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Abstract

T cell immunotherapy is a novel therapeutic strategy that aims to leverage the antigen-
specific nature of a T cell immune response to treat a variety of immunological conditions. Over
the past twenty years, T cell immunotherapy has been applied to treat several types of cancer,
autoimmune conditions, and chronic infections, culminating in the FDA approval of two highly
effective chimeric antigen receptor (CAR) T cell therapies targeting hematological cancers in
2017. While the initial success of T cell immunotherapy has been encouraging, identifying
appropriate antigenic targets and optimizing T cell activation to promote effective responses in
vivo remain significant challenges. In this dissertation, we discuss the development and
application of new molecular tools for identifying, isolating, and activating antigen-specific T
cells, which are directly relevant to the current challenges facing T cell immunotherapy.

One of the greatest obstacles to developing a successful T cell immunotherapy is the
selection of appropriate antigenic targets. T cells naturally recognize antigen-derived peptides
presented on polymorphic major histocompatibility complex (MHC) proteins, and different
MHC alleles exhibit different peptide binding specificities. Therefore, peptides that
promiscuously bind multiple MHC alleles representing a diverse population have significant
potential in the development of broadly protective peptide-based therapeutics and vaccines. A
number of high-throughput in silico strategies have been developed to predict peptide-MHC
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binding; however, the accuracy of these approaches is generally inadequate for the reliable
prediction of class 11 peptide-MHC (MHCII) interactions. In contrast, most experimental systems
designed to measure peptide-MHCII binding emphasize quantitative detail over throughput. In
this dissertation, we develop and validate a high-throughput screening strategy to evaluate
peptide binding to four common MHCII alleles. Using this strategy, which we have termed
microsphere-assisted peptide screening (MAPS), we screened overlapping peptide libraries of
antigenic viral proteins and identified 12 promiscuously MHCII-binding peptides. Subsequent
structural analysis indicated that nearly half of these peptides overlapped with antibody
neutralization sites on the respective viral protein. Together, these results indicate that the MAPS
strategy can be used to rapidly identify promiscuously binding and immunodominant peptides
that have therapeutic relevance.

Another significant challenge limiting the successful application of T cell immunotherapy
is expanding a clinically relevant number of therapeutically effective T cells. The effectiveness
of a T cell response is largely determined by the spatial and stoichiometric organization of
signals delivered to the T cell during T cell activation. One strategy for promoting an effective T
cell response is to tune the presentation of stimulatory and costimulatory signals through
artificial antigen presentation. However, existing technologies have a limited ability to control
the spatial and stoichiometric organization of T cell ligands on 3D surfaces. In this dissertation,
we introduce a novel strategy for presenting highly organized clusters of stimulatory and
costimulatory ligands to T cells using protein-scaffold directed assembly. Using this approach,
we systematically investigated how the global surface density, local valency, and stoichiometric
ratio of T cell ligands on a 3D cellular (yeast) surface can be manipulated to tune T cell

activation. After validating this approach, we further develop more complex scaffold-assembly

Xiii



schemes to enhance the controllability of isolating and activating antigen-specific T cells. We
believe that MAPS and artificial antigen presentation using protein-scaffold directed assembly

provide a robust toolset for identifying, isolating, and activating antigen-specific T cells for T

cell immunotherapy.
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Chapter 1. Introduction

1.1. T Cell Immunity

T cells are specialized cells of the adaptive immune system that inspect antigen
presenting cells (APCs) for signs of disease using a surface protein called a T cell receptor
(TCR). Each T cell expresses a unique TCR that recognizes a specific peptide (antigen) bound to
a major histocompatibility complex (MHC) protein. All nucleated cells in the body process and
present peptides derived from intracellular proteins on class | MHC (MHCI), while certain
phagocytic cells (macrophages, dendritic cells, and B cells) process and present peptides derived
from extracellular material on class Il MHC (MHCII). Peptide-MHCI (pMHCI) complexes are
recognized by CD8" cytotoxic T cells, which directly lyse cells presenting the recognized
antigen. In contrast, peptide-MHCII (pMHCII) complexes are recognized by CD4" helper T
cells, which secrete immune-modulating cytokines that promote antigen uptake and B cell

differentiation or attenuate an immune response upon pMHCII recognition.

1.1.1 Peptide-MHC Binding

Because T cell antigen recognition is restricted to MHC-presented peptides, peptide-
MHC binding is a prerequisite to an antigen-specific T cell response. Therefore, understanding
how peptides are presented on MHC molecules is an important consideration in T cell immunity.

Both MHCI and MHCII molecules are highly polymorphic heterodimeric proteins, consisting of



an alpha chain and a beta chain. MHC polymorphism results in a number of distinct MHCI and
MHCII alleles, the frequency of which varies between diverse ethnic populations. To date,
13,680 MHCI alleles and 5,091 MHCI! alleles have been identified.® An important consequence
of this MHC polymorphism is that different MHC alleles exhibit different peptide-binding
specificities. As a result, peptides that are stably presented on one MHC allele might not be

presented at all on another MHC allele.

Peptide-MHCI Peptide-MHCII

8 — 11 amino acids 13 - 25 amino acids

Figure 1.1. Top down representation of peptide-MHC binding.

Peptide (red) is shown within the peptide-binding groove of MHCI (green) and MHCII (cyan).
The peptide-MHCI interaction represents HLA-A2 in complex with a 9mer hepatitis B virus
peptide (UniProt: 5E00).? The peptide-MHCII interaction represents HLA-DR1 in complex with
the 15mer invariant chain peptide CLIP (UniProt; 3QXA).2

While both MHCI and MHCII are polymorphic heterodimeric proteins, they differ
significantly in how they present antigenic peptides. Peptides presented on MHCI are derived
from cytosolic proteins, which are degraded into 8 — 11 amino acid peptides by the proteasome
and loaded on MHCI molecules in the endoplasmic reticulum.*® In contrast, peptides presented
on MHCII are derived from exogenous proteins, which are endocytosed and degraded into longer

13 — 25 amino acid peptides by proteases.® The early endosomes containing the processed
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peptides then fuse with larger endosomes containing MHCII for peptide loading.” For both
MHCI and MHCII, peptides are bound by interacting with anchoring residues in a region of the
MHC molecule called the peptide-binding groove. The peptide-binding groove of MHC is
composed of a beta-sheet floor flanked by two alpha helices (Figure 1.1). The amino acid
content of the peptide-binding groove is determined by the particular MHC allele, and thus
different MHC alleles tend to bind different peptides. Because there are many different MHC
alleles and the frequency of these alleles varies based on genetic history and ethnicity, peptides
that stably bind multiple MHC alleles are of considerable interest. Such peptides are referred to
as “promiscuously binding peptides”, and have significant potential for the development of
broadly protective of peptide-based therapeutics and vaccines.”*°

Although the general structure of MHCI and MHCII peptide-binding grooves appear
similar (Figure 1.1), they have one important difference. The peptide-binding groove of MHCI
is closed at both ends, completely accommodating 8 — 11 amino acid peptides within the groove.
In contrast, the peptide-binding groove of MHCII is open at both ends, accommodating longer
and variable length peptides by allowing the peptide to extend outside of the ends of the groove.
Peptide-MHCII binding is primarily governed by the interactions between a continuous 9mer
binding core (also referred to as the peptide-biding register, or PBR) within the peptide and the
peptide-binding groove.™ However, because MHCII-presented peptides are longer than nine
amino acids, peripheral flanking residues (PFRs) outside the 9mer binding core can also affect
peptide-MHCII binding through complex, secondary interactions with the MHCII molecule.***?

Because peptide-MHC binding is necessary for T cell immune responses, developing
computational tools to accurately predict binding for any peptide-allele combination has been a

major focus of applied immunological research.* To this end, a wide range of in silico strategies
3



have been pursued including, machine learning methods using artificial neural networks,**2

21-23

matrix based methods using position-specific scoring, and a number of structure-based

4% including molecular dynamics.”® While these methods — and machine learning

methods
methods in particular — have significantly improved over the past two decades and can now
accurately predict peptide-MHCI binding, their performance for reliably predicting peptide-
MHCII binding has lagged behind.?” The limited accuracy of in silico peptide-MHCII binding
predictors is largely due to the structural complexities of MHCII antigen presentation.
Specifically, it is often difficult to identify the optimal 9mer peptide-binding core within longer
peptides. Additionally, the open-ended nature of the MHCII peptide-binding groove allows the
peptide considerable conformational freedom, which produces difficult to predict PFR
interactions. Further, most machine learning and matrix-based methods require peptide
sequences to be of identical length to accurately predict binding to a particular MHCII allele.?®
These methods will therefore underperform when queried with the variable length peptides
associated with MHCII binding. In contrast, structure-based peptide-MHCII binding predictors
are not limited to identical length peptides, but these methods are generally slower and restricted
to the small minority of MHCII alleles with available crystal structures.”**

Given the current limitations of in silico peptide-MHCII binding predictors and the fact
that the most promising of these methods — namely, machine learning — are trained on
experimental binding data, robust experimental assays measuring peptide-MHCII binding are
indispensable. A wide range of strategies®® for assessing and/or quantifying peptide-MHCII
binding have been developed including fluorescence polarization assays,® ELISA,** and

bead® and cell-surface®® display screening. While each of these experimental assays has its own

advantages, the vast majority of peptide-MHCII binding assays use competitive-binding methods
4



for quantifying peptide-MHCII binding affinity (represented as IC50). These approaches vyield
high-quality quantitative peptide-MHCII binding data; however, throughput is sacrificed in favor
of quantitative detail. Because only a fraction of peptides within a given peptide library will bind
a particular MHCI| allele, protein and labor will necessarily be wasted on measuring the peptide-
MHCII binding affinity for non-binding peptides. Therefore, a preliminary peptide-MHCII
screening system designed to strike a balance between throughput and detail should increase the
efficiency of more quantitative assays by rapidly segregating binding peptides from non-binding
peptides. Such a strategy should also allow the rapid identification of promiscuously binding
peptides with potential therapeutic applications. This idea will be discussed in more detail in

Chapter 2.

1.1.2. T Cell Specificity and Phenotype

The specific MHC-bound peptide recognized by a TCR is called a T cell epitope.
Understanding and identifying T cell epitopes is an important aspect of T cell immunity, as it
provides insight into antigen processing and presentation that can be used to develop peptide-
based vaccines and targeted therapies for a wide range of immunological conditions.””*"*! T cell
epitope identification began in earnest in 1996 with development of pMHCI tetramers by J. D.
Altman and colleagues. In this seminal work, it was shown that biotinylated pMHCI incubated
with fluorescently labeled avidin could produce tetrameric reagents for antigen-specific staining
of CD8" TCRs.*? CD8" T cells that bound the fluorescently labeled pMHCI tetramers could then
be detected and sorted using flow cytometry. This technology was expanded to allow the
identification of CD4" T cell epitopes with pMHCII tetramers in 1999.%% Since then, a number of

44,45

technological advances including photo-cleavable and enzyme-cleavable*® peptide exchange,



47,48 46,49

combinatorial pMHC tetramer staining, and T-cell enrichment have allowed for the
identification of more than 305,000 MHCI-restricted and more than 95,000 MHCII-restricted T
cell epitopes, according to Immune Epitope Database and Analysis Resource (IEDB).>® While
the rate of progress has been impressive, it is worth noting that the number of T cell epitopes
identified thus far represents only a small fraction of the total T cell repertoire, which is
estimated to be at least 2.5 x 10’ specificities.”"2

In addition to simply identifying T cell epitopes, pMHC tetramer staining also allows the
phenotype of antigen-specific T cells to be studied by co-staining T cells with fluorescently-
labeled antibodies that bind phenotypic and functional markers on the T cell surface 3464738
Recently, this strategy has been used to profile T cells that recognize unique antigens arising
from tumor-specific DNA-mutations (neoantigens) with the goal of leveraging this tumor-
specificity in targeted therapies.”®>%%!

While pMHC tetramer and phenotypic marker staining is still commonly used for
profiling antigen-specific T cells, the number of markers that can be detected simultaneously is
inherently limited by overlapping fluorescence spectra. The development of cytometry by time
of flight (CyTOF) — which uses isotopically purified heavy metal atoms and mass spectrometry
instead of fluorophores and photomultiplier tubes®® — has allowed the simultaneous detection of
more than 40 phenotypic markers on the surface of antigen-specific T cells.®® This type of deep
immune profiling is important for two reasons. First, the high-dimensional datasets acquired
from CyTOF experiments have shifted the long-established bottleneck for T cell phenotypic
analysis from data collection to data analysis. This shift has produced an interdisciplinary

renaissance in immunological research, as sophisticated statistical tools and systems approaches

are needed to deconvolute the highly complex data.®* The second important outcome of high-
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dimensional T cell phenotypic profiling by CyTOF, is that these studies have expanded our
understanding of T cell subsets®® and revealed profound relationships between T cell specificity,
phenotype, and function.**®®®" In a landmark 2012 study, Newell and colleagues used CyTOF to
show that CD8" T cells exhibit much greater phenotypic and functional complexity than
previously thought. This complexity provides a large pool of potential CD8" T cell profiles,
allowing virus-specific T cells to exhibit distinct phenotypes and functionalities tailored to the
targeted pathogen.®

pMHC tetramer staining has produced a wealth of phenotypic and functional data for
antigen-specific T cells; however, the pMHC-TCR binding affinity necessary for detection by
tetramer staining is significantly greater than the pMHC-TCR binding affinity necessary for T
cell activation.®®® This difference in affinity threshold is especially important considering that T
cells associated with tumor-specific and autoimmune responses tend to bind cognate pMHC with
low affinity.”>™* Further, pMHC tetramer staining has been less successful in the detection of
low-frequency antigen-specific CD4" T cells and rare v& T cells.”*"? As a result, a significant
fraction of T cell specificities that contribute to a T cell response will not be detected using
conventional pMHC tetramer staining. One strategy for overcoming the affinity limitation of
pPMHC tetramer staining is to engineer more multivalent complexes that promote greater pMHC-

74-76 and

TCR binding avidity.”"? Multivalent pMHC pentamers, octamers,” dextramers,
dodecamers’” have all been shown to increase the sensitivity of T cell epitope detection. Among
these highly multivalent molecules, pMHC dodecamers based on the linkage of four streptavidin
molecules to a central scaffold have thus far provided the best staining intensity and sensitivity

with low non-specific signal.”” Further applications of highly multivalent pMHC molecules will

be discussed in Chapter 3, Chapter 4, and Chapter 5.
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1.1.3. T Cell Activation

A T cell immune response is initiated when a TCR binds a cognate pMHC on the surface
of an APC. After engaging a cognate pMHC, the immunoreceptor tyrosine-based activation
motifs (ITAMs) on the intracellular domains of the TCR-CD3( chains are phosphorylated by the
tyrosine kinase Lck. The phosphorylated ITAMs then recruit the zeta-chain associated protein
kinase 70 (ZAP-70), which promotes further activation signaling by phosphorylating the linker
of activated T cells (LAT). The phosphorylated LAT then serves as docking station where
signaling complexes assemble and cascade to the T cell nucleus resulting in a transcriptional

response (Figure 1.2).

LAT

l Signaling cascade
to nucleus

Figure 1.2. Schematic of signaling events that produce T cell activation.

While much is known about the biochemical pathway leading to and following T cell
activation, the exact molecular mechanism that links pMHC-TCR binding to ITAM
phosphorylation (TCR triggering) has puzzled immunologists for decades. One of the reasons

this mechanism has remained elusive is the paradoxical nature of the pMHC-TCR interaction.’®
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pMHC-TCR binding is highly specific and highly sensitive, yet relatively low affinity (Kp ~ 1 —
100 uM) — properties that appear contradictory in the context of protein-protein binding. The
enigmatic origin or TCR triggering is problematic because a mechanistic understanding of how T
cells are activated is crucial for optimizing large-scale ex vivo T cell activation processes for
immunotherapy. Three general theories have been proposed to explain TCR triggering: (1) the
receptor aggregation model, (2) the receptor deformation model, and (3) the kinetic segregation
model.”

The receptor aggregation model of TCR triggering postulates that clustering of TCR
complexes recruits a critical number of Lck proteins to the immediate proximity of TCR-CD3
ITAMs following pMHC engagement, leading to ITAM phosphorylation and TCR triggering.
Early support for this theory came from the observation that multivalent TCR binding via soluble
PMHC multimers induced TCR triggering while soluble pMHC monomers did not.® It was
therefore hypothesized that crosslinked TCRs trapped Lck near the engaged TCR-CD3
complexes, promoting ITAM phosphorylation and TCR triggering. However, it has been difficult
to explain how multivalent binding of pMHC can induce TCR-CD3 complex aggregation when
agonist pMHC are present at such low densities on the surface of natural APCs.” To account for
this discrepancy, it was suggested that an agonist pMHC adjacent to a non-agonist pMHC might
trigger multivalent TCR engagement via the TCR coreceptor (CD4 or CD8, depending on the T
cell type). According to this model, the CD4 or CD8 coreceptor of a proximal but unengaged
TCR could bind an adjacent pMHC-TCR complex forming a “pseudodimer” structure.* Under
these conditions, the proximity of the coreceptors and their associated Lck proteins®*® to the
engaged TCR ITAMs could be sufficient to drive ITAM phosphorylation and TCR triggering.

While this model is consistent with the striking observation that non-agonist pMHC significantly
9



enhance TCR recognition of agonist pMHC for CD4" T cells,® it does not explain how TCR
triggering can occur in the complete absence of co-receptors.®>®

Another set of theories suggests that TCR triggering is not caused by receptor
aggregation alone, but instead by mechanical force transmitted to the TCR following pMHC
binding.®” ™ These receptor deformation models postulate that pMHC-TCR binding coupled
with cell movement applies tensile and shearing forces to the TCR sufficient to induce a
conformational change in the TCR-CD3 complex that favors activation. Direct evidence of
conformational changes in the TCR-CD3 complex has been reported;**® however, the
significance of these changes with respect to TCR triggering has yet to be shown. One theory
that supports the receptor-deformation hypothesis is the safety-catch model of TCR
triggering.**® The safety-catch model proposes that basic residue rich sequences (BRS) of the
TCR-CD3 ITAMs have a tendency to associate with acidic lipid vesicles in the plasma
membrane. Thus, under normal non-activating conditions, TCR-CD3 ITAMs are buried in the
membrane and protected from phosphorylation. When an agonist pMHC is bound, the pMHC-
TCR binding event causes a conformational change in the CD3 cytoplasmic domain that allows
the ITAMs to dissociate from the plasma membrane (safety-off), thus exposing them to
phosphorylation by neighboring Lck.”** While elegant and supported by experiment data, this
theory cannot explain the fact that treating T cells with phosphatase inhibitor causes a significant
increase in ITAM phosphorylation in the absence of receptor engagement.”® More recently, it has
been suggested that TCR triggering may be a result of the cumulative effect of catch bonds
between pMHC and TCR." In a 2014 study, it was shown that weak-agonist pMHC have high
on and off rates, which allows TCRs to rapidly sample pMHCs via slip bonds. In contrast,

strong-agonist pPMHC — which have slower off rates — transmit force to the receptor through the
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formation of a catch bond. In this study, the magnitude, duration, and frequency of the force
applied to the TCR by the bound pMHC directly influenced intracellular Ca** flux, an early
hallmark of TCR triggering. This model is consistent with the finding that mechanical force on
the TCR can produce TCR triggering.”* However, it should be cautioned that nearly any surface-
displayed protein-protein interaction will result in the application of some mechanical force on
the engaged receptors, yet not all biochemical reactions that follow are directly caused by that
application of force. Further, receptor aggregation and mechanical force on the TCR are not
mutually exclusive events, and both phenomenon could occur in the course of TCR triggering.®®
The final — and currently most well supported — theory of TCR triggering is related to the
segregation and redistribution of T cell membrane proteins following pMHC-TCR binding.
According to the kinetic-segregation theory of TCR triggering, a homeostatic equilibrium exists
between kinase and phosphatase activity on the TCR-CD3 ITAMs by Lck and CD45/148,
respectively. This equilibrium is disrupted when pMHC-TCR binding reduces the distance
between the APC and T cell surfaces to ~14 nm.* Because CD45 and CD148 have large
ectodomains (28 — 51 nm for CD45 and ~55 nm for CD148),%*%" proponents of the kinetic-
segregation model suggest that these phosphatases are segregated from the close-contact zone of
the pMHC-TCR complex and redistributed to the periphery to better accommodate their large
size.® This segregation of the phosphatases from the ITAM:s of the engaged TCR-CD3 complex
tilts the local kinase-phosphatase balance in favor of ITAM phosphorylation. The kinetic-
segregation model is well supported by several independent lines of evidence. First,
approximately 40% of Lck in resting T cells is constitutively active, and no significant increase
in Lck activity is observed following pMHC-TCR engagement.'®® This suggests that pMHC-

TCR binding is not required to activate Lck, and therefore, triggering must occur in the context
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of constant phosphorylation activity. Second, it has been shown that truncating the CD45
ectodomain in T cells restricts CD45 exclusion and inhibits TCR triggering.'®* This finding was
further supported in an elegant 2012 study in which it was shown that pPMHC-TCR binding alone
is necessary and sufficient to drive CD45 segregation and TCR triggering.'® Finally, the kinetic-
segregation model is supported by the well-established finding that surface-bound pMHC
produces more effective TCR triggering than soluble pMHC, and that elongating surface-bound
pMHC molecules inhibits TCR triggering. "’

Regardless of the precise molecular mechanism of TCR triggering, pMHC-TCR binding
is followed by the repopulation of the T cell-APC interface with a number of costimulatory
molecules and their respective ligands. The cumulative structure of costimulatory molecules at
the junction of the engaged T cell and APC is called the immunological synapse, and signaling
from this structure promotes T cell activation and helps determine T cell response.'® The
traditional model of the immunological synapse is a bulls-eye pattern in which agonist pMHC-
TCR and the costimulatory B7-1/2-CD28 interaction form the central supramolecular activation
cluster (cSMAC). This central cluster is enriched in Lck favoring TCR-CD3 ITAM
phosphorylation.!®® The peripheral supramolecular activation cluster (/SMAC) surrounds the
cSMAC, and is populated by complexes between intercellular adhesion molecule 1 (ICAM-1)
and lymphocyte function associated antigen 1 (LFA-1), in addition to the CD4 coreceptor for
CD4" T cells. CD45 phosphatase is thought to be segregated outside the pSMAC in the distal
supramolecular activation cluster (ISMAC) early in TCR signaling due to its relatively bulky
ectodomain. In the absence of costimulatory molecules, a mature immunological synapse does

not develop, and T cells exhibit an anergic phenotype.'’®**! In this state, T cells do not

proliferate, secrete IL-2, or become stimulated following additional pMHC-TCR interactions. T
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cell anergy is thought to play a role in limiting T cell immune responses to prevent autoimmune

diseases.!'!

As a result, induction of antigen-specific T cell anergy of self-reactive T cells is
being pursued for the treatment of autoimmune conditions.**?

In addition to promoting T cell activation and immunological synapse formation,
costimulatory signaling also influences T cell phenotype and function."****" Therefore,
modulating costimulatory and inhibitory molecule signaling can be used to tailor the properties
of T cells for specific therapeutic applications. Early studies of T cell activation reported pMHC-
TCR and B7-1/2-CD28 binding as the minimum requirements for antigen-specific T cell
activation.'’® CD28 signaling promotes T cell survival, expansion, and cytokine secretion,*®
while also stimulating Lck activity.™* In addition to the well-established importance of the B7-
1/2-CD28 interaction, ICAM-1-LFA-1 binding is also thought to play an important role in T cell
activation. While the ICAM-1-LFA-1 interaction has traditionally been associated with cell
adhesion,*® recent studies have shown that LFA-1 stimulation modulates T cell gene expression
and can promote differentiation into Thi, Th17, and regulatory (Treg) phenotypes.*> Further,
ICAM-1-LFA-1 signaling sustains elevated levels of intracellular calcium during pMHC-TCR
binding and promotes the expansion of proliferation-competent memory T cells.***? The
costimulatory role of ICAM-1-LFA-1 binding will be explored further in Chapter 3. Another
important costimulatory interaction — especially in the context of an anti-tumor T cell response —
is 4-1BBL-4-1BB. Recent studies have shown that 4-1BB signaling is more effective than CD28
signaling for ameliorating T cell exhaustion in therapeutic chimeric antigen receptor (CAR)-T
cells.**® In addition, 4-1BBL-4-1BB binding is thought to play an important role in enhancing

tumor-specific cytotoxicity by preferentially expanding memory T cells.}?7%
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Costimulatory signals do not act independently, and T cell costimulation in the body
involves multiple molecules with complex spatial and stoichiometric organizations. It has been
shown that a combination of both CD28 and 4-1BB signaling is superior for the long term
propagation of CD8" T cells than either signal alone.*”® Similarly, the presentation of various
combinations of ICAM-1, B7-1 (CD80), B7-2 (CD86), and 4-1BBL improves T cell
proliferation and activation compared to presentation of each individual molecule.’?**?® The
importance of costimulatory ligand stoichiometry was further highlighted in an experiment
designed to study cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), an inhibitory analog
of B7-1/2. Here it was shown that not only could CTLA-4 outcompete CD28 for B7-2
binding,"?® but also that CTLA-4 could capture bound B7-2 from the opposing cell surface via
trans-endocytosis. Interestingly, the researchers showed that a 1:8 stoichiometric ratio of CTLA-

4:B7-2 was sufficient for the complete functional depletion of B7-2 from the APC surface.'*°

1.2. T Cell Immunotherapy

Autoimmune disease, cancer, and chronic viral infections all arise from a breakdown in
the activation and function of antigen-specific T cells. In autoimmune disease, T cells are
generally overactive, targeting self-antigen on healthy cells and causing significant damage to
host tissue. In contrast, cancer and chronic viral infections persist from of a fundamental failure
of T cells to recognize and destroy tumor and infected cells, respectively. One reason for this
failure, especially in solid-tumor cancers, is widespread immunosuppression in the tumor
microenvironment. Tumor metastasis occurs, in part, by evading immune detection using a

variety of soluble (e.g. IL-10 and TFG-p) and surface displayed (PD-L1) immunosuppressive
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signals. These signals facilitate immune tolerance by, for example, promoting the expansion of
tolerant Treg phenotypes.*** %

To circumvent ineffective T cell activation within immunosuppressive environments,
tumor-specific T cells can be isolated, engineered, and expanded ex vivo in the presence of
signals that promote a more effective T cell phenotype. This process of modulating T cell
phenotype and function to achieve a better clinical response is called T cell immunotherapy. As
our understanding of T cell biology has improved, T cell immunotherapy has gained traction as

an effective alternative to conventional therapies, and should continue to do so well into the

future (Figure 1.3). While T cell immunotherapy has been studied and applied to autoimmune
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conditions and chronic viral infections, the primary application of T cell
immunotherapy has been in the treatment of a variety of cancers.****** Therefore, we will largely

focus on T cell immunotherapy in the context of cancer.

T Cell Immunotherapy Publications
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Figure 1.3. Academic publications related to T cell immunotherapy since 1985.
Number of articles containing the words “T cell immunotherapy” published in academic journals
each year since 1985. Publication counts were determined using Google Scholar.
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The first demonstrated successes of T cell immunotherapy were achieved in the mid-
1980s by S.A. Rosenberg’s research group at the National Cancer Institute. In 1986, Rosenberg
and colleagues showed that tumor infiltrating lymphocytes (TILs) harvested from a tumor and
expanded ex vivo in the presence of IL-2 could mediate tumor regression in the lungs and livers
of mice, in conjunction with cyclophosphamide.*® Shortly after this finding, ex vivo expanded

TILs were used in human trials'*®

and shown to mediate tumor regression in the lungs, liver,
bone, and skin of up to 60% of patients with metastatic melanoma.**’ By 2002, highly specific
TILs expanded ex vivo and re-infused in patients with advanced melanoma were shown to
mediate tumor regression by exhibiting potent activity toward a self-antigen associated with
melanoma (MART-1)."*® This study demonstrated that ex vivo expanded TILs recognizing self-
antigen could persist in vivo, and suggested that the adoptive transfer of similar TILs could be
used to treat a variety of common cancers. While early trials with ex vivo expanded TILs
highlighted the incredible potential of T cell immunotherapy, these studies also revealed
significant limitations of this approach. First, TILs need to be harvested from solid tumors, and
not all tumors are resectable — that is, not all tumors can be safely accessed for harvesting TILs.
Further, many tumors that are resectable do not yield appreciable TILs. These limitations led to

the realization that universal approaches and/or off-the-shelf therapeutic T cells would be

necessary for T cell immunotherapy to be widely applicable and cost-effective.'*®

1.2.1 Transgenic TCRs

The necessity of universal approaches to T cell immunotherapy inspired researchers to
identify TCRs that recognize common tumor-specific T cell epitopes. Once identified, TCRs

recognizing these tumor-specific epitopes can be expressed in autologous T cells to establish off-
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the-shelf therapeutic T cells tailored for different types of cancer.*®® For example, T cell lines
expressing TCRs that recognize melanoma-associated antigens could be established and used to
treat skin cancer. Similarly, T cell lines recognizing additional tumor-associated antigens could
be established and used to treat other common types of cancer. The first demonstration that T
cells engineered to express tumor-specific transgenic TCRs could mediate tumor regression in
advanced melanoma patients was reported in 2006 using the HLA-A2 restricted MART-157.35
epitope.’ This work showed that not only could T cells expressing transgenic TCRs persist in
vivo, but that these T cells could mediate full clinical regression of metastatic melanoma in
humans. Additional studies using transgenic TCRs recognizing common tumor associated
antigens — primarily NY-ESO-1, MART-1, and several melanoma associated antigens (MAGE)

1527158 and a number of clinical trials are ongoing.*°

— have improved on this initial success,

Despite success in the treatment of melanoma, transgenic TCR immunotherapy is limited
by the fact that many solid tumors down-regulate antigen presentation machinery including
MHC molecules.” Further, even when antigen presentation machinery is functional, tumors
presenting the most common tumor associated antigens are often cleared by the immune system
early in the disease. This elimination of immunogenic tumor cells exerts a selective pressure,
allowing less immunogenic tumors to escape in a process called immunoediting.*® Tumor
escape through immunoediting has inspired researchers to study neoantigens produced by unique
mutations using whole-exome sequencing of tumor cells. While this is a relatively novel
approach, early results have indicated that T cell recognition of patient-specific neoantigens is an
important factor in the success of clinical immunotherapy.®®® The growing importance of

neoantigens in cancer immunotherapy casts doubt on the therapeutic potential of off-the-shelf T

cells expressing transgenic TCRs that recognize generic tumor associated antigens.
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Another challenge associated with T cells expressing transgenic TCRs for
immunotherapy is the potential for off target activity. In one case, 3 of 9 patients injected with T
cells expressing a transgenic TCR recognizing the melanoma antigen (MAGE)-A3, experienced
significant mental health changes within 48 hours of injection. Two of these patients lapsed into
comas and subsequently died while the third recovered but experienced Parkinson’s like
symptoms over four weeks. Molecular analysis of human brain samples revealed that neurons in
the brain expressed MAGE-A12, which cross-reacted with the transgenic MAGE-A3-specific
TCRs.™® Off-target cardiovascular toxicity has also been observed with transgenic MAGE-A3-
specific TCRs; however, in this case the cardiovascular tissue targeted did not express any
MAGE antigen. Instead, the cardiac tissue presented a peptide derived from the striated muscle-
specific protein titin, which bound HLA-A1 and was molecularly similar to the MAGE-A3 T cell
epitope.'® Finally, transgenic TCR therapy is limited to patients that both have tumors that

present the target antigen and also match the haplotype restriction of the engineered TCR.**

1.2.2. Chimeric Antigen Receptor (CAR) T cells

The idea to expand T cell immunotherapy beyond MHC-restricted antigenic targets was

161

first introduced by Japanese researchers™—- at the Institute for Comprehensive Medical Science in

162 at the Weizmann Institute

Toyake in 1987 and more thoroughly explored by Israeli researchers
of Science in 1989. There, Eshhar and colleagues engineered T cells to express a fusion protein
consisting of the variable domain of an antibody and the constant domain of a TCR. These
modified T cells exhibited antibody -like specificity while retaining the ability to transmit signals

that produce T cell activation.*®® Eshhar and colleagues modified this novel surface receptor into

a single chain in 1993 by fusing an antibody single-chain variable fragment (scFv) recognizing a
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target antigen to the intracellular CD3¢ chain.’®® T cells expressing the resulting fusion proteins
were initially called “T-bodies” — a combination of T cell and antibody — but would become
more widely known as chimeric antigen receptor (CAR) T cells.

The first generation of CAR T cells were relatively simple and closely resembled the
initial “T-body” design of an extracellular scFv fused to an intracellular CD3{ chain. While
promising in theory, the preliminary results of first-generation CAR T cells designed to target
ovarian and renal cancers, lymphomas, and neuroblastomas were disappointing due to limited in
vivo persistence and modest activity.'®* These initial limitations were overcome by engineering a
second generation of CAR T cells, which included the scFv and CD3{ domains of the first
generation fused to either the 4-1BB or CD28 endodomain.'®>®® In a series of 2009 studies, June
and colleagues demonstrated that CAR T expressing an engineered receptor containing the 4-
1BB endodomain survived longer in vivo and exhibited significantly greater activity against
leukemia in tumor-bearing mice than first generation CAR T cells."® In a follow up study, June
and colleagues further demonstrated that anti-mesothelin CAR T cells containing both the 4-1BB
and CD28 endodomains persisted longer in vivo and exhibited more potent anti-tumor activity
than CAR T cells expressing either the 4-1BB or CD28 endodomain alone.*®® At almost the same
time, Rosenberg and colleagues found that second generation CAR T cells recognizing the B-cell
surface antigen CD19 could achieve the complete regression of B cell lymphomas in human
patients.'®

The initial success of second generation CAR T cells in treating CD19" hematological
cancers was proven durable in a series of subsequent studies,*’®*" and in 2017 the first CD19
CAR T cell therapies were approved by the U.S. FDA. The first of these therapies,

tisagenlecleucel-T (Kymriah; Novartis), was FDA approved for treating children and young
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adults (up to age 25) with relapsed or refractory acute lymphoblastic leukemia (ALL), and is
currently being considered for use in other CD19" hematological cancers. Within months of the
approval of Kymriah, the FDA approved a second CAR T cell therapy, axicabtagene ciloleucel
(Yescarta; Kite Pharma/Gilead Sciences), for the treatment of relapsed or refractory B cell
lymphoma. The alacritous approval of these new therapies was well founded — within months of
infusion, 83% of patients treated with Kymriah CAR T cells and 51% of patients treated with

Yescarta CAR T cells experienced complete remission.*™

While these results are undoubtedly
impressive, the approved CAR T cell therapies are the most expensive oncology therapies to
date, with list prices of $475,000 for Kymriah and $373,000 for Yescarta. A major reason for the
exorbitant costs of these therapies is that, like transgenic TCR therapies, the FDA approved CAR
T cell therapies rely on genetically modifying autologous T cells. Reducing the cost will
therefore require off-the-shelf CAR T cells, though whether such cells will be able to deliver the
same level of safety and efficacy as autologous CAR T cells remains to be seen.*”

The overwhelming success of second-generation CAR T cells in eradicating
hematological cancers demonstrated two things. First, it showed that CAR T cell therapy is
incredibly effective when it can be directed at clear antigenic targets (i.e. CD19). Second, it
established that costimulatory T cell signaling is indispensable for promoting T cell survival in
vivo and sustaining anti-tumor activity. Despite the promise of second-generation CAR T cells,
several important challenges remain. Like transgenic TCRs, CAR T cells are prone to over-
activity and off-target activity if the target antigen is not unique to cancer cells. However,
because CAR T cells bind their cognate antigen with high affinity, this over-activity can lead to a

life threatening inflammatory response called cytokine release syndrome (also known as a

“cytokine storm).*”>® Further, while CAR T cell therapies have been successful against
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hematological cancers like leukemia and lymphoma, similar therapies targeting solid tumors
have been much less effective.’’” This is due in part to the immunosuppressive nature of the
tumor microenvironment and clinical trials investigating CAR T cell therapy in conjunction with
PD-1/PD-L1 blockades are ongoing.'®® However, the single greatest challenge in applying CAR
T cell therapy to solid tumors is the selection and frequent loss of appropriate antigenic targets
on tumors. Cancer cells are notoriously fickle and evade targeted therapies via immunoediting
and downregulating the expression of surface antigen.'”® The difficulty of overcoming immune
evasion was highlighted recently when CAR T cells targeting a tumor associated variant of
epidermal growth factor receptor (EGFRvVIII) in patients with glioblastoma resulted in tumor-

antigen loss and adaptive resistance.'”

1.2.3. T Cell Immunotherapy Challenges

The T cell immunotherapy strategies described hitherto have achieved considerable
success in the past two decades. However, serious challenges must be overcome for T cell
immunotherapy to reach its full clinical potential. Identifying and selecting appropriate antigenic
targets — particularly on solid tumors — is among the most significant of these challenges. Most
antigens presented on solid tumors are also expressed on healthy cells. This is a serious concern,
especially with CAR T cell therapies, in which off target activity can produce life threatening
cytokine storms. In fact, minimizing off-target activity is currently the primary factor in the
selection of CAR T cell antigenic targets.*® The desire to minimize off-target activity has led
researchers to target unique tumor-specific antigens. However, identifying, isolating, and
expanding a clinically relevant number of T cells recognizing neoantigens is difficult, as these T

cells represent as little as 0.002% of the peripheral T cell population prior to therapy.® In
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addition, the targeting of neoantigens is problematic for CAR T cells, as many neoantigens are
derived from intracellular proteins and their presentation is MHC restricted.**

Further, all of the discussed T cell immunotherapy strategies involve the ex vivo
expansion of autologous T cells. T cell phenotype and function change following repeated
stimulation and often exhibit significantly reduced proliferative capacity, which negatively
correlates with the treatment efficacy.’*® A number of studies have demonstrated that
proliferative capacity and functionality in vivo can be enhanced by carefully modulating the
costimulatory and soluble signals delivered to T cells during ex vivo activation.****8! However,
data regarding the optimal combination of costimulatory signals to maximize in vivo efficacy are
scarce. Achieving a comprehensive understanding of how T cell costimulation translates to
therapeutic efficacy will require new modular tools capable of precisely organizing signals
presented to T cells during activation. Systematic investigation of T cell activation using such
tools should allow the full characterization of the T cell activation design space. This

characterization should also help identify and evaluate biomarkers that predict success in vivo.

1.3. Artificial Antigen Presentation

While autologous APCs have traditionally been used in clinical environments for safety
reasons, these cells are not always available or desirable for ex vivo T cell expansion. Expanding
different T cell types requires different molecular signals that may not be present on autologous
APCs. Further, maintaining multiple cultures of autologous APCs under different conditions for
each patient and/or application is laborious and expensive. For example, sipuleucel T (Provenge;
Dendreon Corporation) is an FDA approved therapy that involves culturing autologous APCs

with a stimulatory fusion protein containing a peptide associated with prostate cancer. While
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sipuleucel T was shown to increase the median survival time of patients by 4.1 months,*® the
treatment comes at a cost of approximately $93,000.% The high cost of sipuleucel T is reflective
of the labor-intensive process of culturing autologous APCs. Reducing the costs and increasing
the accessibility of T cell immunotherapy will therefore require universal systems capable of
delivering stimulatory and costimulatory signals to T cells using off-the-shelf components.
Artificial antigen presentation seeks to reconstitute the fundamental features of APCs —
namely, stimulatory TCR ligands and costimulatory molecules — on an artificial or engineered
cell surface. Artificial antigen presentation systems thus represent a cost-effective, scalable, and
tunable technology for optimizing ex vivo T cell activation and expansion. A wide variety of

artificial antigen presentation systems have been engineered thus far,'®

including planar 2D
systems, engineered cellular systems, and 3D acellular systems. The most appropriate artificial
antigen presentation strategy depends on the specific application, and together they have greatly
improved our understanding of how T cell phenotype and function can be influenced by

modulating stimulatory and costimulatory signaling during T cell activation.

1.3.1. 2D Atrtificial Antigen Presentation Systems

2D artificial antigen presentation systems are the most tunable type of artificial antigen
presentation system, as they are amenable to a wide range of patterning techniques and
conjugation chemistries. 2D artificial antigen presentation systems can be described as either
static or dynamic, depending on the mobility of the presented ligands. Static presentation
systems use lithographic patterning of anchor points (usually metal or organic nanoparticles) to
immobilize T cell ligands on a surface. In contrast, dynamic presentation systems embed ligands

in fluid lipid bilayers. While each system has its advantages and disadvantages, both are
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powerful and customizable platforms for studying the molecular organization of proteins during
T cell activation.

The most successful static presentation systems involves di-block micelle assisted
lithographic patterning of gold nanoparticles.'®® Lithographic surface patterning with gold
nanoparticles allows the spatial organization of T cell ligands to be controlled with nanoscale
precision. Using this approach, it was shown that T cell activation can be finely tuned by
modulating both the surface density and intermolecular spacing of TCR-ligands.’®*® In
addition, it was recently shown that lithographic patterning can achieve single molecule
occupancy on each patterned nanoparticle, providing unprecedented control over the spatial
organization of individual proteins.**® Similarly, lithographically patterned surfaces have also
been used to show that T cell activation is enhanced when costimulatory molecules (in this case
anti-CD28 antibodies) are segregated from TCR ligands.®®**** More recently, all-organic
lithographic patterning has enabled the live-cell imaging of T cells interacting with patterned
proteins by total internal reflection and reflection interference contrast microscopy.'®? Using this
approach, researchers observed that while TCR clustering is driven by the nanoscale
organization of TCR ligands, the cell-scale response as measured by T cell adhesion and
spreading is determined by the global antigen density.'*® Taken together these studies indicate
that T cells recognize the organization of T cell ligands at the molecular level, as well as their
overall surface density. Further, these reports suggest that T cells integrate spatially complex
multi-scale signals, which shape the functional T cell response. The precision of patterns created
using lithography is not attainable in cell-cell or dynamic 2D systems. Therefore, static 2D

artificial antigen presentation systems represent a highly tunable platform for investigating how
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the nanoscale organization and geometry of immobilized T cell ligands influences T cell
activation.'®

The primary disadvantage of static presentation systems using lithographic patterning is
that they do not allow the patterned proteins to move or reorganize during T cell activation. For
applications that require dynamic antigen presentation, T cell ligands are presented in fluid lipid
bilayers,**> which allow lateral mobility of the embedded T cell ligands during T cell activation.
A number of different 2D artificial antigen presentation systems using fluid lipid bilayers have
been engineered, and studies using these systems tend to emphasize the importance of ligand
mobility in immunological synapse formation and T cell activation.*** For example, when T cell
ligands were embedded in fluid lipid bilayers of heterogeneous membrane fluidity, it was found
that T cell activation and immunological synapse formation were notably weaker in less mobile
membranes than more mobile membranes.**® Interestingly, additional studies found that when
pMHC was embedded in fluid lipid bilayers containing barriers to restrict ligand mobility, T cell

activation was sensitive to the number of pMHC within individual corrals'®’

and was greatest
when pMHC and TCR clusters were mechanically trapped at the periphery of the cSMAC.'*®®
While the latter result was counterintuitive based on the traditional understanding of the
immunological synapse as a bulls-eye pattern, it nonetheless supports the notion that T cell
activation can be modulated by controlling the spatial organization of T cell ligands. 2D artificial
antigen presentation systems using fluid lipid bilayers have also provided compelling evidence in
support of the kinetic-segregation theory of TCR triggering, which has important implications in
the design of future artificial antigen presentation systems.’%*'%1% For example, if CD45

exclusion is necessary to sustain stimulatory Lck and ZAP-70 activity, artificial antigen

presentation systems incorporating surface displayed supramolecular assemblies should consider
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how assembly size might restrict CD45 exclusion. This idea will be discussed in more detail in
Chapter 4 and Chapter 5. Despite their demonstrated success as research tools, the relatively
short shelf-life of dynamic 2D antigen presentation systems limits their potential applications.?®
In addition, because artificial fluid membranes lack cytoskeletal components, proteins tend to
aggregate within these bilayers in the absence of membrane organizers.”*

While 2D artificial antigen presentation systems provide unparalleled control over the
spatial organization of T cell ligands, these systems are not scalable for large-scale ex vivo T cell
activation. Further, while the interface between T cells and natural APCs is often described as
2D, it is not clear if T cells primed on a 2D surface will integrate stimulatory and/or
costimulatory in the same way as 3D surfaces like natural APCs. For example, 2D artificial
antigen presentation systems exhibit a constant polarity with respect to the orientation of the
presented antigen, while natural APCs like dendritic cells do not. This constant field of uniform
antigen on 2D surfaces may underestimate the importance of adhesion and costimulatory
molecules, which stabilize the T cell-APC interface and enhance TCR signaling. The differences
between 2D and 3D artificial antigen presentation systems will be discussed in more detail in

Chapter 3.

1.3.2. Cell-based and 3D Acellular Artificial Antigen Presentation Systems

Like dynamic 2D artificial antigen presentation systems, cellular artificial antigen
presentation systems generally present antigen in the context of fluid membranes, allowing
ligand mobility and immunological synapse formation. However in contrast to 2D systems,
cellular artificial antigen presentation systems present T cell ligands on a living cell surface with

active cytoskeletal components, which reduces unnatural protein aggregation and more
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accurately represents natural antigen presentation. Another significant advantage of artificial
antigen presenting cells (aAPCs) is that once a desired aAPC is engineered, it can be cloned and
cryopreserved for extended periods of time. Cryopreservation of well-characterized aAPC clones
is not only convenient, but also helps ensure batch-to-batch consistency, which is an important
consideration in the application of off-the-shelf aAPCs in a clinical environment. In addition,
cellular systems generally lack protein purification steps and are relatively stable under
physiological conditions.

aAPCs have been successfully engineered using four cellular platforms: yeast cells,?%?
insect cells,”%*% fibroblast cell lines,?*?% and leukemic cell lines.*?***"?% Of these various
cellular platforms, the human leukemic cell line K562 has been among the most popular for
artificial antigen presentation, as K562 cells do not express native MHC molecules but do
express an array of adhesion molecules present on natural APCs. Engineered K562 aAPCs
expressing various combinations of costimulatory molecules allowed the expansion of distinct T
cell phenotypes.*?® Importantly, this result suggests that custom aAPCs expressing different
molecules can be tailored for the optimal expansion of desired T cell subsets.*?* Despite
providing a more physiologically accurate surface for presenting antigen to T cells, aAPCs
generally provide much less control over the spatial and stoichiometric organization of T cell
ligands. In addition, while clinical grade aAPCs based on leukemic cell lines have worked well
in small-scale research environments, many medical professionals have reservations about
infusing T cells and aAPCs derived from a malignant cell line into cancer patients.?*

In contrast to cellular artificial antigen presentation systems, 3D acellular artificial
antigen presentation systems pose little risk of immunological complications (e.g. graft vs. host

211

disease)~ when used with primary T cells. The first 3D acellular artificial antigen presentation
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systems were designed using sepharose and polystyrene beads.?***"> These initial systems

laid the groundwork for a second generation of tunable 3D artificial antigen presentation

6 217,218

platforms based on magnetic particles?® and a range of biocompatible polymers, and

liposomes.?**#?! More recently, advanced acellular artificial antigen presentation systems using

22222 and nanoparticles® ?*" have been engineered and

highly multivalent soluble complexes
have significant potential as biocompatible therapeutics that can be delivered in vivo.

Currently, the most widely used system for activating and expanding T cells are
Dynabeads™, which are 4.5 um diameter beads covalently coupled to anti-CD3 and anti-CD28
antibodies.””® Recently, the Dynabeads™ system has been updated to include anti-CD137 (4-
1BB) antibodies as well, as a result of the increasingly understood importance of 4-1BB
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signaling for T cell survival and proliferation.”™ While these bead-based systems have been

effective for expanding a clinically-relevant number of antigen-specific T cells ex vivo,??

they
provide little to no control over the spatial organization of T cell ligands. In addition, these
systems have been associated with poor biocompatibility in vivo as the small particles are
susceptible to entrapment in lung capillaries.”**** Liposomes and biodegradable particles could
prove to be an effective alternative for in vivo immunotherapy; however, these materials are less
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stable than polymeric beads“*" and sustained antigen presentation in vivo or during long-term

cell culture could be problematic.

1.4. Project Overview

T cell immunotherapy represents a powerful and promising approach for the treatment of
a wide range of immunological conditions. However, the continued success of T cell

immunotherapy will require a more thorough understanding of T cell activation and cost-
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effective tools for controlling the T cell activation process. The central theme of this dissertation
is the development and application of molecular tools for isolating and activating antigen-
specific T cells, with direct applications to T cell immunotherapy. Because this is an inherently
broad topic, | have organized the following discussion around three sub-themes, which will be

discussed in Chapter 2, Chapter 3, and Chapter 4, respectively (Figure 1.4).

* ldentify promiscuous, | [+ Engineer molecular + Advance the artificial
immunodominant T tools to tune T cell antigen presentation
cell epitopes activation design space

Figure 1.4. Organization of dissertation.

The second chapter of this dissertation will introduce a high-throughput strategy for
rapidly identifying promiscuous peptide-MHCII interactions. This strategy — which we have
called microsphere-assisted peptide screening (MAPS) — aims to strike a balance between
throughput offered by in silico prediction algorithms and quantitative detail offered by
competition-based binding assays. By screening a reference peptide library with known binding
affinity to four common MHCII alleles, we found that the in silico prediction algorithms
recommended by IEDB were poor predictors of peptide-MHCII binding, achieving an AUC of
only 0.632 compared to 0.851 for MAPS. Using MAPS, we then identified seven peptides within
the rotavirus VP7 protein and six peptides within the Zika virus envelope (E) protein that bound
to all four MHCII alleles tested. Interestingly, we also found that these promiscuously binding
peptides overlapped significantly with antibody neutralization sites on each respective protein,

indicating that these are immunodominant regions. In addition, we observed that the MAPS
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signal is sensitive to the relative position of the peptide-binding core within the peptide. While
unexpected, the sensitivity of the MAPS signal to the relative core position should allow for
more accurate binding core identification when MAPS is used in conjunction with other
quantitative peptide-MHCII binding assays. Although the peptide-MHCII screening strategy
described in Chapter 2 was performed using peptide libraries derived from viral proteins, the
same approach could be applied to screening neoantigen libraries for the design of potential
peptide-based cancer vaccines and therapeutics.*°

The third chapter of this dissertation will describe a method for using high-affinity
protein-protein binding to control the spatial and stoichiometric organization of T cell ligands on
a 3D yeast cell surface. Using these yeast antigen-presenting cells (yAPCs), we explored the role
of overall ligand surface density, ligand valency, and costimulatory molecule display ratio on T
cell activation. Interestingly, we observed that the T cell activation threshold is independent of
local pMHC density — with or without costimulatory molecules — however, in the absence of
costimulation T cells require six-fold greater pMHC surface density for activation. Further, we
observed that T cell IL-2 secretion is maximized at a display ratio of 15% pMHC and 85%
ICAM-1. The systematic investigation of T cell activation described in Chapter 3 could be
repeated for additional costimulatory molecules to provide a more comprehensive understanding
of how T cells integrate signals, and how combinatorial costimulation affects T cell phenotype
and function.

The fourth chapter of this dissertation will describe potential strategies for advancing the
artificial antigen presentation design space using surface displayed 2D multi-scaffold assemblies.
These supramolecular assemblies are based on scaffold-scaffold complex formation, where an

anchor scaffold (aScaf) displayed on the yeast cell surface binds a soluble primary scaffold
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(pScaf) by in vitro loading. By engineering multi-scaffold complexes, both the valency and the
spatial organization of multiple ligands can be controlled simultaneously and with nanoscale
precision. However, before directly applying this approach to tuning T cell activation, we sought
to understand how these large complexes assemble, what parameters affects their overall
assembly efficiency. To this end, we developed a theoretical and quantitative approach for
characterizing each aspect of the assembly process. Interestingly, we found that the assembly
efficiency of these multi-scaffolded complexes is inherently limited by crowding effects on the
cell surface. These crowding effects were most prominent for the largest aScafs, which suggest
that assemblies are created via “outside-in” pScaf loading. While these results are presented in
the context of whole-cell biocatalysis, the mechanistic insights into protein-scaffold directed
assembly is equally applicable to the design of highly ordered T cell ligand assemblies in the
future.

Finally, the dissertation will conclude with a brief summary of ongoing work as well as

potential future directions for these projects in Chapter 5.
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Chapter 2. Rapid Identification of Promiscuous Peptide-class Il MHC
Interactions Using Microsphere Assisted Peptide Screening (MAPS)

2.1. Publication Information

Smith, M. R., Wen, F. Rapid identification of promiscuous peptide-class Il MHC interactions
using microsphere assisted peptide screening (MAPS). (In Prep)

The goal of this chapter is to develop and validate a high-throughput screening strategy
for evaluating peptide-class 1l MHC interactions. Specifically, we aimed to develop a new
peptide-MHC screening strategy that strikes a balance between the throughput offered by
computational peptide-MHC binding predictors and the quantitative detail offered by

competition-based peptide-MHC binding assays.

2.2. Abstract

A robust CD4" T cell response is predicated on stable peptide-MHCII binding; however,
predicting if an antigenic peptide will bind to a specific MHCII protein is a significant challenge.
Despite promising developments in computational tools, peptide-MHCII binding predictors
continue to lag behind their peptide-MHCI counterparts. The comparatively disappointing
performance of peptide-MHCII binding predictors is largely a result of three factors: the
significant allelic diversity of MHCII and the role of this allelic diversity in influencing peptide
binding, the long and variable length of peptides presented by MHCII, and the complexity of the

interactions between these longer peptides and the peptide-binding groove of MHCII. Given
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these complicating factors, peptide-MHCII binding is most often evaluated experimentally using
competitive binding assays. While these binding assays provide detailed quantitative information
for peptide-MHCII binding, this detail comes at the expense of throughput, as 8 to 12 point
titrations (often in triplicate) are generally required to evaluate just a single peptide-MHCII
combination. Here, we aimed to develop a high-throughput peptide-MHCII screening strategy to
strike a balance between the throughput offered by computational peptide-MHC binding
predictors and the quantitative detail and reliability offered by competitive peptide-MHCII
binding assays. Using this approach — which we have termed microsphere assisted peptide
screening (MAPS) — we screened antigenic peptide libraries derived from the rotavirus outer
capsid glycoprotein VP7 and the Zika virus envelope (E) protein for binding to four common
MHCII alleles including DR1, DR4, DR7 and DR15. Interestingly, the results of this MAPS
approach revealed a significant overlap between the peptides from the two viral libraries that
promiscuously bound all four MHCII alleles and the antibody neutralization sites on each
respective protein. This overlap suggests a deeper relationship between B cell and CD4" T cell
specificity, which could be relevant to the design of broadly protective vaccines, as well as the

identification of immunodominant peptide targets for T cell immunotherapy.

2.3. Introduction

Identifying antigenic targets recognized by T cells (T cell epitopes) is a critical step in the

development of peptide-based vaccines and therapeutics for treating infectious disease,*®?*

182234 and autoimmune conditions.* Before a T cell can recognize a specific antigenic

cancer,
peptide, that peptide must first be presented by a major histocompatibility complex (MHC)

molecule. Both class | and class Il MHC molecules present peptides through interactions
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between specific peptide residues (called the peptide binding register, or PBR) and the MHC
peptide-binding groove. MHC molecules are highly polymorphic' and most of the genetic
diversity is manifested in the peptide-binding groove of different MHC alleles. As a result,
different MHC alleles generally exhibit different binding specificities.?” Because the frequency
of MHC alleles varies among ethnically diverse populations, immunodominant peptides from

1?*> and tumor® proteins capable of promiscuously binding multiple MHC alleles are of

vira
considerable interest for broadly protective peptide-based therapuetics.’

The peptide-binding groove of class | MHC (MHCI) is composed of a single heavy chain
and is closed at both ends, limiting the size (8 — 11 amino acids) and conformation of binding
peptides.* In contrast, the peptide-binding groove of class Il MHC (MHCII) is formed at the
junction of a largely conserved alpha chain and a polymorphic beta chain, and is open at both
ends. The open-ended nature of the MHCII peptide binding groove allows these molecules to
present longer (13 — 25 amino acids) and more variable length peptides than MHCI.° Further, in
addition to MHCII interactions with the PBR, flanking residues on either side of PBR can also
interact with MHCII molecules.**** These peripheral peptide-flanking residue (PFR) interactions
can vary significantly between peptides, depending on their length and composition, and affect
peptide-MHCII binding. Because of these factors (i.e. allelic diversity, open-ended peptide
binding groove, and PFR interactions), predicting if a peptide will bind a single MHCII allele,

much less multiple alleles, is a significant challenge.

Over the past twenty years, several in silico strategies have been devised to predict

21,22 24,25,29

peptide-MHC binding, including matrix based methods, structure based methods, and

machine learning methods using artificial neural networks.'®*"?*% The accuracy of in silico

peptide-MHC binding predictors are measured by the area under (AUC) the receiver operating
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characteristic (ROC) curve. Currently, machine learning methods using artificial neural networks
are among the most accurate in silico predictors, achieving an AUC of approximately 0.85 — 0.95
for peptide-MHCI binding predictions and an AUC of approximately 0.75 — 0.85 for peptide-
MHCII binding predictions.?®” The accuracy of peptide-MHC binding predictors can often be
improved by combining the top-performing individual predictors into a consensus method,#%%
which is the strategy recommended by the Immune Epitope Database and Analysis Resource
(IEDB).”® Although in silico peptide-MHCII binding predictors perform well during cross-
validation with standardized datasets, they tend to underperform when applied to new datasets or
datasets containing peptides of different lengths.'” In a study of 21 different peptide-MHCII
binding predictors, no individual predictor was found to be suitable for the prediction of
promiscuously binding peptides.?” Moreover, these predictors were characterized by high false-
positive rates and even the most accurate could only identify 50% of actual T-cell epitopes from
four antigenic protein libraries.?’

Given the limited accuracy and high false-positive rate of in silico peptide-MHCII
binding predictors, a demand exists for high-throughput systems capable of reliably identifying
promiscuously binding peptides. To this end, a wide range of experimental methods have been
applied to measure peptide-MHCII binding, including ELISA,**#* fluorescence polarization,*

31,240

gel-filtration with radiolabeled peptides, fluorescence resonance energy transfer

283 cell-surface display,®® and bead-based

(FRET),?***2 surface plasmon resonance (SPR),
methods.®* While many of these techniques are well established and yield quantitative peptide-
MHCII binding data, the vast majority tend to sacrifice throughput in favor of quantitative detail.
For example, competition based assays like ELISA,*"?*® fluorescence polarization,® and some

bead-based methods® involve titrating the target peptide for competitive binding with a labeled
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reference peptide. Although the quantitative binding data derived from these competition assays
is critical to improving in silico peptide-MHCII binding prediction algorithms, they typically
involve 8 — 12 point titrations in triplicate for reliable data. As a result, these strategies require a
significant amount of MHCII protein for evaluating just a single peptide-MHCII interaction.
Given that a many of the peptides within a library are unlikely to bind a specific MHCII allele,
up to 36 allocations (12-point titration in triplicate) of MHCII protein may be dedicated to an
assay in which no peptide binding occurs. The MHCII protein requirement of competitive
binding assays could be greatly reduced, and the study of peptide-MHCII binding made more
efficient, if a preliminary screening strategy was used to identify MHCII binding peptides from a
large library of non-binders using a binary classification scheme. Once identified, these MHCI|I
binding peptides could be studied in more detail without spending unnecessary time and
resources on non-binding peptides.

Here, we developed and validated one such preliminary peptide-MHCII binding assay
called microsphere-assisted peptide screening (MAPS). The MAPS strategy was designed to
strike a balance between the throughput offered by in silico peptide-MHCII binding predictors
and the detail provided by competition-based peptide-MHC binding assays. While the MAPS
strategy was found to be sensitive to the relative position of the PBR within the peptide, it
significantly outperformed the recommended IEDB in silico peptide-MHCII binding predictors
(AUC of 0.851 vs. AUC of 0.632, respectively). Moreover, when MAPS was used to screen
overlapping peptide libraries derived from the rotavirus outer capsid glycoprotein VP7 and the
Zika virus envelope (E) protein for binding to four common human class Il MHC alleles, we
identified 12 promiscuously binding peptides that bound all four alleles. Of the 12 promiscuously

binding peptides within the VP7 and Zika virus E protein libraries, IEDB in silico binding
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predictors accurately predicted only six, suggesting that computational peptide-MHCII binding
predictors alone remain insufficient for the reliable identification of promiscuous peptide-MHCI|I
interactions. Interestingly, three of the seven promiscuously binding peptides from the VP7
library and two of the five promiscuously binding peptides from the Zika virus E protein library
were found to overlap with the immunodominant regions of their respective proteins. Taken
together, these results demonstrate that MAPS is a reliable, high-throughput method for rapidly

identifying immunologically relevant peptide-MHCI|I interactions.

2.4. Results and Discussion

2.4.1. MAPS Strategy and Experimental Design

Purify panel of biotinylated HLA- Thrombin cleavage and peptide Fluorescent antibody staining for
DR alleles exchange DNP-tagged peptide
(‘\
oy % Y
-
&LT -
Synthesize overlapping, DNP- Load peptide-exchanged HLA-DR Analyze with flow cytometry and
tagged peptide library on microspheres repeat for additional alleles
‘ Allele A Allele B
g
\ 5
» |
£ 0
Q

/Deptide Binding
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‘FS(:I—AV - FSb—A/
Figure 2.1. MAPS strategy overview.
MAPS involves three steps: prepare, load, and analyze. The preparation step involves purifying
and biotinylating a panel of diverse human MHCII alleles and synthesizing an overlapping DNP-
tagged peptide library. The loading step involves loading the DNP-tagged peptides from the
library onto each MHCII allele via peptide exchange, and loading the biotinylated, peptide-
exchanged MHCII on streptavidin-coated microspheres. The analysis step involves staining the
loaded microspheres for the DNP-tagged peptide and analyzing resulting signal using flow
cytometry.
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MAPS is performed in three steps (Figure 2.1). First, a diverse panel of human MHCII
alleles were designed, expressed, and purified from insect cells. The alpha chain (DRA) of each
MHCII was fused to a biotinylation site and each beta chain allele (DRB1*01:01 — DR1,
DRB1*04:01 — DR4, DRB7:01:01 — DR7, DRB1*15:01 — DR15) was fused to the invariant
chain peptide CLIP, via a thrombin-cleavable linker. The four MHCII alleles chosen — DR1,
DR4, DR7, and DR15 — are expected to cover approximately 34% of the U.S. population based

on known MHCII allele frequencies®** and demographic data (Figure 2.2a).

a
Allele Frequency by Ethnicity in U.S.
Caucasian African Asian Hispanic
Allele American P
DR1 (DRB1*01:01) 9.1% 2.6% 2.7% 3.9%
DR4 (DRB1*04:01) 9.1% 2.3% 0.9% 1.5%
DR7 (DRB1*07:01) 13.8% 9.8% 8.2% 10.5%
DR15 (DRB1*15:01) 14.4% 2.9% 7.9% 6.7%
b DR1 DR4 DR7 DR15 c DR1 DR4 DR7 DR15
Mw Mw
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Figure 2.2. Analysis of purified panel of human MHCII alleles.

(@) Frequency of four MHCII beta-chain alleles among different ethnic groups within the U.S.
population. (b) SAv gel-shift assay verifying biotinylation of each MHCII allele. Disappearance
of bio-a band in the presence of SAv accompanied by a shift in the SAv band indicates biotin-
SAv complex formation. (c) SDS-PAGE analysis of thrombin-induced cleavage of the CLIP
peptide. A reduction in the size of the size of the B-chain in the presence of thrombin indicates
CLIP cleavage.

Each alpha-beta heterodimer was purified from High-Five insect cells and biotinylated.
The degree of biotinylation was assessed by incubating the purified MHCII proteins with soluble
streptavidin (SAv) and evaluating the complex formation by a streptavidin shift assay using
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). All alleles were found

to be >90% biotinylated (Figure 2.2b). In addition to verifying the biotinylation efficiency, the
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ability of each MHCII allele to undergo peptide exchange via thrombin-induced cleavage of the
CLIP-linker fusion was also verified. To evaluate peptide exchange, each MHCII allele was
incubated with thrombin and the CLIP-peptide cleaved constructs were compared to the
uncleaved constructs using SDS-PAGE (Figure 2.2c). The reduction in the size of the beta chain
of each allele confirmed thrombin cleavage.

We next synthesized three peptide libraries to screen for binding to each MHCII allele.
Each peptide library consisted of dinitrophenyl- (DNP) tagged 20mers overlapping by 10 amino
acids. The first peptide library synthesized was derived from the alkyl hydroperoxide reductase
(AhpC) protein of Burkholderia pseudomallei. This particular peptide library was chosen
because it was recently screened for binding to a diverse panel of MHCII alleles including DR1,
DR4, DR7, and DR15.* The AhpC peptides therefore served as a reference library for
benchmarking the accuracy of the MAPS strategy, as the binding affinity of each peptide MHCII
allele combination was known. In addition to the reference library, overlapping peptide libraries
derived from the rotavirus outer capsid glycoprotein (VP7) and the Zika virus envelope (E)
protein were also synthesized. VP7 and E protein were chosen for screening because each
represents a major antigenic target on its respective virus, and immune responses against these

proteins generally correlates with positive outcomes during infection.?**>

2.4.2. Validating MAPS Strategy with AhpC Reference Library

The MAPS strategy was first validated by screening the AhpC reference library of 16
peptides with known binding affinities for each DR allele (DR1, DR4, DR7, and DR15). Peptide
exchange was performed for each peptide-MHCII allele combination, and the exchanged pMHC

were loaded onto SAv-coated microspheres (Figure 2.1). The microspheres presenting the
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peptide-exchanged MHCII were then stained for the DNP-tagged peptide and analyzed using
flow cytometry. Peptide-MHCII binding was quantified as the MAPS signal, which was defined
as the ratio of the median fluorescence intensity (MFI) of the DNP-tagged peptide bound to each
allele and the MFI of the DNP-tagged peptide incubated with SAv-microspheres alone. Peptide-
MHC interactions with a MAPS signal greater than or equal to five were classified as binding

peptides.
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Figure 2.3. Validation of MAPS strategy with AhpC reference peptides.

(a) MAPS signal for each peptide in the AhpC reference library plotted with respect to known
peptide 1C50. (b) Relative MAPS signal plotted with respect to the relative position of the HA30s.
318 PBR within a 20mer peptide. PFR residues were mutated to alanine. Relative MAPS signal
represents the MAPS signal of each peptide normalized by the MAPS signal observed for the
peptide with a relative PBR position of one (¢c) ROC analysis of MAPS strategy compared to the
IEDB consensus peptide-MHCII binding predictor for the AhpC reference peptide library. The
AUC of each curve is provided in the legend.

The accuracy of the MAPS strategy was then evaluated by plotting the MAPS signal of
each peptide-MHCII combination with respect to the peptide’s known IC50 value, as determined

from a previous study®*® (Figure 2.3a). The inverse relationship observed between the MAPS
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signal and known IC50 value indicates that the MAPS signal largely correlates with peptide-
MHC binding affinity. While the MAPS strategy is generally accurate, we observed that MAPS
missed some known binding peptides within the reference library (i.e. peptides known to bind a
particular MHCII allele, but exhibited a MAPS signal less than five). To explain these missed
binders, we hypothesized that the relative position of the 9mer PBR within the 20mer peptide
might affect the accessibility of the DNP tag during antibody staining. For example, if the PBR is
located at the N-terminus of a given peptide, the beta-sheet and alpha helices of the peptide-
binding groove might obstruct antibody binding to the DNP tag, resulting in a lower MAPS
signal. To test this hypothesis, we synthesized 12 DNP-tagged 20mers in which the relative
position of the PBR from a well-characterized influenza peptide (HA306-318) was shifted from the
N-terminus (relative PBR position of 1) to the C-terminus (relative PBR position of 12). The
remaining residues were mutated to alanine to avoid introducing complex PFR interactions.

Each peptide was then loaded onto DR1 and MAPS was performed. The MAPS signal
for each PBR-variant peptide was normalized such that the MAPS signal observed when the
PBR was at the N-terminus (relative PBR position of 1) was equal to one. As expected, the
relative MAPS signal was dependent on the position of the PBR within the peptide (Figure
2.3b). The relative MAPS signal was highest when the PBR was positioned near the middle of
the 20mer peptide (between residues seven and ten), which resulted in up to 2.5 times greater
signal than when the PBR was located at the N-terminus. Interestingly, the relative MAPS signal
decreased approximately 5-fold from its maximum when the PBR was positioned at the C-
terminus of the peptide, suggesting that the accessibility of the DNP tag might also be obstructed
when the N-terminus of the peptide is significantly overhanging, or that peptides with a C-

terminal PBRs do not MHC as well.
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While the MAPS signal is somewhat sensitive to the relative position of the PBR within a
given peptide, the actual number of missed binding peptides with unique PBRs should be
minimal when screening overlapping peptides because most unique PBRs will appear twice. In
addition, although the sensitivity of MAPS to the relative PBR position tends to reduce the
overall accuracy of this strategy, this sensitivity could have unanticipated advantages. For
example, MAPS used in conjunction with more rigorous protein-protein binding assays could
help identify unique PBRs within binding peptides, which is a significant obstacle to improving
the accuracy of computational peptide-MHCII binding predictions.?*

The AhpC reference library was also screened for predicted binding to each MHCI| allele
using the in silico bioinformatics tools provided by IEDB.>® Peptide-MHCII binding was

predicted using the IEDB recommended consensus method,?*®

which combined the predictions
provided by the artificial neural network-based method NN-align,? the stabilized matrix method
SMM-align,? and the combinatorial library method CombLib.?** The binding score of the
consensus prediction was given as a percentile rank, which scores each peptide’s predicted
binding affinity against the binding affinities of five million random 15mers from the
SWISSPROT database. Therefore, peptides given a low percentile rank were predicted to be
strong binders while peptides given a high percentile rank were not predicted to interact strongly
with that particular MHCII allele. We defined a predicted binder as a peptide with a percentile
rank of less than or equal to 20, in line with previous studies of promiscuously binding
peptides.?*? Because the methods provided by the IEDB database are designed to predict MHCII
binding of 15mer peptides, each 20mer peptide in the reference library had to be broken down

into six different 15mers. The low, median, and mean percentile rank of each of these 15mers

was then recorded to evaluate the binding prediction. The accuracy of the IEDB binding
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predictions were compared to the experimental results using MAPS by plotting the respective
ROC curve of each (Figure 2.3c above). Based on this analysis, the AUC for the MAPS ROC
curve was found to be approximately 0.851, while the AUCs for the IEDB ROCs were
significantly lower, ranging from 0.540 for the median percentile rank to the 0.632 for the mean
percentile rank. These results indicate that while the MAPS strategy is susceptible to false-
negatives depending on the relative position of the PBR within a peptide, it significantly

outperforms the predictions provided by IEDB for 20mer peptide-MHCII binding.

2.4.3. MAPS of Rotavirus VP7 Protein
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Figure 2.4. Overlapping rotavirus VP7 library of DNP-tagged 20mers used for MAPS.

After validating the MAPS strategy with the AhpC reference library, we synthesized a
25-peptide library of overlapping 20mers derived from the rotavirus outer capsid glycoprotein

VP7 (Figure 2.4). Rotavirus is the most common cause of diarrheal disease in children

23 and remains a significant health challenge in developing countries despite the
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approval of two rotavirus vaccines.”**° Moreover, genetic analyses of circulating rotavirus
strains have revealed differences between the dominant antigenic epitopes on VVP7 in circulating
rotavirus strains and the vaccine strains, potentially allowing vaccine-resistant mutants to
emerge.?*®° Given the antigenic drift observed in circulating rotavirus strains and the
persistence of rotavirus infection across ethnically diverse regions (e.g. sub-Saharan Africa,
Southeast Asia, etc.), we aimed to identify promiscuously binding peptides within the VP7
protein, as such peptides might have relevance in peptide-based therapeutics and/or diagnostics.
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Figure 2.5. MAPS signal of each rotavirus VP7 peptide for each human MHCI I allele.
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Each 20mer in VP7 peptide library was loaded onto the four MHCII alleles, and peptide-
MHCII binding was determined by MAPS (Figure 2.5). Promiscuously binding peptides were
defined as peptides that exhibited a normalized MAPS signal greater than five for all four
MHCII alleles. Based on this criterion, seven promiscuously binding peptides within the VP7
protein were identified: VP741.60, VP771-90, VP7g1-100, VP7111-130, VP7211-230, VP7251-270, and
VP7301320 (Figure 2.6a). Of these seven promiscuously binding peptides, only three were
predicted to bind all four alleles by the mean and median of the IEDB percentile rank prediction,
while four were predicted to bind all four alleles by the lowest IEDB percentile rank prediction
(Table 2.1). Further, of the four human MHCI| alleles screened, only DR4 was predicted to bind
all seven promiscuously binding peptides using the IEDB consensus method. These results are
consistent with the performance of the IEDB peptide-MHCII binding prediction for the AhpC
reference library, and suggest that in silico strategies alone remain insufficient to reliably predict
peptide-MHCII binding.

Table 2.1. IEDB consensus method percentile rank of peptide-MHCII binding for
promiscuously binding VP7 20mers.

Peptides were defined as binders if the percentile rank below was less than or equal to 20, in line
with previous studies investigating promiscuous MHCII-binding peptides.

Mean IEDB Rank Median IEDB Rank Low IEDB Rank
VP7 Peptide | DR1 DR4 DR7 DR15 |DR1 DR4 DR7 DR15 | DR1 DR4 DR7 DR15
41-60 159 9.1 40 112 (130 70 1.7 10.2 96 6.2 0.9 8.7
71-90 369 145 217 159 |382 131 24.0 183 |285 11.0 14.0 4.2

81-100 542 281 516 685 (480 103 471 816 |323 24 314 48
111-130 126 2.2 9.0 6.3 [128 20 101 56 95 16 28 5.6
211-230 50.1 19.4 57.6 389 |[477 173 564 365 |47.7 155 511 329
251-270 451 284 176 29.7 | 488 319 189 263 [190 92 17 5.5
301-320 100 40 6.5 28 |100 40 46 2.4 56 3.3 39 1.3
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To explore the potential immunogenicity of the promiscuously binding VP7 peptides, the
position of each peptide within the VP7 protein was analyzed. VP7 contains three dominant
antigenic epitopes: 7-1a (BCE 1), 7-1b (BCE 2), and 7-2 (BCE 3),%’ all of which are located
near the interface of separate VVP7 trimer units. Interestingly, three of the seven promiscuously
binding VP7 peptides (VP7s1-100, VP7111-130, VP7211-230) identified by MAPS significantly
overlapped with these dominant antigenic epitopes (Figure 2.6b). The most striking overlap was
observed for VP7g1.100, Which included 8 of the 14 residues of BCE 1. Further, VP7g1.100 and
VP7111-130 together cover nearly all of BCE 1, overlapping with 12 of the 14 residues (Figure
2.6¢). VP7211030 — the VP7 peptide associated with the greatest MAPS signal — also overlapped
with dominant antigenic epitopes, albeit to a lesser extent, sharing 3 of the 6 residues of BCE 2

and 2 of the 9 residues of BCE 3 (Figure 2.6c).

a
mDR1 mDR4 =DR7 mDR15
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Figure 2.6. Structural analysis of MAPS-identified promiscuously binding VP7 peptides.

(a) MAPS signal for each promiscuously binding VP7 peptide. (b) Comparison of the sequence
overlaps between three dominant B cell epitopes (BCE) on the VP7 protein (top row) and the
promiscuously binding peptides VP7g1-100, VP7111-130, and VP7211-230. (C) Amino acid sequence
and position of each BCE within the VVP7 protein. Overlapping residues with promiscuously
binding VVP7 peptides are indicated in red.
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The significant overlap between the MAPS-identified promiscuously DR-binding VP7
peptides and the dominant antibody neutralization sites on the VVP7 protein was unexpected and
its immunological relevance is not immediately clear. It is possible that these particular
promiscuously binding peptides simply contain “sticky” residues within their primary structure
that promote non-specific protein-protein interactions. If a peptide exhibits promiscuous binding
to different MHCII alleles, then it seems reasonable to think that the given peptide might also
interact promiscuously with other proteins, including immunoglobulins. Alternatively, B cells
are professional antigen presenting cells, and internalize extracellular material, including viral
particles, using surface displayed B cell receptors (BCRs). Therefore, it is possible that protein
fragments that are bound by BCRs are more likely to be presented on B-cell surface displayed
MHCII than protein fragments that are not bound by BCRs. However, B cell antigen
internalization and presentation alone does not explain why the peptides capable of binding
multiple MHCII alleles would be overrepresented in terms of sharing residues with antibody
neutralization sites. Finally, we cannot preclude the possibility that this overlap between the
promiscuously binding VP7 peptides and dominant antibody neutralization sites is merely a
coincidence observed for this particular protein. To determine if this observation is simply a
coincidence or some phenomenon unique to rotavirus VP7, we synthesized an overlapping

peptide library for the Zika virus E protein and performed a similar structural analysis.

2.4.4. MAPS of Zika Virus Envelope Protein

Zika virus is a type of flavivirus, which is a family of structurally similar enveloped
viruses transmitted by ticks and mosquitoes. Flaviviruses are commonly associated with tropical

climates and include West Nile virus (WNV), dengue virus (DENV), tick-borne encephalitis, and
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yellow fever (YFV), among others. The primary antigenic target on flaviviruses — including Zika
virus — is the envelope (E) protein, which binds to host cell receptors and mediates virus entry.?*
The Zika virus E protein has three domains, EDI (residues 1-52, 132-193, and 280-296), EDII
(residues 52-132 and 193-280), and EDIII (residues 296-406)*' and is highly similar to the E
protein of other flaviviruses, ranging from 39.5% similarity for tick-borne encephalitis to 57.8%
similarity for dengue virus 1 (DENV1).%®

Because Zika virus E protein is similar to the E protein of other flaviviruses, antibodies
that bind E protein are often cross-reactive. However, rather than neutralizing a heterologous
flavivirus infection, these cross-reactive antibodies tend to exacerbate the infection by promoting
the internalization and replication of virus in Fc-receptor expressing cells.*® This phenomenon,
known as antibody-dependent enhancement (ADE), can be life threatening and underscores the
importance of eliciting a highly specific, neutralizing antibody response against E protein in
areas where multiple flaviviruses circulate. A number of recent studies have shown that
antibodies targeting the EDIIl domain of the Zika virus E protein tend to be potently

neutralizing®*®#>%%’

and less cross-reactive with E protein from other flaviviruses than
antibodies targeting EDI or EDI1.%" Therefore, the EDIII domain of Zika virus E protein is of
special interest for a potential Zika virus vaccine.

Although a robust and neutralizing antibody response generally correlates with flavivirus
immunity, less is known about the contribution of T cells to clearing flavivirus infection.
However, it is thought that T cells play an important role in clearing flavivirus infections from
the central nervous system (CNS).??®! In a recent study, it was shown that no antibodies are

present in the CNS during persistent Zika virus infection in nonhuman primates, and decreased

Zika viral load in the CNS correlated with the initiation of a CD8" T cell response.?®® This
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observation is especially interesting considering that while most individuals infected with Zika

63 and

virus are asymptomatic, serious neurological complications including microcephaly
Guillain-Barre syndrome®®* have been observed at rates up to 1 in 100 and 1 in 5,000 infections,
respectively.?®® Because a robust T cell response to Zika virus could play a role in mitigating
these neurological complications, the identification of both CD4" and CD8" T cell epitopes
within Zika virus proteins is an active area of research.?®® Early findings have suggested that, in
contrast to other flaviviruses in which T cell epitopes are primarily located on nonstructural
proteins (NS), T cell epitopes in Zika virus appear to be located on structural proteins including
E protein.®"*° Given the potential importance of E-protein specific T cell responses for
mitigating neurological complications in Zika virus infection, we aim to apply MAPS to identify
promiscuously binding peptides within the E protein. In addition, we will also explore any
overlap between MAPS-identified promiscuously binding peptides and antibody neutralization
sites on the Zika virus E protein, as these shared residues could highlight immunodominant
targets for peptide-based therapeutics and/or vaccine development.

To identify promiscuously binding peptides within the Zika virus E protein, we
synthesized an overlapping DNP-tagged peptide library of E protein 20mers (Figure 2.7). As
with the rotavirus VP7 peptide library, each E protein 20mer (ZikVE) was loaded onto the four
MHCII alleles and peptide-MHCII binding was determined by MAPS (Figure 2.8). Based on the
criterion that promiscuously binding peptides exhibit a MAPS signal greater than or equal to five
for all four MHCII alleles, five promiscuously binding peptides within the E protein library were
identified: ZikVEs;-70, ZikVE131-150, ZiKVE191-210, ZiKVE311-330, ZikVEzs1-370 (Figure 2.9a). Of
the five promiscuously binding ZikVE peptides identified by MAPS, only two were predicted to

bind all four alleles by the lowest IEDB percentile rank prediction (Table 2.2). Interestingly,
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only DR4 was predicted to bind all five promiscuously binding peptides, which is consistent with
the IEDB prediction for the promiscuously binding VP7 peptides. Together these results provide
further evidence that while the IEDB consensus method for predicting promiscuous 20mer

peptide-MHCII binding is generally inaccurate, it most accurate for DRA4.
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Figure 2.7. Overlapping Zika virus E protein library of DNP-tagged 20mers used for
MAPS.

Table 2.2. IEDB consensus method percentile rank of peptide-MHCII binding for
promiscuously binding ZikVE 20mers.

Peptides were defined as binders if the percentile rank below was less than or equal to 20, in line
with previous studies investigating promiscuous MHCII-binding peptides.

Mean IEDB Rank Median IEDB Rank Low IEDB Rank
ZikVE DR1 DR4 DR7 DR15 |DR1 DR4 DR7 DR15 | DR1 DR4 DR7 DRI15
51-70 464 7.1 301 204 |406 46 298 227 [301 3.0 227 40

131-150 34 07 199 17 25 05 206 1.7 23 04 111 17
191-210 46.6 158 399 184 |449 175 426 179 |333 09 6.8 122
311-330 150 144 201 356 (65 93 135 346 | 16 40 59 247
351-370 120 6.3 11.1 9.9 94 50 119 109 | 77 37 93 47
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In contrast to other flaviviruses and rotavirus, a Zika virus vaccine does not currently
exist. Therefore, dominant antibody neutralization sites on a vaccine strain cannot be used as
point of comparison for the structural analysis of the promiscuously binding peptides within the
Zika virus E protein. However, it is well documented that antibodies binding the EDIII domain
tend to be potently neutralizing and less prone to ADE than antibodies binding the EDI and EDI|I

domains.?’

Analyzing the position of each promiscuously binding ZikVE peptide within the
structure of the E protein dimer revealed that one promiscuously binding peptide is within the
EDI domain (ZikVEjis1-150), While two are within the EDIl (ZikVEs;-70 and ZikVEjg1-210) and
EDIII domains (ZikVE3z11-330 and ZikVEgzs;-370) (Figure 2.9b).

While less data is available regarding specific antibody neutralization sites on the Zika
virus E protein, a 2017 study reported that a neutralizing antibody in Zika-infected individuals
contacted residues A311, T351, and L352, among others.?*® These residues can also be found
within the EDIII promiscuously binding peptides ZikVEsi1-330 and ZikVEgzs;-370. Moreover, the
same study also reported that mutating the lysine at residue 394 to alanine eliminated antibody
binding, suggesting that antibody recognition of K394 is critical for neutralization. While the
relevant peptide ZikVEsg;-410 did not fulfil our criterion as a promiscuously binding peptide, it
exhibited a MAPS signal greater than five for three of the four alleles tested (DR1, DR4, and
DRY7). If we include this quasi-promiscuously binding ZikVEszgs-410 in our analysis, 8 of the 18
antibody neutralization sites on the E protein were also present in promiscuously binding ZikVE
peptides. Similarly, another study reported that antibodies contacting residues M68, S70, V153,
T315, and P354 (among others) were potently cross neutralizing to Dengue and Zika virus. In

addition to the T315 and P354 residues found in the promiscuously binding EDIII peptides

ZikVE311.330 and ZikVEssi-370, M68 and S70 are found in the promiscuously binding EDII
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peptide ZikVEs; 7. In total, 6 of the 16 E protein antibody neutralization sites described in this

study are also present in the MAPS-identified promiscuously binding ZikVE peptides. Therefore,

as with the promiscuously binding VP7 peptides, we observed considerable overlap between the

MAPS-identified promiscuously binding ZikVE peptides and antibody neutralization sites on the

Zika virus E protein.

Figure 2.8.
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While the data gathered thus far are insufficient to definitively preclude coincidence, the

significant overlap between MAPS-identified promiscuously binding peptides and antibody

neutralization sites for both the rotavirus VVP7 protein and Zika virus E protein suggests a deeper

relationship between BCR binding and antigen presentation to CD4" T cells. This phenomenon
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267,268 and

of paired antigen specificity between B cells and T cell has been observed before,
might be caused by the fact that B cell receptor (BCR) bound residues are protected from

degradation during B-cell antigen processing.?*®

256 mDR1 mDR4 =DR7 mDR15

MAPS Signal

Promiscuously Binding Peptides

Figure 2.9. Structural analysis of MAPS-identified promiscuously binding peptides in the
Zika virus E protein dimer.

(@) MAPS signal for each promiscuously binding E protein peptide. (b) Structural analysis of
promiscuously binding peptides within the E protein dimer. The E protein domains are color
coded in the top row (EDI — red, EDII — yellow, and EDIII — green) and the location of each
MAPS-identified promiscuously binding peptide is shown in the bottom row.

A similar phenomenon was observed in a recent study that found CD4" T cells preferentially
target the same structural proteins (e.g. E protein) as B cells during Dengue infection.?™
Moreover, as in the present study, researchers observed significant overlap between regions of
the Dengue E protein recognized by CD4" T cells and those targeted by IgG molecules.
Together, these results suggest that virus-specific B cells bind, internalize, and present structural
proteins on MHCII during virus infection, which preferentially expand CD4" T cells of the same
or similar specificity.?’® An interesting outcome of shared B/T cell specificity is the possibility of
predicting CD4" T cell epitopes from known antibody neutralization sites and vice versa.?™

Regardless, the observed overlap between antibody neutralization sites and CD4" T cell epitopes
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highlights the importance of MHCII restriction — and the corresponding utility of peptide-MHCI|I
screening strategies like MAPS — in the design and development of vaccines.?”

Although we have not yet (work in progress) independently confirmed that the
promiscuously binding ZikVE peptides are actual CD4" T cell epitopes, a 2018 study**® found
that ZikVEs;.70, ZikKVEs1150, and ZikVE1g; 210 existed as CD4" T cell epitopes in HLA-DR4
transgenic mice primed with 25 pg of recombinant Zika envelope protein. Similarly, ZikVE131-150
and ZikVEgz; 33 were also shown to be CD4" T cell epitopes in HLA-DR1 and HLA-DR15
transgenic mice, respectively.”®® Further, when mice were challenged with Zika virus infection,
CD4" T cell response to ZikVEssi.370 Was among the strongest as measured by IFNy ELISpot.
These results indicate that each of the promiscuously binding E protein peptides identified using
MAPS have been shown to be true T cell epitopes in either humans or animal models. Moreover,
while the aforementioned study included DR1, DR4, and DR15, we can confirm that these
peptides (ZikVEszi-70, ZIKVEi31-150, ZIKVE191-210, ZIKVE3z11-330, and ZikVEs3s1-370) also bind DR7,
which provides broader coverage to Hispanic and African American populations (10.5% and

9.8%, respectively).

2.5. Conclusions and Outlook

Viral infections and their vaccination are often studied in the context of a neutralizing
antibody response; however, CD4* T cells also play an important role in viral immunity.?’
Therefore, identifying T cell epitopes is an important part of understanding how viral antigens

are processed and presented, as well as predicting what viral protein fragments are likely to be

recognized by T cells. A thorough understanding of T cell epitopes derived from viral proteins
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should help in the development of both diagnostic tools and peptide-based vaccines and
therapeutics. "%

However, before a T cell epitope can be identified the cognate peptide must be loaded
onto an MHC molecule. Because peptide-MHC binding is a prerequisite for T cell epitope
discovery, it is necessary to first evaluate whether a particular peptide is capable of binding a
particular MHC allele. While computational tools have come a long way in the past two decades
— especially for peptide-MHCI binding prediction — reliably predicting peptide-MHCII binding
remains a challenge.?*® This is largely because the open-ended peptide-binding groove of MHCII
molecules allows for the presentation of longer peptides than MHCI. Longer peptides coupled
with open-ended binding grooves allow for a greater number of possible peptide conformations
within MHCI|, the optimum of which is difficult to predict. This difficulty is further complicated
by secondary interactions between flanking residues at the peripheries of the peptide PBR and
the MHCII molecule. In addition, MHCII are characterized by substantial allelic diversity, which
is manifested in different peptide-contacting residues within the peptide-binding grooves of
different MHCII alleles. This MHCII polymorphism results in MHCII molecules exhibiting a
wide range of peptide-binding specificities, depending on the particular MHCI|I allele. Therefore,
MHCII allelic diversity must be carefully considered in the development of therapeutic products
if they are to be applicable to an ethnically diverse population.

Here we report the development and validation of MAPS — a high-throughput screening
strategy for rapidly identifying promiscuously MHCII-binding peptides. Using this approach, we
identified seven and five 20mer peptides derived from the rotavirus VP7 protein and the Zika
virus E protein, respectively, capable of strongly binding four common class Il MHC alleles.

Moreover, a structural analysis of these promiscuously binding peptides within their respective
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proteins revealed substantial overlap with dominant antibody neutralization sites, indicating that
these peptides correspond to immunodominant regions of each viral protein, and are thus strong
candidates for diagnostic and peptide-based vaccines. In addition, these findings contribute to a

269-271

body of knowledge that suggests a more complex and important relationship between the B
cell and CD4" T cell specificity.

In addition to independently confirming that the MAPS identified promiscuously binding
peptides are T cell epitopes by tetramer staining, we also plan to quantify peptide-MHCII
binding affinity using conventional assays.*? This quantitative peptide-MHCII binding data will
then be reported so that it can be included in large datasets that are used to train predictive
peptide-MHCII binding algorithms. The identification of promiscuously binding peptides is
particularly interesting in the context of training predictive peptide-MHCII binding algorithms,
as these peptides necessarily exhibit physical characteristics that allow binding to diverse MHCII
alleles. Further investigation of the chemical and structural similarities between promiscuously
binding peptides should help elucidate molecular signatures that promote their promiscuous
binding and improve the accuracy of predictive algorithms.

While quantitative binding data is critical to improving the accuracy of computational
peptide-MHCII binding predictors, this data alone provides an incomplete picture of peptide-
MHCII binding. Identification of the 9mer PBR core that facilitates the principle interaction
between a peptide and an MHCII molecule is also important. In fact, PBR identification is one of
the greatest challenges associated with predicting peptide-MHCII binding.?® Although the MAPS
strategy described here was designed to rapidly identify promiscuously binding peptides, the

method used to detect peptide binding was found to be sensitive to the relative position of the

PBR core within 20mer peptides (Figure 2.3b). While this unforeseen sensitivity complicates the
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translation of the observed MAPS signal to peptide-MHC binding affinity, it does provide some
insight into the location of the PBR. As a result, MAPS coupled with quantitative measurements
of peptide-MHCII binding affinity might provide a basis for the informed prediction of the PBR
within a 20mer peptide. Moreover, our data suggests that the accuracy of such a prediction will
likely improve if the PBR is located near the extreme ends of the peptide, where the MAPS
signal is most sensitive (Figure 2.3b).

The central theme of this dissertation is the development and validation of molecular
tools with applications in T cell immunotherapy. Like any tool, MAPS is designed for a specific
task; namely, a simple and high-throughput method for identifying peptides that promiscuously
bind to multiple MHCII alleles. In addition to identifying promiscuously binding peptides from
antigenic viral protein libraries, MAPS also provided insight into immunodominant regions of
these viral proteins that could be targeted by both B cells and CD4" T cells during viral
infections. While we demonstrated the utility of the MAPS strategy in the context of viral
immunity, this approach is also applicable to the high-throughput screening cancer neoantigens

for cancer immunotherapy.

2.6. Materials and Methods
2.6.1. Protein Design, Expression, and Peptide Synthesis

Human MHCII proteins were assembled by isolating the extracellular domains of the
alpha chain HLA-DRA (UniProt: P01903, residues 26-216) and each beta chain allele: HLA-
DRB1*01:01 (UniProt: P04229, residues 30-227), HLA-DRB1*04:01 (UniProt:P13760, residues
30-227), HLA-DRB1*07:01 (UniProt: P13761, residues 30-227), HLA-DRB1*15:01 (UniProt:

P01911, residues 30-227). The leucine zipper dimerization motifs Fos and Jun were fused to the
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C-terminus of the DRA and DRBL1 chains, respectively, as described elsewhere.?”> The 15 amino
acid AviTag™ (GLNDIFEAQKIEWHE) was fused to the C-terminus of the Fos dimerization
motif on the DRA chain to allow for biotinylation and a 6X-Histidine tag was fused to the C-
terminus of the complete recombinant DRA chain for purification. The N-terminus of each
DRBL1 chain was fused to the invariant chain CLIPg7.101 peptide via a thrombin-cleavable linker
to allow for peptide exchange, as described elsewhere.?”® The C-terminus of the Jun-dimerization
motif of each DRB1 was fused to a 6X-Histidine tag for purification. Finally, the N-terminus of
each dimeric chain was fused to the baculovirus gp64 signal peptide and ligated into separate
baculovirus transfer vectors pAcGP67A (BaculoGold Baculovirus Expression System,
Pharmingen BD Biosciences, San Jose, CA). The DNA sequence of each construct was verified
by Sanger sequencing.

Spodoptera frugiperda (SF9) insect cells were transfected with transfer vectors carrying
the recombinant DRA chain and each recombinant beta chain (DR1, DR4, DR7, and DR15) with
linearized Baculovirus DNA (Pharmingen BD BaculoGold Biosciences, San Jose, CA) using
Cellfectin II (Invitrogen) according to the manufacturer’s protocol. Low-titer PO viral stocks
carrying the recombinant DRA and DRB1 genes were isolated from the transfection supernatant
and amplified separately in SF9 cells to create high-titer P1 viral stocks. Each human MHCII
heterodimer was expressed by co-infecting High-Five cells at a density of 2.0 M/mL with equal
volumes of high-titer P1 DRA and DRB1 baculovirus stocks. MHCII protein was harvested 72 h
after infection and purified using affinity chromatography with Ni-NTA beads according to the
manufacturer’s protocol (Qiagen). SDS-PAGE analysis was performed to evaluate protein purity.

Approximately 0.5 mg of each peptide used in this work was chemically synthesized by

Sigma-Aldrich (Woodlands, TX). Each peptide was designed to be 20 amino acids long and was
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fused to an N-terminal dinitrophenyl (DNP) tag. Peptide libraries covering the B. pseudomallei
alkyl hydroperoxide reductase (AhpC) protein (UniProt: Q63T73 residues, 1 — 180), the rotavirus
outer capsid glycoprotein VP7 (UniProt: P11853 residues 41 — 320), and the Zika virus E protein
(UniProt: AOA024B7W1 residues 291 — 794) were designed such that each 20mer peptide
overlapped with the preceding peptide in the sequence by 10 amino acids. DNP-tagged variants
of DR1-binding peptide the HA306-313 Were synthesized were also synthesized to determine how
relative PBR position affects MAPS signal. Peptides in the libraries that could not be chemically
synthesized were not included in the MAPS analysis, and explain any non-consecutive sequences

in Figure 2.4 and Figure 2.7.

2.6.2. Biotinylation and Peptide Exchange

After purifying the human MHC-CLIP proteins, the DRA chain of each heterodimer was
biotinylated. Biotinylation reactions were performed with the AviTag™ biotinylation kit
(Avidity LLC, Aurora, CO) according to the manufacturer’s protocol. Biotinylation reactions
were performed at room temperature overnight. The biotinylation efficiency for each allele was
assessed using a streptavidin gel-shift assay. Briefly, biotinylated MHC-CLIP proteins were
buffer exchanged into HEPES buffered saline (HBS) and incubated with excess streptavidin for
1 h at 30 °C. The complexes were then analyzed using SDS-PAGE, and biotinylation efficiency
was evaluated by estimating the fraction of the biotinylated DRA chain that shifted following
incubation with streptavidin.

Peptide exchange was performed similar to previously published methods,*® with some
modifications. Prior to peptide exchange, the CLIPg7.101 peptide fused to each DR beta chain was

cleaved. CLIPg7.101 cleavage was performed by incubating the MHC-CLIP protein with
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restriction grade thrombin (Novagen, Madison, WI) for 2 h at 37 °C at a concentration of ten
units per milligram of protein. Thrombin-induced CLIPg;.10; cleavage was confirmed using SDS-
PAGE (Figure 2.2c). Following CLIPg7.101 cleavage, peptide exchange was performed by
transferring the empty DR alleles into peptide exchange buffer containing 50 mM sodium citrate
pH 5.2, 1% octylglucoside, and 100 mM NaCl. DR alleles were then incubated with 25 molar
excess DNP-tagged peptides for 16 h at 37 °C. Peptides were diluted in a solution of 50%
DMSO in HBS to minimize precipitation prior to loading. After 16 h, the peptide exchange

reaction was neutralized by adding 1/5 volume of 1 M Tris pH 8.0.

2.6.3. MAPS and Flow Cytometry

Following peptide exchange, 2 ug of each exchanged MHCII was incubated with 100,000
streptavidin-coated microspheres (Bangs Laboratories, Fishers, IN) in 1% bovine serum albumin
(BSA) for 1 h at room temperature. In parallel, an equivalent amount of DNP-tagged peptide
used in the peptide exchange reaction was incubated with streptavidin-coated microspheres in the
absence of MHCII for calculating the MAPS signal. After loading, the microspheres were
washed in 1% BSA and stained with 2 ng/uL of rat anti-DNP antibody (Clone LO-DNP-2,
Invitrogen, Waltham, MA) for 30 min at room temperature. Stained microspheres were washed
in 1% BSA and stained with 2 ng/uL of secondary goat-anti-rat PE (Invitrogen, Waltham, MA)
for 30 min at room temperature. The stained microspheres were then washed twice in 1% BSA
and resuspended in 500 pL for analysis by flow cytometry. Flow cytometry was performed by
gating on the population of single microspheres and analyzing the median fluorescence intensity
(MFI) from the DNP fluorescent staining. The MAPS signal was determined by normalizing the

peptide-MHC DNP MFI by the MFI of the peptide incubated with the microspheres alone. This
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normalization accounted for non-specific binding of peptides to the streptavidin-coated
microspheres. Peptide-MHC interactions exhibiting a MAPS signal greater than or equal to five

were defined as binding interactions.

2.6.4. IEDB peptide-MHCII Binding Prediction

IEDB peptide-MHCII binding predictions were performed by entering each 20mer
peptide sequence and predicting its binding to DRB1*01:01, DRB1*04:01, DRB1*07:01, and
DRB1*15:01 using the IEDB recommended prediction method. The output data was broken

down into six 15mers for each 20mer sequence provided. The IEDB consensus method?32%!

was
used to predict peptide MHCII binding, which provided a binding percentile rank for each
15mer. The percentile rank binding score was calculated by comparing the predicted peptide-
MHCII binding affinity of the target peptide against 5 million random 15mers from the
SWISSPROT database. Accordingly, a low percentile rank indicated a high predicted binding
affinity while a high percentile rank indicated a low predicted binding affinity. The mean,
median, and low percentile rank were calculated from the six 15mers derived from each single
20mer sequence, and analyzed separately. Peptides were said to be binders if the percentile rank

was less than or equal to 20, in accordance with a previous study concerned with promiscuously

binding peptides.**?
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Chapter 3. Protein-Scaffold Directed Nanoscale Assembly of T Cell Ligands:
Artificial Antigen Presentation with Defined Valency, Density, and Ratio

3.1. Publication Information

Smith, M. R., Tolbert, S. V., Wen, F. Protein-Scaffold Directed Nanoscale Assembly of T Cell
Ligands: Artificial Antigen Presentation with Defined Valency, Density, and Ratio. ACS Synth.
Biol. 7(6), 1629 — 1639. 2018.

The goal of this chapter is to demonstrate that T cell activation can be finely tuned by
controlling the spatial and stoichiometric organization of T cell ligands on the surface of a yeast
cell. To our knowledge, this is the first study demonstrating that the nanoscale organization of T
cell ligands on the surface of a living cell can be controlled using supramolecular assembly
engineering based on cohesin-dockerin binding. Stephanie Tolbert assisted in expressing and

purifying the proteins used in this study.

3.2. Abstract.

Tuning antigen presentation to T cells is a critical step in investigating key aspects of T
cell activation. However, existing technologies have a limited ability to control the spatial and
stoichiometric organization of T cell ligands on 3D surfaces. Here, we developed an artificial
antigen presentation platform based on protein scaffold-directed assembly that allows fine

control over the spatial and stoichiometric organization of T cell ligands on a 3D yeast cell
