
52

51
43

18
15

32
30

29

155



T
ab

le
A

.1
9:

E
m

p
ir

ic
al

95
%

n
on

-c
ov

er
ag

e
ra

te
*1

00
(n

om
in

al
n
on

co
ve

ra
ge

of
5)

,
u
n
d
er

(A
)

co
rr

ec
tl

y
-

sp
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

10
00

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
50

0.

10
0

*
95

%
N

on
-c

ov
er

ag
e

R
at

e

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
5

6
6

6
18

29
5

6
6

8
8

8
9

28
44

5
6

5
g-

co
m

p
u
ta

ti
on

(A
)

6
7

8
6

6
6

6
5

6
6

7
7

6
6

6
5

5
6

A
IP

T
W

(A
)

6
6

8
6

6
4

6
6

6
6

7
7

5
6

4
6

6
6

P
E

N
C

O
M

P
(A

)
4

4
5

5
4

3
5

4
5

5
5

5
4

4
4

5
5

5

IP
T

W
(A

)
5

6
6

6
18

29
5

6
6

8
8

8
9

28
44

5
6

5
g-

co
m

p
u
ta

ti
on

(B
)

26
15

8
42

56
70

5
6

4
22

31
29

41
91

99
4

6
4

A
IP

T
W

(B
)

6
6

7
6

8
9

4
5

5
7

8
8

8
26

41
4

5
6

P
E

N
C

O
M

P
(B

)
2

2
2

2
2

2
0

1
1

4
3

2
2

3
3

1
1

1

IP
T

W
(C

)
9

40
84

30
91

10
0

29
80

99
6

11
28

29
87

98
34

89
10

0
g-

co
m

p
u
ta

ti
on

(A
)

6
7

8
6

6
6

6
5

6
6

7
7

6
6

6
5

5
6

A
IP

T
W

(C
)

6
6

9
5

6
6

6
5

6
6

7
8

5
6

6
6

6
6

P
E

N
C

O
M

P
(C

)
5

4
5

4
4

3
5

4
4

5
5

5
4

4
4

6
5

5

156



T
ab

le
A

.2
0:

10
0*

R
at

io
of

em
p
ir

ic
al

95
%

co
n
fi
d
en

ce
in

te
rv

al
w

id
th

to
th

at
of

IP
T

W
(A

),
d
en

ot
ed

as
m

ea
n

95
%

in
te

rv
al

w
id

th
/t

h
at

of
IP

T
W

(A
),

u
n
d
er

(B
)

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

10
00

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
50

0.

10
0

*
m

ea
n

95
%

in
te

rv
al

w
id

th
/

m
ea

n
95

%
in

te
rv

al
w

id
th

IP
T

W
(A

)

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(A
)

60
49

38
48

29
26

36
32

32
58

56
54

45
28

28
36

33
31

A
IP

T
W

(A
)

59
49

39
47

32
41

34
31

30
59

61
59

46
34

59
33

31
29

P
E

N
C

O
M

P
(A

)
61

53
44

49
35

40
34

32
32

61
63

62
47

33
36

33
33

31

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(B
)

83
67

53
75

49
44

70
63

63
81

71
65

73
47

44
83

77
74

A
IP

T
W

(B
)

73
62

53
66

51
58

64
59

59
84

84
87

79
76

80
80

75
76

P
E

N
C

O
M

P
(B

)
75

74
70

60
57

86
57

57
59

84
89

11
2

71
71

12
1

77
79

78

IP
T

W
(C

)
92

80
62

11
5

79
63

10
8

10
7

10
0

10
9

10
9

10
6

10
0

63
48

10
8

10
2

91
g-

co
m

p
u
ta

ti
on

(A
)

60
49

38
48

29
26

36
32

32
58

56
54

45
28

28
36

33
31

A
IP

T
W

(C
)

59
49

38
47

29
26

34
31

30
59

60
58

47
32

32
33

31
29

P
E

N
C

O
M

P
(C

)
61

53
43

49
34

32
35

32
32

61
63

62
47

32
33

33
32

31

157



T
ab

le
A

.2
1:

10
0

*
E

m
p
ir

ic
al

b
ia

s
ov

er
R

M
S
E

of
IP

T
W

(A
),

u
n
d
er

(A
)

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

50
0

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
10

00
.

U
n
d
er

th
e

li
n
ea

r
ou

tc
om

e
m

o
d
el

,
(∆

1
1
,∆

1
0
,∆

0
1
)

w
er

e
(2

2.
35
,1

1.
17
,1

0.
45

),
re

sp
ec

ti
ve

ly
.

U
n
d
er

th
e

n
on

li
n
ea

r
ou

tc
om

e
m

o
d
el

,
(∆

1
1
,∆

1
0
,∆

0
1
)

w
er

e
(2

5.
31
,1

2.
69
,1

0.
57

),
re

sp
ec

ti
ve

ly
.

10
0

*
E

m
p
ir

ic
al

B
ia

s
/

R
M

S
E

IP
T

W
(A

)

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
-3

-0
6

5
-1

4
-2

4
-1

2
1

-3
1

2
1

-1
9

-2
8

1
3

1
g-

co
m

p
u
ta

ti
on

(A
)

6
6

3
4

2
1

-0
-1

-1
3

3
3

3
2

1
2

1
1

A
IP

T
W

(A
)

5
5

3
2

2
1

-1
-2

-1
3

4
4

2
1

1
1

-1
0

P
E

N
C

O
M

P
(A

)
5

5
3

2
1

1
-2

-3
-2

4
5

4
2

1
1

0
-1

-1

IP
T

W
(A

)
-3

-0
6

5
-1

4
-2

4
-1

2
1

-3
1

2
1

-1
9

-2
8

1
3

1
g-

co
m

p
u
ta

ti
on

(B
)

-1
46

-7
6

-2
5

-1
82

-1
10

-8
7

-2
2

-1
8

-1
4

-1
16

-1
20

-1
07

-1
56

-1
57

-1
31

-1
7

-1
3

15
A

IP
T

W
(B

)
1

2
7

1
-2

-5
-3

-3
2

-1
1

0
-2

-1
7

-2
4

-2
-2

2
P

E
N

C
O

M
P

(B
)

4
4

8
2

10
8

-3
-4

-1
-1

-2
-5

-3
-5

-7
-3

-5
-0

IP
T

W
(C

)
84

19
2

20
5

-2
03

-3
06

-2
96

-2
07

-4
05

-5
85

71
13

4
20

9
-1

42
-2

10
-2

01
-2

25
-4

67
-6

70
g-

co
m

p
u
ta

ti
on

(A
)

6
6

3
4

2
1

-0
-1

-1
3

3
3

3
2

1
2

1
1

A
IP

T
W

(C
)

5
5

3
3

1
1

-1
-2

-2
3

4
3

2
1

1
1

-1
-0

P
E

N
C

O
M

P
(C

)
5

5
3

2
1

1
-2

-3
-2

4
5

5
2

1
1

0
-1

-1

158



T
ab

le
A

.2
2:

10
0*

R
at

io
of

em
p
ir

ic
al

R
M

S
E

to
R

M
S
E

of
IP

T
W

(A
),

d
en

ot
ed

as
10

0
*

R
M

S
E

/R
M

S
E

(I
P

T
W

(A
))

,
u
n
d
er

(A
)

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

50
0

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
10

00
.

10
0

*
R

M
S
E

/
R

M
S
E

IP
T

W
(A

)

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(A
)

67
56

40
49

24
16

40
35

33
61

58
58

44
20

13
41

38
36

A
IP

T
W

(A
)

61
52

38
48

26
22

34
31

30
59

60
60

44
23

21
32

31
30

P
E

N
C

O
M

P
(A

)
60

52
37

49
24

18
34

30
30

57
58

57
44

21
14

32
31

30

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(B
)

17
1

10
6

56
19

7
11

7
91

78
65

62
14

3
14

0
12

7
17

0
16

1
13

2
92

80
79

A
IP

T
W

(B
)

72
63

47
68

41
37

66
58

59
83

86
10

4
77

75
78

83
78

83
P

E
N

C
O

M
P

(B
)

61
60

48
51

34
36

42
39

43
70

71
83

53
34

38
60

58
61

IP
T

W
(C

)
12

4
20

9
21

3
23

4
31

3
29

8
23

6
42

1
59

5
12

8
17

4
23

7
17

2
21

5
20

2
25

3
48

0
67

7
g-

co
m

p
u
ta

ti
on

(A
)

67
56

40
49

24
16

40
35

33
61

58
58

44
20

13
41

38
36

A
IP

T
W

(C
)

61
52

37
49

24
16

34
32

30
59

60
59

44
22

15
33

32
31

P
E

N
C

O
M

P
(C

)
60

52
37

49
24

16
34

30
29

57
57

57
44

20
14

32
31

30

159



T
ab

le
A

.2
3:

E
m

p
ir

ic
al

95
%

n
on

-c
ov

er
ag

e
ra

te
*1

00
(n

om
in

al
n
on

co
ve

ra
ge

of
5)

,
u
n
d
er

(A
)

co
rr

ec
tl

y
-

sp
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

50
0

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
10

00
.

10
0

*
95

%
N

on
-c

ov
er

ag
e

R
at

e

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
7

5
9

4
12

26
5

5
6

7
8

8
7

21
36

3
4

5
g-

co
m

p
u
ta

ti
on

(A
)

8
9

9
5

5
8

6
6

7
8

8
9

7
6

6
7

5
6

A
IP

T
W

(A
)

8
8

9
5

8
8

5
5

6
7

8
9

7
8

6
4

4
4

P
E

N
C

O
M

P
(A

)
7

7
7

7
4

4
4

4
4

7
7

7
7

6
6

4
3

4

IP
T

W
(A

)
7

5
9

4
12

26
5

5
6

7
8

8
7

21
36

3
4

5
g-

co
m

p
u
ta

ti
on

(B
)

41
23

11
69

81
94

6
6

5
33

50
48

64
10

0
10

0
5

5
6

A
IP

T
W

(B
)

7
6

8
6

7
9

5
6

6
6

8
10

7
20

37
5

5
6

P
E

N
C

O
M

P
(B

)
4

3
5

4
3

4
1

1
1

5
5

5
4

4
6

2
2

1

IP
T

W
(C

)
17

74
98

44
98

10
0

46
97

10
0

8
23

58
39

96
10

0
52

98
10

0
g-

co
m

p
u
ta

ti
on

(A
)

8
9

9
5

5
8

6
6

7
8

8
9

7
6

6
7

5
6

A
IP

T
W

(C
)

8
8

9
6

7
8

5
5

5
8

8
9

7
8

8
5

4
5

P
E

N
C

O
M

P
(C

)
7

6
6

6
5

6
4

4
4

7
6

6
7

6
5

4
3

4

160



T
ab

le
A

.2
4:

10
0*

R
at

io
of

em
p
ir

ic
al

95
%

co
n
fi
d
en

ce
in

te
rv

al
w

id
th

to
th

at
of

IP
T

W
(A

),
d
en

ot
ed

as
m

ea
n

95
%

in
te

rv
al

w
id

th
/t

h
at

of
IP

T
W

(A
),

u
n
d
er

(B
)

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

an
d

p
re

d
ic

ti
on

m
o
d
el

s;
(B

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
ro

p
en

si
ty

m
o
d
el

on
ly

;
(C

)
a

co
rr

ec
tl

y
-s

p
ec

ifi
ed

p
re

d
ic

ti
on

m
o
d
el

on
ly

,
b
as

ed
on

50
0

si
m

u
la

ti
on

s
w

it
h

sa
m

p
le

si
ze

of
10

00
.

10
0

*
m

ea
n

95
%

in
te

rv
al

w
id

th
/

m
ea

n
95

%
in

te
rv

al
w

id
th

IP
T

W
(A

)

L
in

ea
r

O
u
tc

om
e

N
on

li
n
ea

r
O

u
tc

om
e

∆
1
1

∆
1
0

∆
0
1

∆
1
1

∆
1
0

∆
0
1

M
et

h
o
d

L
ow

M
o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h
L

ow
M

o
d

H
ig

h

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(A
)

63
51

39
51

27
22

38
34

33
58

57
55

46
26

23
39

37
34

A
IP

T
W

(A
)

60
49

38
47

29
30

33
30

30
59

61
60

46
29

36
33

31
29

P
E

N
C

O
M

P
(A

)
61

52
41

48
29

29
34

31
30

59
62

61
46

28
26

33
31

30

IP
T

W
(A

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
g-

co
m

p
u
ta

ti
on

(B
)

86
68

52
77

45
38

71
64

63
82

71
66

72
42

36
85

79
76

A
IP

T
W

(B
)

74
61

51
66

48
49

64
58

59
84

87
93

79
75

79
80

76
78

P
E

N
C

O
M

P
(B

)
71

68
61

54
46

62
52

51
53

77
83

10
2

61
54

88
72

74
72

IP
T

W
(C

)
92

80
60

11
5

74
55

10
8

10
6

10
0

10
9

11
0

10
8

10
0

59
40

10
8

10
2

92
g-

co
m

p
u
ta

ti
on

(A
)

63
51

39
51

27
22

38
34

33
58

57
55

46
26

23
39

37
34

A
IP

T
W

(C
)

60
49

37
47

27
22

33
30

30
58

60
58

46
29

26
33

31
29

P
E

N
C

O
M

P
(C

)
61

52
40

48
29

25
34

31
30

59
62

60
46

27
25

33
31

30

161



A.4 Supplemental Table from Application

Table A.25: The number of subjects with observed treatment regimen (1, 1), (1, 0),
(0, 1), and (0, 0), denoted as no11, no10, no01, and no00, respectively in each three-
visit window, as well as the number of subjects kept in the estimation of ∆11, ∆10,
and ∆00, after trimming, denoted as no ∆11, no ∆10, and no ∆01, respectively. The
total is the total number of subjects with complete data on blood count measures
considered in the models in each window.

.

sample size observed sample size after trimming
Window no11 no10 no01 no00 no ∆11 no ∆10 no ∆01 Total

Window1 88 11 82 638 772 731 770 819
Window2 138 16 88 620 770 794 785 862
Window3 178 23 76 550 635 700 721 827
Window4 160 42 134 352 612 459 603 688
Window5 265 13 114 292 509 458 518 684
Window6 390 26 59 348 773 749 756 823
Window7 401 13 41 322 694 648 686 777
Window8 397 12 43 299 717 655 564 751
Window9 389 14 30 281 541 518 544 714
Window10 373 14 48 245 516 462 476 680
Window11 356 21 37 225 590 545 562 639
Window12 310 36 16 217 552 514 532 579
Window13 254 45 24 220 504 395 437 543
Window14 216 31 30 203 420 410 353 480
Window15 197 14 39 182 374 365 373 432

Table A.26: Summary of the stabilized weights.

Stabilized Weights

Window Mean(SD) Minimum/Maximum

Window1 1.091 ( 1.97 ) 0.1103 / 40.3
Window2 1.065 ( 3.20 ) 0.1026 / 91.5
Window3 6.160 ( 146.78 ) 0.2010 / 4220.5
Window4 4.662 ( 83.11 ) 0.1391 / 2163.2
Window5 0.966 ( 1.11 ) 0.3274 / 15.2
Window6 2.378 ( 37.86 ) 0.4039 / 1083.5
Window7 3.052 ( 59.23 ) 0.1692 / 1651.0
Window8 23.893 ( 618.50 ) 0.1102 / 16949.0
Window9 4.085 ( 63.72 ) 0.2095 / 1541.6
Window10 6.937 ( 106.37 ) 0.1468 / 2307.3
Window11 1.586 ( 11.11 ) 0.2741 / 250.8
Window12 1.731 ( 12.57 ) 0.2944 / 266.1
Window13 1.336 ( 7.32 ) 0.1705 / 164.7
Window14 1.033 ( 1.67 ) 0.1935 / 17.6
Window15 1.046 ( 2.05 ) 0.2134 / 32.0
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Table A.27: Summary of overlap proportions at both time points.

First Time Point Second Time Point

π0.95
1 π0.95

0 π0.95
11 π0.95

10 π0.95
01 π0.95

00

Window1 81 40 73 86 89 51
Window2 60 38 63 96 83 45
Window3 50 37 41 96 86 38
Window4 36 28 34 42 69 39
Window5 45 78 45 79 92 39
Window6 40 31 40 92 84 35
Window7 36 19 34 82 87 17
Window8 21 14 22 85 61 18
Window9 22 12 23 78 70 14
Window10 8 6 12 74 31 15
Window11 27 19 33 79 62 21
Window12 38 25 40 67 51 28
Window13 22 52 34 57 73 49
Window14 42 51 38 85 52 57
Window15 32 51 34 96 82 41
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Figure A.1: For each of the three-visit windows 1, · · · , 15, the estimates and standard
errors (SE) of the treatment effects ∆11, ∆10, and ∆01 of the four methods: PEN-
COMP, AIPTW, IPTW, and Naive. Here 1st% and 99th% weight truncation was
done for IPTW and AIPTW. PENCOMP estimates were computed on the overlap-
ping regions, as described in Section 2.4. Since the propensity score distributions were
very skewed for some windows, restricting to the quantiles c(α, 1 − α) (for example
α = 0.025) of the propensity score distributions can significantly reduce the variances
without changing the estimates much (results not shown here). Note the estimands
are different.
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B.1 Supplementary Tables from the Simulation Study
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Figure B.1: Parallel surface and Misaligned: absolute bias in percentage, sample size
of 200. (A)-Both propensity and prediction models are correct; (B) Prediction models
are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in the
propensity distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure B.2: Parallel surface and Aligned: absolute bias in percentage, sample size of
200. (A)-Both propensity and prediction models are correct; (B) Prediction models
are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in the
propensity distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure B.3: Nonparallel surface and Misaligned: absolute bias in percentage, sample
size of 200. (A)-Both propensity and prediction models are correct; (B) Prediction
models are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in
the propensity distributions; Bottom Panel-high overlap in the propensity distribu-
tions.
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Figure B.4: Nonparallel surface and Aligned: absolute bias in percentage, sample size
of 200. (A)-Both propensity and prediction models are correct; (B) Prediction models
are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in the
propensity distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure B.5: Parallel surface and Misaligned: Empirical RMSE, sample size of 1000.
(A)-Both propensity and prediction models are correct; (B) Prediction models are in-
correct; (C) Propensity models are incorrect. Top Panel-Low overlap in the propensity
distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure B.6: Parallel surface and Aligned: Empirical RMSE, sample size of 1000. (A)-
Both propensity and prediction models are correct; (B) Prediction models are incor-
rect; (C) Propensity models are incorrect. Top Panel-Low overlap in the propensity
distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure B.7: Nonparallel surface and Misaligned: Empirical RMSE, sample size of
1000. (A)-Both propensity and prediction models are correct; (B) Prediction models
are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in the
propensity distributions; Bottom Panel-high overlap in the propensity distributions.

172



PENCOMP

PENCOMP0.05*

PENCOMP0.05

PENCOMP+match

PENCOMP+ATO

AIPTW

AIPTW0.05*

AIPTW0.05

AIPTW+match

match weight DR

ATO DR

IPTW

IPTW0.05*

IPTW0.05

IPTW+match

match weight

pair matching

ATO

Low: A

0.
0

0.
5

1.
0

1.
5

Low: B

0.
0

0.
5

1.
0

1.
5

Low: C

0.
0

0.
5

1.
0

1.
5

PENCOMP

PENCOMP0.05*

PENCOMP0.05

PENCOMP+match

PENCOMP+ATO

AIPTW

AIPTW0.05*

AIPTW0.05

AIPTW+match

match weight DR

ATO DR

IPTW

IPTW0.05*

IPTW0.05

IPTW+match

match weight

pair matching

ATO

High: A

0.
0

0.
5

1.
0

1.
5

High: B
0.

0

0.
5

1.
0

1.
5

High: C

0.
0

0.
5

1.
0

1.
5

Figure B.8: Nonparallel surface and Aligned: Empirical RMSE, sample size of 1000.
(A)-Both propensity and prediction models are correct; (B) Prediction models are in-
correct; (C) Propensity models are incorrect. Top Panel-Low overlap in the propensity
distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure B.9: Parallel surface and Misaligned: absolute bias in percentage, sample size
of 1000. (A)-Both propensity and prediction models are correct; (B) Prediction mod-
els are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in the
propensity distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure B.10: Parallel surface and Aligned: absolute bias in percentage, sample size of
1000. (A)-Both propensity and prediction models are correct; (B) Prediction models
are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in the
propensity distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure B.11: Nonparallel surface and Misaligned: absolute bias in percentage, sample
size of 1000. (A)-Both propensity and prediction models are correct; (B) Prediction
models are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in
the propensity distributions; Bottom Panel-high overlap in the propensity distribu-
tions.
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Figure B.12: Nonparallel surface and Aligned: absolute bias in percentage, sample
size of 1000. (A)-Both propensity and prediction models are correct; (B) Prediction
models are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in
the propensity distributions; Bottom Panel-high overlap in the propensity distribu-
tions.
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Figure B.13: Parallel surface and Misaligned: 100 * 95% non coverage rate, sample
size of 1000. (A)-Both propensity and prediction models are correct; (B) Prediction
models are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in
the propensity distributions; Bottom Panel-high overlap in the propensity distribu-
tions.
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Figure B.14: Parallel surface and Aligned: 100 * 95% non coverage rate, sample size of
1000. (A)-Both propensity and prediction models are correct; (B) Prediction models
are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in the
propensity distributions; Bottom Panel-high overlap in the propensity distributions.
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Figure B.15: Nonparallel surface and Misaligned: 100 * 95% non coverage rate,
sample size of 1000. (A)-Both propensity and prediction models are correct; (B)
Prediction models are incorrect; (C) Propensity models are incorrect. Top Panel-Low
overlap in the propensity distributions; Bottom Panel-high overlap in the propensity
distributions.
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Figure B.16: Nonparallel surface and Aligned: 100 * 95% non coverage rate, sample
size of 1000. (A)-Both propensity and prediction models are correct; (B) Prediction
models are incorrect; (C) Propensity models are incorrect. Top Panel-Low overlap in
the propensity distributions; Bottom Panel-high overlap in the propensity distribu-
tions.
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